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The subspace Hamiltonian technique, introduced several years ago, has proved convenient for
determining bound states and resonances associated with surfaces and defects. Here we discuss the
extension of this technique to other problems, including total-energy calculations and real-time com-
puter simulations. We prove several theorems and report numerical calculations that help to explain
the usefulness of the technique in practical applications.

I. INTRODUCTION

Green’s-function methods are useful for at least two
reasons: (1) They often allow an N-dimensional problem
to be reduced to an n-dimensional one, where N is large
(or infinite) and n is small (or at least finite). (2) They al-
low many-body effects to be included.

Several years ago, within the general context of the
Green’s-function approach, one of us introduced a “sub-
space Hamiltonian” technique.! This technique has
proved convenient for calculating the bound states and
resonances associated with surfaces,? interfaces,>* and de-
fects.’ Here we extend the technique to other problems,
including total-energy calculations and real-time comput-
er simulations.® We prove several theorems and report
numerical calculations that help explain the utility of this
technique.

II. THE SUBSPACE HAMILTONIAN

The subspace Hamiltonian is an energy-dependent ef-
fective Hamiltonian.! (For concreteness, we will consider
the one-electron Hamiltonian for electrons in a solid. The
treatment of this paper also applies when many-body ef-
fects are included, with H—H +3—pu, where X is the
self-energy and p the chemical potential.” It also applies
when H—D, where D is the dynamical matrix for pho-
nons.) If H is the NXN Hamiltonian matrix for a
“large” system (e.g., an infinite solid), the Green’s func-
tion for this system is

G(E)=(ET-H)™', @.1)
where 1 is the NXN identity matrix. Let some n-
dimensional subspace be chosen, and the rows and
columns permuted so that i,j =1,2,...,n within this sub-

space. We partition G in the well-known fashion:
G 11 G 12
Gll G22

>

) (2.2)

where G!!, G!%2, G?, and G* are, respectively, nXn,
nX(N —n), (N —n)Xn, and (N —n)X (N —n). That is,
G!! is the Green’s function in the chosen subspace. For
simplicity of notation, we write

G=G', (2.3)
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We then let

E—H(E)=[G(E)]"". (2.4)

The subspace Hamiltonian H g, is only n X n, whereas the
original Hamiltonian His NXN. The price that we pay
for this reduction is that H, is energy dependent. In ad-
dition, as will be seen below, it is frequently non-
Hermitian. The main point of this paper is to show that
the replacement of H by Hg(E) is very advantageous
despite these complications. We will also see that the sub-
space Hamiltonian technique has advantages over more
conventional Green’s-function methods.

The eigenvalues E; and n-dimensional eigenvectors- ¢;
are also energy dependent:

H W (EY;(E)=E;(EW;(E) . (2.5)
Suppose that
H=H,+V, (2.6)

where ﬁo is an unperturbed Hamiltonian and V has
nonzero elements only in some n X n subspace:

vV o
0o

-

. (2.7

With the partitioning of (2.2), the one-electron N XN
Dyson equation

>

G=Gy+GyV-G, (2.8)

Go(E)=(ET—H,)™! 2.9)
is essentially equivalent to the n X n Dyson equation

G=Go+G,VG , (2.10)
as is quite well known. Since (2.10) is equivalent to

G '=G5'-vV, (2.11)
(2.4) is equivalent to

E—Hy(E)=G5'—V. 2.12)
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III. THEOREM 1: MONOTONIC DECREASE OF E;(E)

We now prove that
JdE;(E)
JE

whenever the energy E lies within a band gap—i.e., out-
side the continua of unbound states. In surface-state cal-
culations, or other problems where there is two-
dimensional translational invariance, we define G (kE),
E;(kE), etc., where k=(k;,k,) is the planar wave vector.
Then (3.1) is valid within the band gaps at fixed k, which
cover a larger range of energies than the intersection of
the band gaps for all k. Furthermore, (3.1) is a good ap-
proximation in energy regions where the bulk density of
states is low.

The significance of (3.1) is that it limits the behavior of
the eigenvalues E;(E) of the subspace Hamiltonian. They
cannot vary wildly and erratically within the band gaps
because (3.1) guarantees they will decrease monotonically.
One consequently expects, and finds in numerical calcula-
tions, that E;(E) is a smooth function of E within the

=0 (3.1

band gaps.
To prove (3.1), we differentiate (2.12) with respect to E:
OH W (E) 1 9Go
—_—=1 32
3E +Gyg 3E —G, (3.2)

since V is independent of E. (In the present section we do
not consider many-body effects.) According to the
Hellmann-Feynman theorem,

QE{(E) _;  OH(E)

3E =9, (E) 3E Y (E), (3.3)
where

H! W (EY),(E)=EE)Y),(E (3.4)

At this point we are still allowing G (E) and H,,(E) to be
non-Hermitian, so that the right eigenvectors ¢; of (2.5)
and the left elgenvectors ¢v, of (3.4) must be distinguished,
and E; is, in general, complex. Inner products are, of
course, implied in equations like (2.5), (3.4), and (3.3).
Equation (3.3) follows from

E{(E)=0(E)H (E)Y;(E) (3.5)
and the normalization condition
PHEW(E)= (3.6)

[We assume the normal case that the eigenvectors of Hy,
can be made to satisfy (3.6).] From (3.2) and (3.3) we ob-
tain

o 31672 65 ) (3.7

OE PETO e O TR '
Equation (2.1) implies the well-known relation

d =

SEGO (2) (3.8)

(Recall that Gy is N XN and G, is n Xn.) The partition-
ing of (2.2) then yields
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a 2 120521
EGO=_(;0_G0 G§ (3.9)
so that (3.2) and (3.7), respectively, become
E’_’fg’:i —(GeH 66 (G, (3.10a)
%= —$i(EXGy ) T'GGE (G ) (B .
(3.10b)

In these last equations, we have reverted to writing G(’)]
for Gy,. Notice that the energy dependence of Hg,, and
the E; arises from the coupling of the subspace 1 to the
external space 2 via the Green’s functions G2 and G3!
If this coupling is turned off, H, and the E; become
constant with respect to variations in the energy E.

For energies lying within the bulk bands,

E—E +id (3.11)

in (2.1), as usual (in the case of the retarded Green’s func-
tion). Then 6 is not Hermitian. Let us now, however, re-
strict our attention to real energies outside the bulk bands,
where E‘;o, G, and H,, are Hermitian. Then (3.10) be-
comes

0H(E)
——=—168'(@GH 63 6H ™", Gaza
J0E;(E)
sg = LG8 (G (BTG (68" (E)] .
(3.12b)
Since the right-hand side of (3.12b) has the form — | ¥ |2,

(3.1) follows immediately.

Notice that we could have used G rather than G in the
derivation (3.2)—(3.12). That is, (3.1) is true in general [so
long as G(E) is Hermitian], and not just for systems
described by (2.7).

IV. THEOREM 2: H,(E)—>Has|E | > o

In this section we prove that

H,(E)»H as|E|—>w, 4.1)
where

- Hll H12

H= g2 g» (4.2)
and

H=H", (4.3)

just as in (2.2) and (2.3). This theorem provides an even
more important limitation on the behavior of Hgy, its
eigenvalues E;(E), and its eigenvectors ;(E), since it im-
plies that they are all constant with respect to the energy E
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at large E. This allows a very great simplification in ap-
plications of the subspace Hamiltonian technique, as will
be discussed in Sec. VI. Equation (4.1) is equivalent to the
statement that the subspace 1 is decoupled from the exter-
nal space 2 at large energies.

To prove (4.1), we expand (2.1):

GE)=E-'T+H/E+H¥/E*+ ). 4.4)
Within the subspace 1 of (4.2), this is
G(E)=E~'14+H/E +H?/E*+HH* /E*+ - - - ).
4.5)
Then (2.4) gives
E—H,(E)=E(1-H/E —HYHY/E*+ ---), (4.6)
with (4.1) following immediately.

V. THEOREM 3: BOUND STATES
AND RESONANCES CORRESPOND
TO E,(E)=E

We now prove that the Green’s function diverges at
those energies E for which

E(E)=E . (5.1

A solution to (5.1) outside the continua of unbound states
will ordinarily correspond to a bound state if E is real or a
resonance if E is complex.

Equation (5.1) provides a useful method to search for
bound states and resonances in calculations—a much
better method, in our opinion, than the traditional ap-
proach of looking for solutions to

det[1—-Go(E)V]=0. (5.2)

In the first place, Eq. (5.1) focuses on individual eigen-
values whose behavior is relatively simple. Equation (5.2),
on the other hand, focuses on a determinant that may in-
volve the product of many eigenvalues, and whose
behavior may consequently be very complicated. In the
second place, (5.1) is more physically meaningful than
(5.2), in that (5.2) can be rewritten as

detGo(E)det[E — H,(E)]=0 . (5.3)

Solutions to (5.2) thus correspond to both the physical
bound states and resonances of (5.1), and to the unphysi-
cal solutions of detGy(E)=0.

To prove (5.1), we merely recognize that, at fixed ener-
gy E, G is given by the usual spectral representation:

(EYH(E)
GE=3 % . (5.4)

We are assuming the normal case that the eigenvectors of
H,, satisfy the completeness relation

S wEWIE)=1, (5.5)

so that (5.4) follows from (2.4) and (2.5). Then G(E)
diverges at those energies E satisfying (5.1).

For reasonably narrow resonances, a convenient ap-
proximation to (5.1) is

ReE;(E)=E . (5.6)

This criterion has yielded surface-state resonances that are
in agreement with experiment for the (110) surfaces of
ZnSe and GaAs.? In Si/NiSi, interface-state calcula-
tions,* it has also been found to agree with the alternative
theoretical criterion that a resonance corresponds to a
peak in the local density of states,

1o RE) = — %Im TG (KE) . 5.7)

V1. CALCULATING THE TOTAL ENERGY
AND OTHER PHYSICAL QUANTITIES

As mentioned in the preceding section, bound states
correspond to poles E along the real axis and resonances
correspond to poles out in the complex plane. However,
these resonance poles are not on the physical Riemann
sheet. Instead they lie on unphysical Riemann sheets.® In
numerical calculations, one finds that

ImE;(E)S0 for InE20 (6.1)

for input energies E on the physical sheet. That is, the
singularities (5.1) for Im E-£0 are not found on the physi-
cal sheet. This is a fortunate fact, because it implies that,
according to Cauchy’s theorem, one can deform contours
of integration involving the Green’s function.

As an illustration, consider

E
AE= [ " EAp(E)E, (6.2)

where Ap(E) is the change in the density of states pro-
duced by the perturbation V. This is one contribution to
the change in total energy; other contributions, and
changes in other physical quantities, will involve ideas
similar to those discussed below. According to the
theorem of DeWitt and Toulouse,>!°

_ 1 3q(E)
Ap(B)=——20 (6.3)
where 7(E) is the phase shift:
7(E)= —ImIndet(G~'G,) . (6.4)

If we restrict our attention to neutral systems, for which
the Friedel sum rule!"!? holds,

n(Ep)=0, 6.5)

with the usual convention 7(— »)=0, integration by
parts gives

—1 Ep
AE=— I} 5, MEME . (6.6)

Here, E, is some energy below all the relevant states, so
that n(E)=0 for E <E,.
Equations (2.4) and (2.5) allow (6.4) to be rewritten as
2 E)=—Im | 3 In{[E —E,{(E)]/[E —E{°(E)]} |,
i

(6.7)



5614
where
HOUEW(E)=E{®(EW°(E), (6.8)
E—HO(E)=[Go(E)]™". 6.9)
Equation (4.1) implies that
E)~— 3 Im{In[(E —¢;)/(E —e{®)]}
for | E |large, (6.10)

where the ¢; are the eigenvalues of the actual Hamiltonian
H that the subspace would have if it were decoupled from
the external space. [See (4.2) and (4.3). Recall that H is
nxn, whereas H is NXN.] Similarly, the €/ are the
eigenvalues of H,, with

H=Hy+V. (6.11)

According to the argument in the first paragraph of
this section, we are allowed to deform the contour of (6.6):

—1

AE=— [ nEME, (6.12)
where C begins at some real energy E. well below the
band energies of interest, follows a path in the complex
plane above the real axis and well removed from these
band energies, and then descends from some complex en-
ergy to the real axis at the Fermi energy Er. For exam-
ple, C may consist of the straight line segments ( E,,0) to
(E.,Ep), (E.,Ep), to (Eg,Ep), and (Eg,E;,) to (Eg,0).
According to (4.1), (6.10) will be a good approximation for
all energies on C, except those on the final part of the final
segment as E descends to Er.

If C, is the large contour along which (6.10) is a good
approximation—i.e., along which

E,(E)=E(E,), (6.13)
with E, being some fixed complex energy lying on C;—
and if C, is the small contour along which the energy
dependence of E;(E) cannot be neglected, then

AE=AE, +AE, , (6.14)

1
AE ~—Im 2 fcl {In[E —E;(E,)]

— In[E —E{°(E,)]}dE

’

(6.15a)

AEzziIm [2_ J,InlE ~E(E)]

— In[E —E{°(E))}dE

(6.15b)

Integrals like (6.15a) are relatively simple and in some
cases can even be done analytically. Computationally,
(6.15a) and (6.15b) represent an enormous reduction of the
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original problem (6.2). In numerical calculations for an
sp>s* model of semiconductors,'® we find that an accu-
rate calculation of AE from (6.2) requires ~ 100 energies,
whereas the same level of accuracy is obtained from (6.15)
with ~5 energies—one energy E, on C,; and about four
on C,."* In parallel studies, Sankey'> has obtained about
1% accuracy in a calculation of AE that employed two
energies on a contour that we would characterize as C,
and three on a contour that corresponds to our C,.

In Figs. 1—4 we display the rather slow dependence of
the eigenvalues E;(E) on energies E in the complex plane.
Notice that E;(E) is indeed almost constant until one re-
turns to the Fermi energy Efr on the real axis. Figs. 1 and
2, in particular, demonstrate that (6.15) is a useful approx-
imation, with C; corresponding to most of the rectangu-
lar contour of Figs. 1 and 2, and C, corresponding to the
extreme right-hand side of these figures.

Other physical quantities are represented by other in-
tegrals involving Green’s functions. In general, however,
the original integrals along the real axis should be de-
formed into the complex plane. Along the part of the
contour well removed from the relevant bands (C,), we
use a representation like (5.4) for the Green’s function,
with the approximation (6.13) and

Ui(E)=;(Ep), $:(E)=¥;(Eo) . (6.16)

On the other hand, along that part of the contour that
represents a return to the real axis at the Fermi energy Er

8.0

4.0

0.0

-4.0

Re Eigenvalues (eV)

-8.0

-12.0 T T T
-10.0 -5.0

E (eV)

(-13.0)

o
(1.6,18) b
(1.6,0)

(~13,10)

FIG. 1. ReE;(E) for energies E in the complex plane. Here,
Hp(E) is the 20X 20 subspace Hamiltonian for the s, p,, p,,
Pz, and s* orbitals (Ref. 13) on the surface Ga, surface As, sub-
surface Ga, and subsurface As atoms in the first two planes at
the relaxed (110) surface of GaAs (Ref. 2), and the E;(E) are its
eigenvalues. The contour in the energy plane runs from (—13,0)
to (—13,10) to (1.6,10) to (1.6,0), where the first number in
parentheses is the real part of E, the second is the imaginary
part, and both are given in eV. Notice that ReE;(E) is nearly
constant around the contour until the real axis is approached at
E =1.6 (an energy very near the conduction-band edge E, =1.55
eV—i.e., very near the Fermi energy Er for degenerately doped
n-type GaAs).



12.0

8.01

4.0

0.0

-4.0

Im Eigenvalues (eV)

-8.0

-12.0 . , .
-100 -50 0.0

E (eV)

(-13,0)
(~13,10)
(1.6,10) |

(1.6.0)

FIG. 2. ImE;(E) for the same system and same contour as in
Fig. 1. Notice that ImE;(E) is small until the real axis is ap-
proached at E =1.6. Also notice that ImE;(E) <0.

(C;), we use a representation like (5.4), with the E;(E),
¥;(E), and ¢;(E) calculated for some representative sam-
ple of the energies E.

Many applications require the Green’s function outside
the perturbation subspace—i.e., G2, G?!, and G?2. These
can be obtained from the G =G ! of (5.4) by means of the
Dyson equation (2.8).

In some application, one needs the time-dependent
Green’s function G(t,t') for phonons, electrons, etc.
G (t,') is an inverse Fourier transform, i.e., it is also given
by an integral along the w axis. It can therefore be calcu-
lated by the methods of this section.

VII. REAL-TIME COMPUTER SIMULATIONS

Let x represent one component of the position vector
for one nucleus in a system of atoms. In order to perform
a computer simulation of the motion of the nuclei, we
must be able to calculate the forces

n B
o :
oD .
-i 1
< e
= ;
LJ b
(&
u'l H
©
@ -80 B
Cygol s e L A
o= =%
- ENERGY T2
L Z

FIG. 3. ReE;(E) for a contour much nearer the real axis
than that of Fig. 1 (with the long segment 1 eV away rather
than 10 eV). Notice that ReE;(E) still exhibits a remarkably
slow variation with E.
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FIG. 4. ReE;(E) for the same contour and same system as in
Fig. 3, but for the 10X 10 subspace Hamiltonian corresponding
only to surface Ga and surface As atoms. Note that
E —H,,(10X10)=[G (10X 10)]~!, whereas E — H,,(20x20)
=[G(20x20)]~}, but there is an obvious correspondence in the
relevant eigenvalues E;(E).

_9u
T ax

One contribution to the total energy U is the energy AE
of the preceding section. For simplicity, we will not con-
sider the other contributions in the discussion here. Some
of these contributions (e.g., the nucleus-nucleus Coulomb
repulsion) can be simply treated, and some of them (e.g.,
the doubly counted electron-electron interaction) can be
treated using ideas similar to those presented below.

If we now regard F, as the contribution to the total
force arising from the electronic energy AE, (6.7) and
(6.12) give

(7.1)

- 2
Fy=—Im ;fCE_Ei(E) . (7.2)
According to the arguments of the preceding section,
F,=F,+F,, (7.3)
1 aE,(E()) Ea—E[(EQ)
Fi~—I 1 .
1= ml; ™ E. _E(Eg) ||’ (7.4a)
F,=—1I .
2 wm‘},.-"szE—ExE) P (7.4b)

Here, E, is the complex energy where C; stops and C,
begins. According to the Helmann-Feynman theorem
[compare with (3.3)],

3E(E) _i _ 3V
o =UE)U(E)

since dH,,/dx =3V /dx in view of (2.12). Very recently,
we have successfully employed (7.4) and (7.5) in real-time
computer simulations of Al and As atoms interacting
with the (110) surface of GaAs.®

(7.5)
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VIII. CONCLUSION

The mathematical and numerical results of this paper
help to explain previous successes of the subspace Hamil-
tonian technique in practical calculations, and also help to
provide a foundation for a wider variety of applications.
This technique promises to be a useful addition to the re-
pertoire of Green’s-function methods in physics.'¢—32
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