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Surface states and surface resonances in Inp, InAs, and InSb
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Dispersion curves E(k) are predicted for both bound and resonant surface electronic
states at the relaxed (110) surfaces of InP, InAs, and InSb.

I. INTRODUCTION

The In —group-V compound semiconductors are
interesting materials with potentially important de-
vice applications. InSb and InAs have small band

gaps (about 0.2 and 0.4 eV, respectively, at room
temperature), so that InSb, in particular, is a useful
infrared detector. InP, on the other hand, has intri-

guing electronic and optical properties. It is ob-
served to have high mobility (when undergoing n

type doping) and low surface recombination rates',
it exhibits resistance to the "rapid" mode of laser
degradation, ' and it has a "switchable" Schottky
barrier.

From a fundamental point of view, the
In —group-V semiconductors are of interest because
their bulk and surface electronic properties differ
from those of the Ga —group-V materials in several

respects. For example, the bulk vacancy levels of
InP are predicted to lie outside the fundamental
band gap, and the surface core excitons are ob-

served and predicted' to lie above the conduction-
band edges as resonances in InSb and InAs, whereas

they lie within the band gap as bound states in all

the Ga —group-V semiconductors.
Williams and co-workers" and other experimen-

tal groups are currently investigating the intrinsic
surface state bands in InP and the other
In —group-V semiconductors. Since it will be of in-
terest to compare theory and experiment, and since
the existing theoretical predictions for these materi-
als are rather limited, ' we have carried out calcula-
tions of the dispersion curves for bound and
resonant surface states in InP, InAs, and InSb,
which we report here. Essential and distinguishing
features of the present work are that surface relaxa-
tion' ' is included and that the energies of the
resonant states within the bulk bands are predicted.

The (110) surface relaxation is assumed to be the

rigid 27.3 rotation of the anions out of the surface
plane that is characteristic of all III-V's (Refs. 13
and 14). As shown for GaAs, ' the rather small
changes in bond length that accompany this rota-
tion do not have a substantial effect on the surface
state energies. The surface resonances are evaluated

as well as the bound states within the gap, because

they are fully as important in determining the elec-

tronic spectra. ' '

II. METHOD OF CALCULATION

The calculations employ the empirical tight-
binding sp s' model of the bulk electronic struc-
ture' and the analytic Green's-function, effective
Hamiltonian technique. ' We have previously cal-
culated the surface state sp-.ctra of Ga —group-V, '

Al —group-V, and Zn —group-VI (Ref. 17) semi-
conductors using the present approach, and have
found that it works remarkably well in each case:
(i) The predicted dispersion curves for GaAs and
ZnSe are in agreement with the angle-resolved
photoemission measurements. ' (ii) All of the
direct-gap zinc-blende semiconductors are predicted
to have no surface states within the band gap,

' in
agreement with experiment and with the previ-
ous self-consistent caculations for GaAs. ' (iii)
Indirect-gap GaP is predicted to have a surface
state band tailing down to an energy below the
conduction-band edge, ' again in agreement with ex-
periment ' and with a subsequent self-consistent
calculation. Thus we have every reason to expect
the predictions for In —group-V surface states to be
comparably reliable.

One of the principal advantages of the sp s*
model is that it provides a simple, nearest-neighbor,
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chemical-bonding picture of surface and defect phe-
nomena in semiconductors, yet (unlike other
nearest-neighbor models) is realistic enough to treat
conduction-band-related states in indirect-gap semi-

conductors like Gap.
The calculations are performed as follows: First,

the retarded bulk Green's function Go+(E) is ob-
tained from the sp s* Hamiltonian and the analytic
representation, '

G+(x x';k, E)
= —2iriXk, g( x;k,k3)

Xg (x ', k, k3)sgn(x3 —x3)/us(k, k3) .

and E;(E) represent its eigenvalues,

H,ff(Eg; (E).=E;(E)g;(E) .

The condition for a bound state is

E.(E)—E (6)

Since the E;(E) are typically slowly varying func-
tions of E, Eq. (6) provides a straightforward and
numerically efficient procedure for locating such
surface bound states.

Within the bulk bands, Hd~ is no longer Hermi-
tian and its eigenvalues are complex. In this case
we define surface resonances by

Re[E;(E)]=E . (7)

E Heff (E)=G 0 (E) ——V (4)

Here x and x' label lattice points and k is the
planar wave vector associated with propagation
parallel to the surface. The allowed values of the
normal wave vector k3 are those corresponding to
the bulk Bloch waves of energy E propagating away
from x3 ——x3 (for k3 real), and the "evanescent
waves" decaying away from this plane (for k3 com-

plex). The wave function is 1(; we define
sgn(x)=+1( —1) for x&0 (~0), and u3 is the
group velocity in the direction normal to the sur-
face.

The second step is to calculate the perturbation
matrix V, defined by

V=H —Hp,

where Hu is the (sp s*) Hamiltonian in the perfect
crystal and H is the Hamiltonian that results from
(i) theoretical cleavage of the crystal along a (110)
plane, and (ii) relaxation of the surface atoms with

anion atoms rotating outward and In atoms inward.
This relaxation is treated by a method similar to
that of Chadi. '

The third and final step is to locate the energies
of the bound states and resonances at each planar
wave vector k. In conventional Green's-function
calculations, these energies are found by searching
for zeros in the Fredholm determinant (bound

states) or its real part (resonances), i.e., from the
condition

Re I [1—G(~) (E)V] I =0,
where Gu (E) is the Green's function within the
subspace of the perturbation. Our test calculations
have shown, however, that it is far more convenient
to use the "effective Hamiltonian" technique': Let
H ff be defined by

Details of the method are given elsewhere. ' '

III. RESULTS

Our results are shown in Figs. 1 —3. The surface
states are labeled according to the scheme intro-
duced by Chelikowsky and Cohen for GaAs (Ref.
29): A; and C~ denote states associated primarily
with anion and cation atoms, respectively. A ~, A2,
C~, and C2 are mainly s-like, with A2 and C2 local-
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FIG. 1. Dispersion curves for bound states (solid lines)

and resonant states (dashed lines) at the relaxed (110) sur-

face of InP. Surface-state energy E is plotted as a func-

tion of the planar wave vector E for E lying along the

symmetry lines of the surface Brillouin zone, shown on

the right. [1 is the origin, E=(0,0); M is a corner of the

surface Brillouiu zone, k =(—,,—,).] Bulk bands at fixed k

span the regions indicated by the light diagonal lines. E„
and E, are, respectively, the valence- and conduction-

band edges; the band gap is that measured at low tem-

perature.
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FIG. 2. Dispersion curves for bound and resonant
(110) surface states in InAs.

FIG. 3. Dispersion curves for bound and resonant
(110) surface states in InSb.

ized largely in the first layer and A ~ and C& in the
second layer. A3, A4, A5, and C3 are mainly p-like,
A5 and C3 being the "dangling-bond" bands and A4

being the "back-bonding" band. A, , and A, were

not reported in Ref. 29; they are largely associated
with in-plane p-bonding in the first and second
layers, as is A3. We emphasize, however, that the
character of each state changes with the planar
wave vector and represents an admixture of many
orbitals.

Notice that our Green's-function, effective Ham-
iltonian technique is well suited for the treatment of
the surface resonances (dashed lines) within the bulk
bands. In the studies of GaAs (Ref. 16) and ZnSe
(Ref. 17), we found that these resonances are just as
important as the bound surface states. In particu-
lar, our calculated resonances were in agreement
with experimental features in the surface state spec-
tra of both GaAs (Refs. 21 —23) and ZnSe (Ref. 24)
that had not been explained by the previous theoret-
ical treatments.

The valence-band-derived surface states are simi-
lar to each other, and are also similar to those ob-
tained for the Ga —group-V, ' Al —group-V, and
even Zn —group-VI compounds.

' This is not
surprising, of course, since the bulk valence-band
structure is similar for all of these materials having

the zinc-blende structure and similar chemical
bonding.

The conduction-band-derived surface states, like
the bulk conduction bands themselves, show varia-
tions from one material to another. In particular,
the minimum energy of the lowest unoccupied sur-
face state band is predicted to lie about 0.5 eV
above the conduction-band edges E, in InSb and
InP but about 1 eV above E, in InAs. (This
minimum is predicted to lie only slightly above the
conduction-band edge in GaAs, and somewhat
below E, in GaP. '') Of the occupied surface
states, only the s-like states A &, A2, C&, and C2 exhi-
bit unambiguous chemical trends; their energies are
ordered InP) InSb& InAs. It will be gratifying if
the present predictions are borne out by experi-
ments.
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