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We have determined the hydrodynamic equations, including nonlinear terms, for superfluid
He-A in finite magnetic fields. The propagating and diffusive normal modes for a uniform tex-

ture have been studied, both for bulk and superleak geometries. In bulk, the longitudinal mag-

netization and the temperature produce two coupled modes„ in a superleak, the longitudinal

magnetization and the density produce two coupled modes. For both geometries, the coupled

modes show crossing effects. (An appendix is devoted to considerations of an experiment
designed to observe the coupled longitudinal modes, at "mode crossing. ") The transverse spin

waves have also been studied, but they do not show mode-crossing effects. For the bulk A
~

phase, the relationship of the bulk diffusive mode to the "magnetothermal effect, " is discussed.

For the A
&

phase in a superleak the relationship of the two diffusive longitudinal modes to the

"magnetothermomechanical effects, " and of the propagating longitudinal mode to the "magnet-
ic fountain effect, " are discussed. It is suggested that the longitudinal spin wave in the A phase,
at any field, can be studied through its characteristic decay length, when the generator frequency

lies below the gap frequency.

I. INTRODUCTION

Despite a great deal of work on the theory of 'He-

A, there remains a gap in our knowledge of its hydro-
dynamics as one increases the field H, and thus
moves from the A phase at H = 0 (where the gaps for
up and down spin pairing are equal) to the A

~ phase
(where one of these gaps, conventionally taken to be

hl, goes to zero). As recently pointed out by Liu, '

the early work of Pleiner and Graham' on the A ~

phase neglected an important contribution to the su-
perfluid velocity, and this term has very significant
consequences. In particular, Liu finds that, in a su-

perleak, fourth sound and the longitudinal spin wave

couple strongly, yielding two new modes. At finite
wave vectors the first has a frequency whose square
is the sum of the squares of the uncoupled fourth
sound and longitudinal sound frequencies, while the
second has (when dissipation is neglected) zero fre-
quency. He also shows that, for times t short com-
pared to the longitudinal spin relaxation time T~,
there can be "magnetothermomechanical" effects in

which a nonuniform magnetization coexists with a

nonuniform temperature or pressure. Similar effects
occur in bulk, with second sound and the longitudinal
spin wave coupling strongly. There the frequency
shift is much more pronounced, but more difficult to
observe, due to the expected high attenuation rate
for second sound in 'He-A. Liu also shows that, in

bulk, there is a "magnetothermal" effect, in which a
nonuniform magnetization can coexist with a nonuni-
form temperature for t « T~.

These effects are all the more interesting when one

considers that, in the A phase at H =0, the corre-
sponding modes both have finite frequencies, and are
pure modes of density and longitudinal magnetization.
In the transition region between the A phase at H =0
and the A ~ phase, one would expect interesting ef-
fects to occur, which might be as prominent as the
effects predicted for the A ~ phase. For this reason
we have developed the hydrodynamic theory of the A

phase in finite H, where At 4 Al. (For convenience
we shall refer to this modified A phase simply as the
A2 phase, and we shall refer to the A phase at H =0
simply as the A phase. This should not be taken to
imply that a thermodynamic transition occurs when H
is turned on. ) Indeed, we find mode-crossing to oc-
cur, where we employ the weak-coupling Ginzburg-
Landau model to provide some of the reactive coeffi-
cients which appear in the theory (Appendix A).
After completing our work, we found that somewhat
less general results were also found for the A2 phase
by Gongadze, Gurgenishvili, and Kharadze, ' who
employed, at the outset, weak-coupling Ginzburg-
Landau (GL) theory and the generalized Legget
equations. Note that the hydrodynamic theory can
predict the attenuation rates for these modes, as well

as their frequencies, whereas the method of Ref. 3
can only obtain the frequencies. However, because
there are presently no experimental results on the
mode frequencies in the A2 phase, not to mention
the attenuation rates, the latter have not been com-
puted. On the other hand, we have considered dif-
fusive modes in some detail. In the A t phase we elu-
cidate the relationship between the bulk and super-
leak diffusive modes and the. "magnetothermal" and
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"magnetothermomechnical" effects; we also discuss
the relationship of the propagating superleak longitu-
dinal mode to the "magnetic fountain effect."

In Appendix 8 we discuss, in some detail, ques-
tions associated with the design of an experiment to
detect the predicted longitudinal mode-crossing ef-
fect.

The reader may find it useful to be reminded of
the symmetries associated with the spin part of the
order parameter A„; for the A, A2, and A ~ phases.
For the A phase (0=0), the spin part of A„; is
given by a unit vector d, which in the case of an un-
bounded system can point in any direction. The sys-
tem is completely unaffected by spin-space rotations
about d. For the A2 phase (0 (H (H~q), the spin
part of A „;develops another unit vector e which is
perpendicular to d, and d and i are forced, in an un-
bounded system, to lie perpendicular to H. The sys-
tem now is affected by spin-space rotations about d,
so the A2 phase has less symmetry than the A phase.
For the A ~ phase (H ~ H~q), the directions of d and
e are no longer well defined (other than that they are
perpendicular to A ); they can be changed by either
an appropriate phase change or by an appropriate ro-
tation of thc orbital part of A„; about the unit vector
I As a co.nsequence, rotations of f=d x e about d
and about i are energetically equivalent, and rota-
tions about f are indistinguishable from appropriate
phase changes or from appropriate rotations of the
orbital part of A„; about I. Thus, on going from the
A2 phase to thc A ~ phase, one goes to a state of
higher symmetry. See Ref. 3(a).

II. NOTATION

a =(2b. ) '(b. ,
e' f+b. ,e ') .

-

b=(2b, } '(b, ,e
f b, -,e f), -

52= —(hf+ht2)

(3)

(Latin subscripts denote a vector in real space, Greek
subscripts denote a vector in spin space. ) Here, the
orbital part of the order parameter, (m +in) (with
I ~ m x ~ ) is conventional, as are the quantities
ht, ht, h, d. However, df, e,f" =—d x e are not. The
quantities @ and qbf are redundant, but useful: rotat-
ing m and ~ clockwise about I by an amount @ will

Before discussing thc hydrodynamics of thc A 2

phase, it is important to establish a notation. Unfor-
tunately, previous authors have not been consistent
with one another. '3 6 We will describe the order
parameter A„; in the form

A ~, = ice (m + In }tv~

v„=ad+ibe, )v(2=1

eliminate @ from Eq. (1); and rotating d and e clock-
wise about f by an amount P& will eliminate $f from
(3) and (1). We employ d, e, and f because they
form a mnemonic for the spin part of the order
parameter, and because in the A phase v reduces to
d, which is the conventional notation. Note that
@,Qf, i,f are all odd under time-reversal T How. ever,
m, rt, d, ~ have no definite signature under T. Note that
the set (m, ri, d, e) is equivalent to ( m—, ri, ——d, e)—

One of the problems confronting a theory of the
A2 phase fs that 1t must employ thc correct supcrfluKl
velocity V' both for the A phase„where (with p =g/2m )

V'= pm; On; (4)

and for the A ~ phase, where'

v'= P(m; On; + d 'vie )

As a guide to the intermediate region, one might
consider the quantity

PIA„;I Im( A„" 7A„, ) =P(mtn;+pd, 'Fe )

where (with /&=0)

p = 2ab = (42t —EI)/(hf + 62t)

This form takes the proper values for p = 0 (A
phase) and for p = 1 (A ~ phase). Unfortunately, the
parameter p depends upon temperature T, pressure P,
etc. , so that the value of 9;v,' —8,v, needed in the
hydrodynamic derivation, would become rather com-
plicated. Since pm; Vn; and pd Oe appear in-
dependently in the Ginzburg-Landau (GL) expansion
of the A2-phase free energy (Appendix A), we must
employ two "velocity" variables, although the choice
is not unique. For convenience, we will work with
thc definitions

v*=Pm 7n;, v'~= Pd —Ve—
and require that only the form v'+ v" appear in the
theory of the A ~ phase. With these definitions, we
have'

{};vj—8,v =Pl (8;I x 8,I)

{};vj*—Qjv, =pf ' (1};fx /if )

Note that v' is a true Galilean velocity, whereas v'~

is not. 4 Also, note that v'~ constitutes a generaliza-
tion of the quantity v'p employed in Ref. 7. Physical-
ly, ( v '+ v") corresponds to the superfluid velocity
of the "up" and "down" spin pairs.

The hydrodynamic analysis begins with the dif-
ferential of the energy density e.

de [TdS+p, dp+ v" dg+ A.
* dv'

+PQ; dl; +P$;; d(8;I;) ]

+ [ h. '~ d v'~+ Prui der +Prr df

+Pm;d(8;f )+(b —0 ) dm j . (8)
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This equation will be useful for later reference. The
first bracket contains purely real space (or orbital)
vectors, and follows the notation of Refs. 9 and 10.
Here S is the entropy density, p is the mass density,
p, is the chemical potential, v" is the normal fluid
velocity, g is the momentum density, A.

'= g —pv"
by a Galilean transformation on e and g, PP;
= Be/Bl„and p@,, = Be/8(8;I;). The second bracket
contains quantities defined 'in terms of spin space
vectors. Here X* =—Be/Bv' is the density conjugate
to v, dgI= f d8, —(where d8, is a local infini-
tesimal rotation in spin space), poir =—Be/BQI,
Prr —= Be/Bf, Per, =—Be/8(8,f ), and h —H
=—Be/Bm, where m is the magnetization. H is the
(static) external magnetic field, and e includes the in-

teraction energy density, —m H, of the system with
H . (Although we employ f rather than a of Ref. 2,
we use the Ref. 2 definition of m, up to a factor of
P; w, is chosen to be easily associated with n, un-

like the symbol employed in Ref. 1; ~" and co& are
new terms; h is the conventional symbol for the
internal field. "") Note that the nuclear dipole-
dipole interaction contributes to $;, ko&, and m; in

the cases of cd and m, their forms will be given ex-
plicitly in the GL regime, where they are relevant to
the transverse and longitudinal motions (with respect
to,f) of the spin vectors.

The pressure is given by

P= TS —e+pp+ v" g+(h —H )m

The Gibbs-Duhem relation, esesntial to the nonlinear
hydrodynamics, follows from (8) and (9):

pdp, = [—S dT+dP —g dv" +7'dv'

+Pf; dl;+P$;, d(B, I )]
+ [X'" d v'i'+Peur der +Pm df

+Pm;d(8;f, ) —m d(h„—H )I . (10)

Note that $I, like $, is not a globally well-defined
quantity. However, d$& is well defined, and there-
fore we may employ it in Eqs. (8) and (10). In prac-

tice, we consider that it &=0 in Eq. (3), and that
spin-space rotations about f are our extra degree of
freedom. For convenience, however, we employ d$/
to denote such rotations.

III. DERIVATION OF HYDRODYNAMICS

The standard procedure of hydrodynamics involves
writing down the equations of motion for the in-

dependent variables appearing in d~. Before doing
this, we note that v' and v'~ are nontrivial, since they
may be generated either by rotations about l and, f or
by quotations of l and f. If wc let local changes in v'
be generated by the local infinitesimal orbital rota-

tion 88o, and set 8$= —I BHo, then

Hence,

peikl [880k ml 7; lt i+ miV; (88ok lri ) ]

Pl—, r7; (88o, )

p'7 (I188oi) +p88oiV II

=PV, (gy) Pg—i (I x~, l) .

Similarly, with S$, = —f Sg„

Thus it is unnecessary to obtain explicit equations of
motion for v' and v"; they are contained in the mo-
tion of (di, l) and ($r, f). The equations of motion
we employ are, for the orbital variables,

p+9;g;=0, g;+8;cr;;=0, ~+9;j =0

p$+Qe=0, pl;+X;=0

S+8,(S.;+q/T) =/I/T ~0;
(14)

Here y is the gyromagnctic ratio of the 3He nucleus
(i.e. , that of the unpaired neutron). Note that o;, ,j,ge, X;, q;, R, Jr, Z, and j; are unknown, and
must be determined. The terms on the right-hand
side of the m equation arise from the magnetic
torque, —yge/88, .

The equilibrium conditions associated with the or-
der parameter are determined by setting to zero the
full variational derivatives with respect to Q, I, $i,
and, f. Using

Sv,'
8(B,y)

Sv A PE

Sl;
p(I x V,I)—I I

which follow from (11), we find the (@,l) equilibri-
um conditions to be

O=V z'

0 = I x 4, 'Ir, =—
Q,

—8,$„—[I x ( h, ' '7 )I], , (18)

or

0 = S;~l "k;, S;~I —= S;; —l, lj

Similarly, the (i', , f ) equilibrium conditions are

and, for the spin space variables,

Ppr+ Jr=-0, P f +Z =0

m +B,j;= ye»[m&(h—, —H~) +P fijrr

+P(8;fp)rr„, ]+yPoirf . (15)
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found to be

0 Qj r»j —0
0-f x I1 II = w —8 n —[f x ()t*a ')7 )f 1

0 8,pIIp, 8,p= 8,p f Jp— (20')

This identifies 9;A, , 0";, O~, and II as thermo-
dynamic forces which are zero in equilibrium.

By following the usual procedures for deriving the
nonlinear hydrodynamics, '3 we obtain the dissipation
function R in terms of a pure divergence term and a
sum of products of (known) thermodynamic forces
and (unknown) thermodynamic fluxes. It takes the
form

R =8 {q —j'+(a —V" g)v"+v"0-+{/ —v" v*))).'+[X —P(v" '7)l ](/)

+(Jj—v" v"))(."+[Z —)8(v" '7)f ]2r;+J;(/) —H ) }

—(q /T )8 T X"8 v—"-(8 —j(, - v" v*)8 k*+ [x -p( v" 0)I ]%' + [g —ypf (l) —H ) —v" v*'] Q

+ ( Z —P(V" 7)f -&P[f x ( h -H) ] ]II —J 8 (l) H)- (21)

Xj=aj Pgj-g&j"-&'t j-/3(8 ik)4kj-&*'t j" /3{8f.)—II;
J;~j;—m I);"+yP(a p„fprr„; —f h„'~)

(25)

Using the principle that the fluxes (q, /T, X„,„gp, X, , Jq, Z, J;) must be proportional to the thermodynamic
forces [8;T, 8jv;", 0 k*, "0;, Qj, II, 8;(/I H) ], an—d (because of the weak spin-orbit coupling) separateiy co-
variant under spin and space (orbital) rotations, we construct the fluxes. Keeping only coefficients which are
nonzero in the uniform state, we find that the reactive parts of the fluxes are given by

q;"/T =A (l x 0T ); + (a„"'f +a„pmp) (I x '(7); (/I H,)— (24)

a]() j(, v ' v = y l ' V )( v +maBapIIp

X' P(V" O)-i = P'(i x q )— (a,8'l„+-n,8„'l )8 vg,

4~ —yPf, (h —H ) —V" v'a- y"l '7 x—v" +m D pIIp, (27)

ZP —yP[ f & {h—A)] —P{v" 9)f = n„p(-f &f[)p+mp(Bp V~ 7'-'D
p Qf+E(jp 8)2)j"), (28)

Ja, - (a„"'f +a„"pmp) (l & ')7T); —(aj(2)pf„+(2() pm„) ap„()8j(l)()—H()), (29)

Xjp —(a)8jr), l(+ a28(krlj)%'k —y'a(jklkO 7.'

+ (p(I 'Ejpj + yjg c(a) + 7lj) f)pr + y)r cjp)) lp tv) + y 'E()klk Qf +EijapmaIIp(1} (2} (3} (3} I (30)

(1) —(1) r CPHere, A, a„,a„p, y, B p, p, a), a2, y, D p,
(3) (2) —(2) g (I) (2) (3)

ofjf~p, Aj»~p, Q j»ep, ~y~p, p,», p,», p,» are all un-
de'tcfIII(llcd, with cllafac'tcf(stic structures (wllcfc ap-
propriate) of the forfn

aaap=nf dadp+ne eaep+nj fafp

n (2) n(2)l l + a(2)8 T

(No d ep term appears because it is odd under time
reversal T, and no d fp and e,fp terms appear be-
cause they have no definite signature under T.)
Note, that, since f should be irrelevant to the
behavior of the other variables as)A~ 0 (A phase),
we expect that a„"',n,j'p 0 as ~H~ 0. Such a
statement cannot be made of a„"p, because f can
remain relevant to its own behavior. Also, because f
is not truly a spontaneously broken symmetry, it is
likeiy that n„'" and a;,'2)p vary as ih f, for small IIl.
Note that B pfp=D pfp E pj fp 0; thus, in bulk

]

equilibrium, where nlllf, the B p, D p, and E p„
terms are zero.

Some of the remaining terms are determined {or
partially determined) by the requirement that X,R

must enable us automatically to satisfy angular
momentum conservation. Let

L, = ( r x g), +y '(rn);

denote the angular momentum density, which must
satisfy

9L; L,'+8jJj'=(exH), .
8t

This problem is nearly identical to the one considered
in Ref. 9. In the present case, we must be able to
write

0'(j = 0';~( + 8k fjk + aijk + (III x A), (33)
88g
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where (r ,j* =
&

(a;, + o;;) andfjk =
, f jk—, in which(s)

case

L,.
Jj &ikj(pk(T!; +fklj ) + y 'i„ (34)

From d~=rn & H d8 under a simultaneous rotation
d 8 of both spin and space coordinates we obtain the
identity'4 "

0= e;,k [v;"g;+ I( +P(lj;lj

from considerations similar to those for the reactive
parts. The dissipative parts have a behavior under
time reversal which is opposite to that of the reactive
parts. Furthermore, they must satisfy the Onsager
principle, and they must yield R «0 (positive entro-
py production). We find, when angular momentum
considerations are included, that

qP/T = ()4J—/T ) 5JT —(ap(')f+ rj,(J(')pm p)

+p((j);(5(lj + (t)j;5jI!)

+,"v j'P+ P(u jd;ej + PTT;fj

+P(TT;(5(f;+ Trj;5,fj) + h; m, ] (35)

1 rr
'y = 2P=a2 —a), y =0

(1) (2) (3) (]) (2)7 I I Y II 7 II p 7l Vl

(36)

(37)

Because of the restrictions in (37), explicit con-
sideration of the coefficient of i,vj" in (30) shows
that the only forms that ultimately. appear are

which must be used to enforce Eq. (32). As a result,
one obtains the restrictions that

x 53(h —0 )

(g~~ = —(r'(j' I(' —f;;5;v;"+g'0 j

X —g5% —
g 8~

PP=g, ", nj g,', a, v,"—g'7 —I *,
Z =v &II&, v &=vdd d&+v, e e&,

J~, = j~, = —p, ,p, Q, (hp —Hp)

(rx(j f~ + (k(j&pmp)5j T

XI) =~II = —
VI /(~ ~/" +~/~/, ")

—g;jV h. '+g;jkqjk+(;Oj

(40)

(4&)

(42)

(43)

(44)

(4S)

(46)

(() ( ( (()+ (3))

In addition, we find that

f~jk
3 P [eijjlj)j,k (Ii jjk Ij(I)ik ) ]

The dissipative parts of the fluxes are obtained

(38) where K;;, (;, , g, , and a(j" have the form

Kjj K//Ij lj + KJ 5jj p
.T

kkji = ((Iiekp + Ikejip ) Ip

a & and p, ,» have the form"

Ik;p, =5;, (I43d dp+Ik(, e ep+Ik(rf fp)+I;I;(I44d dp+I43, e ep+Ik)j f fp)

and

v ijkj v ) Il ~J Ik Il + v 25i j5kl +
3 v3 ( 5ij Ik Il + 5kl j Ij ) 3

v 4 ( 5ik 5j I + 5il 5 j7 ) + )j3(5jk Ij Ii + 5j l Ij Ik + 5ji Ij Ik + 5 jk I ill )

Note that p, ],= p, ~f and p, 3, = p, 3f in the A phase. "
Since cr;D/=0. ,0, we have that f/k =0. Note that, be-
cause R «0, the coefficents appearing in (40)—(46)
are subject to a number of constraints, which we do
not write down explicitly. It should also be observed
that we have omitted a term —a„(3)[ f x (I x )7) ];
x (h —H) from the jD; of Ref. l, which does not
give R «0 unless a "'= 0. We expect that a;"f
and a;„'&m& are of the same order of magnitude,
both going to zero as IHI 0. Also, (p' and (k,"j 0 as

IH I-o.
It is useful to rewrite (1S) with (23) in mind. We

then find that

m +5;(m v;"+J;)= —y[m x (h —H)]

thus making it clear that m = 0 in equilibrium
[where V"=0, J, =0, m x ( h —H) =0, Of =0, and

f x Il =0]. Observe that, in an ordinary material, a
finite T] is needed to also make m ( h —H) = 0 in

I

equilibrium. Here, because of the (|)f equation, we
have f (h —H) =0 in equilibrium. Since f II m in

equilibrium, we also have m (h —H) =0 in equili-
brium. Hence h = H in equilibrium here, without

spin relaxation. Physically, this is caused by the
internal Josephson effect, 7 which disappears for the
A ~ phase.

Before leaving this section, we remind the reader
that our results must go over to the results of Ref. 9
for the A phase, and to the results of Ref. 1 for the
A [ phase. This has a number of consequences for
the parameters appearing in the theory. Of particular
importance are A,

' and A. '~, which take the form
(when l x Vp and l x VS terms are neglected" )

~'= p' (v' —v ") +PC t7 ~ I +p'~ v'~, (48)

=T '(v v )+pC" 7 xI+T v" . (49)'
[Note that '(j' x,f terms do not appear in (48) and
(49) because f is a spin vector. ] To establish the
dependence on v' —v", it is useful to work in the
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v"= 0 frame. Here so= e —v" g + -,
'
p( v")' gives

dao = {T dS + [p + —,( v")'] dp+ 7, * d( v*—V") +PP; dl; +PP'i d(8il ) ]

+ [X'" dv'~+Prof deaf +Pm df +Pm; d(8;f ) + (h —H ) dm ]

8A, -' 8A, ' ~pSP ~$ ~

8&sn 8(&s &n) /J JJ

8xi~ 84kJ
8 (8 lk ) 8 ( is

' - is ")

(5 I)

& PCSe&gk (&

8h„*n 8pkj

8(8l ) -P8 „' Pda)

~ Pc*/'et~&" (53)

thus making it clear that A.
' and A.

'~ depend upon
v' —v "~ In addition, the following Maxwell relations
hold:

but they do not attempt systematic studies of the
wave-vector dependence of the eigenfrequencies.
Our work, on the other hand, neglects the interaction
energy that makes f not a truly hydrodyamic variable,
and concentrates upon the wave-vector dependence
of the eigenfrequencies. In addition, we have
neglected dissipation. Our results are more general
than those of Ref. 3. Although the interaction that
causes the transverse spin modes to develop gaps
does dominate the long-wavelength behavior of the
modes, our study is illuminating, for it shows how
one continuously goes from the spin waves of the A

phase to those of the A i phase.
The discussion of transverse spin waves will then

be followed by a discussion of the coupled motions of
p, S, g, $, $'i, Sih,f.

[In (52) and (53), the symbol "~"denotes "con-
tains the term. "l When we consider the A i phase,
where only v'+ v'~ can appear in the theory (and
where rotations about f can cost no energy, so that
cur = 0), we have X'= h,

'n (which implies that p' = r,
C-C'n, p*n rn) a=nd p'= p'n, 7'- r ~ On th. e other
hand, when we consider the A phase, rotations about
d cost no energy, so that m e = 0 and m; e -0.

IV. NORMAL MODES OF THE UNIFORM SYSTEM

In a uniform system, the equilibrium fwill align
either along or against the externai fieid A and the
equilibrium magnetization rno. Thus we define

A. Transverse spin waves

Neglecting dissipation and the unknown term in
a„'3i& in Eq. (28) for Z,", and linearizing about r7i li f,
Eq. (15) yields

Sr
-yf x(H —h) (55)

where

h=y' iB

=xd '(r7i d)d+x, '(R e)e +x '(r7i f)f . (56)

Since Xd
' = X, ' = X ' when (small) susceptibility an-

isotropy effects are neglected, and H -X ' mo, Eq.
(56) becomes, with R = Ro +SR, and Sih ~ iho =0,

A

r7ip f0= moM, (54) h= X'm=H+X'Sm (57)
where mo= {mo{ and M, = +l. It wiII be necessary
only to consider the behavior of (p, S, g, P, Pf f R),
since the motion of I is known to be very slow. '~

Furthermore, its behavior has already been discussed
quite adequately for the 3 phase, ' ' 2 and the n4 2

phase presents no qualitatively different situations. '
%e will begin by discussing the coupled motions of

Sf d, Sf e, SR d, SR e, which yield the transverse
spin waves of the A q phase. Note .that spin hydro-
dynamics for the s4 phase has been discussed in Refs.
1 1 and 2 1, for the A

~ phase in Ref. 2, and for the A 2

phase in Ref. 5. However, the work of Pleiner and
Graham, ' and of Pleiner, ' is built around the fact
that f is not a truly hydrodynamic variable, and
therefore does not have any gapless modes. These
works carefully study the transverse spin modes in
the infinite wavelength limit, and include dissipation,

With Sf= (Sf ~ d)d+ (Sf e)e and SR(SR d)d
+ (Sm e )e, and assuming an e '"' dependence on
time, (55) and (57) yield

i co(Sf ~ d) = y—x '(SR e )

—ice(Sf e ) = —yx '(Srn d)

When one neglects the unknown '0 T terms in Eq.
(29) for J;, the linearized version of the transverse
component of Eq. (47) is given by

= [PRO x (-8h ) ] —(ypf x II),
i p

+ cxlsnsmoMgf~epy88; 8j(8/Is)
(2)

(2)
'+/J esp lJ ep + % ~0~&&s I +iJ rsp
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~here Sh =X»Srn, and II = m —9;m;. For our
purposes, m is due to the nuclear dipole interaction
~D, given by'"

', g—,[a'(d i)'+b2(e i)'] . (6O)

Since a' & b', (d I )'=1 in equilibrium. Evaluating
m slightly away from equilibrium, one obtains

Qga
p2r = = —gaa d (Sf d)tt (61)

Furthermore, m; must have the form

/3n, =Md/d (d 8,f)+Mje (e B,f)
where Mi =M»»ijl&+M&8», and similarly for M».
Utilizing (61) and (62), and assuming an
exp(i q r —i «sr ) dependence on space and on time,
(59) becomes

—l«s(Snl d) =yX 'mpMs(1+y 'a, /dq, q )/(S rne)

+ yM, ',.q, q/(Sf e)
(63)

(2) (2) " (2)
Here Ot;,.~ = a;,. &d d&, and similarly for a» The
solutions of (58) and (63) are given by

«s+ = («sr + «sF + «sr2 + «sd + «st )

+—[ («sr + «lF + «s/2 + «ss] —«ss )

2( 2+ 2)]//2

where

«st
———(yX 'mpM, )'= (yH)'

COP COLS eijd + ar/e

~ 2 —( y2/)I ) g a 2 —~ 2 a 26

«sd2 = (y2/X) M;";q;q;,—
«s,2—= (y2/X)Mpq;q,

%hen the terms specific to 3He-A are dropped, Eq,
(64) yields the spin waves for a ferromagnet, where
eoj2 may be thought of as due to the q dependence of
the susceptibility. Note that, if the a„'3& terms were
kept in Eq. (55), the analog of Eq. (64) would be-
come quite complex. These terms do not matter for
q =0. Nevertheless, in principle, they do affect the
spin-wave dispersion.

%hen H =0, co& =0, a2= 1, and co2=0, so

~2+= —,(~3+~d') + —,(~A'+~d) .

ao2+ corresponds to one of the usual transverse spin

—i«s(Snl e)= —yX 'mpM, (1+y 'a;;, q;q;)(Sm d)

ym, ,'q, q, (S-j d) y( ', g,a')-(Sj' —d) .

Md ~

I32 s[1+ (1 p2)i/2]

Me ~ I32ps[1 (1 p2)1/2]

p;=(12p/5)(1+Fi/3) '(1 —T/T„)

x (S;;—, I; I; ) (6C/1.—42C„)

(65)

where F» is a Landau parameter. It is also useful to
note that, for T near T, we may rewrite p as

p = H/H„, ( T)

(i —T/T„) (2k, T/yg)
~(1 —S)/(1+ S)

where we have employed the same notation for q
and 8 as in Refs. 6 and 23. Approximate values at
the melting pressure P,„are 8 =0.25 and q = 5
x 10 '. Because of the linear dependence of p upon
H, it would be convenient to fix T and monitor ~+
and eo' as functions of H. This may not be practical.
Clearly, H& is the field which destroys the A2 phase."2

Finally, we evaluate (64) neglecting coF and in the
limit of large I q I, so «s~2, «s,2 &) «sL2, «s/22. ln that case
we find

2 2 2 2
OP+ Md, M OP~

es'» ao2(=0) corresponds to the diffusive mag-
netization mode discussed in Ref. 11, and to another
mode involving rotation about d, which is unphysical
for the A phase, and thus irrelevant to Ref. 11.

It is instructive to study the effects of a small field
on «s+. With (sd/2 + «sd ) )) («sI + «sF +«ss ), (64)
yields

QP+ ~ COD +QPy+ML +My. , 03 Cd~
2 2 2 2 2 2 2

Thus ao2, which is largely associated with Sm d and
5f e, corresponds to a gapless spin wave of low velo-
city v„when one is near the A phase. Since
M;; ~ H' for small H [see Eqs. (65) and (66) below]
e, ~ H.

On the other hand, more generally- one has, for
(«sd + «st ) (( («sD + «sL + «sr'),

«s+ (rdI2 + «sL + «Ij) + («sd + «lt )

«Ss [«SI2/(«S/2 + «SL ) ]

2 2[ 2/( 2 + 2)]

These results are in agreement with those of Ref. 3,
when coF is set to zero and notational differences are
accounted for. (Reference 3 employs P, which equals
(1 —p')'/' in the present notation, so that a
= —,

' [1+(1—p')'"]= —,
' (1+P).} ln the Appendix,

we present the weak-coupling GL expressions for
various quantities appearing in the theory. From
(9.54) of Ref. 7. near T„Mdj and M;; may be written
(with p =II/2m)
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The eigenvectors in these cases are also simple; co+

involves only 5$ ~ e and Sf ~ d and ao involves only
Sm d and 8f e. For 4«F 4 0, the corresponding
modes are more complex.

If ZD were included in f, the modes would
develop a q-independent relaxation time; and if the
interaction which orients, f with m were included,
both modes would develop a gap at q =0."

B. Longitudinal modes

We first consider the case where the normal fluid
is "clamped, " so v"=0. The linearized entropy
equation, without dissipation, then tells us that
S = const. Mass conservation [Eq. (14)] gives, with

g = 7' and Eq. (48) for h. ',

where

~22 = (y'/x) —,gD(1 —p')'" —= ~A'(I —p') '" .
2

«2f20 =p'(y'/x) q, q;r,", ,

40420 —= (Sp,/Sp) q;q; p,*, ,

oof') = p'—(y'/X)q;q;r, *, ,

m4) —= (St /Sp)q, q, p,
"
, .

In the A phase, p =0 and p,', =7,'; =0, and the
solutions are

OJ+ = OJg + OJfp, QJ = QJ4p
2 2 2 2 2

in the AI phase p =1, so AD =0, and p„"=p,', =r„
= v,", , so the solutions are

—408p+q;(p, ', u,'+ p,,"u,")=0 . (67) 0J+ = |2IJfp+ 0J4p, OJ = 02 2 2 2

where Sp is the deviation of the mass density
from its equilibrium value. [We assume an
exp(iq r —i tot) dependence on space and time. ]
The linearized equation of motion for 8$, Eqs. (14)
and (25), with Sp, = (Bp,/Sp) Sp, gives

These results are in agreement with Refs. 3 and 11
for the A phase, and with Refs. 1 and 3 for the A I

phase. If we consider the weak-coupling GL regime,
where v, =p,', =pp;=ps, ',~, we have

I
40+ = [toA ( I —p ) + Qlfp+ «240]

—i POJ5@+ SP =0Qp

Bp
(68)

[ [roA ( I p ) + tofp 4040]

The linearized equation of motion for Sgf, Eqs. (14)
and (27), with h —H = X 'Sm, gives

iPt«84t2f+—yPX '(Sm ~ f) =0 (69)

Finally, the f (Sm/St) equation, Eqs. (47) and (29)
(neglecting the unknown coupling to I x V T ), gives

+ 4p2~2 2 }I/2

here, all the p dependence is explicit. This equation,
which is in agreement with that of Ref. 3 for the A2
phase, enables us to track the eigenfrequencies as
one continuously increases p, moving across the A2
phase from A to A I. If the "unperturbed" modes
are considered to have

—it«(Sr7i j') = yP(«2f iq, ),")— (70)
%0+ = G«A ( I —p ) + tofp top — «240

2 2 2 I/2 2 2 2

We obtain rof from the dipole interaction, Eq. (60),
evaluated slightly off equilibrium:

then "crossing" occurs when cvp+=~p . Since, near
T 2, 24

C&

p«2 = = gD(1 ——p')'"84f (71) 4«[0=4040[(1+—Zo)/(1+F0)] && «240

Using h. ~ from Eq (49), Eq. . (70) becomes

—t~(Sm j)=y —g, (1 —p2)Syf6

Use of

u,*=p(iq, )5$, ui'~ =p(iq;)Sgf

(72)

(73)

in (67)—(69) and (72), enables us to solve these
equations in terms of 8$, Spf, Sp, and Srn f. We
obtain a quadratic equation for cu2

0J —0J (QJD + 0J/p+ QJ4p)

2+ [ («&0 + to f0 ) «240 —
«of ( 4042 ] =0, (74)

crossing is primarily determined by OJ4p

= ooA'(1 —p2)' ', and the fractional shift of the modes
at crossing is given by +(p/2) («2fp/4040)' '. Note that
a similar analysis for the transverse modes [cf., Eq.
(64) j yields no "crossing. "

Because the "longitudinal resonance" develops a
"fourth-sound" component, that mode should be ob-
servable with a fourth-sound apparatus; and because
the fourth-sound mode develops a longitudinal-
resonance component, that mode should be observ-
able with a longitudinal-resonance apparatus. A de-
tailed discussion of questions associated with the
design of an experiment to detect this mode crossing
is given in Appendix B.

One may also study the theoretical properties of
the longitudinal modes for an unconfined geometry.
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One finds a mode which is basically first sound, and
two modes which are basically coupled longitudinal-
resonance and second-sound modes. They may be
obtatned frotll 'tile equatlolls of motton for S, $, @f,
and Srm[ .f, subject to p=0 and g =0. %C find that

aI G—I (Mo+ calfo+GIYO)+ [ (MD+ ctlf0)aIIO calI IctlII] ~ 0

2 S ~P sPr nX l

IP

~ra-P'(~'/»aqj [Y;*,"+Y'k(p") kI'PI'J] ~

~fI-P'(y'/X)II q;[r;;+r'k(P")kI'PI*;] .

Since e2o && ao40, the shift in the second-sound fre-
quency on going from the A phase to thc A 1 phase
fffoltl (cu20+alrII) ] Is IYIuch trlofe pfollouflced than
the shift in the fourth-sound frt'. quency, as noted by
Liu. ' However, because it is harder to generate
second sound than fourth sound (due to the high at-
tenuation rate associated with second sound" ), it will

be more difficult to study these modes. In the A 1

phase, where aoD =0, aofo=cof[, and ao20=~21, wc2 2

have

2
M+ ~ OJf0 + A)20„N ~ 0

The ~' -0 mode corresponds to a "magnetother-
momechanical effect, " and will be discussed in Sec.
V, where we consider diffusive modes, static solu-
tloAs, 8Ad related bchavlor.

V. DIFFUSIVE MODES, STATIC SOLUTIONS,
AND RELATED BEHAVIOR

%C now consider the static solutions to the hydro-
dynamic equations, restricting our considerations to
the longitudinal variables. (Hence shearing motion
of V", and motion of.f, and I wiii not be discussed. )
To appreciate the physical significance of these solu-
tions, it is useful to consider the normal modes as 8
function of frequency. Although they have not been
considered yct in this paper, thc dlffuslvc modes, for
which ~-—ioq', will be sho~n to very often dorn-
inate the low-frequency behavior of the system. To
illustrate this point„we will first consider an ordinary
liquid in the bulk and in the superleak geometries.

Ordinary liquid. In bulk, the normal modes of an
ordinary liquid are ordinary sound and @ thermal dif-
fusion mode, with D - [x/Tp(8s/8T) p], where
s —S/p. This latter has a fluid velocity which is prc
portional to q . At high frequencies, because the
thermal diffusion mode decays in space rapidly as one
moves away from the source, only the propagating
(sound) mode is noticeable far from the source.

However, at low frequencies, since the wavelength
A. c co ' for a propagating mode, whereas the
"wavelength" k~ (q [

' ~ ru
I~' for the diffusive

mode, the sound wavelength can become much larger
than the distance between observer and source, so
the pressure appears nearly constant; nevertheless,
the thermal diffusion mode can still extend so far
that it simulates a linear-temperature profile. Indeed,
the steady-state solutions correspond to a uniform
pressure and a linear-temperature profile. In other
words, far from the source, the high-frequency
behavior is dominated by the propagating mode,
~hereas the low-frequency behavior is dominated by
the diffusive mode. This behavior is 8 characteristic
OAC.

Inside a superleak, where the (normai) fluid veloci-
ty is subject to a great deal of viscous drag, one can
set up a steady-state linear-pressure profile, accom-
panied by a small but steady mass flow (i.e., the
Joule-Thomson porous piug). This mode
corresponds to thc dc vcfsloA of thc normal mode for
sound propagation along 8 long narrow tube. fA addi-
tion to this mode and its dc behavior (which will not
be considered when we discuss superfluids), there is
also a thermal diffusion mode (as in the bulk) whose
dc behavior gives a linear-temperature profile. %e
now turn to the behavior of an ordinary supcrfluid,
~HC If.

Ordinary supergluid. In bulk, the normal modes of
an ordinary superfluid are first sound (primarily a
pressure wave) and second sound (primarily a tem-
perature wave). There are no longitudinai diffusive
modes, These two normal modes give the steady-
state behavior of the system: the pressure is uniform
because pressure differences are evened out by dc
first sound (which can carry momentum), and tem-
perature differences are.evened out by dc second
sound (which can carry heat). Note that the decay of
temperature, as one moves away from a dc heat
source ls exponential, with 8 ch8ractcrlstlc length oA
the order of 8 mean free path. 26

In a superleak, the normal modes are fourth sound
(primarily a pressure wave, due to compression and
rarefaction of the superfiuid) and a thermal diffusion
mode. This iatter mode occurs at constant p, (so
d v'/dr -0), whereas the bulk thermai diffusion
mode for an ordinary fluid occurs at constant P (so
dV"/dt 0). As a consequence, the diffusion con-
stant is now D - [x/T(8S/8T)„]. The fourth-sound
mode is not excited in the dc limit (unless material is
flowing through 8 superleak which connects two
chambers of bulk superfluid, as in the case of the
fountain effect)." However, the dc thermal diffusion
mode can be excited, to obtain a linear-temperature
and -pressure profile across the superleak. (This is
what occurs in the thermomechanical effect. YY) We
now consider the more complex case of 'HC-A.

'He-A. In bulk, the longitudinal normal modes of
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'He-A are first sound, second sound, and the longitu-
dinal spin wave (LSW). There are no diffusive
modes. Both first and second sound directly give the
steady-state response to pressure and temperature
disturbances, causing pressure and temperature
differences to be evened out (just as for an ordinary
superfluid, except that the superAuid density is now a
tensor). The static longitudinal magnetic response of
the system, however, is complicated by the presence
of the nuclear dipole-dipole interaction [ruf in Eq.
(15)], which is nonzero for (I d)2W1. This occurs
if @f & 0, and is responsible for the gap cu& in the
longitudinal spin wave, and for the absence of any
uniform, steady-state solution with v'~ & 0.'8 Indeed
the steady-state solution which follows from the LSW
dispersion relation, co'= ~j + cjoq' (where cf, is the
spin-wave velocity for co„=0), gives a finite (in fact,
imaginary) value for q, rather than giving the value

q =0 which corresponds to a uniform, solution. In
other words, the steady-state solutions to the hydro-
dynamic equations carry no spin currents. In the
bulk, f (h —A) =0 is the steady-state solution, as a

consequence of Eqs. (15) and (27).
In a superleak, the normal modes are fourth

sound, the LSW, and a thermal diffusion mode. The
LSW is unchanged from its corresponding bulk solu-
tion, and hence there is no uniform steady-state solu-
tion with v'P & 0. The fourth-sound mode is like that
for an ordinary superAuid, except that the superAuid
density is a tensor. The thermal diffusion mode is

like that for an ordinary superAuid, except that
K ~ ~(q ) = ~;,q;q;. The implicactions for steady-state
behavior are that f (h —H) is zero throughout the
superleak; and that fourth-sound and the thermal dif-
fusion modes manifest themselves as in the case of
an ordinary superfluid-, respectively, supporting the
fountain effect and the thermomechanical effect.

'He-A2. In bulk, the longitudinal normal modes of
'He-A 2 are first sound, and two propagating modes
wherein the second-sound and LSW modes of the A

phase are mixed [except at q =0, cf. Eq. (76)].
There are no diffusive modes. In the q 0 limit
both first and second sound directly give the steady-
state response to pressure and temperature distur-
bances just as for 'He-A. Note that, since the spin
current has a A,

'~ term proportional to v' [cf., Eqs.
(23) and (49)j, second sound carries a magnetization
current proportional to v', in addition to the small
magnetization current m v which in principle also
occurs for 'He-A. (V*' 0 for second sound as

q 0, so the v' term in A.
' does not contribute

here. ) The static longitudinal magnetic response of
the system is also very similar to that for 'He-A.
Again, f ( h —H) = 0 is the bulk steady-state solu-
tion.

In a superleak, the normal modes are: two pro-
pagating modes wherein the fourth-sound and LSW
modes of the A phase are mixed [except at q =0, cf.

D(q) = K(q)+ a"'(q)TS

, ~Pp,

r

cps
Tp

where a(q) —= x;;q;q, and a"'(qq)
—= (a;', "+n„"&m&f )q;q, In obtainin. g Eq. (77),
small corrections proportional to rs20/cufo, and terms
due to the m dependence of S and p, were neglect-
ed.

In a superleak, the normal modes are a propagating
mode wherein the fourth-sound and LSW modes of
the A phase are mixed (with 5S =0, f gm
= —yPgp), ' and two diffusive modes [with

Sp+ (yP/X) f SR =0] wherein pressure, tempera-
ture, and magnetization are strongly coupled. (Alto-
gether, the A

~ phase in a superleak has four modes,
whereas the A and A2 phases in a superleak have five
modes. ) The propagating mode can carry both
momentum and magnetization, and is responsible for
the "magnetic fountain effect" which can occur in
'He-A &. The two diffusive modes can be generated
in an arbitrary linear combination, and it is this extra

Eq. (74)]; and a thermal diffusion mode similar to
that for H =0. The steady-state behavior is very
similar to that for 'He-A in a superleak: f (h —H)
is zero throughout the superleak, the q = 0 fourth-
sound mode can support the fountain effect, and the
thermal diffusion mode can support the ther-
momechanical effect. We now consider He-A ~.

'He-A ~. In bulk, the propagating longitudinal nor-
mal modes are first sound, and a propagating mode
wherein the second sound and LSW modes of the A

phase are mixed. There is also a diffusive mode in-

volving temperature and magnetization. Since v' and
v" are no longer independent variables, appearing

only in the combination v'+ v* ( v * may be
nonzero, since aof =0 in the A phase), there is one
less degree of freedom and one less mode than for
the A and A2 phases. (Mode counting involves
counting each propagating mode twice, and each dif-
fusive mode once; thus the bulk A and A 2 phases
have six modes, whereas the bulk A ~ phase has five
modes. ) As usual, first sound causes pressure differ-
ences to be evened out, and can carry momentum in

the dc limit. The propagating mixed mode evens out
a linear combination of temperature and magnetiza-
tion differences, carrying both a heat and a magneti-
zation current. The diffusive mode, which involves a
constant value for the effective chemical potential

p ff p, + yPf ( h —A), can set up a linear profile of
temperature and magnetization ("magnetothermal ef-
fect"). (For diffusion, the equation for momentum
conservation implies that 5P = 0, and thus Sp,,ff 0
involves no SP term for the diffusive mode. ) Of
course, as Liu has pointed out, ' one can set up such
a linear profile only for times short compared to T&.

Note that the diffusion constant takes the value
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degree of freedom which permits

0=8p, rr= (S/p)BT+(I/p)BP+yP f'B(h —H)

to be satisfied by various ratios of 5 T, 5P, and

f B(h —A). This equation implies that "magne-
tothermomechanical effects" occur in 3He-A [. One
possibility, discussed by Liu, is that onc can prepare
the superleak with 5T = 0, so that for times short
compared with T, , by application of an H with a
linear profile one can set up a magnetization-induced
pressurehead: BP= y/'pf —(h —H). (Thiseffect
suggests a method to experimentally determine the
direction of f.'«)

There are a number of other consequences to this
equation, when considered in the context of a super-
leak which connects two chambers of bulk 3He-A ~.

When one of the chambers is heated, superfluid will

flow in from the other chamber until p, ,[f equilibrates.

If both chambers have vapor in them, the change in

p fr in the third term in Eq. (78) far outweighs the
change in the second term, unless the superleak is to
raise the height of a fluid volume in a capillary whose
cross sectional area A obeys ~/V & g X/y'P'p
= (4000 cm) ', where V is the volume of the heated
chamber and g is the acceleration of gravity. On the
other hand, if both of the chambers arc closed and
are initially filled, then the increase in the second
term of Eq. (78) outweighs the increase in the third
term (in the ratio of the square of the fourth-sound
velocity to the square of the LSW velocity, which is
about 400). Thus a 5T generates mostly 5P in this
case, with some f BN. It is clear from the above
thai, in any given situation, the nature of the magne-
tothermomechanical effect will depend upon details
of the experimental design.

The diffusion constants can be found by solving
the simultaneous equations

r

gT T 9P X
(79)

Bp e'u(') tiru I+— + '( f Bm)+ i«)( y—P) — +q a'(j) ST=0
QT

(80)

[Here, p(q) =p-, s, f fsq, q; is an effective transport
coefficient, as are ~(q) and a"'(j).j These equa-
tions are obtained from the m and S equations
under the restriction that 5p, ,ff 0, and they employ
the p equation to eliminate the term Qf(=—V 7'in
the A

~ phase) appearing in the m equation. In addi-

tion, the dependence of S and p upon m has been
neglected. Because (y'p p/X)(Bp/BP)r « I, and

because (BS/BT)„» (y /' p/X)(BS/BP) r
x(Bp/BT)„, it is a consistent approximation to sim-

plify Eqs. (79) and (80) by neglecting the BS/BP,
Bp/BT, and Bp/BP terms, thus obtaining

BS iq'"(q) BT+ Pa"'(j)(f 8 )
8T T X

(81)

[ ir»+q'p(q—)/Xl(, f Bm)+q'a"'(j)BT=0 . (82)

The diffusion constants obtained in this way are

D+ = , (Dr+D~) + —[(D—r—D~)'+4D']'i', (83)

where Dr =—[K(j)/T(BS/BT) „[,D.= [p(q)/X[,
and D'= [a"'(q) 1'/X(BS/BT) . Note that D+ &0
for stability, so the condition D & D~DM must hold.
These modes involve (BP, BT,f Bm), where BP is

obtained from the condition 5p, ,ff 0.

VI. SUMMARY AND DISCUSSION

We have derived the nonlinear equations of hydro-
dynamics for 'He in the A2 phase. Our results for
the propagating normal modes are in agreement with
the results of hydrodynamic theories developed for
the A phase ' and for the A

~ phase, ' and with the
results of a time-dependent GL theory (with no
normal-fluid velocity) for the A2 phase. ' By studying
the diffusive modes, it was possible to shed light
upon the bulk "magnetothermal" and superleak
"magnetothermomechanical" effects for the A [

phase.
One aspect of the problem, which we find quite in-

teresting, is due to the unusual dispersion relation
exhibited by some of the spin-wave modes. In the A

phase it is well known that for the LSW, co'(q)
=co„'+ef'»(q)q'. For cu & m~, this is a propagating
mode; for cu ( co&, the mode does not propagate, but
rather decays exponentially in space. To date, there
have been no direct measurements on this mode, so
that, although co& is well studied, cfo is not. One rea-
son direct measurements of this mode may be diffi-
cult is that the group velocity is low, because it
possesses a great deal of dispersion, with

~ v, (q) ~ =cf2«(q)q/c»(q). A time-of flight measure-
ment will certainly involve a complicated waveform,
whose interpretation may be nontrivial. An alterna-
tive approach would be to use a phase-sensitive
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detection scheme in a continuous-wave (CW) experi-
ment, with the frequency ~ & ao& chosen to give a
convenient value of q. However, perhaps an easier
approach would be to perform a C% experiment for
&u & coq, and measure the decay in amplitude (e.g. , of
an NMR signal) as a function of position to obtain q,
and thus deduce cjo = (~j )/I q I ~

In the A2 phase, it should also be possible to apply
this technique. Here the results would be more com-
plicated. The larger the q value to be studied, the
greater the coupling of the pure LS% mode to the
pure second-sound mode [cf., Eq. (76)]. As a conse-
quence, an NMR coil operated belo~ the A2 gap fre-
quency will generate two mixed modes, only one of
which is propagating. Their relative phases and am-
plitudes will be such that, at the coil, (AT)Lsw
+ (ET)3„d=0 [where (/3T)tsw is the temperature
change at the coil due to generation of the. primarily
LSW mode; and similarly for (5T),„d]. However,
only (/3, T)3„d will propagate away, so (ET)Lsw will

remain at the coil. As a consequence there will be a
localized temperature change, and a propagating tem-
perature change. A similar argument can be made
for a heater, which will generate (f gnl)Lsw
+ ( f ~ Sr7i)3„,=0. Thus, near a heater in the bulk A,
phase, there will bc a localized magnetization change
(due to the primarily LSW mode); in addition, there
will be a propagating magnetization change (due to
the primarily second-sound mode). Similarly, in a
superleak, an NMR coil can generate a (hp, )Lsw
which is localized and a (hp, )4,h

= —(5/3, )„sw which

propagates; and a heater or transducer can generate
an ( f Snl)Lsw which is localized and an

(f ~ gm)4, „=—( f Sm)„sw which propagates. We re-
peat that to have significant mode coupling one must
have reasonably large values of q.

In the A
& phase, the LS% gap disappears, and

there is only a propagating mixed mode, both in bulk
and in superleak. Thus an NMR coil or a heater can
generate only one mode.

It would be useful to summarize thc new aspects of
the present work, - over and above the details implicit
in the transverse and longitudinal mode dispersion
relations, and thc discussion in Sec. V on the dif-
fusive modes of the A ~ phase.

Besides the longitudinal mode crossing which is
unique to the A 2 phase, there are two other signifi-
cant effects on the normal modes in finite fields.
First, for H = 0 (A phase), spatially nonuniform rota-
tions of the spin part of the order parameter about e
and f arc energetically equivalent, and have a rcstor-

ing torque which leads to degenerate spin waves,
whereas a similar rotation about d has no restoring
torque and leads to a diffusive behavior for the mag-
netization change SR along d. However, for H small
but finite (A3 phase), a restoring torque exists, and a
spin wave develops with velocity proportional to H.
This mode cannot be obtained by an extrapolation of
the H =0 hydrodynamics, and hence Eq. (19) of Ref.
11 is not valid. Also, for H ~ H„(A, phase), spa-

2
tially nonuniform rotations of the order parameter
about d and e are equivalent, and have a restoring
torque which leads to degenerate spin waves, whereas
a similar rotation about f (which in the A ~ phase is
equivalent to a rotation about I ), when added to an
equal and opposite rotation about I, has no restoring
torque' and leads to a diffusive behavior for SQ
along f. However, for H& H„(A3 phase), a restor-
ing torque develops due to thc dipolar interaction,
and a finite-frequency mode occurs. This mode is
basically the same (both for bulk and superleak
geometries) as the longitudinal NMR mode discussed
in Refs. 6 and 33. In addition, for the A] phase,
when rotations about f and I are in the same sense,
there is a restoring torque leading to the mixed spin
wave and second-sound (or fourth-sound) mode dis-
cussed by Liu. ' This mode is only slightly affected as
onc moves into the A2 phase, until mode-crossing ef-
fects become significant.
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APPENDIX A

The general Ginzburg-Landau free-energy density
ls given by

f= K, [8,A „,~'+ K, (8,A,",) (8,A „)
+K, (8,A„', )(8,A;) .

A„; = 5(tl7 + Ill );(Qr/+ /be )„
The K's are the same as those of Fetter, 3' with A „;
normalized such that ~A„, ~'=2k'. With/3 =2ab,

/3 ) s b and K13 Kl + K3 K123
K3+ K/3 K/$33 2K3. + K/3 we have [with v' and

v" defined in Eq. (6)]

(f//3. ) =K p '(7') —KUp '(I v')'+2K p 'v' 9 X I —2K„p '(v' I)(I & x I)
+K3(O' I) +K333[l x (9 x I)] +K3(/ V x I) +K38 (IJ8;/; —/8i/J) +Ki333p (V' ) —Ki3p (/ v* )

+2pp 'v*'[K~33 p 'v' —K„p 'I(/ v')+K, (0&&I) —K„i(i +~i)]+ ,'K„„(81)' ,'K„[—(iV)f]'--
+ —'K, (1 —p')'/'[(d 8 j')' —(e 8 f)'] ——'Ki3(1 —p')'/'[[d (I '7)f]3 [e (I O)f]')—
—(K —K )pP 'I ~ 9 x v'~ (A3)
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For the A phase (p =0), this reduces to Eqs. (S)—(7)
of Hu et al. 3' Note that for the A ~ phase (p = 1),
only the form v'+ v'~ appears, except for "7 x v' and
0 x v'" terms, which are textural in nature. Also,
note that Eq. (A3) can be made to depend only on
K2 and K~3 if surface terms are neglected, as re-
quired by Eq. (Al). In the weak-coupling limit,
where K~ = K2= K3 K,

and

I sP 5f
$~$p

=K&'[8P 'V"—4P 'I(I v*")

+SpP 'v' —4 P 'l(( v')

=Kh'[gp 'v' 4p '—I(l v*)+2p '('7 x I)
Q

~$ +2pp '(9' x I) —4pp 'I(l V x I)]

glvlng

4p '—i(i -V xi)+gpp 'V"-
—4pP 2l (I v'~)] (A4) giving

(A6)

p;*, =8K''p 2(5;, — I;I, )—

PIJ' =PPI"

C;; =2K52(5J —2I;IJ)

(AS)

and

C; =pCI

(A7)

Pw;= Kh'(45 f —2I (I 0)f +4(1 —p')' '[d (d 9 f) —e (e 5, f)]
5 5f.)

—2(1 —p2)'I2[d I;[d (I '7)f] —e l, [e (I V)f] }) (AS)

giving, on comparison with (62) and (AS),

M~ = —' p'p„* [1+(1 —p') 'I'],

M;; = , p'p„' [ I —(1 ——p')'I']
(A9)

APPENDIX B: P.XPERIMENTAL DESIGN
CONSIDERATIONS

In this Appendix we (I) consider the geometry of
an actual experimental cell that might be used to
detect the longitudinal-mode crossing discussed in
Sec. IV 8; (2) translate from the theoretically con-
venient parameter p of Sec. IV B to the experimental-
ly convenient parameter t' employed by Osheroff and
Anderson'3; and (3) indicate how one may efficiently
obtain the design parameters needed for the cell to
operate at convenient values of field, frequency, etc.

(1) An actual experimental cell might have the fol-
lowing design: two closely spaced parallel plates with
H perpendicular to their normal %, and an NMR coil
whose axis is along H. In this geometry, for a mode
with q along A, the coil is an efficient radiator and
detector of the mixed fourth-sound and LS% modes.
Furthermore, l is pinned along W by the boundary
conditions and by its dipolar interaction with d, which
is perpendicular to A by the anisotropic susceptibility
of the A2 phase. Thus we have q sl, as considered in

I

the estimates made later in this Appendix.
Note that it is preferable to perform resonance ex-

periments, which measure a frequency (and, there-
fore, a phase velocity), rather than time-of-flight
measurements, which measure a group velocity,
vg = 5&a/Bq, and must be compared to a more com-
plex theoretical form [i.e. , Eq. (7S) must be differen-
tiated].

(2) In their paper on transverse and longitudinal
NMR in the A

&
and A 2 phases, Osheroff and Ander-

son employ the reduced temperature

t' = ( T„2—T )/( T, )
—T„) (Bl)

where T, ~ and T, 2 are the field-dependent tempera-
tures at which the A ~ and A 2 phases develop
(T, ~ ) T,2). For the Ginzburg-Landau regime, in
which we are interested, Takagi has shown that

T, i/T, =1+&)h

T„/T, = I —&h ( I —5)/(I +5), (B2)

where h = (ytt/2ks T, )H. Comparison of (81), (82),
and (66) yields

I'= —, (I —5)(p ' —I) =0.375(p ' —1), (83)

where we have employed the value 5 =0.25 appropri-
ate to the melting pressure P ."

(3) %e now consider questions pertaining to exper-
imental design. This requires a knowledge of the
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condition for mode crossing to occur. It is given by

~o=3(I p ) +fo ~

q'=roj(l —p)' '/(c4o —cr'o)

Since c4'o = 400cf2o at P (where c~2o
——ca,'o/q', etc.),

we may employ

crossing must be able to conveniently accommodate
such a wavelength.

One approach to cell design is to choose a con-
venient wavelength A. , which then determines p, from
(84'):

q = (~~/c4o) (I —p')'" (84)
(88)

c4-c([—", (I+F(/3) '(hC/1. 42C„)(I—T/T, )]'~' .

Using values for c~, F~, and hC/1. 42C„ from Ref.
23, we find that

c,= 2.92 x 10'( I —T/T, ) '~' cm/sec,

so that (84) becomes

q =51.6(1 —p')'~4 cm '

Thus we get, for p =0, q,„=51.6 cm ',
corresponding to

X;„-2e /q, „=0.122 cm

(84')

In other words, any cell designed to observe such

Now, using the empirical result (roq/2m ) = 235
x 10'(I —.T/T, )'i' sec ' found by ebb er al. ,

'~ at
P -33 bar, and scaling to P =34.36 bar using (8.23)
of Ref. 23, we find the relation

oo„=2m(240x10 )(I —T/T, )' ' sec ' . (85)

Next, with e4 = c~ (p, /p) '~', where p, =p„,q;q, is
evaluated for q x I, use of (65) gives the result that

For example, A, =0.15 cm gives p =0.?50. From
(83) we then find that r' =0.125. Now let us choose
a value for the longitudinal resonance frequency
without mode-crossing effects. If we take
ooz(I —p2)' ~=2rr x 104 sec ', then (85) enables us
to determine that (I —T/T, ) = 2.62 x 10 '. From
(66) evaluated at P we then find that

H =pHq ( T) =p (I —T/T, ) (1.11 x 10o 6)

which then gives H =2.16 x 10' 0 in the present
case.

The fractional shifts in the mode frequencies at
crossing are given, near P, by [cf. Eq. (75)]

+ (p/2)(~fo/ro4o)'"=+ (p/2)(0. 23) . (810)

In the present example, we would thus expect to see
modes at frequencies of 10'( I + 0.10) Hz.

It should be noted that (Bg) does not really give
much flexibility in one's choice of values for A.. For
example, X=0.20 cm gives p =0.928, so t'=0.029, a
rather small value; and A. =0.25 cm, gives p =0.971,
so t'=0.011, an even smaller value. If t' gets too
small, temperature stability becomes a concern.
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