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Exact and complete solution is presented on the nonlinear longitudinal magnetic ringing of
spin-ordered bcc He ensuing on the complete switchoff of a dc magnetic field H]. The theory
is based on the set of dynamic equations proposed by Osheroff et al. , which neglects relaxation
effects. The complete motion is found to be characterized by three principal frequencies, of
which only two enter into the ringing behavior of the longitudinal magnetization. An alterna-
tive way to prepare the initial state for observing the subsequent nonlinear ringing, viz. , by ap-
plying an ac magnetic pulse at the zero-field resonance frequency instead of turning off a dc
field H~, is also analyzed, and found to be less than ideal, even though the subsequent zero-
field ringing behavior is still exactly soluble.

I. INTRODUCTION

Recently, Osheroff, Cross, and Fisher' have shown
that the low-field antiferromagnetic resonance spec-
trum of spin-ordered bcc 'He exhibits large shifts
from the Larmor frequency which can be well fitted
by the formula

[(uL + I)0 + [ ( cuL IIO) +4cuL I)a cos Q] I

where ~L —= yH is the Larmor frequency, and the +
sign indicates that there are two resonance branches
at any given applied field H. Furthermore, they have
shown that this spectrum can be understood if one
postulates that the spin-ordered state of bcc 'He is an
antiferromagnetic state with ferromagnetic planes ar-

ranged in an up-up-down-down sequence along a

[1,0,0] direction, which they denote with a unit vec-
tor I. The direction of the sublattice magnetization at
zero field is denoted with a unit vector d. The
dipole-dopole interaction of the 'He spins then con-
tributes a term

2
h. (l d)' to the total energy density,

and the spin dynamics of such an antiferromagnetic
system is shown to obey the following two coupled
equations. '

I),d =d x(yH —y'x, 'S),

B, S =yS xH —) (d l)(d x I)

In these equations y is the gyromagnetic ratio, Xo is
the transverse susceptibility„S is the spin density, and
B,d denotes the time derivative of d. If Eqs; (2) and
(3) are first linearized around the equilibrium solution
for / H =cosH (where H —= H/H), viz. , yS =yaH,
d l = d S =0, and l S =cosH, the resulting equa-
tions then describe the undamped resonance modes

of frequencies given by Eq. (1) with 00= y'X/Xo.
Thus the cw NMR experiment of Osheroff et al. ,

which probed only the small oscillations of the spin-
ordered solid He, has, strictly speaking, verified the
linearized version of Eqs. (2) and (3) only. In order
to verify the full equations, it is necessary to perform
a nonlinear experiment of some sort, such as the
longitudinal magnetic ringing experiment performed
on superfluid 'He by %ebb, Sager, and %'heatley. '
In such an experiment, the spin system is first al-
lowed to reach an equilibrium in a static magnetic
field H&. This field H] is completely turned off at
time t =0, in a time very short compared with all
relevant intrinsic times, and the time-dependent lon-
gitudinal magnetization at t ) 0 is then monitored.
Ringing behavior has been observed in both 'He-A
and He-8, which has been theoretically explained. '
As a matter of fact, the ringing behavior in He-A is
described by a set of dynamic equations, which differ
from Eqs. (2) and (3) only in the sign of the X term,
except that the initial condition is also quite different
[i.e.„(dll I) J. ( S II H) for 'He-A]. ' All of these differ-
ences are the consequences of a single sign change in
the dipole energy Fo = —, iI. (d i)', which, neverthe-

less, leads to important differences in its topological
implications. This is best seen by viewing the various
orientations of d as points on a unit sphere, with the
north pole of the sphere representing the direction of
l. Then for He-A, for which X &0, the north and
south poles form two isolated point minima, while
the equator represents a line of degenerate maxima.
Thus if the system is to change from one dipole-
energy minimum to the other, it ~ould have to cross
the dipole-energy ridge on the equator, which can oc-
cur only if the total energy exceeds the critical value
h./2. On the other hand, for spin-ordered bcc 3He,
the roles of dipole-energy minima and maxima are
interchanged, so that the system now has a degen-
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crate set of dipole-energy minima, and only two iso-
lated point maxima. Thus a general motion of d no
longer has to pass through the dipole-energy maxima
(except for special initial conditions), and it is now
possible for d to move along the dipole-energy valley
without experiencing any dipole torque. A11 of these
topological features should surface in a nonlinear
magnetic resonance experiment, which makes such
an experiment interesting.

In this paper, we will discuss the nonlinear ringing
behavior of spin-ordered solid He, for two ways of
preparing the initial state, and assuming that Eqs. (2)
and (3) are the correct set of dynamic equations.
This means that, in particular, relaxation effects will

be neglected in this discussion. We shall show that
within this approximation, the nonlinear ringing
behavior becomes an exactly solvable problem, and
all relevant measurable quantities can be given in
terms of known functions and their quadratures.
This should allow detailed comparison with experi-
mental observations, for the purpose of either con-
firming the validity of Eqs. (2) and (3), or uncover-
ing new physics about this system.

Three more sections follow this Introduction: Sec.
II presents the exact solution of Eqs. (2) and (3) in a
"complete-turn-off" situation, as defined in the
second paragraph of this Introduction. This corre-
sponds to one way of preparing the initial state. In
Sec. III, we note a possible difficulty with this way of
preparing the initial state, and then analyze a possible
alternative. It is found that this alternative approach
is less than ideal, even though the subsequent ringing
behavior is still an exactly solvable problem. Section
IV contains conclusion and discussion.

In the following, we shall denote s (0) and d(0)
simply as so and do, and solve the problem in terms
of these two quantities and H. We choose a coordi-
nate system in which

I =(0, 0, 1), sp=sp( —sin8, 0, cos8), dp=(0, 1, 0)

(8)

d = I, s d =0, s I =spcos8, s +(d l) =2s
p

2 2

(9)

where the last equation corresponds to conservation
of energy. Equations (5) and (6) may thus be writ-
ten as

8&s& = dyd&» 9&sy = d&dz & 6&dx = dys() cosH + Sydz

B~dy = ISO cosH —S~d~ (10)

From Eq. (9) we also have

+$ =$ sjn H

di si+ d, socosH =0

We define

d„=d~cosP, d» =

dousing,

s„=sqcos@, s» = sqsing

It is straightforward to establish the following four in-
variants from Eqs. (5) and (6) with h =0

II. EXACT SOLUTION IN A COMPLETE-
- TURN-OFF SITUATION

which converts Eq. (12) to

dgsg cos(tel @)= cusp cosH

(i3)

(14)

We begin by introducing normalized quantities

r= fl t, ph =yH/Op, s = QpS/h.

which converts Eqs. (2) and (3) to

B,d =d x (h —s)

B,s =s x h —(d &)(dx()

(4)

(5)

After defining d, =sing, we derive from Eq. (10)

B,s~ = —sing cos7I sin( Q
—@)

B,q = s, sin(y —@)

(15)

(16)

Eliminating (P —$) and sq among Eqs. (11), (14),
and (16) gives

In a complete-turn-off experiment, the system is

allowed to first reach equilibrium in an external mag-
netic field H~. This field is then completely switched
off at t =0, during a time interval short compared
with all the characteristic ringing times of the spins.
Thus Eqs. (5) and (6) must be solved for t ) 0, with

h set equal to zero, and for the initial condition

(B,ri)'+sp cos'8tan'rt =sp2 sin'8 —sin'ri, (16')

which can be integrated

d'r

(sp sin28 —sp~ cos28 tan rt —sin rt )'

s (0) = h, , d(0)xl and s(0)

s(0) I =s(0) cos8 .
where the minus sign is chosen based on the initial
motion of d. Introducing the two roots of the
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denominator in X —= sing'

&+ = —f(1+so )+ [(1—s )'+4s cos'll]'/ } (l8)

we can evaluate the integral in Eq. (17) in terms of a

Jacobian elliptical integral

2.2

2.0

1.8

1.6

sing(=d, ) = —X sn(X+rlnt) m = (X-IX+)', (19)

which also gives the time dependence of dq~ =1 —d,',
sg =sp S1n H

—d, and s =sp —d
Evaluating (B,s„)~+(B,sy)~ and ((l,d„)'+ ((i,d )'

from Eq. (10), substituting into them Eqs. (13) and
(15), gives

(B,g) =so cos't)sin4q/sq, (t),tfr)'=sot cos'8/cos4q

3 1.2

C.6-
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s
) (i 1 8 '.0 2.2 2.-1

(20)
Choosing the proper signs when taking the square
roots of both sides, these equations lead to the fol-
lowing solutions for P and P:

X' sn'(X+r'lm)
P(r) = rr —socos0 Jl

so~ sin II —Xt snt(X+r m)

(21)

+ 'I
m 1

2 1 —X'sn' X+r' m

From Eq. (19), we see that d„dt, s~, and s are all

periodic functions of time with the same characteris-
tic frequency

FIG. 1. Frequency cu„of Eq. (23) is plotted as a function
of sp = yII&/&lp, for several values of 0= 4 (H~, I). The
frequencies n ~„, with n =0, +1, +2, . . . constitute the
complete frequency spectrum of d I, }deaf

—= fd —l(d I) I,
fsf, and fs, f.

MH = y»fr/ft 0
= &oft osH/'7 (26)

ous values of H. In the longitudinal ringing experi-
ments, the measured quantity is the component of
magnetization along the direction of the magnetic
field H& which is turned off at t =0. We shall denote
this measured quantity as M~I. In our reduced units
it is just SH, where the relation is

to„= mX~/2K (m) (23) 1.0

where K(m) is the complete elliptic integral. On the
other hand, trigonometric functions of $ and P, such
as those entering Eq. (13), are frequency modulated
according to Eqs. (21) and (22). These functions,
therefore, are not strictly periodic in time, and their
Fourier transforms will contain one principal frequen-
cy„which we denote as to4 for Q(r), and to& for
t}I(r), and many satellite frequencies at to&+2nto~
and co&+2n~„, respectively, ~here n =1,2, 3, . . .
From Eqs. (21) and (22) it is easy to see that

0.8

c3.
C.5

0.4

Q 8

and

X' sn'(X+~lm)
o)y = spcosH (24)

so sin~8 —X~ sn~(X+rlm)
01-
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0)~ = sp cosH
1 —X~ s n(X +rml)

(25)

where ( ), denotes a time average over the period
„T=2vr/r~. oWe therefore see that the complete

solution of our problem is characterized by three
characteristic frequencies cu„, ~&, and co&, which we

have plotted in Figs. 1 —3 as functions of sp, for vari-

FIG. 2. Frequency co@ of Eq. (24) is plotted in the same
way as in Fig. 1. The frequencies +co&+2n~, with

n =0, +1, +2, . . . constitute the complete frequency spec-
trum of any component of the magnetization that is not
parallel to /, including the component measured in a longitu-
dinal ringing experiment if 0 AO .
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FIG. 3. Frequency ~& of Eq. (25) is plotted in the same

way as in Fig. 1. The frequencies +0)&+2nco„, with

n =0, +1, +2, . . . constitute the complete frequency spec-
trum of any component of d that is not parallel to I.

cipal frequency cv& and many satellite peaks at
as& + 2n co„. The frequericy co& is therefore not ob-
served in such an arrangement. In Figs. 4—6, we

have plotted sH as a function of ~ for various values
of 0 and sp. These plots clearly show the two-

frequency behavior of s~, except in the small sp limit,
where co@

—co„, and a beatlike behavior appears.
These curves are presumably what one will observe
in an actual longitudinal ringing experiment, if Eqs.
(5) and (6) are valid dynamic equations of the sys-
tem. In extracting the frequency oi„directly from
such curves, one is reminded that, because of the
dependence of sH on the product of s' and —cos@, all

maxima of sq appear as minima in SH whenever
—cos@ is negative. This is clearly illustrated by the
case of 8=75', sp=0.6. For this case, spcos 0=0.04
is nearly zero, and we see in Fig. 6 that the peaks
above this value and the troughs below this value to-
gether form a regular time sequence.

Before we close this section, we will discuss the
limiting behavior of our solution as 8 approaches 0'
and 90 . In the limit 8 0', we obtain

In the coordinate system chosen,

sH=s, cos8 —s„sine =spcos 8 —s~cos@sinH (27)

X+~(1+sp)'r' X —spsin8/(1+s )'r ~0

d, =sing ——X sin(X+r) 0,

The first term is a constant, while the second term is
a product of two time-dependent quantities, sq and
cos@. The Fourier transform of su, therefore, is a
convolution of those of s' and cos@. Thus the
.Fourier spectrum of SH should also contain one prin-

I]I +spr, (dan sp, 0)y X+ Sp

Sg~0, SH =Sg Sp

X+ "o I +sp —sjn2y' (28)
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FIG. 4. Plotted is the reduced longitudinal magnetization sH [c.f. Eqs. (26) and (27)l vs the reduced time ~ =—Opt, for
8 =15' and five values of sp =0.2, 0.6, 1.0, 1.4, and 1.8. (sp is the initial value of sH. )
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Thus (a) no ringing behavior in sH will be observed in this limit; (b) the spin-vector d will simply precess in the
plane perpendicular to I ( or Ht) at the constant frequency so, (c) the variable @(r) and the two frequencies cu„

and co~ become physically meaningless quantities in this limit due to the tendency of d, and s~ to vanish.
Consider next the limit g 90'. We must distinguish between two cases: (i) case I, 0 ~ so ~ 1;
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we find

X =sp, X+=I, d, =sinai —spsn(rlso2)

and

p „-rr/2''(s(~) )

[1 —[ ,
' (4r/—T„+I ) ]]rr, to~- p!„,

sing 0, cos@ —sgn[cn(rlso ) ]

rr/2 for all 7, duo, 0

d -0 d -(I -d')'I'

(29)

sy ~0, s» 0, s» = sH ~
sp cn( Tls o)'

&+=so, d, =sing- —sn(sorlso'),

p!,—n so/2''(s, -')

for all r, p!~ 0

l —, + [ , (4r/T„+1)]]m, —p!q p!„,

cos!I! 0, sin!i! sgn[cn(sor iso
' ) ]

(30)

and

d„0, d» cn(so7 lsp ')

s~ 0, s, 0, s„=—stt = —(sp2 —d,') 'i'

where the symbols "sgn" in sin!I!, and "[x]"in the
P equation, have the same meanings as in the previ-
ous case, and the delicate limiting process is now re-
quired for obtaining the correct limiting behavior for

We conclude that in this case d rotates in the plane

In the above, "sgn" means "the sign of," and the
notation [x] in the @ equation means "the integer
part of x." To obtain this hmiting behavior for $, it
is necessary to notice that the denominator in the in-

tegrand of Eq. (21) can give nonintegrable diver-

gences, if 8 =90' is directly substituted in, while the
front factor of the integral, socosH, becomes zero, so
that a delicate limiting process is required in order to
obtain the result given.

We conclude that in this case d performs an orien-
tational oscillation in the yz plane about y, while s is
confined to have an x component only, which oscil-
lates between —so and +so. The whole motion is now
character!zed by a single frequency p&„. (ii) Case II,
so ~ 1: In this case we find

III. ANALYSIS OF AN ALTERNATIVE WAY

TO PREPARE THE INITIAL STATE

In this section, we discuss the possibility of wheth-
er there is an alternative way to prepare the initial
state for the subsequent observation of nonlinear
magnetic ringing in spin-ordered solid He. This pos-
sibility is worthy of consideration because the charac-
teristic field of the system, H, = IIp/y, ranges
between 254 0 at 0 K, to 162 G at the Neel tempera-
ture T~. Thus in order to perform the complete-
turn-off experiment, and observe the full nonlinear
ringing spectrum, it is necessary to rapidly switch off
a few hundred gauss of an applied magnetic field,
which could pose a severe heating problem to the
cryostat. One is therefore interested in probing the
possibility of preparing the initial state, not by switch-

ing off a large dc field, but rather by applying a ~eak
ac magnetic pulse at the zero-field resonance fre-
quency IIp/2rr for a sufficient duration, in order to
drive the system to a finite deviation from the initial
equilibrium state at zero field. In this way, it is

hoped that a large so can be generated at an arbitrary
direction, which would then "ring" after the pulse is
over. Actually, as we shall show below, this way of
preparing the initial state is less than ideal, because
the initial state so obtained cannot be precisely
predicted (except by numerical simulation), even
though the subsequent ringing behavior is still an ex-
actly solvable problem.

To analyze this question quantitatively, we must
solve Eqs. (5) and (6) with h(r) = h„sinr, and for
the initial conditions s (0) =0, d(0) i. l. Since we

shall limit ourselves to the case when h„« 1, we
can study the initial growth by linearizing Eqs. (5)
and (6) with respect to the initial state. The solution
can then be easily found:

s —
2 (dp x I) [ h ' (dp x I) ] (r cosa —sinr)

d =do [h„x do (h„x do' l)l](1 —cosr)
A——,(h„xdp l)lrsinr

(31)

perpendicular to —x (i.e., H! ) right handedly at a
constant angular frequency co„, while s remains in
the —x direction, with its amplitude making two iden-
tical oscillations between sp and (sp2 —I )'I' in each
period T„. The observed frequency in sH for this
case should therefore be identified as 2'„. Finally,
we note that the limit 0 90', including both cases
of 0 ~ so ~ 1 and so ~ 1, is exactly identical to the
corresponding nonlinear longitudinal magnetic ringing
behavior of superfluid 3He-A, as is studied by Maki
and Tsuneto. 4 This similarity ceases to hold, howev-
er, as soon as 0 deviates from 90', as a result of the
topological differences pointed out in the Introduction.
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Thus after an integer number of oscillations in the ap-
plied ac field, we find d remaining in the original
direction dp, but with s grown linearly to

—(dp x I) [h„(dp x I)]r
This s is, unfortunately, always in the direction
dp & l, and is therefore perpendicular to l. In order to
generate an s in an arbitrary direction relative to I, it
is necessary to let the system evolve into the non-

linear regime. Then the problem can no longer be
analyzed exactly by us. However, numerical integra-
tion of Eqs. (5) and (6) indicates that it is indeed
possible to generate in this way a general state
characterized by s ~ l =s cosH and d l =coso. but
with s d =0. [It can be shown from Eqs. (5) and
(6) that s dis a constant of motion even when h

represents an arbitrary time-dependent field. ] The
only shortcomings of this approach are that (I) the
values of $, 0, and n cannot be precisely predicted
except through numerical simulation, and (2) it is

not clear whether there are limitations on the ra~ges
of values for $, 0, and o. that can be reached this way,

If only an initial state with sp l =$pcos0, dp l
= cosa, and sp ' dp =0 has been somehow created,
the subsequent ringing behavior in zero applied field
is still an exactly solvable problem. The solution is

very similar to the complete-turn-off situation
analyzed in the previous section, so we shall omit the

details and give the results only.
Choosing still the coordinate system so that

I = (0,0,1), s p
= sp( sinH, 0, cosH), but

dp = (sina cosp, sinn sinP, cosn)
A

we demand sp ~ dp =0 by requiring that

cosP =ctnH ctnn (32)

%e also define the variables q, $, and P in the same
way as in Sec. II. %e then find

d, = sing = —X s n[ X+( r—rp)
~
m] (33)

$p Sp, eff
=—$p +cos o'2~ 2 —= 2 2

cosH ~cosH~ff —= sp cosH/sp off

(34)

Furthermore,
-]

I X~ cosa

r, = X '
~ [(I —z') ( I —mz') ] 'I' dz

—= X+'F [sin '(X cosn) ~m] (35)

where F [X~»] is the elliptic integral of the first kind.
%e also obtain

where m is still defined as (X /X+), but X+ are now
given by Eq. (18) with the following changes:

$ = rr —spcosH
X' sn'[X+(7' —rp)

~
m] d7'

sp sin H +cos u —X [X+( r' —rp)
~
»]

(36)

and

1 I

p =cos '(ctnH ctnn) +spcosH
1 —Xzsnz Xy r rp m

(37)

which generalize Eqs. (21) and (22) to the case when

dp 1 =coso. AO.
As for the three principal frequencies ~„, ~~, and

pp&, we find that Eqs. (23), (24), and (25) remain
valid, if these equations are modified according to the
prescription given in Eq. (34).

Finally, we remark that the initial state considered
in this section is already the most general initial state
that can be generated by an arbitrary time-dependent
external magnetic field.

IV. CONCLUSION AND DISCUSSION

In this paper we have analyzed the nonlinear mag-
netic ringing behavior of spin-ordered bcc 'He at zero
external magnetic field, and for two ways of prepar-
ing the initial state.

In a complete-turn-off experiment, the initial state
is prepared by first establishing an equilibrium state

in an external magnetic field H~, and this field H] is
then rapidly switched off at t =0. In Sec. II of this
paper, we have shown that the nonlinear ringing
behavior ensuing on the turnoff of H& is an exactly
solvable problem, if Eqs. (2) and (3) are assumed to
govern the spin dynamics of this system. These
equations have neglected spin-relaxation effects.

The results are given by Eqs. (18), (19), (21), and
(22), where the variables Q and P are defined in Eq.
(13), and the coordinate system is such that the ini-
tial state is given by Eq. (8). The complete solution
is found to be characterized by three principal fre-
quencies as given in Eqs. (23)—(25), but only two of
these frequencies ( afpdfnp&) can be observed, if
the measured quantity is the longitudinal magnetiza-
tion. Figures I —3 summarize the dependence of all
three frequencies on sp and 0, while Figs. 4—6 reveal
the explicit time dependence of the longitudinal mag-
netization for various values of $p and 0 as predicted
by Eq. (2) and (3). The frequency fp& is observable
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only if the motion of d can be directly monitored.
An alternative way to prepare the initial state is

through the application of a weak ac magnetic pulse
at the zero-field resonance frequency Ap/2Tr for a
sufficient duration-, and under zero applied dc mag-
netic field. In this way, no large dc magnetic field
needs to be switched off rapidly at t =0, in order to
avoid a possible heating problem. In the linear limit,
we find the initial state so generated to satisfy
so I =0 and

ldp' I =
2

(h && dp 1) Tsl nT

which, according to Eq. (34) is equivalent to a

do ' I =0 situation, but with effective

SP, erf =SO +(dP'I)

COSOeff Sp COSH/Sp eff 0

However, by definition of the linear limit, the so-
generated so,ff must be much smaller than unity.
Furthermore, because cos0,ff =0, the initial state so
generated can only be used to test the 0=90' case
discussed in Sec. II. Thus in order to generate an

so ff & 1 and/or 8,« ~ 90', for observing the full
nonlinear ringing spectrum, it is necessary to apply
the ac magnetic pulse for so long as to drive the sys-
tem into the nonlinear regime. We can then no
longer make exact predictions on the values for so,ff

and H, ff except by numerical simulations, even
though the subsequent ririging behavior after the ac
pulse is switched off is still an exact analyzable prob-
lem, with the ringing frequencies appearing exactly
the same as in the complete-turn off situation, if only

so ff and O,ff are used to replace so and H. The essen-
tial point we have learned in this part of the analysis
is that the effects of the ac magnetic pulse at the res-
onance frequency Qp/2Tf cannot be understood by

treating 00 as an effective Larmor frequency yH, ff,

as in the analysis of the effects of a tipping pulse ap-

plied to a usual NMR system. '
In this paper, we have not studied the more gen-

eral case of nonlinear magnetic ringing of spin-order
solid 'He in a finite applied dc magnetic field. This
could be observed, for example, in a "partial-turn-off
experiment, " in which the system is first allowed to
reach equilibrium in the total external field Ho+H~,
and then at t =0 the field H~ alone is switched off,
leaving the field Ho still acting on the system. We
have not found any analytic method to study this
more general nonlinear ringing problem, so that to
study it, a purely numerical method would have to be
employed. We only remark that even in this case,
the field H~ still has to be of the order of a few hun-

dred Gauss, if the full nonlinear ringing spectrum is

to be observed. Thus the difficulty we have dis-

cussed earlier cannot be removed by applying the ad-
ditional field Ho. The alternative approach for
preparing the initial state, viz. , replacing the field H~

by an ac magnetic pulse at the resonance frequency,
would now serve, in the limit of a very large Ho, to

tip the equilibrium magnetization to a new orienta-
tion. This approach then reduced to the standard ap-

proach for a transverse ringing experiment. If such an
experiment turns out to be a more easily doable ex-
periment, we will try to analyze this situation in a fu-
ture publication. But in view of the likelihood that
such an analysis will rely heavily on numerical
method, we still recommend the zero-field longitudi-
nal ringing as a most readily interpretable experi-
ment.
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