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A simple method for calculating the low-frequency electromagnetic response function from tunneling
derived a*(w)F(w) has been developed and applied to Pb, Pbgg,Biy o, amorphous Bi, amorphous
PbysBigss, and amorphous SnggoCuq 0. The results have been compared with previous calculations and
experiments. A correction to the calculation of the T = O values given by Kerchner and Ginsberg is given.
Although the calculations agree with experiment for crystalline Pb, the calculated temperature dependence is
much stronger near T, than that inferred from kinetic inductance measurements for amorphous Bi.

I. INTRODUCTION

The influence of strong electron-phonon coupling
on the electromagnetic properties of superconduc-
tors is well known. For example, the frequency
dependence of the electrical conductivity in strong-
coupling superconductors has been observed by
both infrared'’? and microwave® techniques. Also,
the magnitude and temperature dependence of the
low-frequency conductivity for Pb have been in-
ferred from measurements of magnetic field at-
tenuation,* while kinetic inductance® measure-
ments have been used to study this temperature
dependence for amorphous superconductors.
Closely related to the electrical conductivity of
the superconductor is the critical current of a
Josephson junction, and this has been measured
for Pb.®

The theory of the electromagnetic properties of
strong-coupling superconductors was originally
developed by Nam,”'® and a correction for higher
frequencies, Zw>2A,, was noted by Swihart and
Shaw.® Using this theory, low-temperature
values of the low-frequency electrical conductivity
o(w-~0,T =0), or equivalently of the electromag-
netic response function I(w=0, R=0,T =0), have
been calculated for many materials'°"!?; however,
the results were not always in agreement.

In this paper detailed calculations of the response
functions for several strong-coupling supercon-
ductors are presented. Solutions of the nonlinear
Eliashberg equations for the gap function A(iw,)
on the imaginary axis using the tunneling derived
0*(w)F(w) is used with Nam’s theory to calculate
1(0,0,T). As a check of the calculation procedures,
1(0, 0, 0) has also been calculated by three addi-
tional methods using the same tunneling data for
input: (i) the direct calculation by Harris'® of the
imaginary part of the conductivity, o,(w), as a
function of frequency and then taking the limit of
wo,(w) as w-0, (ii) the Kerchner-Ginsberg!'® ex-
pression for lim,_,, [wo,(w)], and (iii) calcula-
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tion with Nam’s theory using A(iw,) determined by
a transformation of the real frequency gap function
A(w) obtained during the inversion of tunneling
data to the imaginary frequency function A(iw,)
using Cauchy’s theorem. Note that a correction
to the Kerchner-Ginsberg expression at 7=0 has
been found and there is now excellent agreement
between the values of 1(0, 0, 0) computed by the
four different methods.

In Sec. II the methods for calculating the response
function are described in detail. In particular,
the Eliashberg method with A(iw,) provides a very
fast computational method for calculating 1(0, 0, T)
at a large number of temperatures. In Sec. III
the results of the calculations are presented and
compared with experimental data.

II. CALCULATION OF 1(0,0,T)

A. General formulation

The electromagnetic response of a superconduc-
tor to an electromagnetic field may be written

- 2N(0
I, )= SN,

xfB{—ER—?—“i(-XZH I(w,R, T)d¥ , (1)

where N(0) and v ¢ are the band density of states
ind Fermi velocits; (not the renormalized values),
R=T'-T, and I(w, R, T) is the electromagnetic
response function, which may be approximated by

I(0,R, T)=1(0,0, T)e"R/A¢T: D @)
with
YT, D= 1T+ (80), 3)

where £,(7) is the coherence length, ! the electron
mean free path, and § a constant of order unity.
For the case when [ is much less than £(7), and
as w—0, the relation is local:
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e v 2081e*N(0)v -

(T, w=0)= 3he 10,0, T)A(Y) . (4)
For such low frequencies, w << 2A0/E, the elec-
tical conductivity is imaginary. o,(w)/oy depends
on frequency but is independent of wave number.
In the weak- coupling theory calculated by Mattis
and Bardeen'!

- a  Bt)
where a=2A,(0)/k5T,=3.52 and A(¢) is the BCS
gap parameter.
In the strong-coupling case, Nam’s’ Egs. (4.34)
and (4.35) give the expression for 1(0,0, T),

1(0,0,7)= -7 lim (wo,), (6)
where
0,= %’- f ¢ 2,(w', w+ w’)tanh[3 fw+ w')] do’
(a*-w

+ i—fw: {g.(«’, w+ w’) tanh[ 3 B(w + w')]

+g(w+ w’, w') tanh(3 fw’)} dw’ (7)

and

2w, wtw’)= Im<-{-wT_—:T,(w—,W7-2—)

w+ w’
X Re([(w+ W)= A (w+ w;)]l/z )
Alw')

+ Im <Tw,—2:—A—§m]—m—>

X Re( Aw+ w) )

[(w+ w')? = A%(w+ w’)] 72

B. Integration before limit approach

Harris has written aprogram'? to calculate o,
at several low frequencies for 7=0, the results
of which can be graphically extrapolated to w=0
to obtain (0, 0,0) from Eq. (6). The information
required for this procedure is the gap function
A(w)= A (w)+i4,(w) over the range of frequencies
w=0 to a high-frequency cutoff (usually about 10
times @, where @ is the average phonon fre-
quency). Such information is readily calculated
during the inversion of tunneling data. This pro-
cedure can be used at higher temperatures, but
then the temperature-dependent values of A(w)
must be determined from solutions of the Eliash-
berg equations on the real frequency axis using
tunneling derived a*(w)F(w). A simpler procedure
for the calculation of I(0, 0, T) involves the calcula-
tion of A(iw,) on the imaginary axis as outlined in
Sec. IID below.

We have used Harris’ program to calculate
1(0,0,0) for Pb,'® Pb, 4 Bi,.,q,"° a-Pb, ,sBi,_ss,'® and
a-Bi,'” with tunneling derived A(w) taken from the
indicated references. Since A (w) and A;(w) are
derived only for w= w,, whereas the integral con-
tributes significantly for 0< w= w, also, we took
A;(w) =0 in this range. This is exact at 7=0 and
a good approximation at low 7. A first approxima-
tion to A (w) in this range is A (w)=w,, but this is
not accurate because it gives zero slope to A (w).
(See Sec. IIC.) Better results were obtained by
using the Kramers-Kronig relation to compute
values of A(w) in this range, thus giving & (w) a
nonzero slope in this range.

The results of this calculation and others (to be
discussed below) are compared in Table I.

TABLE I. Results of our different methods of calculating 1(0, 0, 0) for various superconduc-
tors. The values listed for Eliashberg and Cauchy were actually computed at T=2.0°K, but
due to the flatness of the 1(0, 0, T) vs T curve at low T, they should be very close to the values
at T=0°K. Values of —I1(0,0,T) below are in units of 10! sec™!.

Method of

calculation Pb®  PbygBig10®  a-PbysBigss®  a-Bi®?  a-Sng goCug,;°
Integration 1.63 1.82 1.64 1.37

before limit
Limit before 1.62 1.81 1.64 1.38

integration
Eliashberg 1.65 1.83 1.69 1.42 1.59
Cauchy 1.64 1.83 1.61 1.37

Sources of data [A(w) and o?(w)F(w)]:
3Reference 15.
PReference 16.
®Reference 17.

9Reference 20.
®Reference 21.
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C. Limit before integration approach

Rather than performing both integrations of Eq.
(7) to calculate 1(0,0, T), Kerchner and Ginsberg"!
showed that for finite temperature the first integral
vanishes as w-0, and hence one may write

W%+ A%(w’)

I(0,0,T> 0)=77]:n]-/'c m
o -
X tanh(3 pw’) dw’ . (8)

They stated that this expression is correct for T
=0 if one assumes that w has a vanishingly small
imaginary part. Calculations were presented for
1(0,0,0) for Pb and for Pb, 4 Bi,_ ,, with the results
being ~1.50 X 10*® sec™ and -1.61 X 10'$ sec™?,
respectively.

Lejeune and Naugle® worked out the T=0 result
starting from Eq. (8) and concluded that

0 ”?2 AZ ’
1(0,0,0):-,,2w,+,,1mf g—,r’_'—p-((‘"w—,)j do’ . (9)
l‘k

They computed the value of 1(0,0,0) for Pb and
got-1.51 X 10'3sec”!. Their value for amorphous
Bi was —1.106 x 10'2 sec™.

Our calculations for Pb, Bi, and Pb, ,Bi, ,,
using the other methods described in this paper
gave the values of about —1,63x10%, -1,39x10%,
and —-1.83 X 10" sec™. To discover the reason for
these discrepancies, we carefully reexamined the
first integral in Eq. (7) in the limit w—~0. It turns
out that the slope of A (w) for w~w, must be ac-
counted for, and when this is done in taking the
limit of Eq. (6), the first term on the right-hand
side of Eq. (9) becomes

- (T ) (10)

[ 4
This is the same result as determined by Fulton
and McCumber!® in their paper on the Josephson
effect in strong-coupling superconductors. This
provides a correction to Kerchner and Ginsberg’s
T=0 calculation and Eq. (14) of Lejeune and
Naugle. With this correction, the values of
1(0,0,0) for Pb, Bi, and Pb, Bi,,, were deter-
mined to be —-1.62 x10'%, —~1.38 10", and -1.81
x 10" sec™, in excellent agreement with the re-
sults of our other calculations.

D. Eliashberg approach

According to Nam® (0,0, 7) may also be ex-
pressed as

10,0, 7)= =

kT ) A?

n wi+aZ (11)

n30

where A = A({w,) is the gap evaluated on the im-
aginary frequency axis at the frequency iw,

=i(2n+1)CT (C=(nk/e)10? for A, and w, in units of
meV). To determine the set of A,’s, the nonlinear
Eliashberg equations must be solved'®:

- -l . A(m)
A(n)=CT Z Mw, - w,)=1"] 1@ (m) + 22(m)] 72

msen

n-1

G(n)=w,+CT 2 Mw, - w,) I

@(m)
m)_‘_zf(m)] 1/2 »

where z(n) =Z,A,,éMn=2,w,, (12)

walF(w)

)\(wn—wm)=2_[ Filo o) dw
0 n m

and Z,=Z(iw,) is the renormalization function on
the imaginary frequency axis.

To solve these equations one must have the set
of a’F(w) for the particular superconductor under
investigation [sources of a®F(w) for the materials
studied are indicated in Table I] along with a rea-
sonable estimate of u* and a set of N initial values
for the gaps 4,. Although the sums contain 2N
terms, the even nature of A, and Z, (i.e., A=4_,.,)
can be exploited so that only N different values of
A, and Z, need be considered. The maximum size
of n is determined by defining a cutoff frequency
Wpay=(2N+1)CT. We took w,,, equal to ten times
the maximum phonon frequency.

The equations were solved through an iteration
and extrapolation procedure involving the set of
N A,’s. On each iteration a set of A,’s (usually
from the previous iteration) was put into the equa-
tions to generate a new set of A,’s, the &/’s. The
quantity

A= (a, _A;,)Z/Z Az (13)

was then computed. For a perfectly converged
solution A=0. Upon completing a calculation using
only a direct iteration procedure, it was noticed
that after the first few iterations, each of the A’s
for the succeeding iterations was related in a
nearly linear manner to the quantity A'/2 computed
for each iteration. Hence an extrapolation pro-
cedure was set up. First a set of direct iterations
(usually ten) was made. From that point, after
every two direct iterations, the next set of A,’s
was determined by linearly extrapolating each of
the A, vs A!/2 curves to \'/2=0. Using this pro-
cedure, often only one extrapolation was necessary
to reach the desired level of convergence. (Note
that one A did not behave linearly. This occurred
at the value of » where the A,’s changed sign. Since
the magnitude of this one A, was very small, the
error introduced by using a linear extrapolation
in this case was negligible.)

The iteration and extrapolation procedure for the
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FIG. 1. Relationship between the electromagnetic
response function 1(0, 0, T) for Pb at T=6.0°K as cal-
culated by the Eliashberg method and the convergence
test quantities A and A!/2 [see Eq. (13)].

A,’s was continued until A<10"® (or A2 < 1073),

At this point of convergence, a second extrapola-
tion was used to determine the value of 1(0,0, T)

at A=0. Figure 1 shows I(0,0, T) as a function of
the two quantities X and A\'/2 for Pb at T=6.0°K.

It can be seen from the figure that 1(0,0, T) exhibits
a great deal of curvature as A~ 0, making inac-
curate any value of 1(0,0, T') obtained by linearly
extrapolating this curve to A=0 from points where
A>10", The relationship between 1(0,0, 7) and
A*/2 is much more linear, thus permitting a re-
liable value of 1(0, 0, T) to be obtained by extra-
polating to A!/2=0. All of the Eliashberg values of
1(0,0, T) listed in this paper were obtained by such
an extrapolation. By carrying the iteration pro-
cedure out to A'/2< 10" before extrapolating we
found that generally the percentage difference be-
tween the extrapolated value of (0,0, 7) at A}/2 =0

20 T T T T T T T

sec)
N
T

-100T) (0"

T(°K)

FIG. 2. 1(0,0,T) for Pb as a function of temperature
for three values of u*,

and the value at A!/2=<10"® was on the order of 1%.
It should be pointed out that solving the Eliash-
berg equations also yields values of the renormal-

ization function Z,. However, since our test of
convergence was based only on the A,’s, we can-
not say to what degree that Z,’s are converged.

This method of calculating I(0,0, T) has some
distinct advantages. In terms of efficiency, the
nonlinear coupled Eliashberg equations are much
more readily solved in summation form than in
integral form.2?? Also results over a very wide
temperature range can be obtained It is possible
to get very close to T, (T, — T~0.10°K) and still
have the solution set converge rapidly. At low
temperatures, however, the solution procedure
is hampered by the large size of N(«< T"'). Evalua-
ting I(0, 0, T) at temperatures close to zero is not
really necessary, however, since the (0,0, T) vs
T curve flattens out at 7= 0. This flattening can
appear at reduced temperatures as high as 0.30
(see Fig. 2).

The temperature dependence of 1(0,0, T) for two
superconductors is shown in Fig. 3. It can be seen

24 v T T T
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\  ——strong-couplin
20‘\ g 4
\
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]
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FIG. 3. 1(0,0,T) as a function of the fourth power of
the reduced temperature for the alloys Phy, ¢,Bi,_ ;o and
Sng, 99Cuyg, 19. The results of the strong-coupling theory
are shown by the solid lines while the calculation from
pure weak-coupling theory [using Eq. (15) with a=3.52]
are shown by the dashed lines.
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that 1(0, 0, T) is nearly a linear function of the
fourth power of the reduced temperature, #, which
would be expected in the simple two-fluid model.
Strong-coupling effects are noticeable in both the
magnitude of 1(0,0,0) and the temperature de-
pendence, (0,0, T)/1(0,0,0). As may be seen for
both of the strong-coupling materials shown,
1(0,0,0) is appreciably reduced from the weak-
coupling prediction, - 7*A,(0)/#. The deviation of
the temperature dependence from the weak-cou-
pling prediction,

10,0, T)  Ay2)
1(0,0,0) ~ 3,(0)

aldy ()
4ta,(0)

where a=3.52 is shown as a function of ¢ in Fig.
4.

We conclude by noting that it was sometimes
necessary to adjust u* to obtain the correct value
for T,. This should not be surprising, since it is
well known that u* has a weak but sometimes
significant dependence on the cutoff frequency on
the real axis [here and throughout this paper, u* is
the quantity p*(w,) defined in Ref. 23], and here
we are performing calculations on the imaginary
axis. The corrections to pu* have a significant
effect on 1(0,0, T), as can be seen from Fig. 2 for
Pb. The adjustment of p* to 0.15 (from the re-
ported value of 0.13) gave the correct value for
T, as well as a value of 1(0,0,0) in better agree-
ment with the values obtained by the other methods.
Similarly, for Pb, ,Bi,.;; it was necessary to ad-
just u* from 0.158 to 0.148. Therefore, before
employing real-frequency tunneling derived o*F(w)
and p* values for imaginary axis calculations, one
must check that the correct value of T, is obtained.

tanh

E. Cauchy approach

As a check on the values of A, and Z, obtained
from the solution of the Eliashberg equations, a
separate calculation using Cauchy’s theorem was
made. The gap functions on the imaginary axis
can be determined from the real and imaginary
parts of the real-frequency gap function A (w) and
A (w) by

O A
-c0 n

1 r~° wa +w A
1 rw ,(wz) @y Aw) do .
T Jg w?+ Wi

(14)

For Cauchy’s theorem to be properly applied it
is necessary that A(w) be analytic in the upper half-
plane and that each term in the numerator of the
integrand go to zero as w—«. Therefore, the
behavior of A (w) and A,(w) must be examined to
determine their limiting values as w—«. There is
no problem with A,(w) as lim,_,,, A;,(w)=0. How-

+25 S _—
UE .20 O Pb (theory)
=3 0 Pbg Biy,
8§ *15f  asnc
90U & 8°v
v
I +10} OPD"BI” §A° a a %
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FIG. 4. Differences between calculated strong-
coupling and weak-coupling values of 1(0, 0, T)/I(0,0,0).
All points except the X’s represent theoretical calcula-
tions; the weak-coupling values were computed using
Eq. (15) with @=3.52. The X’s denote the deviations
between our strong-coupling calculations and the ex-
perimental results of Kerchner and Ginsberg for Pb
(a=5.51).

ever, the value of A (w) is a small negative quantity
at our upper limit of integration. This quantity
must be subtracted from A (w) before integrating,
and then added to the final result to get the cor-
rect 4,. An entirely analogous procedure can be
used to compute Z, from Z,(w) and Z,(w). In this
case lim,_,, Z(w)=1 and lim,_, . Z,(w)=0.

As previously noted, the tabular values of A (w),
Al(w), Z(w), and Z;(w) usually determined from in-
version of tunneling data are only valid at low tem-
peratures; hence the temperatures at which 4,

Z,, and 1(0,0, T) are calculated must also be low.

It was found that the values of A, computed by
the Eliashberg approach and those computed by
the Cauchy method agree very well with each other.
For Pb at T=2°K, the percentage differences be-
tween the A,’s was 0.9% for A, 1.3% for A,, and
3.8% for Ag,.

Asbefore, oncethe A,’s have been calculated,
1(0,0, T) can be determined from Nam’s formula,
Eq. (11). For low T, this approach has the ad-
vantages of being simple and fast.

F. Comparison of calculated results

Table I shows the values of 1(0,0, T) for five
superconductors as determined by each of the
methods above. For the “integration before limit”
and “limit before integration” methods, the values
of the response function at T=0 are shown. The
values shown for the Eliashberg and Cauchy methods
are for T=2°K. This was necessary to avoid using
a value of N that was unreasonably large. How-
ever, due to the flatness of the 1(0,0, T) vs T curve
at low temperatures, comparisons between these
values and those calculated for 7=0 for the other
methods are valid. It should be noted that the
limit before integration results, which include the
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correction in Eq. (10), have a larger uncertainty
than those of the other methods. This is due to
the uncertainty present in the calculation of (dA,/
dw),.,, from tabular values of A (w). In each case
we computed (dA,/dw)w“, by averaging the quan-
tities [A(w,+ w’) - A(w,)],(w’ - w,) and

[A(w,) - A(w, = ©™)] /(w, = @"), Where o', w” <0.2
meV. The agreement between the different methods
of calculating the low-temperature values of the
response function must be considered excellent.
There is also good agreement between the results
given in Table I and the calculations of 1(0,0,0)/
1(0,0,0),,; reported by other researchers.'*'?

The temperature dependence of 1(0,0, T) has
also been calculated for Pb and Pb,, 4 Bi,,,, by
Kerchner and Ginsberg.*?* Except at T=0, their
calculations are in good agreement with ours.

III. COMPARISON WITH EXPERIMENT

Various experiments have been performed which
can provide a measure of 1(0,0, T). Pb has been
the superconductor most frequently studied.
Schwidtal and Finnegan® measured the maximum
tunneling supercurrent I, in Pb-Pb Josephson junc-
tions and found an average value of 1,/I,, to be
0.784+0.006 at T=1.4°K, where I,,, is the current
calculated by weak-coupling theory. This ratio
should be very close to (0,0, 0)/1(0, 0,0),5, Where
1(0,0,0),.5 =-7°4,(0)/%, since there is very little
difference between the values of the gap at 1.4°K
and at 0.0°K. With our best calculated value of
1(0,0,0) = - 1.63 x 10'* sec™ and the value A,(0)
=1.40 meV, the strong-coupling prediction is
1(0,0,0)/1(0,0,0),,; =0.777, in excellent agreement
with experiment.

Measurements of the magnetic field attenuation

in cylindrical thin Pb films were carried out by
Kerchner and Ginsberg.* They showed how the
ratio of the applied field change to the attenuated
field change can be expressed in terms of 1(0,0,7).
Five Pb films were studied and the overall best
value of 1(0,0,0) was reported to be (-1.37+0.06)
x 102 sec™*. However, from their Fig. 3, it ap-
pears that at least two of their five samples could
yield values of 1(0, 0, 0) very close to —1.63 x 10*?
sec™!. Ginsberg has requested that we point out
that the theoretical values for 1(0,0,0), referred
to in Ref. 4, and as. well in Ref. 11 should be
changed to those given in Table II in accordance
with the correction mentioned in Sec. IIC.

Kerchner and Ginsberg* observed that the de-
rived values of 1(0,0, T) from their measurements
could be written in the same form as given by
weak-coupling theory'*

10,0, 7)=1(0,0,0) 0 tanh (5 2201 . (1)

where ¢ is the reduced temperature, A,(¢)/A,(0)

is the ratio of the energy gaps as determined by
weak-coupling theory and tabulated by Mtihl-
schlegel,®® and « is an adjustable parameter. The
value of a which best fitted their data was a=5.5
as compared to a=24,(0)/k,T,=3.52 for the weak-
coupling theory and a=4.51 for the measured ratio
of 28,(0)/kyT,.

Lejeune and Naugle® studied the kinetic induc-
tance of thin a-Bi films and showed that the kinetic
inductance is inversely proportional to 1(0,0, T).
Since the kinetic inductance is very small, an ab-
solute value of 1(0, 0, T') could not be determined,
but the temperature dependence could be observed.
With the value of 1(0,0,0) computed from strong-

TABLE II. Comparison of strong-coupling calculations of I(0, 0, T) with experiment. The
theoretical calculations have been fitted to the form of Eq. (14) to determine the parameter
as- The values ayy =24¢(0)/k5T, are determined from the energy gap as measured in tunnel-
ing experiments. The values of a,y, is determined from a fit of experimental data to the form
of Eq. (15). I(0,0, 0)y and I(0, 0, 0),, are the calculated and experimental values, respectively.

Parameter
—1(0, 0, 0)g, -1(0, 0, 0)
Material Qge Ctm Qeap (10'3 sec™) (10'3 sec'f)

Pb 4.952 4.514 5.51° 1.632 1.37°
Pby,30Bio, 19 5.052 4.559 1.832
a-Bi 4.86% 4.70° 2.48%¢ 1.392 cee
a-Pby_4sBig, 55 4.93% 4.801 cee 1.652
a-Sng, 99Cug, 1o 4.36% 4.41¢ 1.692 1.592

Source of values:
2This paper.
PReference 4.
®Reference 5.
dReference 15.

®Reference 17.
f Reference 16.
€Reference 21.
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coupling theory the data can be fitted to the form
of Eq. (15). In their calculation of (0,0, 0) from
Eq. (9), the correction reported in this paper was
not included. Consequently, both the value of
1(0,0,0) and the value of & reported are incorrect.
With the correct calculation of 1(0,0,0)=-1.37
x 10'® sec™ for a-Bi, the value of a which fits their
data is a=2.48 as compared to the measured gap
ratio of 4.70 and weak-coupling value of 3.52. This
new result leads to a change of scale in Lejeune
and Naugle’s Fig. 4 which shows the deviation of
the experimental data from the prediction of Eq.
(15). The values of (I"')’ should be reduced by a
factor of 0.804. Further measurements of the
kinetic inductance of amorphous films have been
completed and the preliminary results for amor-
phous Sn, 4,Cuy,,,, are given in Table II. The ex-
perimental techniques are the same as those de-
scribed by Lejeune and Naugle.®

Also included in Table II are the values of a,,
as determined from a fit of the strong-coupling
calculations to Eq. (15), calculated strong-coup-
ling values of 1(0,0,0),., &y,=24,(0)/ky T, de-
termined from tunneling experiments, and a,,,
and 1(0, 0, 0),,, determined from fits of the experi-
mental data to Eq. (15). It should be noted that the
value of a,, determined from the strong-coupling
theory is within 10% of a,,, for all of the materials
studied. As may be readily seen, the agreement
between experiment and theory is reasonably good
for Pb; however, the agreement between theory
and experiment is very poor for the amorphous
metals where a,,, is appreciably smaller than «a,,.

There are two possible explanations for the poor
agreement between the theoretical calculations of
the low-frequency electromagnetic response of
amorphous metals and the available experimental
data: either the theoretical calculations are in-
adequate for amorphous metals, or the interpre-
tation of the kinetic inductance experiments is
incorrect. For the crystalline strong-coupling
superconductors, strong-coupling calculations of
a wide variety of properties using tunneling de-
rived a?(w)F(w) are in quantitative agreement with
experiment®® as in our calculation of 1(0, 0, T) for
Pb. On the other hand, although there are nu-
merous calculations of strong-coupling effects
in amorphous superconductors, there are very
few experiments which can test these calculations
quantitatively. Inadequacies in the theoretical cal-
culations could arise from the sensitivity to the
anomalously large contribution to a?(w)F(w) at low
frequency which is generally observed for amor-
phous metals and which also is difficult to determine
precisely from tunneling measurements. Perhaps
there is an inadequacy in the approximations of
strong-coupling theory which is accentuated for

materials with a?(w)F(w) characteristic of amor-
phous metals. The experimentaldifficulties with
kinetic inductance measurements and possible
sources of error in their interpretation are dis-
cussed in more detail below.

The principal measurements on amorphous
superconductors which could be compared with
strong- coupling calculations are the perpendicular
critical field measurements by Bergmann,?” the
infrared transmission measurements by Harris
and Ginsberg,! and the microwave surface experi-
ments by Reichert and Hasse.?® Bergmann’s mea-
surements showed a low-temperature critical field
for amorphous Pb,, ,;Bi,,,; that was larger than that
expected from the BCS temperature dependence,
but that was in very good agreement with strong-
coupling calculations?®® using tunneling derived
a?(w)F(w). Harris and Ginsberg compared their
experiments with strong-coupling calculations
based on Nam’s theory™® of the electromagnetic
response in strong-coupling superconductors (as
were the calculations in this paper). They reported
good agreement between theory and experiments;
however, it was necessary to shift the frequency
scale of the calculations to obtain this agreement.
This was apparently forced by the fact that the films
in their experiment were very thin and had gaps
which differed from those of the thicker films. This
complication and the fact that their lowest mea-
sured frequencies were still above %Ao prevented
extrapolation of their data to w=0 to determine
1(0,0,0) for comparison with our calculations. Un-
fortunately, the measurements of Reichert and
Hasse?® were not compared to Nam’s theory and
we are unable to compare quantitatively their
data as presented to the theory.

There are several experimental artifacts which
could complicate the interpretation of kinetic in-
ductance measurements and invalidate the direct
relation of the data to (0,0, 7). Possible problems
are (a) nonequilibrium behavior due to the power
level, (b) contribution to the kinetic inductance
from magnetic flux lines and (c) a nonuniform cur-
rent distribution.

In the particular experiments the power was
determined by choice of the tunnel diode oscil-
lator, a Bd-5, and could not be adjusted during the
experiment. We are aware of no calculations of
the effect of a nonequilibrium distribution nor ex-
periments to study the influence of the power level
on kinetic inductance measurements. Although no
appreciable shift in T, as extrapolated from kinetic
inductance measurements was observed, this pos-
sibility cannot be ruled out. The low-frequency
(about 10 MHz) of the experiments, however, does
exclude finite frequency effects as an explanation.

Little® has reported an influence of a perpen-
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dicular magnetic field on the kinetic inductance of
thin superconducting films. For the experiments of
Lejeune and Naugle® the films were surrounded by
a u-metal shield which would appreciably reduce
the earth’s ambient field orders of magnitude below
those used in Little’s experiments. It is doubtful
that such small fields could produce the disagree-
ment observed between theory and experiment.

The discrepancy between theory and experiment
could be readily explained if the current distribu-
tion in the amorphous films of the kinetic induc-
tance experiments were sufficiently nonuniform to
give a value of (j2) /(j)2=2.4 for a-Bi and (j 2)/(j)*
=3.8 for a-Sn, 4, Cu,,,,. Baker et al.’' have studied
the kinetic inductance of superconducting films as
a function of cross-sectional area and concluded
that the current distribution in these films, which
are condensed onto a superconducting Nb shield
plane, is essentially uniform. Such a large varia-
tion in current density could be consistent with
their measurements only if the data for the film
with the smallest cross section (3 X 10" cm?) had
considerably more error than estimated. This
large a variation is also inconsistent with critical
current measurements using single and double
superconducting shield planes® and the qualitative
argument that the current distribution should be
uniform whenever the kinetic inductance domin-
ates the magnetic inductance of the film on the
shield plane. For these experiments the kinetic
inductance is estimated to be an order of magni-
tude larger than the magnetic inductance of the film.

The calculations for the kinetic inductance ex-
periments were done with 6 set equal to unity in
Eq. (4). By decreasing 6 the experimental results
can be brought into better agreement with theory.
In the case of a-Bi 6 would have to be 0.42 to ac-
count for all of the discrepancy. As this figure is
only about half of the assumed value,* we do not
believe that changing 6 can satisfactorily account
for the difference between experiment and theory.

At this time we cannot resolve the discrepancy
between theory and experiment. This discrepancy
can most readily be resolved, and the theory be
quantitatively tested, by experiments on the pen-
etration depth for a thin superconducting cylinder
made from an amorphous superconductor analogous
to the experiments by Kerchner and Ginsberg? on
crystalline Pb cylinders. The interpretation to
provide an absolute measurement of (0, 0, ') will
be simplified by the local relation between ‘j‘a.nd X
for amorphous metals.

IV. SUMMARY AND CONCLUSIONS

We have shown how the electromagnetic response
function 1(0, 0, T) may be calculated by four dif-

ferent techniques: (1) a direct calculation by
Harris of 0, before taking limw -0, (2) a calcla-
tion by Kerchner and Ginsberg of o, after taking
limw -0, (3) a solution of the nonlinear Eliash-
berg equations on the imaginary axis, (4) an ap-
plication of Cauchy’s theorem. Of these techniques
only the solution of the Eliashberg equations using
the a?(w)F(w) function is suited for calculation of
I1(0,0, T) over a large temperature range. A tech-
nique for obtaining rapid convergence of the solu-
tion set A, has been discussed which provides a
convenient, fast, and inexpensive method for com-
putation of the many values of (0,0, T) needed. A
correction to the Kerchner and Ginsberg* calcula-
tion for 1(0,0,0) was found which, when applied,
produced a high degree of consistency among the
results obtained by each of the methods.

The results of the calculations are in good agree-
ment with experiment for crystalline Pb. The
agreement between the calculations and the temper-
ature dependence inferred from kinetic inductance
measurements with amorphous films® is very poor.
Since the results of strong-coupling calculations
for H_, of a-Pb, ,.Bi,, ,; films are in good agree-
ment with experiment,?” we suspect that the dis-
crepancy lies in the theory of the electromagnetic
response, its extension to low frequencies, or in
the interpretation of the kinetic inductance data.
Because of the variation of the energy gap for
the very thin amorphous films used in infrared
experiments,! their usefulness in providing a
quantitative test of the theory is restricted. The
discrepancy in the temperature dependence of
1(0,0,T), as inferred from the kinetic inductance
measurements when compared to those calculated
from strong-coupling theory, can be explained if
it is assumed that the current flows through less
than 50% of the film in the kinetic inductance ex-
periments. Such an explanation, however, is in-
consistent with other experiments.

The most definitive way to resolve the present
disagreement between theory and experiment would
be to measure the field penetration depth for amor-
phous metal cylinders, such as was done in the
experiments of Kerchner and Ginsberg.* Although
the fabrication of such cylinders would present
more serious experimental problems than for
those of crystalline metals, the analysis of the
data would be greatly simplified by the use of lo-
cal electrodynamics.
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