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ABSTRACT 

 
A Thin Film Transistor Driven Microchannel Device 

for Protein and DNA Electrophoresis. (December 2004) 

Hyun Ho Lee, B.S., Seoul National University, Seoul, Korea; 

M.S., Stanford University. 

Chair of Advisory Committee: Dr. Yue Kuo 

 

Novel electrophoresis devices for protein and DNA separation and identification 

have been presented and studied. The new device utilizes a contact resistance change 

detection method to identify protein and DNA in situ. The devices were prepared with a 

microelectronic micromechanical system (MEMS) fabrication method. Three model 

proteins and six DNA fragments were separated by polyacrylamide gel microchannel 

electrophoresis and surface electrophoresis. The detection of the proteins or DNA 

fragments was accomplished using the contact resistance increase of the detection 

electrode due to adsorption of the separated biomolecules. Key factors for the success of 

these devices were the optimization of fabrication process and the enhancement of 

detection efficiency of the devices. Parameters, such as microchannel configuration, size 

of electrode, and affinity of protein or polyacrylamide gel to the microchannel sidewall 

and bottom surface were explored in detail. For DNA analysis, the affinity to the bottom 

surface of the channel was critical. The surface modification method was used to 

enhance the efficiency of the microchannel surface electrophoresis device. The 
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adsorption of channel separated protein and DNA on the detection electrode was 

confirmed with the electron spectroscopy for chemical analysis (ESCA) method. The 

electrical current (I) from the protein microchannel electrophoresis was usually noisy 

and fluctuated at the early stage of the electrophoresis process. In order to remove the 

current perturbation, an amorphous silicon (a-Si:H) thin film transistor (TFT) was 

connected to the microchannel device. The self-aligned a-Si:H TFT was fabricated with 

a two-photomask process. The result shows that the attachment of the TFT successfully 

suppressed the current fluctuation of the microchannel electrophoresis process. In 

summary, protein and DNA samples were effectively separated and detected with the 

novel TFT-driven or surface microchannel electrophoresis device.  
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CHAPTER I 

INTRODUCTION 

 

Separation and identification of biomolecules, such as protein and DNA, are 

important in the biological and biomedical fields. The identification of biomolecules is 

often dependent upon fundamental information, such as the size, of the protein or DNA.1 

The separation and identification of biomolecules is commonly done by electrophoresis. 

Electrophoresis is based on the principle that when a current is passed through a column 

or slab that contains a molecular sieving medium, charged biomolecules in the feed 

solution migrate through the medium at different rates due to the size-to-charge ratio 

difference. So far, various electrophoresis methods, such as slab-gel electrophoresis, 

capillary electrophoresis, and microchip-based electrophoresis, have been developed and 

introduced. The sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis 

(PAGE) has been widely used for the separation of proteins. The SDS-attached protein 

molecules are negatively charged and move toward the anode under an applied electric 

field. Proteins of different sizes migrate at different rates in the gel phase and are 

eventually separated into various bands within the gel.1-3 

Recently, due to the advantages of the microelectronic and micromechanical 

fabrication process, microchip-based electrophoresis systems have been actively 

investigated.2-9  

___________________ 
This dissertation follows the style of the Journal of the Electrochemical Society. 



 2

 Substrates that have been used in the microchip-based systems include glass, 

polymer, and silicon wafer. Protein and DNA could be separated with the 

microfabricated channel device with or without the existence of polyacrylamide gel in 

the channel region. For example, microchannel devices with channel dimensions of 9-40 

µm deep, 45–100 µm wide, and 4.5–4.9 cm long were fabricated from a Pyrex glass or 

borofloat glass substrate.4-8 Protein and DNA were separated, by this kind of device 

without the presence of gel in the channel, under a high electric field of 100-600 V/cm.4-

8 Advantages of this kind of device include a small sample volume, short separation 

time, and a low sample concentration. However, it also has some disadvantages. For 

example, the separated proteins need to be labeled with chemicals, such as fluorescent 

derivatizing reagents, which is a time-consuming process. In addtion, the labeled protein 

or DNA has to be detected with a complicated optical equipment such as a laser-induced 

fluorescence (LIF) system.4-8   

Recently, Kuo and Lee reported a new concept of a microchannel-based SDS-

PAGE system, that separated and identified proteins from a mixture in situ without 

applying the protein labeling procedure.9-11 The device could be prepared from either a 

silicon wafer or a glass substrate. For the glass substrate, a special type of negative 

photoresist, i.e., SU-8, was selected because it is easily fabricated into a high aspect ratio 

channel structure.9,10  

In the conventional electrophoresis system, proteins are separated into different 

bands and stay within the gel phase. However, with this new microchannel 

electrophoresis, all separated proteins pass through the gel into a detection reservoir. 
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Once arriving in the detection reservoir, the proteins quickly migrate to the detection 

electrode and are strongly adsorbed to the surface. The contact resistance between the 

solution and the detection electrode is drastically increased during the process, which 

causes a drastic decrease of the current passing through the device.   

The phenomena of the protein adsorption on the metal surface have been 

extensively studied in the biomedical field.12 For example, proteins such as human 

serum albumin (HSA) can be irreversibly adsorbed on a metal electrode.13 The protein 

adsorption process is affected by various parameters and can be greatly accelerated by 

the application of a positive potential to the electrode.12-14 In addition, the chemical 

constituent of the protein is critical to the adsorption process. Therefore, for the new 

microchannel electrophoresis device described in the previous section, a large drop of 

the current (I) can be detected when protein molecules are adsorbed on the electrode 

surface. The time of the current drop corresponds to the arrival time of the specific strain 

of protein. Therefore, proteins are separated and identified with this kind of device.  

Although the concept of the device has been proven, many detailed issues still 

need to be investigated. In this dissertation, influences of various geometric factors, such 

as the channel configuration and detection electrode size, to the device performance, 

were studied. The probability of quantifying the amount of protein in the feed solution 

using the I-t (current vs. time) data was also investigated. Surface chemistry is of prime 

importance for the performance of the microchannel device.6,11 This is especially true 

when a glass substrate and a polymer channel are used in the structure. Among several 

surface modification methods, the oxygen (O2) plasma is a possible candidate for adding 
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active functional groups to the polymer surface. The O2 plasma can hydrophilize the 

polymer surface and degrade polymer into low molecular units.15 In this dissertation, 

protein adsorption and gel compatibility to various modificed surfaces were investigated. 

The O2 plasma-treated surface was analyzed with physical and chemical methods. The 

suitability of the modified surface for the microchannel applied was discussed with 

respect to its surface structure. 

In the new microchannel electrophoresis device, another detailed issue needs to 

be investigated. At the early operation stage, the current fluctuates drastically, and it is 

difficult to differentiate between the fluctuation peak and the protein detection peak. In 

order to diminish the current fluctuations during the electrophoresis, an amorphous 

silicon (a-Si:H) thin film transistor (TFT) is connected to the microchannel device. A-

Si:H TFTs have been applied to many microelectronic devices such as liquid crystal 

displays (LCDs), x-ray medical imagers, radiation and chemical detectors, facsimile, 

digital image sensors, and bioanalytical sensors.16-18 Substrates for these applications can 

be glass, polymers, and steel foils. The a-Si:H TFTs are commonly fabricated by plasma 

enhanced chemical vapor deposition (PECVD), which has the advantage of low 

temperature and good uniformity over a large area. In general, the PECVD SiNx is the 

most common dielectric material for an a-Si:H TFT. Since an a-Si:H TFT has a stable 

drain current (Id) under normal operation conditions, when connected to the 

microchannel electrophoresis device to eliminate the signal noise, it can be used as a 

current stabilizer. In principle, the microchannel electrophoresis can be taken as a 

variable resistor in which the resistance increases drastically with the arrival of a protein 
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to the detection electrode. Since the a-Si:H TFT can be fabricated on a low-temperature 

substrate using only two photomasks,17,18 the addition of the TFT to the microchannel 

device causes little complication to the entire fabrication process.  

With the surface modification method, a new type of surface electrophoresis 

device can be used for DNA analysis. The substrate can be made of glass or silicon 

while the microchannel structure can be made of polymer, such as SU-8. According to 

the Pernodet et al.’s report, if the surface movement of DNA is restricted to the 

microchannel area, the electrophoresis function can be improved.19,20  

In this dissertation, the microchannel electrophoresis device was used for protein 

analysis, and the surface electrophoresis was used for DNA analysis.   

Chapter II reviewes the theoretical background of the electrophoresis for both 

protein and DNA analysis. The principle of the surface electrophoresis for DNA analysis 

is also presented. For the basic microelectronic fabrication process, the PECVD process 

and the TFT characteristics are presented. 

Chapter III describes the experimental methods and procedures of the 

microchannel device.  

Chapter IV discusses the interactions between the microchannel surface and the 

protein or DNA molecule. The effects of the surface modification method to the 

microchannel surface and physical and chemical properties are also discussed. Based on 

the result, optimized modification conditions were selected for the protein or DNA 

analysis.  
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Chapter V includes results of microchannel electrophoresis on protein and DNA 

molecules. The separation efficiency of the device was also studied and discussed.   

Chapter VI presents the electrical performance of the a-Si:H TFT with respect to 

different SiNx gate dielectric films. The improvement of the detection signal with the 

addtion of a TFT to the microchannel electrophoresis is discussed.  

Finally, Chapter VII summarizes the studies.  
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CHAPTER II 

LITERATURE REVIEW 

 

1. Electrophoresis 

1.1. Principle of Electrophoresis  

A charged molecule migrates when it is placed in an electrolyte solution under an 

electric field. Biomolecules, such as protein and DNA, carry a net charge at certain pH 

levels other than their isoelectric points. Based on the principle of the biomolecule’s 

movement, an analytical method, i.e., electrophoresis, was developed in a proper pH 

buffer solution.1 The speed of migration depends upon the ratio of the charge number to 

the mass of the molecule. Since the surface charge number of a protein or DNA 

molecule is linearly proportional to the size of the molecules, protein or DNA molecules 

can be separated by their size difference.2 Figure 1 shows the mechanism of protein or 

DNA molecule separation with the electrophoresis time. Bands are formed as the 

electrophoresis time increases. The molecular bands can be formed with or without the 

existence of a molecular sieving material, such as gel, in the capillary or microchannel 

region of the electrophoresis device. The polyacrylamide polymer is the most commonly 

used molecular sieve material. Polyacrylamide gel electrophoresis (PAGE) has been 

shown to be a very powerful method for the fractionation or separation of proteins and 

DNA.1,2 There are two critical reasons for applying gel in electrophoresis: (i) it 

suppresses convective flows produced by small gradients of temperature and ion 

concentration, and (ii) it serves as molecular sieves to enhance the separation efficiency.1 
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Figure 1. Schematic illustration of mechanism of an electrophoresis. (reference1,3) 
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The gel can be replaced by other porous materials, such as cellulose acetate, silica, 

alumina, cellulose, agarose, and starch. The polyacrylamide is easy to be formed in the 

gel structure. The conventional polyacrylamide gel electrophoresis is in the slab form.  

Figure 2 shows an example of a typical sodium dodecyl sulfate (SDS) PAGE 

slab-gel electrophoresis with protein bands. The protein sample is loaded into a well 

located on the top of the gel. An electric field is applied between the two ends of the gel 

slab. The separated proteins remain inside of the gel and need to be stained by blue dye, 

such as Coomassie Brilliant Blue R250. Each stained band in Fig. 2 represents a certain 

size of the protein molecule. The gel solution and the sample loading or detecting 

reservoir contain a small amount (0.1%) of SDS to denature the protein molecule.1-3  

The SDS is an anionic detergent that disrupts nearly all non-covalent interactions 

in a native protein. The SDS-to-protein binding ratio is 1.4:1, or each SDS is bound to 

two amino acid groups.3 Through the binding process, the SDS confers a negative charge 

to the polypeptide. The amount of charge is proportional to its length. The denatured 

polypeptide has a rod or sphere shape surrounded with a negative charge cloud. An equal 

number of charges is attached with each unit length. Therefore, the migration of the 

peptide is determined not only by its intrinsic electrical charge but also by its molecular 

weight. When the negatively-charged cloud is assumed to be a sphere, the frictional 

force, f, which is balanced or equivalent to the electrostatic force, qE, the during the 

migration on a molecule can be expressed by Stokes’ law as below: 

                                       ηπrvqEf 6==                                                              [1] 
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Figure 2. Coomasie blue R 250 stained protein bands of slab-type SDS-PAGE. 

(reference1) 
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where q is the total surface charge of the molecule, E is the electrical potential, r is the 

radius of the spherical or ellipsoidal molecule, v is the migration speed, and η is the 

viscosity of gel. Where d’ is the distance of the region and V is the applied voltage 

through the gel length, the electrical potential E is expressed as below:                                  

                                       
'd

VE =                                                                             [2] 

The mobility of molecule, m, can be obtained as below:  

                                       
E
v

tE
d

tV
ddm ===

'                                                          [3] 

where v = d/E, d is the molecule running distance, and t is the protein running time. 

Conventionally, for a protein passing through a 5.0% or 10.0% PAGel, its mobility can 

be calculated as below: 

                                       TKmm Ro −= loglog                                                     [4] 

where T is the gel concentration, mo is the free mobility without any gel concentration 

(T=0), and  KR is the retardation coefficient.2 Equation [4] indicates that the mobility 

decreases exponentially with the increase of the gel concentration for the same sized-

protein. The KR value is determined by the ionic strength of the buffer solution and the 

purity of the protein.3 For different sized-proteins, the mobility, m, can be expressed 

from the relationship of the migration speed, v, by equations [1] and [3] as below: 

                                                  
r

q
E
vm

πη6
==                                                                  [5] 

where the mobility is a function of the size of the different molecule, r, under same 

electrophoresis conditions.2  
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1.2. Capillary and Microchip Electrophoresis 

The conventional SDS-PAGE can be used to determine the size of the protein or 

DNA molecule by comparing its mobility with that of a known size protein, i.e., a 

marker. By measuring the migration length of the marker’s band, the speed of the 

specific protein or DNA can be obtained by the calculation shown in equation [3]. 

Therefore, every electrophoresis experiment requires an extra slab to have the marker 

through the gel. The conventional SDS-PAGE or slab-type gel electrophoresis has many 

disadvantages, such as a long operation time, a large volume of sample, and band 

broadening. In order to overcome the difficulties of the slab-type system, many 

microchip or capillary electrophoresis (CE) systems have been developed.3-7 Among the 

disadvantages, the band broadening is from a heterogeneous protein with an additional 

chemical group, such as a fluorescent labeling agent, and non-specific interaction 

between proteins and a charged inner-slab surface, which occurs under an electric field.3 

However, the band broadening is also frequently reported in the CE using a long glass 

tube (> 1.0 cm) and the microchip electrophoresis which uses a narrow microchannel on 

a glass.4 Therefore, if the band broadening could be adequately controlled, a high 

separation efficiency is feasible with CE or microchip electrophoresis.3-5 Protein 

separation systems with CE or microchip electrophoresis have been infrequently 

reported because of the difficulties in identification of protein bands at a specific 

detection position.5,7  

Table I shows the characteristics of microchip electrophoresis systems from 

recent reports.4-8 Most systems used the glass substrate.  
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 Table I. Characteristics of microchip-type electrophoresis. 
 

 
Method 

 
Device size 

 

 
Detection/Separation

 
Comment 

 
T-junction  

injector [ref. 5] 

 

 
49 mm (l) ×  

66 – 25 µm (w) × 
14 µm (d) 

 

 
LIF, post -labeling 

No gel 

 
Glass substrate, Electric 

field (1.6 kV/cm) 

 
Cross-junction  
injector [ref. 6] 

 
 

 
49 mm (l) × 

45 µm (w) × 9 µm 
(d) 

 
LIF, pre -labeling 

No gel 

 
Glass substrate, Electric 

field (0.6 kV/cm) 

 
Cross-junction  
injector [ref. 7] 

 
 

 
45 mm (l) × 

20 – 100 µm (w) × 
40 µm (d) 

 
LIF, pre -labeling 

Polyacryl-amide gel

 
Glass substrate, Electric 

field (0.2-1 kV/cm) 

 
Cross-junction  
injector [ref. 8] 

 
 

 
5 mm (l) × 

400 µm (w) × 40 
µm (d) 

 
LIF, pre -labeling 

Polyacryl-amide gel

 
Glass substrate, Electric 

field (20 V/cm) 
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The channel length ranged from 5 mm to 49 mm. All systems in Table I used a laser-

induced fluorescence (LIF) technique to detect the separated protein bands. The LIF 

system is operated by exciting the fluorescent chemical attached to the protein with a 

laser light.5-7 There are some disadvantages of these systems. For example, the labeling 

of protein is a complicated procedure.4-8 Fluorescent reagents must be used before or 

after electrophoresis, and the sample needs to be incubated for a long time. In addition, if 

the labeled protein or DNA is detected with a LIF system, complicated optical 

equipment must be used.4-8 Figure 3 shows the details of the basic mechanism of the LIF 

system. In order to detect movement of charged particles, laser light is focused near the 

end of the channel where the charged particles migrate. A green light with a wavelength 

of 488 nm is often used, and the fluorescence of the labeled protein or DNA can be 

detected by a photomultiplier.  

The CE or microchip electrophoresis has many advantages over the conventional 

slab-type electrophoresis.3 A major problem of protein separation with a CE or 

microchip electrophoresis is the adsorption of protein molecules to the capillary or 

microchannel glass wall, where an ion-exchange mechanism exists between the protein 

or DNA and silica surface. There can be several solutions for this problem: (i) the pH 

value of the buffer solution can be adjusted to ensure that the capillary wall and protein 

have the same charge polarity, (ii) the silica surface of the capillary or microchannel 

glass wall can be coated with a linear polyacrylamide or other hydrophobic functional 

polymer, and (iii) the high ionic strength or buffers containing a high concentration of 

alkali salts can be used.3,4,6,7  
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Figure 3. Schematic diagram of laser-induced fluorescent (LIF) system. (reference4) 
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The removal of joule heating is critical to the success of the linear 

polyacrylamide or other hydrophobic functional polymer.6 One of the main drawbacks 

of a cross-linked polyacrylamide gel in the LIF system is the lack of low UV 

transparency of the gel in the on-column detection. Furthermore, cross-linked gels are 

heat-sensitive. When the temperature of the channel is high, bubbles are frequently 

formed, which block the current flow.2,3 Another major problem of microchip 

electrophoresis is the low protein sensitivity.4,5 The detection sensitivity could be 

improved by methods such as concentrating the sample through stacking by repetitive 

sample loading,3 increasing the injection channel potentials between the sample and 

sample waste reservoir in Fig. 3 during separation to eliminate separation to reduce 

leakage,4 or using better optics: a brighter source and a more sensitive photon detector. 

Automation would be another method for improvement.3 In general, proteins are more 

difficult to detect with the microchannel device than DNA, because proteins have a 

stronger tendency to adsorb on the glass capillary wall.  

Recently, Kuo and Lee reported a new microchannel device that separated and 

detected proteins in one step.9-11 No optical identification procedure is required in this 

new method. The protein detection is based on the principle of a drastic increase of the 

contact resistance at the detection electrode surface during the adsorption of protein 

molecules. Therefore, the drawbacks from the usage of the LIF can be avoided, and the 

separated protein can be easily identified from the current vs. time (I-t) curve.  
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1.3. Electrophoresis of DNA 

Electrophoresis of DNA is used for two purposes. One is to analyze the 

sequential composition of DNA nucleotides, Adenine (A), Guanine (G), Cytosine (C), 

and Thymine (T) by the PAGE with a high concentration gel or CE, which requires very 

high separation efficiency. The other purpose is to separate and identify relatively large-

sized DNA molecules (> 0.5 kbp (kilo-basepair)) for the cloning experiment.1,2 

Conventionally, the electrophoresis of large-sized DNA can be performed with a 

polyacrylamide or an agarose gel. Because of its easy handling, the agarose gel, which 

requires simple heating in the gel formation process, is widely used for the large-sized 

DNA. However, there are three advantages of polyacrylamide gel over agarose gel: (i) a 

greater resolving power, (ii) suitable for much larger quantities of DNA, and (iii) easy to 

recover DNA with high purity.1,2 For an agarose gel, a low operation voltage is required 

to prevent the denaturing of double strand DNA by overheating, while a non-denaturing 

polyacrylamide gel can be used at a high operation voltage. Since the DNA molecule is 

larger than a protein molecule, a high gel concentration or a long capillary or 

microchannel is not useful for the separation of the large-sized DNA. For example, a 

low-concentration polyacrylamide gel, e.g., containing 3.5% acrylamide, cannot resolve 

DNA larger than 2.0 kbp. The minimum practical acrylamide concentration for the gel 

formation is 3.0%. Therefore, a large pore-sized material such as agarose gel is suitable 

for the large-sized DNA electrophoresis. For the fabrication of a microchannel or a 

capillary electrophoresis, the agarose gel is not appropriate because the gel-formation 

process requires a high temperature. The high temperature can cause drastic gel 
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shrinkage inside of the capillary or microchannel after the gel formation. It is desirable 

to develop a new DNA electrophoresis method that does not require the agarose gel.  

When a DNA molecule is adsorbed on a flat surface, its segments are present as 

either loops or tails. This is due to the balance between the loss of entropy from the 

localization of the molecule at the surface, and the increase of energy on adsorption of 

the molecule. When an electric field is applied parallel to the plane surface, the response 

of the molecule to the field is a function of its conformation on the surface. The mobility 

of the molecule along the surface is dependent upon its length. The above molecule 

migration phenomenon is called surface electrophoresis. Recently, Pernodet et al. 

reported the first surface electrophoresis system using an oxidized rectangular silicon 

surface.19 Figure 4 shows (a) a simulated snapshot of DNA undergoing the surface 

electrophoresis, and (b) the electropherogram of λ-Hind III digested DNA on an 

oxidized Si surface.19,20 Under an electric field, the loops and tails of the DNA strand 

repeatedly bind or detach from the oxidized Si surface while moving toward the positive 

electrode. In order to improve the affinity of the surface to DNA, it can be coated with a 

thin film of silicon containing polymer.20 Surface electrophoresis is a good substitute for 

capillary or gel electrophoresis of large-sized DNA. As described above, the mechanism 

of the surface electrophoresis is fundamentally different from that of the polyacrylamide 

or agarose gel electrophoresis using the sieving effect.7,8 The separation efficiency of the 

surface electrophoresis, e.g., resolution, is a complicated function of the surface structure 

and chemical state of the substrate.20 Therefore, a detailed analysis of the surface 

modification is most critical.  
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(a) 

 

(b) 

Figure 4. (a) Simulated snapshot of DNA undergoing surface electrophoresis, and (b) 

electropherogram of λ-Hind III digested DNA on an oxidized Si surface. (reference19,20) 
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2. Plasma Thin Film Deposition Process 

2.1. Fundamentals of Plasma  

Plasma processing is one of the most critical processes in microelectronics 

fabrication because it has many advantages over other fabrication methods. For example, 

plasma enhanced chemical vapor deposition (PECVD) can be used to deposit a 

uniformly thin film layer at a low temperature.21-23 Thin film characteristics depend upon 

the conditions of the plasma, such as the generation of reactive radicals and ions. 

Therefore, it is necessary to discuss the basic background of plasma and plasma 

processing. 

Plasma is composed of free charged particles, radicals, atoms, and molecules. It 

is electrically neutral. In microelectronics processing, weak plasma discharges are used. 

The extent of excitation and ionization is small. Typically the radicals may constitute 

1.0% of the total plasma, and the total charged species may be less than 0.01%.22 An 

electrically driven plasma is generated and sustained by the following mechanism: 

Electrons from an applied electric field randomly collide with molecules. Once the 

energy of the electrons is high enough to dissociate gas molecules, the electron energy 

can be transferred to molecules by elastic collisions. The elastic collisions produce 

activated radicals, ions, and neutrals. The plasma is sustained as long as the electric field 

is supplied.22,23   

Figure 5 shows a typical electrically driven plasma diagram in a parallel-plate 

electrode. Within the plasma, the electron density above the electrode is too small for 

appreciable emission of light.  
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Figure 5. Physical model of plasma state and dc voltage profile as a function of position 

in rf plasma. (reference21,22) 

 

 



 22

The low light emission space is called a dark space or a sheath, as shown in Fig. 

5.21,22 Under dc plasma, ions in the plasma-phase strike the surface of the substrate, and 

it becomes charged. The charge accumulates on the surface until the dc plasma is 

extinguished. To solve this problem, the plasma can be driven by an ac signal.22 At low 

frequencies, the plasma follows the excitation, and the width of the dark spaces above 

the electrodes pulses with the applied signal. Since the plasma is conductive, there is no 

significant potential drop across the plasma-phase. When the rate of excitation is greater 

than 10 kHz, the slow ions in the plasma cannot follow the voltage change. However, 

electrons are rapidly accelerated. During alternate half cycles, electrons strike the surface 

of each electrode, giving to both electrodes a net negative charge with respect to the 

plasma. It explains the mechanism of forming the sheath region in the vicinity of each 

electrode, as shown in Fig. 5.21-23  

The simplest plasma reactor consists of two parallel-plate electrodes in a 

chamber that is maintained at a low pressure (under vacuum). The electrons, responding 

to an electric field produced by a radio frequency (rf) driving voltage, collide with 

molecules to generate reactive species. The reactive species exist in the central region 

where the plasma discharge produces lights of various wavelengths. The visible and UV 

light can be utilized for the analysis of the plasma state. In the central region, electron 

flux, ne, is the same as ion flux, ni, and there is no potential drop, so the region is 

considered a good conductor.  

Near the electrodes, electrons diffuse quickly and are quickly recombined at the 

electrode, but ions do not. This makes ni >> ne and creates an excess positive charge near 
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the electrodes. Since the region is a bad conductor, a positive potential drop with respect 

to the electrode exists. Due to the electron depletion, large dc voltage drops exist 

between the plasma and the electrodes, as expressed below: 

                                       topplasma VVV −=1                                                              [6] 

                                       bottomplasma VVV −=2                                                          [7] 

These potential drops are responsible for the ion bombardment energy on the cathode 

electrode, since positive ions are accelerated through the sheath region.         

 

2.2. Plasma Phase Chemical Reactions 

Several species (ions, electrons, radicals, and atoms) are produced in the plasma 

by collisions between electrons and molecules, or between molecules themselves. For 

example, in N2 plasma, the plasma species are produced through following reaction 

paths.21  

1) Dissociation 

      N2 + e-    N2
* + e-    2N + e- 

2) Atomic ionization 

N + e-    N+ + 2e-          

3) Molecular ionization 

N2 + e-    N2
+ + 2e-        

4) Atomic excitation 

N + e-    N* + e-       

5) Molecular excitation 
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N2 + e-    N2
* +  e-       

 

Here, N* and N2
* are the excited species. The species produced in N2 plasma are 

N, N2
*, N2, N+, N-, and N2

+. The major neutral species are atomic N and N2. The main 

ions are N+ and N2
+.21,22 The concentration of each species is dependent upon the plasma 

condition.22  The above reaction kinetics are a function of electron temperature, which is 

determined by plasma parameters. The exact mechanism of the plasma-phase chemical 

reaction is very complex and is still not clear. The above example is a simplified reaction 

path model.  

 

2.3. Plasma Enhanced Chemical Vapor Deposition 

The mechanism of plasma deposition can be categorized into ionization of 

molecules, surface chemical reaction, and ion-assisted deposition.22 In the surface 

chemical reaction mechanism, concrete reaction products are formed by the reaction of 

the reactant gas on the substrate material to facilitate the deposition of the film. The ion-

assisted deposition mechanism can be related to a uniformity of solid film deposition. 

Changing the electrode configuration in the plasma reactor can vary ion 

bombardment energy to the substrate since the potential drop near the electrode depends 

on the electrode area. For example, the potential drop at electrode 1, V1, and at electrode 

2, V2 can be related to the surface areas of electrode 1, A1, and 2, A2, as below:21,22 

                                       n

A
A

V
V )()(

1

2

2

1 =                       [8] 
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where n = 4 for the ideal case. However, based on experimental results, typical values 

for n are between 1 and 2.22 In any case, the larger potential drop appears at the smaller 

electrode.  

 

2.4. PECVD Thin Film 

Silicon nitride film can be deposited by a low-pressure chemical vapor deposition 

(LPCVD) and plasma enhanced chemical vapor deposition (PECVD). Table II shows a 

comparison of silicon nitride’s physical properties between two deposition methods. The 

PECVD silicon nitride (SiNx) is widely used in microelectronic devices because it is a 

good barrier of sodium and humidity. The process has been typically done using a 

conventional glass substrate at above 250°C. The PECVD SiNx has a deposition 

temperature of 275-325oC, which is lower than that of the LPCVD Si3N4 process of 700-

900oC.22,24 The high temperature (> 250°C) process is advantageous for two reasons: (i) 

the high temperature can cure many defects in the film because of the annealing 

mechanism, and (ii) for certain VLSI applications, a near stoichiometric nitride film with 

a low hydrogen content through the high temperature is required.25,26 By methods other 

than the high temperature, many attempts have been done in PECVD SiNx deposition to 

obtain low defects and low hydrogen contents. For example, N2 was adopted instead of 

NH3 as a nitrogen source.26-28 Although the use of N2 rather than NH3 as the nitrogen 

source has decreased hydrogen content in the film, difficulty is still encountered with the 

strong N-N bond of a silicon–rich film because a nitrogen-rich silicon nitride is required 

for some applications.26  
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Table II. Material properties of SiNx film. (reference23) 

 
Deposition method 

 
 

Property 
 
 

LPCVD PECVD 

 
Si/N ratio 

 
0.75 

 

 
0.8 – 1.0 

Density (g/cm3) 
 

2.8 – 3.1 2.5 – 2.8 

Refractive Index 
 

2.0 – 2.1 1.8 – 2.1 

Dielectric constant 
 

6 - 7 6 - 9 

Dielectric strength (MV/cm) 
 

10 6 

Thermal expansion coefficient (oC-1) 
 

4 × 10-6 4 ~ 7 × 10-6 

Step coverage 
 

Fair Conformal 

Stress at 23oC on silicon (dyn/cm2) 1.2 ~ 1.8 × 1010 (tensile) 1.0 ~ 8.0 × 109 
(tensile or 

compressive) 
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To break strong N-N bonds with plasma, higher power and higher temperatures are 

required. There have been several reports about PECVD SiNx at low temperatures, e.g., 

below 150°C.25,26 However, at a low temperature, e.g., 100°C, PECVD SiNx was 

so unstable that it easily oxidized even at room temperature.25 In order to improve 

the stability of the PECVD SiNx film, many modification methods have been used. For 

example, helium was introduced to the feed stream, or the high-density plasma source; 

e.g., electron cyclotron resonance (ECR), was attached to the reactor.26 However, these 

processes are not appropriate for large area substrates due to the low deposition rate or 

poor uniformity. Therefore, it is desirable to develop a proper PECVD SiNx process 

based on the conventional parallel-plate reactor.27,28  

The chemical structures of SiNx films are often emphasized because they 

determine the performance of films in TFT applications. Atomic N and Si concentration 

ratios and N-H and Si-H bond ratios are frequently analyzed. The two chemical aspects 

of films can determine whether or not the SiNx film is stable and adoptable. From I-V 

characteristic testing of SiNx, the film can be proven applicable to a TFT device having a 

low leakage current at a high breakdown voltage.  

PECVD is also used in depositing a-Si:H for the TFT application because of low 

temperature and large areas uniformity.28 Conventionally, a-Si:H is deposited from SiH4 

with optional and additional gases such as H2, He, or Ar. The process parameters, such 

as temperature, power, and reactive gases, influence its bulk properties, such as 

hydrogen content, dangling bonds, photosensitivity, and mechanical strength. Table III 

shows basic physical properties of the a-Si:H.  



 28

 

 

 

 

 
Table III. Physical properties of typical high quality a-Si:H. (reference16,18) 

 
 

Property 
 

 
a-Si:H 

 
Activation energy of conduction at 300 K, EA 

 

 
0.7 – 0.8 eV 

Dark conductivity, σdark 
 

10-9 – 10-8 Ω-1M-1 

Defect density, nD 
 

1022 m-3 

Electron mobility, µe 
 

1.0 cm2/Vs 

Hole mobility, µh 
 

0.02 cm2/Vs 

Hydrogen content 
 

5 – 15 at. % 

Optical gap, ETauc 
 

1.75 – 1.85 eV 

Photoconductivity, σph 
 

10-3 – 10-2 Ω-1M-1 

Photosensitivity 
 

106 

Refractive index, n 
 

3.5 – 3.8 

Urbach energy 
 

50 –60 meV 
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Many a-Si:H properties are different from those of single-crystalline silicon in that the 

former is easier to oxidize at atmosphere than the latter. The effect of the a-Si:H 

deposition process on the TFT properties is often significant with respect to its power. 

Since the high power of the a-Si:H PECVD process damages the surface of the gate SiNx 

by forming a rough interface and a fixed charge, a low power process is preferred.16,29 

 

3. Thin Film Transistor 

A thin film transistor (TFT) is a solid-state field-effect transistor (FET), which 

contains three electrodes, i.e., source, drain, and gate. The differences in structures, 

materials, and fabrication processes make the device characteristics of a TFT very 

different from those of a MOS transistor. Most transistors, except the TFT, are operated 

based on single-crystal semiconductor material. However, TFTs have been successfully 

applied to the active matrix liquid crystal display (AMLCD) based on glass substrate.16 

The TFTs can have various types of structures based on the design of source, drain, and 

gate. Among the three basic types of TFT structures, e.g., staggered, inverted staggered, 

and coplanar, the inverted staggered (bottom-gate) structure is the most popular one.16,18  

To construct a channel region of TFT between the source and drain, amorphous 

silicon (a-Si:H) is widely used. One of the critical features of the a-Si:H TFT is its large 

on-off ratio, defined as the ratio of on-state to off-state channel conductance. Greater 

than six orders of magnitude in a-Si:H TFT have been required. Arrays of millions of 

TFTs could be fabricated on a large-area, low-temperature glass substrate. Therefore, the 

a-Si:H TFT is one of the most promising semiconductors satisfying the requirement of a 
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switching element. The a-Si:H TFT is the most popular active matrix addressing device 

for high quality large area LCDs.16-18 In addition, a-Si:H TFTs have been applied to 

many new microelectronic, optoelectronic, and chemical products, such as 2D X-ray 

medical imagers, and radiation and chemical detectors. Recently, new applications such 

as thin-film retina, facsimile, digital copier image sensors, and bio-analytical sensors 

were introduced.17 For the substrate of a-Si:H TFT, low sodium glass, e.g., Corning 7059 

glass, is widely used. Therefore, the development of the process at a low temperature is 

necessary. For the film deposition of TFT, PECVD is commonly used in depositing a-

Si:H and SiNx due to a low temperature requirement.  

 PECVD is one of the non-equilibrium thermodynamic processes. In addition to 

conventional process parameters such as temperature, pressure, and feed gas, it has an 

extra control parameter, i.e., the plasma power. Due to the complicated plasma reactions, 

many different types of SiNx and a-Si:H films can be deposited. SiNx films having the 

same refractive index (RI) can be prepared from totally different process conditions. The 

film can be characterized according to its chemical properties, such as Si/N ratio, and Si-

H and N-H concentrations; or its physical and electrical characteristics, such as RI, 

dangling bond, and charge density. They all affect the transistor’s threshold voltage, 

reliability, on-current (Ion), and off-current (Ioff).  In addition, its interfacial properties 

with the gate dielectric layer are critical to directly impact TFT characteristics.  

Figure 6 shows a typical inverted staggered TFT with a tri-layer structure, i.e., a 

top dielectric film protects the back channel region. In this structure, key films, such as 

gate dielectric, a-Si:H, channel passivation, and heavily phosphorus-doped n+ a-Si:H 
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layers, can be deposited by the PECVD. Besides the low temperature, there are several 

more advantages in TFT fabrication with the PECVD: (i) clean film-film interfaces can 

be prepared with the one-pump-down process, and (ii) uniform thin films can be 

obtained over large area substrates.  

The inverted staggered structure is more popular than the staggered structure.18 

Tri-layer structure has the top dielectric film, which functions as channel protection as 

well as an etch stop layer.16,18 In addition, advantages of tri-layer over bi-layer include 

that tri-layer is less photosensitive.18  

Typically, the field effect mobility of a-Si:H TFT is lower than or equal to 1.0 

cm2/Vs. The mobility affects the switching speed of the TFT. The most common method 

of increasing the mobility is by changing the morphology of silicon to microcrystalline 

or polycrystalline.16,18 Microcrystalline silicon (µc-Si) is composed of small silicon 

crystals, i.e., in the range of less than 10 nm, embedded in a large amorphous silicon 

matrix. Polysilicon TFT usually has a high field effect mobility, which is up to 200 

cm2/Vs, and a large leakage current.25 However, a high temperature, which is higher than 

600oC, is required to directly deposit the polysilicon using a conventional CVD system. 

Many efforts of growing the polysilicon from the deposited amorphous silicon have been 

made, for example, laser crystallization, ion beam irradiation, rapid thermal annealing, 

etc.16,18  

The interface between a-Si:H and SiNx is critical to the performance of the a-

Si:H TFT.16 At the surface, if the content of hydrogen is low, there are more dangling 

bonds in the interface, which result in a high density. 
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Figure 6. Cross-sectional view of an inverted staggered tri-layer a-Si:H TFT. 

(reference16) 
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The high defect eventually corresponds to low field effect mobility, high threshold 

voltage, large subthreshold slope, and high leakage current.17,18 To enhance the content 

of hydrogen at the surface, an additional H2 plasma can be used.29 Hydrogen is a crucial 

element in TFTs. It exists in bulk film and at the interface of films. The main function of 

hydrogen is to passivate dangling bonds of Si and N that are a source of charge traps.  

Figure 7 shows (a) typical output characteristic curves based on the linear 

approximation of the velocity-field, and (b) typical transfer characteristic curves of field 

effect transistor (FET).30 Since the a-Si:H TFT is a field effect transistor (FET), the 

electrical properties have shown similar results to the typical FET.18,30 Typically, I-V 

characteristics, depending upon the gate voltage and the source-drain voltage, commonly 

explain the performance of a FET or TFT.16,17 For the output characteristics, the drain 

currents at the saturated velocity case are almost equally spaced, with increasing gate 

voltage. A simple stepwise-linear approximation to the velocity-field curves assumes 

constant mobility dependence up to some critical field, EC, and constant saturation 

velocity, vs, for a higher field. The relation can be expressed as below: 

                                       
s

d vE
Ev

/1 µ
µ

+
=                                                                           [9] 

where vd is the drift velocity of the carrier, µ is the low-field mobility, and E is the 

electric field.30 The output characteristics of TFTs plot the drain current as a function of 

the drain voltage or bias with gate voltage as a parameter. On the other hand, the transfer 

characteristics plot the output drain current as a function of the input gate voltage for a 

fixed drain voltage.30 
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Figure 7. (a) Typical output characteristics curves based on the linear approximation of 

the velocity-field, and (b) typical transfer characteristic curves of field effect transistor 

(FET). (reference30) 
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The drain current, Id, can be expressed as equation [10] at the saturation condition. 

                                       2)()(
2
1

thgeffd VVC
L

WI −= µ                                                     [10] 

where µeff is the effective mobility of the a-Si:H channel, C is the capacitance of the gate 

dielectric, W is the width of the TFT channel, and L is the length of the TFT channel. 

Electrical properties, which critically represent the TFT performance, i.e., the threshold 

voltage (Vth) and the field effect mobility (µeff), were calculated from replotting the √ Ids 

vs. Vg (Vg = Vd) curve based on the equation [10]. 
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CHAPTER III 

EXPERIMENTAL METHODS 

 

1.  Thin Film Deposition Process 

Silicon nitride (SiNx) and amorphous silicon (a-Si:H) films were deposited by 

plasma enhanced chemical vapor deposition (PECVD, Applied Materials, model AMP 

3300 I, Santa Clara, CA). The film was deposited using the SiH4/NH3/N2 gas mixture at 

various powers, with a fixed pressure of 500 mTorr and a constant substrate temperature 

of 250oC. The PECVD system used in this study has a parallel-plate electrode 

configuration. The distance between the two electrodes is 6.25 cm, and the electrode 

radius is 32.5 cm wide. Figure 8 shows a schematic diagram of the PECVD reactor. The 

cathode is driven by a 50 kHz rf power supply (3200 AMT, ENI, Rochester, NY). The 

anode has a donut shape with the feed gas being introduced from the center and 

exhausted from the edge. For the hydrogenation process, the device was exposed to H2 

plasma with H2 400 sccm at 850 mTorr, 300 W, and room temperature in the PECVD. 

The plasma-phase chemistry of the PECVD was monitored with an optical emission 

spectroscopy (OES, SC Technology, Fremont, CA). 

The silicon oxide (SiOx) film for the silicon microchannel device was deposited 

by a magnetron sputtering system at 80 W, 3.3 mTorr using a 13.56 MHz rf generator 

with a SiO2 target (Angstrom Science, Duquesne, PA). The Cr (1000 Å) film for the 

microchannel device was also deposited by the sputtering at 100 W with a Cr target 

(Kurt J. Lesker, Clairton, PA).  
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Figure 8. Schematic diagram of plasma enhanced chemical vapor deposition (PECVD) 

reactor. 
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2. Reactive Ion Etching 

The reactive ion etching (RIE) process was done with a commercial reactor 

(model 700D, Plasma-Therm, St. Petersburg, FL), which has a conventional diode-type 

electrode configuration with the bottom electrode driven by a 13.56 MHz rf generator. 

The anode and cathode electrodes are the same size, with a diameter of 22.86 cm. The 

space between the two electrodes is 7.3 cm, and both electrodes have an anionized 

aluminum surface. For a n+ a-Si:H etching, a gas mixture of Cl2/CF4 (8/2 sccm) at 100 

mTorr, 300 W, and room temperature was used. For SU-8 surface modification or 

microchannel device modification, different O2 flow rate, pressure, and rf power were 

used depending upon the purpose of the modification.  

 

3.  Solid State Surface Analysis 

Figure 9 shows a schematic diagram of the ellipsometer (model i1000, Rudolph 

Technology, Flanders, NJ). By a rotating polarizer, the laser light (6328 Å) is polarized 

into two waves: p(parallel)-wave and s(senkrecht)-wave. Here, a phase shift induced by 

the reflection, ∆, is defined below: 

                             21 δδ −=∆                                                                              [11] 

where δ1 is a phase difference between the p-wave and s-wave before the reflection, and 

δ2 is a phase difference between the p-wave and s-wave after the reflection. From the 

photosensitive detector of an ellipsometer, the reflection coefficient can be obtained and 

correlated with a variable, ψ, as shown below:  
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Figure 9. Schematic diagram of an ellipsometer and light reflection. (reference31) 
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s

p

R

R
=ψtan                                                                              [12] 

where Rp is a reflection coefficient of the p-wave, or the ratio of the outgoing p-wave 

amplitude to the incoming p-wave.31 Rs is a reflection coefficient of the s-wave, or the 

ratio of the outgoing s-wave amplitude to the incoming s-wave. The relationship among 

∆, ψ, Rp, and Rs are related as shown below: 

                                      ∆== i
s

p

e
R
R ψρ tan                                                                    [13] 

where ρ is the total reflection coefficient of the sample. The signal is minimized when 

the polarized p-wave and s-wave in the analyzer are in-phase. For a single layer film, Rp 

and Rs can be expressed by equations [14] and [15], respectively, with respect to a 

variable, β, which is the phase change that the wave experiences as it transverses the 

film between interfaces.31  

                                       
)2exp(1
)2exp(

2312

2312

β
β

irr
irr

R pp

pp
p

−+
−+

=                                                          [14] 

                                       
)2exp(1
)2exp(

2312

2312

β
β

irr
irr

R ss

ss
s

−+
−+

=                                                          [15] 

The refractive indices n2 and incident angle Φ in different media can be correlated by the 

relationship among β and film thickness, d, and film refractive index, n2, can be obtained 

as below: 

                                       332211 sinsinsin Φ=Φ=Φ nnn                                                 [16]  
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λ

π
β 22 cos4 Φ
=

dn                                                                    [17] 

From the relationships between the parameters from equation [11] to equation [17], the 

film’s thickness, d, and the refractive index, n2, can be calculated using equations [11] to 

[17] with numerical methods.31 The calculated film thickness was confirmed with the 

measurement using a surface profilometer (Dektak3, Veeco Co., Woodbury, NY).  

The Electron Spectroscopy for Chemical Analysis (ESCA, Axis Ultra, Kratos 

Analytical Inc. Chestnut Ridge, NY), where is in the Center for Integrated Micro-

chemical System of the Chemistry Department at Texas A&M University, was used to 

characterize PECVD films, proteins, and DNA molecules. It used a monochromatic Al 

Kα (1486.6 eV) X-ray source. Except for hydrogen and helium, all other elements in the 

periodic table can be analyzed by ESCA. Figure 10 shows the mechanism of the surface 

photoemission caused by X-ray irradiation.32,33 When the surface is irradiated with 

photons with energy less than 50 eV, electrons are ejected from the valence band, which 

are ultraviolet photoelectron emissions. On the other hand, if the photo energy is high, 

such as X-rays, electrons in the deep core shell level of the atom can be ejected, which is 

known as X-ray photoemission spectroscopy (XPS).33 Electrons can be emitted from all 

the levels as long as the photon energy is larger than the electron binding energy. It is the 

binding energy that constructs the chemical structure of the surface. An X-ray with 1-2 

keV, e.g., monochromatic Al L (1486.6 eV), is suitable for this purpose. The measured 

energy of the ejected electrons Ek is related to the binding energy Eb by equation [18] 

                                       abk EhE Φ−−= ν                                                        [18] 
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Figure 10. Schematic diagram of surface caused by X-ray photoemission. (reference32) 
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where hv is the incident X-ray energy and Φa is the work function of the spectrometer 

(3-4 eV). By investigating the binding energy shift due to the change of chemical 

structure, the oxidation state of the atom can be identified. In addition, by integrating the 

area under the spectrum, a quantitative analysis of the chemical composition structures 

can be obtained.32 With their sensitivity factors in survey mode, the atomic concentration 

of a specific element in the reaction product was calculated from the area of a major 

peak. C1s emission at 284.6 eV was used as a reference to correct the charging effect of 

the surface. 

The film’s bond structure was analyzed with Fourier transformed infrared (FT-

IR) spectroscopy (FTS 40, Bio-rad DigiLab, Cambridge, MA). Figure 11 shows the 

operational principle of FT-IR with a classical Michelson interferometer.34 As shown in 

Fig. 11, the laser is a monochromatic radiation source having a wavenumber (ν). Since 

the moving mirror changes the optical path, a cosine signal can be obtained at the 

detector as a function of the wavenumber (cm-1), ν, and the path difference, x, which is 

called retardation. The intensity I(x) can be converted into the spectrum as below:34 

                                       ])2(cos1[)( xIxI O πν+=                                                           [19] 

 Depending upon the change of retardation (x) value, a broad range of spectra can be 

expressed as below:34 

                                       
x∆

=−
2

1
minmax νν                                                                      [20] 

where νmax is a maximum wavenumber; νmin is a minimum wavenumber, which can be 

sensed by the detector of FT-IR; and ∆x is the distance between two retardation points.  
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Figure 11. Schematic diagram of the operational principle of Fourier transformed 

infrared (FT-IR) spectroscopy. (reference34) 
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The scanning electron microscope (SEM) is a common technique used to 

examine the surface or the cross-section of a small geometry pattern. SEM utilizes an 

electron beam to create a magnified image of the sample.33 The SEM unit consists of 

three parts: (i) an electron gun that produces the electron beam, (ii) magnetic coil lenses 

that focus the beam onto the sample, and (iii) the Evehart-Thornely (ET) detector, which 

detects secondary electrons of backscattered electrons emitted from the sample surface. 

The image is obtained by scanning a focused electron beam over the sample and 

detecting the secondary electrons emitted, or backscattered electrons. Practically, it is 

important to reduce the surface charging effect when electrons land on the surface. 

Surface charging can be reduced with a thin surface conductive layer coating, such as 

gold (Au) or gold-palladium (AuPd), because Au and AuPd provide an oxide-free 

surface.33 

 

4. Anisotropic Etching of Silicon Wafer 

Figure 12 shows a schematic diagram of the experimental setup of potassium 

hydroxide (KOH) anisotropic etching of a silicon wafer. A p-type (100) silicon (10-80 

Ω-cm) wafer (MEMC Electronic Materials, St. Peters, MO) was used as the Si substrate. 

Silicon nitride (SiNx) was deposited on a Si substrate by PECVD at 700 W, SiH4/NH3/N2 

40/120/700 sccm, 500 mTorr and 250oC. The substrate was patterned with a mask using 

the AZ 1512 positive photoresist (PR) by a spin-coater (KW4A, Chemat Co., 

Northridge, CA), and the SiNx layer was etched with a buffered oxide etchant (BOE, 

10% HF and 40% NH3F).  
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Figure 12. Schematic diagram of an experimental setup of potassium hydroxide (KOH) 

anisotropic Si etching.  
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The Si wafer was then etched with a KOH/isopropyl alcohol (IPA) mixture, i.e., 300 g 

KOH plus 30 ml IPA diluted to 1000 ml with deionized water (DI water). This method 

was used to prepare the channel region and the two reservoirs of a microchannel device. 

In order to protect the backside of the silicon wafer from KOH etching, a SiNx layer was 

deposited there. To keep this layer during BOE etching, the PR was also coated on the 

backside of the wafer. The frontside PR was exposed to the UV light of the aligner, 

developed with an AZ300 MIF developer for two minutes, and hard-baked at 130°C for 

one minute using a hot plate. Before KOH etching, the PR was completely removed by 

acetone and cleaned with DI water. After KOH etching, the mask nitride, which prevents 

the front side, was removed by diluted HF (1:10 HF/H2O).  

 

5.  Biomolecule Sample Preparation and Assay 

Three proteins, i.e., ovalbumin (45 kDa), carbonic anhydrase (29 kDa) and α-

lactalbumin (14.2 kDa), were purchased as lyophilized powders (Sigma Chemicals, St. 

Louis, MO). The protein was dissolved in a 0.5× TBE solution (0.045 M tris-borate, and 

0.001 M EDTA, at pH 8.2) containing 0.2% SDS. Before electrophoresis, the solution 

was heated to 98°C for three minutes to denature the protein. The total protein 

concentrations were 650, 1300, and 1950 µg/ml for the one-, two-, and three-protein 

solutions separately. A buffered 0.5× TBE solution (20 µl) was loaded into both the feed 

and the detection reservoirs. Protein solution (2-4 µl) was added into the feed reservoir 

before the electrophoresis. In order to confirm the existence of proteins on the detection 

electrodes, the electrode surface was stained and destained. By dissolving 1.0 g of 
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Coomassie Brilliant Blue R250 in 360 ml of methanol/DDW (1:1) and 40 ml of acetic 

acid, a staining solution was prepared. The microchip was immersed in the staining 

solution more than five times and placed on a slowly rotating platform for one hour at 

room temperature to confirm a complete staining. The microchip was destained by 

soaking it for two hours in the methanol/acetic acid solution without dye on a slowly 

rotating platform to confirm enough destaining, changing the destaining solution three or 

four times. The more thoroughly the gel was destained, the smaller the amount of stained 

protein could be identified. A DNA sample, λ-EcoR I digested, was purchased from 

Sigma Chemicals Co. The λ-EcoR I digested DNA had six different-sized fragments. 

The DNA was dissolved in a TBE buffer at a concentration of 300 µg/ml. The λ-EcoR I 

digested DNA sample had six different sizes (3.5, 4.9, 5.6, 5.8, 7.4, and 21.2 kbp) of 

fragments. The DNA sample, which was loaded on the surface of the channel, could be 

stained with 0.7 µg/ml ethidium bromide. The DNA fluorescent spot could be observed 

under a 254 nm wavelength UV exposure (365 mW/cm2). 

 

6.  Fabrication of Microchannel for Protein Analysis 

Figure 13 shows (a) a flow diagram of the procedure for the fabrication of a 

microchannel on a Si wafer for protein electrophoresis tests, and (b) the photograph of a 

completed device. After the Si was anisotropically etched with the KOH solution, the 

mask SiNx layer was removed by BOE. A layer of SiOx (400 Å) was deposited by rf 

sputtering on the substrate surface. Chromium (Cr) was subsequently deposited in the 

same chamber.  
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Figure 13. (a) Flow chart diagram of a Si microchannel device fabrication process, and 

(b) photograph of a completed Si microchannel electrophoresis device.  
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The Cr film is known to be chemically resistant to the attack of the protein solution. The 

feed and detection electrodes were patterned with the second mask, and the exposed Cr 

film was etched with a solution (HCl/H2O 3:1 volume). Four different sizes of detection 

electrodes, i.e., 1.125 mm2, 2.1 mm2, 3.375 mm2, and 4.5 mm2, were prepared using 

different photomasks. In order to remove any possible contaminants left on the device, 

the patterned substrate was thoroughly cleaned with a HCl solution (5 ml of 37% HCl 

diluted with 95 ml of DI), 0.1 M KOH solution, DI water, and acetone for two or three 

times. A cellulose tape was attached above the channel region to form the enclosed 

microchannel structure. 

 

7. Affinity Experiment of Protein and DNA on Substrates 

In order to examine the adsorption of protein and DNA, bare silicon, SiNx, SiO2, 

plain slide glass, SU-8, O2 plasma-treated substrates, H2 plasma-treated substrates, Cr, 

cellulose tape, and solution-oxidized substrates were prepared and examined. The bare 

silicon was prepared by removing the native oxide by BOE. The microscope slide glass 

(12-550A, Fisher Scientific, Pittsburgh, PA) was used as the glass substrate. The SiNx 

was deposited on the top of the glass by PECVD. It had a thickness of 3200 Å and 

refractive index of 1.912 measured from an ellipsometer. The SiO2 film (1400 Å) was 

prepared by the sputtering method.  

The negative photoresist (SU-8, Microchem Co. Newton, MA) was coated at 

1000 rpm and followed by baking at 100oC. An adhesion promoter, 10.0% 

dimethyldisilizane (HMDS, Arch Chemicals, Norwalk, CT) in 1-methoxy-2-propanol 
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acetate was spin-coated before the SU-8 coating. To solidify the SU-8 without defining 

any pattern, the exposure of UV light with an intensity of 365 mW/cm2 for cross-linking 

followed. The 1600 Å Cr film was also deposited by sputtering at 100 W with a 2-inch 

Cr target. The cellulose tape was obtained from 3M, Mineapolis, MN.  

For the simple protein adsorption experiment, 4.0 µl of protein solution which 

contains 2000 µg /ml of proteins composed of ovalbumin, carbonic anhydrase, and α-

lactalbumin in a 0.5× TBE buffer, was added to the substrate surface by micropipette 

and incubated at room temperature for one hour. After incubation, the droplets were 

washed twice by 10.0 µl of buffer solution and washed once by 10.0 µl of DI water with 

a micropipette. The remaining liquid was removed with a nitrogen gun. The surface of 

the SU-8 polymer was examined with ESCA to detect the protein residue. The ESCA 

N1s and S2p peaks were used to identify the proteins. For the DNA affinity experiment, 

0.7 µl of DI water, buffer solution, or DNA solution was dropped on the surface of the 

samples. The droplets were pictured and their contact angles were measured. For the 

contact angle measurements, a microscopic CCD camera system (QX3 player, Intel, 

Santa Clara, CA) was constructed.  

To prepare oxidized surfaces of Si, PECVD SiNx, glass, SU-8, and Cr surface, 

solution oxidation by H2O/H2O2/H2SO4 (1:1:3 v/v/v) was used for 40 min at 90oC. To 

prepare hydrogen plasma-treated Si, glass, and SU-8, the hydrogenation process was 

done by PECVD with H2 400 sccm at 850 mTorr, 300 W, and room temperature. The O2 

plasma-treated SU-8 was prepared by RIE with O2 5 sccm at 100 mTorr, 100 W, and 

room temperature.  
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8.  Surface Modification of Microchannel 

The surface of the microchannel was exposed to an oxygen (O2) plasma, 

hydrogen (H2) plasma, and oxidation solution. For the plasma oxidation process, the RIE 

reactor was used with O2 15 sccm at 200 W, 200 mTorr, and room temperature. For the 

plasma hydrogenation process, the PECVD reactor was used with H2 400 sccm at 300 W, 

850 mTorr, and room temperature. The solution oxidation was done in a solution of 

H2O2/H2O/H2SO4 (1:1:3 v/v/v) for 40 min at 90oC.  

 
 
9. Microchannel Electrophoresis Preparation for Protein Analysis 

A small amount of polyacrylamide gel solution was injected into the channel 

with a micropipette. The solution was polymerized at room temperature within five 

minutes without UV exposure. The gel solution was composed of 15.0% acrylamide/ 

bisacrylamide (29:1), 0.75% ammonium persulfate, 0.2% SDS and 0.3% tetramethyl-

ethylenediamine (TEMED) in 0.5× TBE solution. The gel solution contained higher 

concentrations of initiator (ammonium sulfate) and catalyst (TEMED) than those used in 

a conventional electrophoresis gel.10,11  

The acrylamid, a 40.0% acrylamide (Acrylamide/Bis-acrylamide (29:1)) 

solution, was purchased from Sigma Chemicals Co. The electrophoresis was carried out 

by applying 10 V DC to the detection electrode using a function generator (FG-7200C, 

EZ digital Co. Ltd., Korea). The current was measured with a digital multimeter 

(DMM196, Keithley Instruments Inc., Cleveland, OH). The current vs. time (I-t) curve 

was recorded via a GPIB interface card (PCI-GPIB, National Instruments, Austin, TX) 
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installed on a personal computer. The Savitsky-Golay method, with an order of 3 and 15 

data, was used to smooth the dI/dt-t curve.35 In order to calculate the smoothed dI/dt with 

an order of 3 (degree, n) and 9 or 15 (2m+1, m = 7) data, a set of 9 or 15 consecutive 

values were calculated with the coefficient bk (k=0,1,2,3), which satisfies the 

relationship as shown below: 
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where Yi is the measured data and fi is expressed as below: 
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where i is an integer variable between –m and m. The resulting smooth derivative values 

can be numerically calculated as below: 
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where Yj is the smooth derivative value for plotting and N is a norm, which is a sum of 

bk. Table IV shows a table for the numerical calculation of the Savitsky-Golay method 

for order 3 and the first derivative data.35 

 

10.  Microchannel Surface Electrophoresis Preparation for DNA Analysis 

Figure 14 shows (a) the procedure of fabrication of the microchannel surface 

electrophoresis device, and (b) the photograph of a completed device. First, a layer of Cr 

is deposited on a glass or a Si substrate by rf sputtering. For the Si substrate, a PECVD 

SiNx is deposited before Cr sputtering to avoid any current leakage through the substrate. 
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Table IV. Numerical table for modified least square method (Savitsky-Golay) with order 
3. (reference35) 
 

 
Data point 

 

 
5 

(m = 2) 

 
7 

(m = 3) 

 
9 

(m = 4) 

 
11 

(m = 5) 

 
13 

(m = 6) 

 
15 

(m = 7) 
 

 
Y-7 

      
12922 

Y-6     1133 -4121 
Y-5    300 -660 -14150 
Y-4   86 -294 -1578 -18334 
Y-3  22 -142 -532 -1796 -17842 
Y-2 1 -67 -193 -503 -1489 -13843 
Y-1 -8 -58 -126 -296 -832 -7506 
Y0 0 0 0 0 0 0 

Y+1 8 58 126 296 832 7506 
Y+2 -1 67 193 503 1489 13843 
Y+3  -22 142 532 1796 17842 
Y+4   -86 294 1578 18334 
Y+5    -300 660 -14150 
Y+6     -1133 4121 
Y+7 

 
     -12922 

 
Norm 

 

 
12 

 
252 

 
1188 

 
5148 

 
24024 

 
334152 
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Figure 14. (a) Flow chart diagram of the SU-8 microchannel device fabrication, and (b) 

photograph of the completed SU-8 microchannel on glass. 
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The feed and detection electrodes are patterned with the first photomask process, and the 

Cr is etched with a solution of HCl/H2O (3:1 vol/vol). The area size of the detection 

electrode is 1.125 mm2, and that of the feed electrode is 2.1 mm2. In order to construct 

the three-dimensional channel structures, a special negative photoresist, SU-8, is used. It 

is exposed to a UV light through the second mask. The channel is 485 µm wide, 35 µm 

deep, and 0.5 cm long. The surface of the completely fabricated device was treated with 

an oxidation by the solution described before.  

The 0.2 µl DNA sample (λ-EcoR I digest with six different sized fragments) was 

loaded at the entrance of the channel region. Totally, 1.4 µl of DNA sample was loaded, 

i.e., by repeatedly dropping 0.2 µl of solution on the surface and waiting for at least ten 

minutes for air-drying the solution. In order to check the ionic strength effect of the 

solution, the buffer concentration was varied between 0.01× and 5.0× TBE. A relatively 

high concentration of the buffer was required to obtain a current high enough to migrate 

the DNA fragments on the bottom channel surface. In this experiment, 0.5× TBE was 

used unless specified otherwise. An electric field of 11.4 V/cm was applied through the 

channel region. To find characteristics of DNA adsorption, the N1s peak and P2p peak 

were intensively identified. The current reading from electrophoresis was monitored by 

LabVIEW 6i, and the time derivatives of the current were obtained by the Savitsky-

Golay method.35 
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11. TFT Fabrication 

Three lithographic masks were designed to fabricate the TFT and the 

microchannel. The integrated circuit (IC) mask design tool, L-Edit Pro (Ver 9.2, Tanner 

EDA Inc., Pasadena, CA), was used for the layout. The TFT channel length (L) was 

designed for 33, 34, 35, 40, 45, or 50 µm. The channel width (W) was 30, 90, 180, or 

300 µm. The microchannel length was fixed at 0.5 cm, and the channel width was 500 

µm. The detection electrode was connected to the TFT electrode. The TFT has an 

inverted staggered tri-layer structure, which was fabricated on Corning 7059 glass. Two 

photomasks and self-aligned back exposure steps were used to construct the TFT. 

Figure 15 shows a flow chart of the TFT fabrication process. The gate metal was 

composed of 1200 Å molybdenum. The tri-layer was composed of a gate dielectric SiNx 

(3000 Å), a-Si:H (500 Å), and top SiNx (2500 Å), which was deposited in a PECVD 

system without breaking the vacuum. The source/drain layer was composed of 500 Å 

heavily phosphorus-doped PECVD a-Si:H, i.e., n+, and 1500 Å Cr. The a-Si:H active 

island and the n+ source/drain area were reactive ion etched using Cl2/CF4 at 100 mTorr, 

300 W. Other etching steps were carried out using wet processes.  

After the n+ etch step, the photoresist was stripped and transistors were annealed 

in air for one hour at 230oC to remove plasma damage.28 All PECVD films were 

deposited at 250oC. Gate SiNx films were deposited with various gas flow rate of 

SiH4/NH3/N2 at a fixed pressure of 500 mTorr. The flow rate of each gas and power 

were varied in different experiments.  
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Figure 15. Flow chart diagram for the fabrication of an inverted staggered tri-layer a-

Si:H TFT. (reference16) 
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Detailed relations between process parameters, such as power and gas 

composition, and material characteristics, such as the deposition rate, the refractive 

index, the stress, and the N-H/Si-H ratio, as well as the role of hydrogen plasma, were 

studied. The deposition rate increased and the refractive index decreased with the 

increase of power. The a-Si:H layer was deposited from SiH4 50 sccm at 250 mTorr and 

250 W. In this study, the tri-layer was deposited at 250oC without breaking the vacuum, 

and the SiNx films were deposited at 500 mTorr, 700 W and a-Si:H at 250 mTorr, 250 

W, unless specified otherwise. 

 

12. Electrical Characterization of a-Si:H TFT 

The electrical properties of the SiNx with I-V characteristics were obtained with a 

MIS (Metal Insulator Silicon) structure with an aluminum electrode. The LabVIEW 6i 

program-interfaced Agilent 4140B pA meter was used for the I-V measurement. For a-

Si:H TFT, the output and transfer characteristics were measured by an Agilent 4155C. 

Figure 16 shows a brief diagram of the electrical characterization setup for MIS 

or TFT. To ensure a complete dark environment for measurement, a light-proof black 

box was used to contain the MIS and TFT sample. The electrical characterization of the 

microchannel device connected to the a-Si:H TFT was also performed in the setup. The 

field effect mobility µeff and the threshold voltage Vth were calculated from the saturation 

range of the transfer characteristics. The on-current Ion was the drain current measured Id 

at Vg = 20 V and Vd = 10 V. The off-current Ioff was the minimum drain current at Vd = 

10 V and Vg between –5 and 0 V.  



 

 

60

 

 

 

 

 

 

Figure 16. Electrical characterization setup of a-Si:H TFT and microchannel device 

connected to a-Si:H TFT. 
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The threshold voltage, Vth, and the field effect mobility, µeff, were calculated from the √ 

Ids vs. Vg (Vg = Vd) curve. 

 

13. TFT-Microchannel Electrophoresis 

In order to form the microchannel and reservoir structures on the same substrate 

as the TFT, a thick layer (30 µm) of negative photoresist, SU-8, was spin-coated and 

patterned. The microchannel and reservoir areas were defined with a third mask. There 

was no SU-8 adhesion problem on the top surface of the substrate, which contains the 

SiNx and Cr. The top of the channel region was covered with a cellulose tape. A small 

amount of 15.0% polyacrylamide gel (PAGel) solution was fed at the feed reservoir, 

which automatically filled the channel due to the capillary phenomenon. The gel was 

polymerized at room temperature within five minutes. The gel solution was composed of 

15.0% acrylamide/bis- acrylamide (29:1), 0.75% ammonium persulfate, 0.2% SDS, and 

0.3% tetramethyl-ethylenediamine (TEMED) in 0.045M tris-borate and 0.001M EDTA 

solution at pH 8.2. In this study, the detection electrode (2.8 mm2) was connected to the 

source electrode of a TFT. The electrical field at the microchannel region was 10 V/cm 

when the electrophoresis process was carried out between the drain electrode of the TFT 

and the feed electrode of the microchannel electrophoresis device. A protein mixture 

containing ovalbumin (45 kDa), carbonic anhydrase (29 kDa), and α-lactalbumin (14.2 

kDa), was prepared by dissolving their lyophilized powders. They were dissolved in a 

0.5× TBE solution containing 0.2% SDS. The solution was heated to 98°C for three 

minutes to denature the protein. The 0.5× TBE solutions (20 µl) were loaded into both 
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the feed and the detection reservoirs before electrophoresis.  

The electrophoresis was performed by loading 1 µl of protein (1000 µg/ml) into 

the feed reservoir. The current vs. time (I-t) was measured with the Agilent 4155C 

parameter analyzer. The Savitsky-Golay method was used to calculate the dI/dt-t curve 

with an order of 3 and 9 data points. To improve PAGel affinity to SU-8 channel 

surface, the microchannel device was treated with O2 plasma, i.e., 5 sccm, at 100 mTorr, 

100 W for 30 seconds. By the O2 plasma treatment, no interfacial bubble was formed 

between the PAGel and the SU-8 microchannel sidewall, which means good affinity 

between these two materials. Electrical properties of the TFTs, such as the output and 

transfer characteristics, were not influenced by the O2 plasma exposure process. The 

TFT (channel width(W)/channel length(L) ratio of 88/40 µm) has a field effect mobility 

of 0.127 cm2/Vs, a threshold voltage of 5.944 V, and a leakage current (Ioff) below 10-12 

Amp.  
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CHAPTER IV 

SURFACE MODIFICATION OF MICROCHANNEL 

 

1. Si Microchannel Fabrication 

There are two basic methods of fabricating a microelectronic and micromechanic 

system (MEMS) device. The design can be built on top of the silicon wafer, surface 

micromachining, or the design can be etched into the wafer using a method called bulk 

micromachining.36 For bulk micromachining of Si, a KOH solution is widely used. The 

main reason for using the KOH to etch Si is its ease and anisotropic pattern.36,37 Since 

the etch rate is fast in the <100> direction and slow in the <111> direction of crystalline 

Si, a precise three-dimensional structure can be created by KOH etch. For the KOH 

silicon etchings, the 25–45% at 70–80°C condition is widely used.36 Since the 

photoresist (PR) layer will be stripped off with the KOH solution, the non-photoresist 

mask should be used. Typically, SiNx is widely used as the mask because of the 

extremely low etch rate in the KOH solution. The addition of surfactant into the KOH 

solution improves the surface roughness. The principal purpose of surfactant addition is 

to avoid the formation of bubbles at the surface of the silicon during KOH etching.37 

Therefore, an optimized condition for a smooth surface is determined by concentration 

of the KOH, etching temperature, and concentration of the additive. Because of 

successful bulk micromachining with KOH, remarkable developments of microchips 

could be accomplished, especially in the area of micro-fluidic devices.36 Figure 17 

shows the SEM view of the KOH-etched Si-based microchannels after the removal of 
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the SiNx masking layer with a BOE solution. It has a trapezoidal shape with a bottom 

angle of 54.74°, which is typical for the KOH-etched Si <100>.36 As the etch time 

increases, the top width and depth increase linearly, while the bottom width remains the 

same as the original mask width. The microchannel of Fig. 17(a) shows much pyramid-

shaped roughness at the surface. The microchannel of Fig. 17(b) shows the effect of the 

addition of 3.0% isopropyl alcohol (IPA) in the KOH solution, i.e., few pyramids were 

left on the Si surface. The pyramids were formed by the difference of the etching rate in 

the <100> direction and the <111> direction. The <100> direction has a higher etching 

rate than the <111> direction. Therefore, the best condition for the smooth surface is to 

etch <100> and <111> at the same rate. Here, the 30.0% KOH at 70ºC supplies equal 

etch rates at <100> and <111> directions. At a high temperature such as 80ºC, the etched 

line pattern shows cracks and dents on the Si surface. In addition to temperature, the 

concentration of the KOH is important in the surface roughness or the damage of line 

patterns. Through an investigation with different temperatures (50ºC, 60ºC, 70ºC, and 

80ºC) and different KOH concentrations (25.0%, 30.0%, 35.0%, and 40.0%), the 30.0% 

KOH at 70ºC condition gave the smoothly-etched surface, which is consistent with 

literature report that the 25.0% KOH solution is most popular for this purpose.37  

 

2. Surface Modification and Protein Affinity   

A new microchannel-based SDS-PAGE system, which has in situ protein 

determination without fluorescent driven protein labeling, was fabricated by Si KOH 

etching. 



 65

 

 

 

 

 

(a) 

 

(b) 

Figure 17. SEM of cross-section view of KOH Si-etched microchannel: (a) with 30.0% 

KOH solution at 70ºC, (b) with 30.0% KOH including 3.0% IPA at 70ºC. 
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The device could be prepared with both silicon substrate and glass substrate. For the 

glass substrate, SU-8 is a good material for the three-dimensional structure because a 

high aspect ratio can be formed, and it is easy to process. Proteins were easily separated 

and identified with this device. Some improved performances of the new device were 

discussed by preparing devices of various channel cross-sectional configurations and 

detection electrode sizes. However, protein loss during electrophoresis and initial 

fluctuation of detection signals are yet to be solved.  

For the case of the glass or polymer substrate, many modification methods have 

been applied. For example, O2 plasma has been used to add an active surface to polymer. 

The O2 plasma adds functional groups, etches polymer, and degrades polymer into low 

molecular units. To improve the compatibility of the SU-8 surface to polyacrylamide 

gel, it was treated with the O2 plasma.  

 

2.1. Substrate Surface Structure Influence  

Figure 18 shows the chemical structure of cross-linked polyacrylamide. It 

contains carbonyl (C=O) and amine (-NH2) functional groups that are relatively 

hydrophilic. Therefore, the gel has a high affinity to a hydrophilic substrate. The 

chemical structure of the acrylamide gel is similar to that of a protein molecule, which 

contains amide (-CONH-) bonds between amino acid monomers. The polyacrylamide 

gel is typically used in the hydrated form with a high water content.2,3 Therefore, the 

substrate surface should have a function similar to that of a protein in order to have a 

high polyacrylamide affinity.   
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Figure 18. Chemical structure of cross-linked polyacrylamide gel.  
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Figure 19 illustrates the chemical structure of SU-8.38 SU-8 can be cross-linked 

by reacting with an epoxide bond. However, the SU-8 polymer has a rather hydrophobic 

characteristic because it contains relatively hydrophobic functional groups such as 

aliphatic hydrocarbon and an aromatic benzene ring. These functional groups cannot 

form strong hydrogen bonds with carbonyl and amine groups in the polyacrylamide gel. 

Therefore, the poor affinity of SU-8 to the protein molecule or polyacrylamide gel is 

expected.  

Figure 20 shows microscopic pictures of SU-8-based microchannels (a) without 

surface treatment and (b) with O2 plasma treatment. The microchannels are filled with 

15.0% polyacrylamide gel stained with 0.01% blue dye (Bromophenol Blue). The blue 

dye was used to enhance the visual observation of the gel in the channel. Figure 20(a) 

shows a severe problem of compatibility between the SU-8-based channel and 

polyacrylamide gel because the surface of SU-8 is rather hydrophobic, while the 

property of gel is relatively hydrophilic. In polymer technology, the surface modification 

is often given a strong advantage to minimize such a compatibility problem.15,38,39 As 

shown in Fig. 20(b), a dramatic improvement of compatibility between the SU-8 channel 

surface and the gel is obtained when the SU-8 surface is treated with the O2 plasma.  

The plasma surface treatments involve very complicated mechanisms, which are 

dependent upon the plasma type, material, atmosphere, and operational conditions, as 

described in Chapter III. Usually the plasma treatment affects only the top surface layer 

with a thickness of a few nanometers.39 Short-time plasma exposure is often used for 

surface modification.  
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Figure 19. Chemical structure of negative photoresist SU-8. (reference38) 
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Figure 20. Photograph of gel shrinkage, microscopic pictures of compatibility between 

SU-8 channel and polyacrylamide gel: (a) with untreated microchannel and (b) with O2 

plasma-treated (one minute) microchannel.  
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The long-time exposure is not desired because the surface can be seriously damaged. 

The conditions were chosen to avoid significant surface roughening from the plasma 

process. No noticeable CO or CO2+ emissions representing surface etching were 

detected during the process by monitoring of optical emission spectroscopy (OES).40 The 

carbon oxidations from the O2 plasma have been frequently reported with common 

polymer substrate such as PE (Poly Ethylene), PC (Poly Carbonate), and PS (Poly 

Styrene).39,40 The stability of O2 plasma-treated SU-8 was so excellent that the modified 

surface remains stable after IPA (Iso Propyl Alcohol) washing. Figure 21 shows the C1s 

peaks of the SU-8 surfaces: (a) untreated, (b) O2 plasma-treated for one minute, and (c) 

O2 plasma-treated for five minutes. With reactive species of oxygen radicals, carbons 

from hydrocarbons and ether bonds are oxidized to form ketone (C=O), carboxylic, and 

carbonate carbon, which means that O2 plasma adds new functionalities to the surface.39 

The plasma treatment can change the polymer surface, such as ablation (etching), 

degradation, cross-linking (branching), and introduction of new functionalities.39-42 The 

untreated SU-8 surface contains various hydrophobic groups, such as aromatic rings and 

epoxy.41 After the H2O/H2O2/H2SO4 solution oxidation, the SU-8 surface contains more 

oxygen-containing groups, such as ether and ketone. All of the C1s peaks contain SiC 

peaks at 282.5 eV, which is diffused into SU-8 during baking from the HMDS adhesion 

promoter. The untreated SU-8 in Fig. 21(a) shows two C1s peaks: hydrocarbon (-CH2- at 

284.6 eV) and ether (-C-O-C- at 286.5 eV). The H2O/H2O2/H2SO4 solution oxidation 

process introduces more oxidized carbon groups, such as ketone (-C=O at 287.6 eV) and 

carboxylic (-(C=O)-O- at 288.8 eV), as shown in Fig. 21(b).  
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Figure 21. ESCA spectra of C1s: (a) untreated SU-8, (b) H2O/H2O2/H2SO4 oxidized SU-8, 

(c) H2 plasma-treated SU-8, (d) O2 plasma-treated SU-8. 
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The solution oxidation process added very small proportions of ketone and carboxylic 

groups. The contact angle of the DNA solution increases only slightly after the oxidation 

process. The additional oxygen does not show a major impact on the solution affinity. 

However, as shown in Fig. 21(c) and (d), both H2 and O2 plasma treatments add a large 

amount of oxidized carbon groups such as carbonate (-O-(C=O)-O- at 290.2 eV) to the 

surface. The H2 plasma treatment usually adds hydrophobic groups, such as CH or CH2, 

to the SU-8 surface. On the other hand, the H2 plasma can etch some surface groups and 

create unsaturated dangling bonds. These bonds are easily oxidized in air to form more 

hydrophilic groups, such as a hydroxyl bond, which can increase its hydrophilicity.42,43 

Table V shows that concentrations of carbon functional groups on SU-8 surfaces are 

dependent upon the O2 plasma exposure time, which is calculated from the fitted C1s 

peaks. With the O2 plasma treatment, the carbon oxidation content calculated from fitted 

C1s peaks of ketone (-C=O at 287.6 eV), carboxylic (-(C=O)-O- at 288.8 eV), and 

carbonate (-O-(C=O)-O- at 290.2 eV) increases from 10.5% to 29.0% and 32.1%, 

respectively with the plasma treatment time.  

 

2.2. Substrates Effects on Protein Affinity   

During microchannel electrophoresis, a significant loss of protein on the channel 

wall has been reported due to physical and chemical properties of the wall material.7,11 

Surfaces of various materials were tested for the protein adsorption. ESCA was used to 

detect the possible small amounts of protein remained on the surface.  
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Table V. Percentage of carbon functional groups in untreated and O2 plasma-treated SU-
8 surface. 
 

 
Chemical 
proportion 
in C1s (%) 

 

 
untreated SU-8 

 
SU-8  

+ O2 plasma  
(one minute) 

 
SU-8 

+ O2 plasma  
(five minutes) 

 
carbonate 

( -O-(C=O)-O- ) 

 
0.0 

 
2.6 

 
3.6 

 
carboxylic 

( (C=O)-O- ) 

 
0.0 

 
6.3 

 
5.9 

 
ketone 

( -C=O ) 

 
0.1 

 
5.5 

 
5.0 

 
ether 

( -O-C-O- ) 

 
10.4 

 
14.6 

 
17.6 

 
hydrocarbon 

( -CH2- ) 

 
78.4 

 
62.9 

 
60.1 

 
HMDS 

 

 
10.8 

 
8.1 

 
7.8 
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Figure 22 shows the ESCA spectra of (a) the O2 plasma modified SU-8 for one minute 

and (b) plain glass substrate which was dropped with a protein solution containing 113 

µg/ml ovalbumin (45 kDa) after protein solution incubation and removal. The two 

substrates showed different results. For example, with the modified SU-8 substrate, no 

nitrogen or sulfur from protein was detected, as shown in Fig. 22(a). As shown in Fig. 

22(b), small amounts of nitrogen and sulfur elements were detected on the glass 

substrate. They are protein molecules, i.e., S2p (165.4 eV) and N1s (401.9 eV) peaks. The 

former is contributed by the thiol (SH) and sulfide (SCH3) bonds. The latter is 

contributed by nitrogen containing rings (indole, imidazole) and amides (CONH). 

Therefore, the affinity of the protein molecule is the highest on the glass surface. Glass is 

not a suitable substrate for low protein adsorption. Otherwise, it will contribute to the 

loss of protein to the channel structure. If the glass must be used to build this kind of 

device, it should be coated with a SiO2 or SiNx film, which does not adsorb proteins.  

 

2.3. Substrate Effects on Solution Affinity 

Contact angle measurement can be used to determine the wettability of the 

substrate surface with the protein solution, which often influences the performance of the 

microchannel device.41,42 The contact angle of a liquid drop is determined by the balance 

of three kinds of energies, i.e., surface-gas (γsg), surface-liquid (γsl), and gas-liquid (γgl), 

which is shown below: 

                                       θγγγ cosglslsg +=                                                                 [24]                             
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Figure 22. ESCA spectra for remaining protein after affinity examinations on (a) the 

modified SU-8 (one minute) and (b) plain glass substrate. 
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where θ is the contact angle between the surface and the liquid. For the same solution, 

γsg and γgl are independent of the substrate surface structure. However, γsl is a function of 

the solution component and the surface structure. A large γsl means a low contact angle, 

which corresponds to a high solution affinity to the substrate surface.  

Figure 23 shows contact angles (a) between the sputtered SiO2 surface and DI 

water, and (b) between the glass surface and a 0.5× TBE buffer solution containing 0.2% 

SDS. The adhesive force between the glass and the buffer solution is lower than that 

between SiO2 and DI water because the contact angle in Fig 23(b) is lower than the 

contact angle in Fig 23(a).  

Table VI shows the result of the contact angle measurement of ten different 

substrates in contact with four different kinds of solutions. The contact angles of DI 

water on various substrates are different from those of buffer solutions. The buffer 

solution is a mixture of 0.045 M tris-borate, 0.001 M EDTA, and 0.2% SDS at pH 8.2. 

The protein solution contains 2000 µg/ml of ovalbumin (45 kDa), carbonic anhydrase 

(29 kDa), and α-lactalbumin (14.2 kDa) proteins dissolved in the TBE buffer. The 

polyacrylamide solution contains acrylamide/bisacrylamide (29:1) gel components in 

0.5× TBE buffer. The polyacrylamide solution has a higher contact angle value than the 

other three solutions, except for the cellulose tape surface or the O2 plasma-treated 

cellulose substrates. SDS (Sodium Dodecyl Sulfate) in the buffer, polyacrylamide, and 

protein solutions is a surfactant, which reduces the surface tension of the droplet and 

lowers the contact angle. Therefore, the contact angle of the DI water is higher than 

those of the other three SDS containing solutions on the same substrate surface.  
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Figure 23. (a) Contact angle of DI water on the sputtered SiO2, and (b) contact angle of 

0.5× TBE buffer with 0.2% SDS on the glass.  

. 
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Table VI. Contact angles of various solutions on various substrates. 

 
 

 
Substrates 

 

 
DI water (o) 

Buffer solution 
(o) 

Protein 
solution (o) 

15% 
acrylamide 
solution (o) 

 
Bare silicon 

 

 
77.8 

 
35.4 

 
36.7 

 
52.0 

PECVD SiNx 
  

46.8 9.9 13.6 12.3 

Sputtered SiO2 
  

22.4 12.8 15.9 23.5 

Glass 
 

24.6 10.6 12.5 18.4 

Untreated SU-8 
 

76.7 42.1 43.7 57.7 

SU-8 + O2 
plasma ( 1 min. ) 

33.8 9.5 17.1 18.6 

SU-8 + O2 
plasma ( 5 min. ) 

33.4 8.9 12.5 16.4 

Cr 
 

35.1 15.1 19.8 18.7 

Cellulose 
 

45.5 65.9 77.7 84.0 

Cellulose + O2 
plasma ( 1 min. ) 

16.1 18.7 55.9 59.0 
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In Table VI, the contact angle of DI water on the O2 plasma-treated SU-8s is around 33o, 

which is larger than that of DI water or other O2 plasma-treated polymer surfaces, such 

as SAN (Styrene AcriloNitrile copolymer), PS, and PC.41,42 However, the SAN, PS, and 

PC polymer surfaces needed higher O2 plasma power (> 200 W), or higher feeding O2 

flow rate (> 15 sccm) than the SU-8. When two contact angles of DI water or protein 

solution on one minute and five minutes O2 plasma-treated SU-8 surfaces are compared, 

they are little different. Therefore, in order to prepare a relatively hydrophilic surface, 

plasma parameters such as power and O2 flow rate are more important than the plasma 

treatment time. 

For all substrates, the buffer solution has a smaller contact angle than those of the 

polyacrylamide solution and protein solution, although they contain the same kind of 

buffer component. This indicates that protein and polyacrylamide molecules counter the 

effect of the surfactant. For the cellulose or modified cellulose tape, the existence of 

surfactant does not affect the contact angle. The contact angle seems to be dependent 

solely on the total concentration of the solute in the solution. The polyacrylamide 

solution has 23.9% of solute, the protein solution has 9.1% of solute, the buffer solution 

has 8.9% of solute, and the DI water has 0.0% of solute. The contact angle of the 

solution on the unmodified or modified cellulose tape is in the order of polyacrylamide 

solution > protein solution > buffer solution > DI water. The solute concentration effect 

is due to the change of the viscosity. The concentration vs. contact angle relationship 

also holds for the other substrates. Therefore, except for SiNx and Cr, we can conclude 

that the solution’s contact angle increases with the increase of solute concentration.  
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For solutions containing the surfactant, SiNx, Cr, and modified SU-8 surfaces’ 

contact angle of the protein solution and the polyacrylamide solution are almost the same 

over a large range (23.9% vs. 9.1%) of solute concentration. Therefore, the protein 

molecule affects the solution’s physical and chemical properties, which influences the 

contact angle result. No apparent protein adsorptions were detected with these SiNx, Cr, 

and modified SU-8 substrates, judged from ESCA result. The surface modification 

effects were also shown in the contact angle data with the SU-8. For all solutions, the 

contact angle decreases when the surface O2 plasma treatment time is increased. 

Therefore, surface modification of SU-8 is desirable if it is used to fabricate the 

microchannel structure. The cellulose and the modified cellulose are very sensitive to 

viscosity of the solution.  

The SiNx, SiO2, Cr, and plasma-treated SU-8 surfaces show more hydrophilic 

behaviors with DI water, while they show high affinity to the solution containing the 

surfactant. Therefore, for these substrates, the SDS surfactant is important to the affinity 

between the substrate surface and the solution. However, the contact angle difference 

between the buffer solution and protein solution (or polyacrylamide solution) is 

relatively small on the SiNx and glass substrates. It is much larger on other substrates. It 

is possible that the protein may have a strong adsorption, which explains protein losses 

during electrophoresis with the glass device in Liu et al.’s report.7 The small contact 

angle on the glass substrate is consistent with the ESCA result protein adsorption. 

Therefore, the direct contact between the glass surface and the protein solution must be 

avoided in the fabrication of the microchannel device.        
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3. Substrate Surface Influence on DNA Affinity  

Contact angle is a reference of the DNA solution affinity to the substrate surface. 

The contact angle is dependent upon the substrate surface structure and solution 

composition, such as the DNA content or the ionic strength of a solution.  

Figure 24 shows the contact angle of DNA solution on (a) untreated and (b) 

solution-oxidized glass. The contact angle of the solution-oxidized glass is much lower 

than that of the untreated glass. Table VII shows the contact angles of DI water and 

DNA solution on various surfaces. For bare Si, PECVD SiNx, and glass, the contact 

angles of the DNA solution are slightly lower than those of the DI water, e.g., by 0.8º to 

2.3º. However, on the SiO2 and SU-8, the contact angles of the DNA solution are much 

lower than those of the DI water. A SiO2 surface, which has a surface chemical structure 

similar to a silica, has Si-O, Si-O2, and a small number of Si-OH groups when it is under 

an aqueous solution.3,20,45 These groups show hydrophilic properties. Since the backbone 

of a DNA strand carries relatively hydrophilic phosphate groups (PO4
2-), the hydrophilic 

interaction between the ionized oxide groups and the backbone of a DNA molecule 

increases the affinity.  

This is also clearly shown in the contact angle difference of the DNA solution on 

the bare Si (75.6o) and on the SiO2 (11.4o). Therefore, the bare Si surface can be easily 

modified to change its affinity to DNA molecules. In addition, a long chain DNA 

molecule is also known to have a rather hydrophobic interaction with a polymer 

surface.44 In Table VII, the contact angle between the SU-8 and the DNA solution is 

significantly lower than that between the SU-8 and DI water, i.e., 48.8 o vs. 76.7 o.  
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Figure 24. Contact angle of DNA solution on (a) glass substrate and (b) solution-

oxidized glass. 
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Table VII. Contact angle of DNA solution on various substrates. 
 

 
Contact angle (o) 

 

 
 

 
Substrate  

DI water 
 

 
EcoR I λDNA solution  

 
Bare Si 

 

 
77.8 

 
75.6 

PECVD SiNx 
 

46.8 44.5 

Glass 24.6 
 

23.8 

SiO2 
 

22.4 11.4 

SU-8 
 

76.7 48.8 

Cr 
 

35.1 58.9 
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The contact angle on a Cr surface is different from those on the other substrates, i.e., 

bare Si, PECVD SiNx, glass, SiO2, and SU-8 surfaces. The contact angle of the DNA 

solution on the Cr surface is higher than that of the DI water, i.e., 58.9 o vs. 23.8º. The 

DNA solution, which contains 30.0% of solute, is more viscous and has a higher surface 

tension than the DI water. Since there is a lack of a strong attraction between the DNA 

solution and the Cr, the bulk solution property probably controls the contact angle. 

Although bare Si, PECVD SiNx, and glass surfaces all contain silicon atoms on the 

surface, there are noticeable differences in contact angles between the DNA solution and 

DI water. Therefore, silicon alone does not explain the contact angle change. For those 

film surfaces, functional groups such as Si-O, Si-N, Si-OH, and Si-ON are critical to the 

surface affinity of DNA or water molecules.  

Table VIII shows the contact angles of the DNA solution on various substrates 

with or without being oxidized with the H2O/H2O2/H2SO4 solution, or hydrogenated 

with H2 plasma. Except for SU-8, most substrates show the decrease of the contact angle 

after surface oxidization. For Si, the decrease of the contact angle is drastic, i.e., 

changing from 75.6o to 7.5o. For SiNx, glass, and Cr, a large drop in contact angle was 

also observed. The Si, PECVD SiNx, and glass surfaces contain many Si atoms on the 

surface. The silicon atoms are known to be oxidized into the Si-OH rich oxide layer by 

the H2O/H2O2/H2SO4 solution treatment.20  

Figure 25 shows ESCA spectra of Si2p on various Si and glass surfaces. Fig. 

25(a) and (d) show Si2p peaks from the untreated Si and glass surfaces: Fig. 25(b) and (e) 

are the solution-oxidized Si and glass surfaces:  
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Table VIII. Contact angle of DNA solution on various modified substrates. 

 
 

Contact angle (o) 
 

 
 
 
 

Original substrate 
 
 

No treatment 

 
After solution 

(H2O/H2O2/H2SO4)
oxidation 

 

 
 

After H2 plasma 

 
Bare Si 

 

 
75.6 

 
7.5 

 
66.4 

PECVD SiNx 
 

44.5 19.1 57.8 

Glass 
 

23.8 10.6 24.2 

SU-8 
 

48.8 49.2 44.1 

Cr 
 

58.9 23.6 60.5 
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Figure 25. ESCA spectra of Si2p: (a) bare Si, (b) H2O/H2O2/H2SO4 oxidized Si, (c) H2 

plasma-treated Si, (d) glass, (e) H2O/H2O2/H2SO4 oxidized glass, and (f) H2 plasma-

treated glass. 
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Fig. 25(c) and (f) are the plasma-hydrogenated Si and glass surfaces. The bare Si, with 

the native oxide removed, shows a Si-Si bond at 99.6 eV. However, the oxidized Si 

contains two additional Si2p peaks corresponding to Si-O at 102.0 eV and Si-O2 at 103.3 

eV. The glass surfaces show a characteristic Si2p peak at 102.8 eV, which is contributed 

by its component of aluminum oxide silicate (Al2OSiO4). However, after oxidation, the 

glass surface contains a strong peak corresponding to Si-O2 at 103.3 eV, as shown in Fig 

25(e). The formation of Si-O and Si-O2 bonds explains the results of the decreasing 

contact angle of the oxidized Si and glass surface.  

The H2 plasma-treated Si, as shown in Fig. 25(c), shows a small Si-O peak at 

102.0 eV. The H2 plasma probably created dangling bonds on Si surfaces, which were 

oxidized in the air before ESCA analysis. The small amount of Si-O bond makes the 

surface slightly more hydrophilic than the untreated surface, which is consistent with the 

contact angle change.  

The H2 plasma treatment removes the Si-O Si2p peak at 102.0 eV from the glass 

surface, as shown in Fig. 25(e). This indicates that the plasma hydrogenation can reduce 

the oxygen concentration on the glass surface, which makes this surface slightly more 

hydrophobic than that of the untreated glass. This is consistent with the result in Table 

VIII.   

The contact angle of PECVD SiNx increases after the H2 plasma from 44.5 o to 

57.8 o. The H2 plasma can attack PECVD SiNx etching off Si- or N-containing groups to 

form dangling bonds.29 These dangling bonds are easily oxidized to form various 

oxygen-containing groups, which are rather hydrophilic. At the same time, hydrogen can 
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passivate the dangling bonds. The hydrogenated surface is usually relatively 

hydrophobic, which is responsible for the high contact angle. Therefore, for a surface 

that contains Si atoms, the chemical states of the Si atoms are critical to the surface 

affinity of the solution. 

The H2 plasma-treated SU-8 contains more ketone and carboxylic groups than 

the solution-oxidized surface, as already shown in Fig. 21. The H2 plasma treatment 

usually adds relatively hydrophobic groups or generates dangling bonds on carbon atoms 

at the surface, which are easily oxidized to be rather hydrophilic when exposed to air.42 

The result in Table VIII shows that the H2 plasma makes the SU-8 surface more 

hydrophilic. Therefore, plasma hydrogenation can make the SU-8 surface more 

hydrophilic or hydrophobic, depending upon the final surface structure and the solution 

component.  

The DNA solution contains a large amount of ions and DNA fragments, both of 

which can lower the surface tension of the drop and decrease the contact angle. The 

contact angle of the DNA solution on SU-8 is lower than that of DI, as shown in Table 

VII. However, the contact angle of the DNA solution changes a little after oxidation or 

hydrogenation, as shown in Table VIII. The solution’s surface tension, which is a 

function of the content of ions and DNA fragments, is probably more critical than the 

SU-8’s surface functional groups in determining the contact angle. 
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CHAPTER V 

MICROCHANNEL ELECTROPHORESIS OF PROTEIN AND DNA* 

 

1. Microchannel Electrophoresis for Protein Analysis 

A microchannel device for protein electrophoresis was fabricated on silicon 

substrate. Due to the small size of a protein molecule, a high-density gel is required as an 

effective sieving material for the protein electrophoresis. Therefore, a high concentration, 

e.g., 15.0% polyacrylamide gel, was applied to the microchannel device for the protein 

analysis. Devices with different sizes of microchannel configurations and detection 

electrode areas were fabricated and investigated. An optimized fabrication condition for 

an enhanced detection signal could be obtained. In addition, the amount of each protein 

on the detection electrode could be quantified by the device’s current and time (I-t) 

curve. The detected protein amount could be compared with the actual amount loaded in 

the feed solution before the beginning of the electrophoresis.  

 

1.1. Adsorption of Protein on Electrode 

Adsorption of proteins onto a metal electrode surface is a well-known problem in 

the electrochemical analysis of clinical samples. The adsorption of protein on a metal 

electrode is usually an irreversible process.12 

___________________ 
* Part of this chapter is reprinted with permission from “Microchannel Electrophoresis 
Device for Separation and in situ Detection of Proteins” by Y. Kuo and H.H. Lee, 2001, 
Electrochemical and Solid-State Letters, 4[10], H23-H25, 2004 by the Electrochemical 
Society.  
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In the report of Guo et al.,12 platinum, gold, and glassy carbon of the electrode with HSA 

(Human Serum Albumin) were used for protein adsorption tests. By the method of the 

quartz-crystal microbalance (QCM) technique, the amount of protein adsorbed on the 

metal surface can be roughly estimated.12 However, accurate estimation of mass loading 

on the quartz resonator is very difficult because the resonant frequency is sensitive not 

only to mass loading but also to viscosity, elasticity, surface roughness.12,13 Recently, 

Cabilio et al. investigated adsorption behavior of various kinds of proteins onto a metal 

electrode.13,14 Using a cyclo-voltammetry method, they were successful in quantifying 

the amount of adsorbed proteins onto metal electrodes. Therefore, under the influence of 

a properly applied electric field, protein molecules will be adsorbed onto the surface of a 

metallic electrode, and the amount of adsorbed proteins can be estimated by delicate 

electrochemical methods.12   

 

1.2. Detection Electrode Contact Resistance vs. Device Configurations 

Figure 26 shows the cross-sectional view of a microchannel device and the 

schematic of a corresponding circuit. The total resistance between the two electrodes, 

Rtotal, is composed of five resistors connected in a series as shown below:  

                                       ∑
=

=
5

1i
itotal RR                                                                [25] 

where R1 is the contact resistance between the feed electrode and the solution in the 

reservoir; R2 is the resistance of the solution in the feed reservoir, which is a function of 

the buffer solution component and protein concentration; R3 is the channel resistance, 
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Figure 26. Cross-sectional view of a microchannel device and the schematic resistance 

model of a corresponding circuit.  
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which is a function of parameters such as the gel concentration, channel length, and 

channel cross-sectional area; R4 is the resistance of the solution in the detection reservoir, 

which depends upon the buffer solution composition; and R5 is the contact resistance 

between the detection electrode and the solution in the reservoir. When a protein is 

adsorbed on the detection electrode surface, Rtotal increases instantaneously due to the 

drastic increase of R5.  During a typical operation, the compositions of the gel and the 

buffer solution are fixed. The two resistances R2 and R4 are usually negligible compared 

with other resistances, because they are composed of highly conductive ions and 

electrolytes. The R1 can be taken as a constant because the SDS-coated proteins are 

driven away from the feed electrode.  

Figure 27 shows the measured Rtotal as a function of the cross-sectional area of 

the channel. The resistances were measured with the entire system filled with the buffer 

solution, i.e., no gel or protein existence. Measurement of the Rtotal with four kinds of 

channel cross-sectional size (8.0, 17.5, 20.3, and 30.2 µm deep, 440 µm wide at bottom 

and 500-530 µm wide at top) and four different detection electrode areas (0.75×1.5 mm2, 

1.4×1.5 mm2, 2.25×1.5 mm2, and 3.0×1.5 mm2) were performed. The Rtotal was 

calculated by dividing the voltage with the current measured over a period of 30 seconds. 

The size of the feed electrode was kept constant at 2.0×2.0 mm2. Figure 27 shows that 

the resistance Rtotal increases with the decrease of the channel cross-sectional area or the 

detection electrode size. If the channel region is taken as a conductor, such as a wire, the 

R3 should be inversely proportional to the cross-sectional area size as shown below: 
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Figure 27. The Rtotal with combination of four kinds of channel cross-section sizes and 

four kinds of detection electrodes.  
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A
lR ρ=3                                                                                   [26] 

where ρ is the resistivity, A is the cross-sectional area, and l is the length of the channel. 

The resistivity, ρ, is dependent upon the property of the channel such as the composition 

of the solution in the channel. Therefore, the Fig. 27 result is qualitatively consistent 

with equation [26]. The decrease of Rtotal with the increase of the detection electrode area 

shows that the resistance is an important factor in the circuit. For the practical 

application, the Rtotal value should be as low as possible. At the same time, the current 

drop during the adsorption of proteins on the detection electrode should be as large as 

possible. The Rtotal in Fig. 27 is very high, e.g., > 100 kΩ, when the channel’s cross-

sectional area is small or the detection electrode area is small. The former is contributed 

by the large R3 from the narrow channel cross-sectional area. The latter is due to the very 

large R5. The high R3 could cause the undesirable overheating of the solution during the 

operation. In order to avoid this effect, the channel’s cross-sectional area should be large. 

On the other hand, in order to maximize the detection signal, the detection electrode area 

should be small. Therefore, these two parameters need to be optimized for practical 

applications.  

Figure 28 shows influences of gel and protein to the total resistance in the device 

with various sizes of detection electrodes. RA is the total resistance without gel or protein, 

RB is the total resistance with 15.0% polyacrylamide gel but no protein, and RC is the 

total resistance with the channel filled with 15.0% polyacrylamide gel and the feed 

solution containing a protein (2.5 µg of α-lactalbumin).  
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Figure 28. Measurement of the total resistance (Rtotal) with or without gel in 

microchannel and protein loading at feed reservoir. 
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Under all channel conditions, the Rtotal decreased with the increase of the electrode area, 

which is similar to the result in Fig. 27.  

Four conclusions can be summarized from Fig. 28: (i) the total resistance of the 

device increases more than 50.0% when the channel is filled with the gel compared with 

the buffer solution only, (ii) the difference in (i) increases slightly with the decrease of 

the detection electrode, (iii) the total resistance of the device increases slightly when the 

protein solution is introduced into the gel-filled device, and (iv) the difference in (iii) 

decreases very slightly with the decrease of the detection electrode area. These results 

indicate that, in the actual protein separation process, the channel resistance R3 is an 

important portion of the total resistance Rtotal. The existence of protein in the feed 

solution has a limited effect on Rtotal. Since, for the separation of proteins, it is necessary 

to fill the channel with the gel, the change of the detection electrode contact resistance 

R5 needs to be high when a protein is adsorbed.   

 

1.3. Separation of Multiple Proteins in a Fluid Solution 

Figure 29 shows the Coomassie Brilliant Blue R250-stained electrodes after the 

microchannel device was operated for 900 seconds. The original feed solution contained 

one type of protein (α-lactalbumin) with a concentration of 112 µg/ml. The detection 

electrode shows a blue spot, which indicates the existence of protein. The same figure 

also shows that the protein was adsorbed at the nearest region from the channel outlet. 

The similar result was obtained with other types of proteins adsorbed on the electrode 

after electrophoresis.6,7  
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Figure 29. Coomassie Brilliant Blue R250-stained protein profile on detection electrode.  
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After the electrophoresis experiment, the surface of the detection electrode was analyzed 

with ESCA to further verify the existence of protein. Binding energies of N1s and S2p 

were examined because most proteins contain these two elements in functional groups.  

Figure 30 shows the N1s and S2p ESCA peaks of the adsorbed protein on the 

detection electrode surface (a) with and (b) without ovalbumin in the 0.5× TBE solution 

(containing 0.2% SDS). The N1s (399.0 eV) comes from the amine group of tris-borate 

and EDTA in the buffer solution. However, the N1s (402.0 eV) peak comes from the 

nitrogen containing rings (indole, imidazole) and amides (CONH) in the protein 

structure. The S2p (169.4 eV) peak in Fig. 29(b) comes from sulfates of SDS in the buffer 

solution. The S2p (163.2 eV) peak in Fig. 29(a) is probably contributed by the thiols (SH) 

and sulfides (SCH3) of the protein. In addition, the intensity of total nitrogen peaks with 

the existence of protein is much larger than those without the existence of protein. 

During the protein separation process, the Rtotal varies little with respect to time. 

However, upon arriving at the detection reservoir, proteins are quickly transported to the 

anode and are strongly absorbed on the electrode surface. Since the anode area is small 

in the microchannel device, the adsorbed protein molecules easily block its surface.12 

The increase of the contact resistance R5 is determined by the percentage of the electrode 

surface being blocked. In general, the Rtotal increases with the number of the proteins 

adsorbed on the anode.  

Figure 31(a) shows the current-time (I-t) diagram of a microchannel device of 

which the feed solution contains two types of proteins, i.e., carbonic anhydrase (29 kDa) 

and ovalbumin (45 kDa), with concentration of 325 µg/ml in the 0.5× TBE solution. 
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Figure 30. ESCA N1s and S2p spectra of the detection electrode surface: (a) with protein, 

and (b) without protein. 
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Figure 31. The microchannel’s (a) current vs. time (I-t), and (b) (dI/dt) vs. t curves 

replotting of current change with time (dI/dt-t) at different protein samples. The channel 

size has a depth of 30.2 µm, and a width of 440 µm at the bottom and 530 µm at the top. 

The channel is made of Si with sputtered SiOx surface.  
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The electrical potential across the channel region was 11.8 V/cm, and 15.0% 

polyacrylamide gel was introduced into the channel. The solution (4 µl) of carbonic 

anhydrase (29 kDa) and ovalbumin (45 kDa) were loaded in a sample reservoir at the 

concentrations of 325 µg/ml, respectively. Figure 30(b) is the graph of the derivative of 

Fig. 30(a) curve with respect to time (t). The peak 1 represents the arrival of carbonic 

anhydrase (29 kDa) to the detection electrode, and the peak 2 represents the arrival of 

ovalbumin (45 kDa) to the detection electrode. At the beginning of the operation, e.g., t 

< 150 sec, the derivative of the current fluctuated severely. The same phenomenon was 

also observed in separate experiments. There are many possible causes of the 

fluctuations. For example, the system was not steady when the voltage was initially 

applied. There might be evaporation of the solution due to the sudden rise in temperature 

when the current was applied. The curve becomes smooth afterwards. There are two 

apparent current drops in the Fig. 30(a) curve, which correspond to the arrival times of 

the two separated proteins to the detection electrode.  

The peak time of carbonic anhydrase was 459 seconds after electrophoresis, and 

that of ovalbumin was 811 seconds. Separately, we observed that the peak time of the 

same protein remains the same in spite of the absence of other proteins. Therefore, the 

mobility of a protein in this kind of device is constant, which indicates the effectiveness 

of the channel gel in separation of proteins. The effective migration speed (channel 

length divided by the peak time) of a protein decreases with the increase of its molecular 

weight. This is consistent with the result of the conventional slab-type or capillary 
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electrophoresis.2,3 Therefore, the protein detection method of this device is as effective 

as the conventional optical detection method.9  

Figure 32 shows the dI/dt-t curves measured from two different devices 

containing the same three proteins in the feed solution. Each protein (α-lactalbumin 

(14.2 kDa), carbonic anhydrase (29 kDa), and ovalbumin (45 kDa)) has the same 

concentration of 325 µg/ml. The device in Fig. 32(a) has a channel depth of 20.3 µm, a 

width of 440 µm at the bottom and 500 µm at the top, and a length of 0.5 cm. The 

detection electrode area is 3.0×1.5 mm2. The device in Fig. 32(b) has a channel depth of 

30.2 µm, a width of 440 µm at the bottom and 530 µm at the top, and a length of 0.5 cm. 

The detection electrode area is 1.4×1.5 mm2.  

The two devices have different channel cross-sectional areas and detection 

electrode areas. Fig 32(a) device has a channel depth of 20.3 µm and detection electrode 

area of 3.0×1.5 mm2. Fig 32(b) device has a channel depth of 30.2 µm and detection 

electrode area of 1.4×1.5 mm2. Obviously, the latter contains more distinct peaks than 

the former, e.g., 0.3 µA/sec vs. 0.05 µA/sec. This is due to the shrinkage of the detection 

electrode size. The devices were made of Si substrate, whose channels were made by 

KOH etching. The surface of the Si-based device is sputtered SiOx. The peak time (ti) of 

the same protein also differs in these two figures. This is due to factor such as the 

variation of the retention time in different channels.5-7 Migration speeds of α-

lactalbumin (14.2 kDa), carbonic anhydrase (29 kDa), and ovalbumin (45 kDa) are 

estimated to be 5.8, 4.5, and 2.86 cm/hour, separately, in Fig. 32(a) and 5.4, 3.85, and 

2.22 cm/hour, separately, in Fig. 32(b).  
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Figure 32.  The dI/dt vs. run time (dI/dt-t): (a) device with a channel depth of 20.3 µm 

and detection electrode area of 3.0×1.5 mm2, (b) device with a channel depth of 30.2 µm 

and detection electrode area of 1.4×1.5 mm2. 
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Figure 33 shows mobilities of proteins reported in a conventional slab-type SDS-

PAGE1 and measured from the two different microchannel devices described in Fig. 32. 

The protein mobility in the conventional slab-type were obtained from ref. 1; the 

mobilities of device (a) and device (b) were obtained from equations [2] and [3] in 

Chapter II. The migration of the protein in the microchannel device follows the linear 

relationship of log (mobility) vs. molecular weight. Mobilities of proteins in the 

microchannel device are higher than those in a typical slab-type electrophoresis.10 The 

discrepancy may be due to factors such as the channel cross-sectional area, channel wall, 

materials. In spite of the same channel length (0.5 cm) in devices (a) and (b), device (b) 

has a larger cross-sectional area and a delayed peak time for the proteins. A similar 

result was reported for the separation of DNAs in a cross-junction type of device that 

contains hydroxyethyl cellulose (HEC) in the separation channel as sieving material.7 In 

that case, the increase of the separation channel width from 30 µm to 70 µm, and the 

feed channel width from 30 µm to 120 µm resulted in doubling the separation time, but 

with almost 10 times improvement of detection sensitivity.7 The increase of sensitivity 

and the delayed peak were due to the increase of DNA loading by the increase of feed 

channel width from 30 µm to 120 µm, and the dilution of the ionic strength in the large 

cross-sectional separation channel (width 70 µm). The dilution of the ionic strength in 

the separation channel comes from the lower ionic strength in the feed channel or 

reservoir.7,8 The result of Fig. 33 shows that protein detection efficiency was improved 

by 6 times with the combining of two device configuration factors, i.e., channel cross-

sectional area and detection electrode area.6  



 

 

106

 

 

 

 

 

0.04

0.06

0.08
0.1

0.3

0.5

0.7

1 104 2 104 3 104 4 104 5 104 6 104

pr
ot

ei
n 

m
ob

ili
ty

 ( 
cm

2 
/ h

r V
 )

m.w. of protein (Da)

from Fig. 32(b)

slab-type (ref. 1)

from Fig. 32(a)

 

 

Figure 33.  The protein mobility vs. the molecular weight of protein obtained from a 

conventional slab-type SDS-PAGE equipment (reference1), and from Fig. 32(a) and (b). 
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According to the literatures, the efficiency can be improved further with the same 

method, i.e., changing the configurations of the microchannel.6,7 

The gel composition or concentration in the microchannel region is critical for 

the separation efficiency. Low concentration (< 15.0%) of the gel could not achieve 

good separation or resolution. The theoretical number of plates (N) and the resolutions 

(R) for separation of α-lactalbumin (14.2 kDa) from ovalbumin (45 kDa) were 

calculated from equations [27] and [28]. The result is shown in Table IX. All data were 

obtained with 15.0% polyacrylamide gel in the microchannel region. 

                                       2
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where ti is the peak time of protein i, and ∆t1/2 is the full width at the peak’s half 

maximum.5 For a good separator, both N and R numbers have to be large. The N values 

of device (b) are more than twice those of device (a). This indicates the improvement of 

device performance by changing the channel cross-sectional area and the detection 

electrode area. However, these numbers are still lower than those reported using a 

different type of microchannel device.5 The low N is probably due to the band 

broadening, i.e., the band curving in the polyacrylamide gel-filled microchannel.3 The 

band curving is a very serious problem in the separation of DNA molecules in the 

polyacrylamide gel-filled channel.3 However, in this study, the SDS was supposed to 

reduce the band curving due to the surfactant. The R values of device (b) are larger than 

those of device (a). They are larger than those of the conventional slab-type system.4,7  
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Table IX. Analysis of electrophoresis performance of device (a) and device (b) by 
theoretical plate (N) and resolution (R). 
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1.4. Estimation of Adsorbed Proteins  

Figure 34 shows I-t curves of the same device: (a) the feed solutioned containing 

no protein, (b) the feed solution containing three proteins, and (c) subtraction of (b) from 

(a). Three proteins (α-lactalbumin, carbonic anhydrase, and ovalbumin) have the same 

concentration of 325 µg/ml. The device has a channel depth of 30.2 µm, width of 440 

µm at the bottom and 530 µm at the top, and length of 0.5 cm. The detection electrode 

area is 1.4×1.5 mm2. The area of the three drastic current drops in Fig. 34(c) could be 

calculated by integrating the current (I) with respect to time (t, sec). The value could be 

used to estimate the charge density of adsorbed protein (Qads) on the detection electrode. 

From Fig. 34, it was calculated that Qads value is 474.5 µC for α-lactalbumin, 

793.2 µC for carbonic anhydrase, and 2554.9 µC for ovalbumin. The electrode size is 

1.4×1.5 mm2 (0.021 cm2). The surface protein concentration Γ can be calculated as 

below: 

                                       
nF

MQads=Γ                                                                              [29] 

where M is the molecular weight, n is the total number of electrons transferred per 

protein molecule, and F is the Faraday constant.13,14 Since each protein molecule carries 

a specific number of charges, the amount of protein adsorbed on the electrode surface 

could be calculated. It is generally recognized that, for 1.0 g of protein, 1.4 g of SDS can 

be adsorbed, and one SDS molecule carries two electrons from its sulfate group.2-4 In 

recent studies, it was found that each carboxyl group in a protein molecule transfers two 

electrons to the metal surface.13,14  
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Figure 34. Current vs. gel run time (I-t): (a) the feed solution containing no protein, (b) 

the feed solution containing three proteins, (c) subtraction of (b) from (a). 
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If we assume that the above two factors determine the surface charge of the protein 

molecule in this study, equation [29] can be used for quantitative analysis. For an α-

lactalbumin molecule, there are 21 carboxyl groups13 and 75 SDS molecules attached; 

for a carbonic anhydrase molecule, there are 27 carboxyl groups and 153 SDS molecules 

attached; for an ovalbumin molecule, there are 47 carboxyl groups and 238 SDS 

molecules attached.3 From equation [29], 0.364 µg of α-lactalbumin was adsorbed on 

the electrode surface; 0.662 µg of carbonic anhydrase was adsorbed; and 2.09 µg of 

ovalbumin was adsorbed. For every experiment, 4 µl of protein solution (325 µg/ml for 

each protein concentration) was introduced into the feed reservoir. It corresponded to 1.3 

µg of each of the three proteins. Therefore, there are discrepancies between the 

calculated amounts and the actually loaded amounts. Since the calculation was based on 

many assumptions, as described previously, the deviation is not avoidable.  

For α-lactalbumin and carbonic anhydrase, the calculated amount was less than 

the actual amount. This is probably due to the loss of the protein in the electrophoresis 

process. Liu et al. reported the loss of protein in the microchannel electrophoresis 

experiment.7 It was suggested that a high ionic strength buffer solution could be used to 

solve the problem. However, for the interpretation of our data, there are different 

considerations. In our device, there are other factors contributing to the loss of protein. 

For example, the channel wall of our device contains two types of materials, i.e., SiOx 

and cellulose tape. Due to the electrostatic interaction, protein adsorption on these 

materials could be very serious.7  
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The α-lactalbumin, carbonic anhydrase, and ovalbumin were loaded in 4 µl 

sample reservoir at the concentrations of 325 µg/ml, respectively. The protein-free 

buffer solution was used separately in a control experiment. In this experiment, a very 

low electric field was applied, i.e., 11.8 V/cm, while other microchannel devices 

reported in the literature often operated at a high field, e.g., 600 V/cm.5 The charge of 

the channel wall can increase with increase of the field strength. The charged channel 

wall usually forms a undesirable electro-osmotic flow.3,7,8 The electro-osmotic flow has 

a flow direction counter to the direction of electrophoresis flow, which reduces the 

efficiency of the electrophoresis.  

 

2. Microchannel Surface Electrophoresis for DNA Analysis 

For large-sized DNA separation, the conventional gel electrophoresis system is 

not applicable due to the size restriction of DNA molecules.19 Surface electrophoresis 

will be a good substitute for the gel-filled microchannel electrophoresis. The surface 

electrophoresis device has the same configuration as the microchannel device used to 

separate proteins, except there is no gel in the bottom channel surface region.  

If a change of the detection electrode contact resistance is detected upon the 

arrival of the separated DNA fragment, the mobility can be calculated. Since the DNA 

fragment migrates along the bottom surface of the channel, we could influence the 

separation efficiency by modifying it. 
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2.1. DNA Electrophoresis on Solid Surface 

Most literature reports of surface electrophoresis experiments were performed on 

the unpatterned silicon wafer without a defined channel area for DNA migration.12,13 

However, if the surface electrophoresis is carried out in a three-dimensional 

microchannel structure, the current flow and the transport of the DNA fragments can be 

forced into a confined region.  

Figure 35 shows (a) a schematic setup of electrophoresis on a completed 

microchannel device, and (b) a photograph of UV-lighted λ-EcoR I digest DNA sample 

attached with the ethidium bromide fluorescent agent. The air-dried DNA sample in the 

feed reservoir could stay on the bottom surface for a long time after the application of 

the buffer solution to the system. For example, the DNA fluorescent spot in Fig. 35(b) 

lasted for more than five minutes before an electric field was applied. 

 Figure 36 shows the binding energies of N1s and P2p for two detection electrode 

surfaces after electrophoresis in 0.5× TBE with or without DNA component. The lower 

curve of Fig. 36(a) contains a N1s peak at 399.6 eV that corresponds to the amine (-NH2) 

group contributed by the tris-borate and EDTA components in the buffer solution. The 

upper curve of Fig. 36(a) contains an additional N1s peak at 401.0 eV that corresponds to 

the purine and pyrimidine groups of DNA nucleotides, such as adenine, guanine, 

cytosine, and thymine. Separately, the lower curve of Fig. 36(b) does not show a 

phosphate peak. However, the upper curve of Fig. 36(b) contains two P2p peaks at 132.4 

eV and 133.1 eV, which correspond to the phosphate group in the DNA backbone. These 

additional N and P groups are common in DNA molecules. 
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Figure 35. (a) Schematic setup of electrophoresis on a completed microchannel device, 

and (b) photograph of UV exposed λ-EcoR I digest DNA sample attached with the 

ethidium bromide fluorescent agent.  
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Figure 36. ESCA spectra of the detection electrode surface: (a) N1s and (b) P2p. 
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Therefore, it is clear that DNA was transported from the feed reservoir to the detection 

electrode surface by the electrophoresis process. This result is similar to the previous 

reports of protein separation by a polyacrylamide gel-filled electrophoresis device.10,11 In 

the latter cases, the N1s peak of the amide bond (-NHCO-) and S2p peak of the thiol 

group (-SH) of the protein molecules were presented. 

Figure 37 shows curves of the current change rate vs. time (dI/dt-t) of two 

microchannel surface electrophoresis devices with different channel bottom surfaces. 

The channel was made of a SU-8 sidewall and glass or Si bottom surface with a depth of 

35 µm, width of 485 µm, and length of 0.5 cm, as previously shown in Fig. 14 of 

Chapter III. The six fragments of the λDNA (3.5, 4.9, 5.6, 5.8, 7.4, and 21.2 kbp) 

correspond to six individual peaks in the graph. The mobility for each DNA fragment 

can be calculated as described in equation [3] of Chapter II. At the early stage of the 

electrophoresis, the current fluctuation was observed. This is caused by the fast arrival of 

the DNA not adsorbed to the bottom surface of the channel, which was reported in Seo, 

et al.19  

When the two graphs in Fig. 36 are compared, signals from the oxidized Si 

channel are stronger than those from the oxidized glass channel. In addition, DNA 

fragments moved more quickly on an oxidized glass surface than on an oxidized Si 

surface. This result is consistent with the contact angle measurement, i.e., the DNA 

solution has a lower contact angle on the oxidized Si than on the oxidized glass, as 

discussed in Chapter IV. The mobility of the DNA fragment is determined by its affinity 

to the channel’s bottom surface.  
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Figure 37. The dI/dt-t for electrophoresis of λ-EcoR I digest DNA fragments on glass 

and Si microchannels. The channel was made of SU-8 sidewall and glass or Si bottom 

surface with depth of 35 µm, width of 485 µm, and length of 0.5 cm. 
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If the large fragment contains more surface-affinity groups than the small fragment, it 

will be adsorbed much more strongly, and will arrive at the detection electrode in a 

lower rate. In addition, the mobility of the same fragment on the strongly adsorbed 

surface, i.e., oxidized Si, is smaller than that on the weakly adsorbed surface, i.e., 

oxidized glass.   

Figure 38 shows the relationship between the number of base pairs (N, bp) in the 

DNA fragment and the mobility (µ). It is in the log-log scale. The relationship between 

the mobility and the size of the fragment (N) can be expressed as below: 

                                       αµµ −= No                                                                              [30] 

where µo is the mobility at N=1 and α is the dispersion value. The value of α is 

influenced by the solution property, such as ionic strength, the electric field strength, and 

the structure of the channel’s bottom surface. For the oxidized Si channel, α is 0.37 as 

shown in Fig. 38(a) data, which is close to the literature report of 0.25.19,20 For the 

oxidized glass channel, α is 0.49 as shown in Fig. 38(b). In a slab-agarose gel 

electrophoresis system, α is 0.87.2 Therefore, the dispersion of mobility in Fig. 38 

devices is much less than that of a slab-agarose gel electrophoresis, which indicates the 

resolutions of the slab-agarose gel among the different sized DNA fragments are better 

than those of the oxidized glass and Si microchannel devices. However, the two 

microchannel devices in Fig. 38 can separate very large sized DNA fragments. Because 

of its low mobility, the conventional agarose gel electrophoresis cannot be used to pass 

the large DNA fragment, i.e., 21.2 kbp in the EcoR I-digested λDNA, through the entire 

microchannel.2,19  
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Figure 38. Log scale of mobility vs. log scale of No. basepair of λ-EcoR I digest DNA 

fragments on (a) oxidized glass surface, and (b) oxidized Si surface microchannel. 
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2.2. Substrate and Buffer Effects on DNA Mobility 

Figure 39 shows the surface chemical property of the characteristics of the 

electrophoresis device. These entire devices were untreated, H2O/H2O2/H2SO4 solution-

oxidized, and H2 plasma-treated. The channel was made of a SU-8 sidewall and Si 

bottom surface with a depth of 35 µm, width of 485 µm, and length of 0.5 cm. The data 

was obtained using a buffer solution without DNA. The electrical current of the device 

with the oxidized Si bottom surface is larger than that with the untreated Si surface, 

which is further larger than that with the hydrogenated Si surface. Since the entire 

microchannel device contains three different materials, i.e., bottom channel surface, SU-

8 sidewall, and Cr electrodes, all of them can influence the overall current passing 

through the device. It is difficult to differentiate the contribution of individual factors. 

However, the influence of the channel bottom surface to the current is obvious from the 

data in Fig. 39. For example, the oxidized group, e.g., SiO (with the Si-O binding energy 

of 102.0 eV) and SiO2 (with the Si-O binding energy of 103.3 eV) shown in Chapter IV, 

enhances the electrical conductivity along the surface.44,45  

Since the hydrogenation process lowers the hydrophilicity of the Si or glass 

surface, the SU-8 surface became an important current path in the device. On the other 

hand, if the SU-8 surface is very hydrophobic, it cannot be a major current path in the 

device. The surface structure of a polymer, such as a SU-8, can be very complicated. 

Even though the hydrogenated SU-8 channel sidewall is loaded with rather hydrophilic 

groups, the proportion of electrical current through the solution and the SU-8 interface 

appears to be small, as shown in Fig. 39.  
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Figure 39. Current vs. time (I-t) with the buffer solution not loaded with DNA. The 

channels were made of SU-8 sidewall and Si bottom surface with a depth of 35 µm, 

width of 485 µm, and length of 0.5 cm as untreated, H2O/H2O2/H2SO4 oxidized, and H2 

plasma-treated. 
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According to Doherty et al.’s report, polymeric wall coating is often used in an 

electrophoresis system.44 The polymer is coated as a thin film layer on a rather 

hydrophilic glass or silica to eliminate electro-osmotic flow, or to remove shear from the 

charged surface under an electric field.44,46 In addition, the H2O/H2O2/H2SO4 oxidized 

SU-8 surface does not show significant chemical structure change as shown in C1s ESCA 

spectra of Fig. 21(b) of Chapter IV. The resistance to current flow through the interface 

of the oxidized SU-8 and the solution is a little different from that of the interface of 

hydrogenated SU-8. Therefore, for the SU-8-formed channel, the structure of the bottom 

channel surface is critical to the total current through the device. In addition, when the 

polymer surface becomes somewhat hydrophilic, it is reported that the polymer surface 

adversely inhibits the current flow by mechanism such as charge trapping flow.44,46   

Figure 40 shows the current vs. time (I-t) curves of DNA surface electrophoresis 

with different buffer concentrations (0.1×, 0.5×, 1.0×, 2.0×, and 5.0× TBE). The channel 

was made of a SU-8 sidewall and Si bottom surface. The entire device was (a) 

H2O/H2O2/H2SO4 solution-oxidized or (b) H2 plasma-treated. Fig. 40(a) shows that the 

2.0× or 5.0× TBE buffer solutions do not have drastic current drops, which shows that 

no DNA separation occurs in the high buffer concentration using the oxidized device. In 

Fig. 40(b), the H2 plasma-treated devices have only one drastic current drop for each 

buffer concentration, which indicates that it is impossible to separate DNA fragments 

larger than 3.5 kbp using the H2 plasma-treated device. The time of the drastic current 

drop for each buffer concentration increases with the increase of buffer concentration on 

the H2 plasma-treated device.  
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Figure 40. The current vs. time (I-t) curves of DNA surface electrophoresis with 

different buffer concentration (0.1×, 0.5×, 1.0×, 2.0×, and 5.0× TBE). The channel was 

made of a SU-8 sidewall and Si bottom surface with a depth of 35 µm, width of 485 µm, 

and length of 0.5 cm. The entire Si wafer devices were (a) H2O/H2O2/H2SO4 solution-

oxidized or (b) H2 plasma-treated. 
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Figure 41 shows the graphs of the derivative of Fig. 40 with respect to time (t). 

The peaks corresponding to the 3.5 kbp DNA fragment were labeled. Other peaks for 4.9, 

5.6, 5.8, 7.4, and 21.2 kbp DNA fragments were not labeled. The channel was either (a) 

solution-oxidized or (b) H2 plasma-treated. The migration of the 3.5 kbp on the oxidized 

surface is slower than that on the hydrogenated surface. This is consistent with the result 

in Fig. 39, although the latter does not contain DNA. Fig. 41 shows that the migration 

speed of the 3.5 kbp fragment decreases with the decrease of the buffer concentration.  

Figure 42 shows the mobility of the shortest DNA fragment (3.5 kbp) obtained 

from Fig. 41 vs. concentration of the buffer solution. For both curves in Fig. 42, the 

DNA mobility decreases with the increase of the buffer concentration. It was reported 

that under the high buffer concentration condition, the DNA fragments are surrounded 

with an ionic layer, which helps their adhesion to the solid surface.20 However, when the 

buffer concentration was too high, e.g., 2.0× and 5.0× TBE in this study, there was no 

obvious dI/dt peak in the operation curve. This is probably due to the formation of a 

layer surrounding the detection electrode, which reduced the sensitivity of the detection 

electrode. Therefore, for the optimal performance of this kind of microchannel device, 

the 0.5× or 1.0× TBE buffer solution is suitable. 

 

 

 

 

 



 

 

125

 

 

 

 

 

 

0

1

2

3

0 400 800 1200 1600

dI
/d

t (
m

ic
ro

A
m

p/
se

c)

time (sec)

(a) 3.5 kbp peak 
on oxidized (H

2
O/H

2
O

2
/H

2
SO

4 
) device

(b) 3.5 kbp peak on H
2
 plasma modified device

0.1 x
TBE

0.1 x 
TBE

0.5 x
TBE

0.5 x
TBE

1.0 x
TBE

1.0 x
TBE

2.0 x
TBE

2.0 x
TBE

 

 

Figure 41. The dI/dt-t curves of a microchannel surface electrophoresis on (a) oxidized 

and (b) H2 plasma-treated microchannels with SU-8 sidewall and Si bottom surface in 

0.1×, 0.5×, 1.0× and 2.0× TBE buffer. 
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Figure 42. Mobility of 3.5 kbp fragment of λ-EcoR I digest DNA vs. buffer 

concentration on (a) oxidized and (b) H2 plasma-treated microchannels. 
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CHAPTER VI 

THIN FILM TRANSISTOR DRIVEN ELECTROPHORESIS* 

 

1. Characteristics of PECVD SiNx 

Deposition rate of PECVD SiNx is a function of substrate temperature and 

plasma power. The deposition rate is known to increase or decrease with the plasma 

power at a fixed substrate temperature.24 The temperature and plasma power also the 

influence refractive index (RI) of the deposited film. At a fixed power, the RI increases 

with the increase of the substrate temperature. The increase of the RI with the 

temperature comes from the change of the chemical structure or film densification.28,29 

When the temperature is fixed, the RI decreases with the increase of the plasma power.  

Figure 43 shows the deposition rate of SiNx as a function of the substrate 

temperature at different plasma powers. All experiments were performed with the same 

feed gases (SiH4/NH3/N2 40/120/720 sccm) and pressure (500 mTorr). Two conclusions 

can be drawn from the figure: (i) the deposition rate decreases with the substrate 

temperature, and (ii) the deposition rate increases with power. Since plasma phase 

chemistry is independent of the substrate temperature, the change of the deposition rate 

(under the same plasma power) must be due to the surface reaction. At a high 

temperature, reactive species such as radicals migrate easily at the substrate surface. 

___________________ 
* Part of this chapter is reprinted with permission from “Plasma-Enhanced Chemical 
Vapor Deposition of Silicon Nitride below 250oC” by Y. Kuo and H.H. Lee, 2002, 
Vacuum, 4, 299-303, 2004 by Elsevier LTD. 
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Figure 43. PECVD SiNx deposition rate as a function of temperature at various plasma 

powers. 
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At a low surface temperature, the reactive species do not have enough energy to migrate. 

In the PECVD process, free radicals generated in the plasma-phase are transported and 

adsorbed on the substrate surface. These radicals form the film through mechanisms of 

migration, reaction, and side-product desorption. Surface reactions are complicated. For 

example, new bonds can be formed and remain on the surface, which favors the 

deposition rate. Surface groups can be etched off by hydrogen radicals, which decrease 

the deposition rate. These reactions are far from stoichiometric. The formed film 

contains many defects. As the substrate temperature is increased, the film is densified, 

which also lowers the film’s deposition rate. This explains why the deposition rate of 

low temperature is higher than that of high temperature.24  

Figure 44 shows the substrate temperature and plasma power influences on the 

RI of the deposited SiNx film. At a fixed power, the RI increases with the increase of the 

substrate temperature. When the temperature is fixed, the film’s RI decreases with the 

increase of the plasma power. The change of the RI with temperature can be from the 

change of chemical structure of the film, which can be verified by surface analysis.   

Fourier Transformed Infrared (FT-IR) spectroscopy is often used to analyze 

chemical bonding information of solid-state films. Figure 45(a) shows FT-IR spectra of 

SiNx films deposited at different temperatures with the plasma power fixed at 700 W. 

Four major peaks, i.e., N-H stretch (~3350 cm-1), Si-H stretch (~2190 cm-1), N-H bend 

(~1170 cm-1), and Si-N stretch (~840 cm-1), are clearly detected in each film. Two 

conclusions can be drawn: (i) the N-H stretching and bending peaks decrease with the 

increase of the temperature, and (ii) the Si-H stretch peak follows the opposite trend.  
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Figure 44. PECVD SiNx refractive indices as a function of temperature at various plasma 

powers. 
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Figure 45. FT-IR spectra of PECVD SiNx films: (a) at 100°C, 150°C, 200°C and 250°C 

with 700 W rf power, and (b) comparison of characteristic peaks of 100 °C SiNx films 

with various rf powers. 
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Then, the N-H/Si-H ratio, which is the area ratio of the N-H stretch peak (~3350 cm-1) / 

the Si-H stretch peak (~2190 cm-1), decreases with the increase of temperature. The 

250°C-deposited film has a wider Si-H stretch peak than the N-H stretch peak, which is 

opposite to that reported in the literature.28,29,47 This is probably due to the difference in 

the rf frequency, i.e., 50 kHz in this work and 13.56 MHz in others’ work.17,29,48 Fig. 

45(b) shows that the size of the N-H stretch peak is almost independent of the plasma 

power at 100°C. The size of the Si-H peak increases with the increase of the plasma 

power. The FT-IR of the 100°C-deposited film remains the same even after being 

exposed to air for several months. This indicates that the bulk of the film is stable, e.g., 

the room temperature oxidation is limited to the surface layer.25 It was observed that the 

relationships discussed in Fig. 45(a) and (b) were consistent over large ranges of 

substrate temperature and plasma power. In addition, the influence of the plasma power 

to the film structure, e.g., the (N-H /Si-H) ratio at 100°C, is more pronounced than that at 

250°C.  

Figure 46 shows ESCA spectra of Si2p of SiNx films deposited under various 

temperatures at 500 W. Each spectrum could be fitted into three peaks, i.e., Si-N (101.8 

eV), Si-O(N) (102.8 eV), and Si-O (103.6 eV). The last two peaks were formed from 

unpassivated Si bonds during the exposure to air. The (Si-O+Si-O(N) / Si-N) peak ratio 

(0.52, 0.32, and 0.31 for 100°C, 150°C, and 250°C, respectively) decreases with the 

increase of the substrate temperature. Therefore, the high temperature-deposited film is 

more stable and contains less unsaturated Si bonds than the low temperature-deposited 

film.  
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Figure 46. ESCA spectra of Si2p peak of SiNx films: at 100°C, 150°C, and 250°C with 

500 W. 



 

 

134

At 250°C, the Si-Si bond peak (99.5 eV) is detected. The Si-Si bond is probably 

responsible for the RI of the high temperature-deposited SiNx as shown in Fig. 44.24 

Table X shows the FT-IR (N-H stretch/Si-H stretch) peak ratio and ESCA N/Si 

atomic ratio of SiNx films as a function of the plasma power. Both ratios decrease with 

the increase of the plasma power. In addition, when the two ratios are plotted with 

respect to the rf power, they show a linear relationship. There can be two interpretations: 

(i) the increase of power produces more reactive Si-H radicals rather than N-H radicals 

in the plasma phase, or (ii) the high power makes it easy to selectively remove the N-H 

component from the film surface due to the hydrogen etching mechanism. Although it is 

difficult to detect the hydrogen concentration change in the plasma phase, the hydrogen 

etching mechanism is widely accepted.28,29 It was indirectly proven by analyzing the 

easiness of oxidation of the deposited film. 

Figure 47 shows the wet etch rate of SiNx film in a diluted HF solution (1:20 

HF/DI water) with respect to the film’s RI. The 100°C-deposited films have low 

refractive indicies and high etch rates. This is consistent with the literature’s report that a 

low refractive index film has a weak chemical resistance as commonly reported, and the 

low temperature film has a less dense structure than a high temperature one. 16,18 The 

relationship between the wet etch rate and the refractive index of SiNx is useful for the a-

Si:H TFT fabrication.  

Figure 48 shows the I-V characteristics of metal-insulator-silicon (MIS, Al-SiNx-

Si wafer) structures. The 100oC-deposited film has a high leakage current of 2.19×10-8 

Amp/cm2 at 2.0MV/cm, which is improper for the TFT gate dielectric application.  
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Table X. FT-IR N-H/Si-H peak ratio and ESCA atomic N/Si ratio of SiNx as a 
function of plasma power. 
 

 
Power 

 

 
FT-IR (N-H/Si-H) peak ratio 

 
ESCA atomic N/Si ratio 

 
300 W 

 
1.132 

 
0.745 

 
400 W 

 
1.123 

 
0.703 

 
500 W 

 
0.873 

 
0.675 
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0.657 
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0.539 

 
0.638 

 

 

 

 

   



 

 

136

        

 

 

0

2000

4000

6000

8000

1 104

1.84 1.88 1.92 1.96

Et
ch

 R
at

e 
( A

ng
/m

in
 )

Refractive Index

100 oC

150 oC
200 oC 250 oC

 

 
Figure 47. Etch rate profile with various refractive index films from 100°C, 150°C, 

200°C, and 250°C. 
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Figure 48. I-V characteristics of metal-insulator-semiconductor (MIS) structure (Al-

SiNx-Si wafer). 
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The 250oC-deposited film has a lower leakage current of 1.16×10-9 Amp/cm2 at 2.0 

MV/cm, which is applicable for the TFT gate dielectric application. Therefore, SiNx film 

with different chemical and electrical properties could be deposited by varying process 

parameters, such as temperature and rf power.  

 

2. Electrical Characteristics of a-Si:H TFT 

Inverted staggered tri-layer a-Si:H TFTs were fabricated. The process and 

detailed condition were described in Chapter III. The SiNx film was optimized for the 

TFT. A-Si:H TFTs with various SiNx gate dielectric films were characterized.  

Figure 49 shows the output characteristics of Ids-Vds curves of an a-Si:H TFT 

with SiNx (SiH4/NH3/N2 30/120/720 sccm) and a-Si:H (SiH4 70 sccm). The curves show 

no severe crowding phenomena, showing that the n+ layer to intrinsic a-Si:H contacts is 

close to ohmic.16,17,48  

Figure 50 shows the transfer characteristics of the same TFT in Fig. 49. The 

calculated field effect mobility is 0.127 cm2/Vs, and the Vth is 5.944 V with a channel 

width of 39 µm and a channel length of 88 µm. The measurements were done after one 

hour annealing at 250oC in atmosphere because it has been reported that the plasma 

radiation from RIE can increase the TFT threshold voltage and leakage current by 

damaging the gate dielectric film and the top and bottom interfaces.47 After the 

annealing, no Vth shift and anomalous high leakage current due to RIE process were 

detected. Interface property between a-Si:H and SiNx film is another factor to determine 

electrical characteristics of a-Si:H TFT. 
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Figure 49. Output characteristics of an a-Si:H TFT, Ids vs. Vds. 
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Figure 50. Transfer characteristics of an a-Si:H TFT, Ids vs. Vg. 
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For example, the TFT mobility decreases with the increase of the roughness of the SiNx 

surface.16,29 A rough surface can cause a wide tail state and a high defect density at the 

interface.17 At a fixed power of the a-Si:H deposition, the interface property between the 

a-Si:H and SiNx layers is determined by the SiNx deposition process.16,48 The inverted 

staggered TFT, when the a-Si:H is deposited on top of the SiNx, usually has better 

performance than a TFT of a reverse sequence-deposited structure. It is because the 

inverted staggered TFT has lower band energy and less stress mismatch at the 

interface.16,17 

Figure 51 shows the general relationships between the refractive index (RI) of 

gate SiNx and corresponding TFT threshold voltage, Vth. There are two graphs with 

different tri-layer deposition conditions. Fig. 51(a) is from PECVD deposition with 50 

kHz (low frequency) rf power, and Fig. 51(b) is from PECVD deposition with 13.56 

MHz (high frequency) rf power.29,48,49 The graph of the 13.56 MHz rf source is replotted 

from ref. 29. The two graphs have different a-Si:H deposition conditions and TFT 

channel width/length (W/L: 88/39 µm vs. 100/16 µm). However, Fig. 51(a) and (b) 

simultaneously show that a small range of refractive indices, i.e., 1.87-1.89 or 1.85-1.90, 

has the lowest values of Vth.16,29,49 Though the two graphs show the same trend about the 

SiNx RI vs. Vth, the low frequency condition has a higher overall Vth (4.7–7.6 V) than the 

high frequency Vth (2.0–4.5 V). This is probably due to more serious plasma damage of 

the low frequency at the interface of the a-Si:H and gate dielectric SiNx than that of the 

high frequency.  
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Figure 51. Refractive index effect on TFT threshold voltage Vth, PECVD SiNx at 500 

mTorr, 250oC (reference29). 
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The TFT prepared from the 50 kHz PECVD process has the lowest Vth when the gate 

SiNx was deposited from SiH4/NH3/N2 30/120/720 or 40/160/720 sccm, 500 mTorr, and 

700 W. The RI of the SiNx film increases with the increase of the SiH4 flow rate when 

the NH3 and N2 flow rates are fixed. This is due to the increase of the Si-Si bond in the 

film.24 Therefore, the SiH4 flow rate in the SiNx deposition process can affect the Vth of 

the a-Si:H TFT.  

Figure 52 shows the RI of the gate SiNx vs. the field effect mobility of TFT. The 

TFT with the highest µeff occurs with the SiNx gate dielectric RI in the range of 1.87 to 

1.90. The same TFT also has a lower Vth than other TFTs, as shown in Fig. 51.  

Figure 53 shows the ratio of Ion/Ioff with respect to the RI of SiNx. The Ion current 

was measured at Vd = 10 V and Vg = 30 V. The Ioff was measured at the minimum 

current at Vd = 10 V and Vg = –5 V - 0 V. Typically, the requirement for an a-Si:H TFT 

is to have the Ion/Ioff ratio above 106.16 From Fig. 53, the SiNx gate dielectric film 

deposited from SiH4/NH3/N2 30/120/720 or 40/160/720 sccm shows the maximum 

Ion/Ioff ratio. Therefore, both two films could be used as the gate dielectric of a high-

performance a-Si:H TFT.  

The SiH4 gas flow rate for a-Si:H deposition influences the TFT threshold 

voltage and field effect mobility at a fixed pressure of 250 mTorr. As the SiH4 flow rate 

increases, the Vth decreases and the mobility increases. Particle formation during a-Si:H 

deposition is critical to the performance of TFT. When the gas flow rate is high, the 

residence time of reactive radicals will be short in order to reduce the chance of forming 

a-Si:H particles which will deteriorate the morphology of a-Si:H film.21,24  
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Figure 52. Refractive index effect on TFT field effect mobility µeff, at 500 mTorr, 250oC. 
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Figure 53. Refractive index effect on TFT Ion /Ioff ratio, PECVD SiNx at 500 mTorr, 

250oC. 

 

 

 

The TFT characteristics are dominated by the first 100 Å of the a-Si:H layer 

adjacent to the gate dielectric interface.48 If the content of hydrogen in a-Si:H is low, a 
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large number of dangling bonds are formed at the a-Si:H/SiNx interface, which results in 

a high density of interface states. The high defect density represents low field effect 

mobility and high threshold voltage.17,29,47,48,50 To increase the content of hydrogen at 

surface, H2 plasma can be used.48 However, the H2 plasma can not only passivate 

dangling bonds, but also selectively etch the N containing group in the SiNx layer.28,29 

Therefore, the H2 plasma process needs to be optimized in order to obtain the best TFT 

characteristics.49,50  

 

3. Electrophoresis of TFT-Connected Microchannel Device 

An a-Si:H TFT can be connected to the microchannel electrophoresis device to 

stabilize the current. In principle, the microchannel electrophoresis functions as a 

variable resistor of which the resistance increases drastically with the arrival of a protein 

to the detection electrode. Since the a-Si:H TFT could be fabricated at a low 

temperature, the entire TFT-microchannel electrophoresis system could be fabricated on 

various substrates.  

The channel of device was made of a SU-8 sidewall and SiNx bottom surface 

with a depth of 30 µm, width of 500 µm, and length of 0.5 cm, as previously described 

in Chapter III. To improve PAGel affinity to the SU-8 channel surface, the microchannel 

device was treated with O2 plasma by RIE with O2 5 sccm at 100 mTorr, 100 W, and 

room temperature.  

Figure 54 shows (a) an inverted staggered tri-layer a-Si:H TFT connected to the 

microchannel device, and (b) the equivalent circuit. The TFT (W/L: 88/40 µm) has a 
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field effect mobility of 0.127 cm2/Vs measured at the saturation Id current region, a Vth 

of 5.944 V, and a leakage current (Ioff) below 10-12 Amp.  

Figure 55 shows I-t curves of (a) the TFT alone, (b) the TFT-connected gel-filled 

microchannel with no protein in the feed reservoir, and (c) the TFT-connected gel-filled 

microchannel with protein in the feed reservoir. The three TFTs in Fig. 55 were operated 

under a gate bias of 40 V for a long period of 2400 sec. The Ids decreases with time. 

Since the interface quality decays exponentially with time, the current of the TFT alone, 

or the TFT gel-filled microchannel system, decreases with log t.51,52 After the 4800 sec 

operation, the Vth shift was increased to 14.8 V. For the protein-loaded TFT-

microchannel system, the current shows drastic drops for each size of protein arrival on 

the detection electrode. In addition, as the total resistance of the system sequentially 

increases associated with the gel-filled microchannel and protein sample loading, the 

current range also decreases.  

Without a TFT, the I-t curve fluctuated drastically at the beginning of the 

operation, e.g., t < 300 sec.11 The same phenomenon was also reported by others.7 There 

are many possible causes for this fluctuation. For example, the system was not 

equilibrated when the voltage was initially applied. During the electrophoresis, the 

voltage drop between the two reservoirs of the microchannel is the total applied voltage 

minuses the Vds of the TFT. In this study, the voltage drop contributed by the TFT was 

very small, i.e., 0.02 V, even after the 2400 second operation. 
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Figure 54. TFT-connected microchannel device: (a) an inverted staggered tri-layer a-

Si:H TFT-connected to the microchannel device, and (b) the equivalent circuit.  
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Figure 55. The I-t curves of (a) the TFT alone, (b) the TFT-connected gel-filled 

microchannel with no protein in the feed reservoir, and (c) the TFT-connected gel-filled 

microchannel with protein in the feed reservoir.  

 

 

The voltage drop by the TFT could be either directly measured (0.02) or calculated by 

subtracting the total applied voltage (10 V) by the voltage drop between the two 
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reservoirs of the microchannel (9.98 V) through a separate measurement. Therefore, the 

applied voltage between the two electrophoresis electrodes was almost constant, i.e., 

close to 10 V.  

Figure 56 shows the dI/dt-t curves of (a) a gel-filled microchannel device of 

which the channel was formed from a Si trench, (b) a gel-filled microchannel 

electrophoresis device of which the channel wall was made of SU-8 and the channel 

bottom was made of SiNx and was oxidized, and (c) the (b) microchannel device 

connected to a-Si:H TFT. The Si-based microchannel device of Fig. 56(a) has a 

sputtered SiOx surface at the channel region. Both the SU-8 microchannel devices of Fig. 

56(b) and (c) have a PECVD SiNx surface at the channel bottom region and a SU-8 

surface at the channel sidewall. The protein mobility decreases with the increase of its 

molecular weight. These results are consistent with those of the conventional 

electrophoresis. In addition, a very low electric field was applied in this experiment, i.e., 

10 V/cm, while the literature’s micro-devices were often operated at a high field, e.g., 

100-600 V/cm.4-7 The peak intensity of a TFT-connected system has a (dI/dt) at least one 

order of magnitude lower than that of a device without a TFT. When the TFT is 

connected into microchannel electrophoresis, the current level is confined and regulated 

to the level of the TFT performance because the TFT is a voltage-driven device. Since 

the peak time for protein detection was after 300 sec, the decay of the SiNx/a-Si:H 

interface quality of the TFT would be significant with that period as discussed in Fig. 55. 
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Figure 56. The dI/dt-t curves: (a) a gel-filled Si-based microchannel device, (b) a gel-

filled SU-8 microchannel device, and (c) a gel-filled SU-8 microchannel device 

connected to a TFT. 

 

Therefore, when the protein is separated on the microchannel device alone without a 
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TFT, the entire current’s readings are high.  

Figure 56 clearly shows that the addition of a TFT improves the performance of 

electrophoresis by removing the severe initial current perturbation. Since Fig. 56(b) and 

(c) contain the same kind of microchannels, the peak times for the three proteins are the 

same. The migration speeds of α-lactalbumin (14.2 kDa), carbonic anhydrase (29 kDa), 

and ovalbumin (45 kDa) are estimated to be 5.5, 3.8, and 1.9 cm/hour under 10 V/cm. 

The migration speeds of the Si-based microchannel, i.e., Fig. 56(a), are 5.4, 3.85, and 

2.22 cm/hour under 11.8 V/cm, separately.   

Figure 57 shows the protein mobility vs. the molecular weight of protein in (a) a 

slab-type SDS-PAGE, (b) a gel-filled Si-based microchannel device, (c) a gel-filled SU-

8 microchannel electrophoresis device, and (d) a gel-filled SU-8 microchannel 

electrophoresis device connected to an a-Si:H TFT. For the same protein, the mobility is 

the same in all three microchannel devices. The mobility in the microchannel is higher 

than that in the conventional slab-type because of the band curving, as discussed in 

Chapter V. The microchannel with the SU-8 structure has much lower noise intensity 

than the Si-based microchannel. This difference comes from the properties of channel 

surfaces. The Si-based microchannel has the sputtered SiOx surface at the channel’s 

bottom, while the TFT microchannel has the PECVD SiNx at the channel’s bottom and 

the SU-8 surface at the channel’s sidewall. For example, the differences of surfaces can 

determine the extent of forming electro-osmotic flow (EOF), which affects the current 

noise during the microchannel electrophoresis.3,7 
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Figure 57.  The protein mobility vs. the molecular weight of protein by electrophoresis: 

(a) a slab-type SDS-PAGE (reference1), (b) a gel-filled Si-based microchannel device, 

(c) a gel-filled SU-8 microchannel electrophoresis device, and (d) a gel-filled SU-8 

microchannel electrophoresis device connected to the TFT. 
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The mobilities of proteins in both Si-based and SU-8 microchannel are higher than those 

of the slab-type electrophoresis.2,3 This also indicates that the microchannel device 

improved the mobility of protein, as proven in Chapter V with the Si-based 

microchannel. Therefore, the TFT-connected microchannel device with the SU-8 

sidewall and SiNx bottom surface proved highly efficient.  
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CHAPTER VII 

CONCLUSIONS 

 

In this dissertation, proteins were separated and identified with a microchannel 

electrophoresis device. DNA fragments were separated and identified with a similar 

microchannel surface electrophoresis. Fabrication methods of the microchannel device 

were investigated in detail. Experimental results showed that the device could be 

explained with a simple contact resistance model.  

This dissertation was organized in the following way: Chapters I and II included 

background knowledge of the electrophoresis of protein and DNA, plasma process, 

PECVD films, and a-Si:H TFTs. Chapter III studied physical, chemical, and electrical 

characterization of the microchannel device, as well as the fabrication method. Chapter 

IV focused on modification of the microchannel surface. Chapter V included results on 

the electrophoresis of protein and DNA. Chapter VI was for the process of PECVD SiNx 

deposition and the device’s electrical characteristics of the corresponding a-Si:H TFT. 

Based on these discussions, an a-Si:H TFT-driven electrophoresis for protein separation 

and identification was examined. 

In Chapter I, a conceptual introduction of electrophoresis and challenges 

associated with capillary or microchip electrophoresis were discussed. The development 

trend of the capillary or microchip electrophoresis system by LIF was included and then, 

the basic applications of a-Si:H TFTs were given.  
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In Chapter II, the theoretical background of the electrophoresis, the basic 

mechanism of the capillary or microchip electrophoresis by LIF, and practical 

requirements for protein and DNA electrophoresis were discussed and then, the basic 

principles of plasma process and the applications of PECVD thin films for a-Si:H TFT 

fabrication were discussed. Typical electrical characteristics of a-Si:H TFT were also 

represented. 

In Chapter III, the experimental setup, fabrication methods, characterization 

techniques, corresponding fundamental theories, and numerical methods were explained 

in detail. The fabrication process of the microchannel included metal (Mo, Cr) sputtering, 

the photomask process with PR, anisotropic Si etching by KOH, the negative photomask 

SU-8 process, PECVD deposition of a-Si:H and SiNx, n+ etching by RIE, and oxidation 

or hydrogenation by plasma or solution. The characterization techniques and theories 

included ellipsometer, ESCA, FT-IR, and SEM; and electrical analysis included I-t, 

dI/dt-t, Ids-Vd, and Ids-Vg. 

In Chapter IV, it was shown that the efficiency of the microchannel devices was 

mainly determined by the surface property of the device. The first part of the chapter 

discussed the relationship between the contact angle and the surface modification 

methods using a protein solution as the example. Several conclusions were drawn: (i) 

surface modification of a polymer was helpful for protein electrophoresis by increasing 

the surface wettability, (ii) most substrates except plain glass were suitable for the 

microchannel surface from the protein adsorption examination, and (iii) surface 

interaction between the gel or protein and the substrates could be monitored by the 
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contact angle measurement. The second part of the chapter dealt with the relationship 

between a protein solution’s contact angle and the modified surface. The following 

conclusions were drawn: (i) for silicon containing surfaces, the chemical bond state of 

silicon confirmed by ESCA determined the contact angle of a DNA solution, (ii) for 

non-interacting surfaces with DNA, the concentration of solute determined the DNA 

affinity by changing viscosity of solution.   

The fist part of Chapter V presented the new microchannel device for protein 

electrophoresis with different configurations. Different channel structures with and 

without gel filling and protein existence were investigated based on the resistance model. 

Solutions containing three different sizes of proteins were separated with this new device. 

There was a peak in the dI/dt-t curve for each protein because of the increase of the 

contact resistance during the adsorption of protein on the detection electrode surface. 

Proteins could be separated at a higher rate with the new device than with the 

conventional slab-type electrophoresis. A high separation and detection efficiency was 

obtained with a large cross-sectional area of the microchannel and a small detection 

electrode. The mobility of protein increases with the increase of the channel’s cross-

sectional area. The second part of the chapter investigated that the separation and 

identification of DNA fragments using the new type of surface electrophoresis device. 

DNA fragments were separated based on the mobility difference along the channel 

bottom surface. Based on the contact angle measurement and surface chemical analysis, 

the oxidized silicon and glass were found to be suitable materials for the bottom 

substrates. The channel surface structure, which could be changed by various solution or 
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plasma treatments, was a key factor affecting the separation efficiency. The ionic 

strength of the DNA buffer solution was also critical to the separation efficiency.  

The first part of Chapter VI was dedicated to analysis of the process parameters 

of PECVD SiNx, i.e., gas flow rate, temperature, and rf power, which determined RI, Si-

H/N-H ratio, Si/N ratio, etching rate, and leakage current of the SiNx films. The second 

part included relationships between the RI of SiNx and a-Si:H TFT characteristics, i.e., 

Vth, µeff, and Ion/Ioff ratio. It was found that a TFT with a gate SiNx RI in the range of 

1.87 to 1.90 has the lowest Vth, the highest µeff, and the highest Ion/Ioff ratio. The third 

part concluded that, when an a-Si:H TFT is connected to the microchannel device, a 

unique operational principle was observed. Solutions containing multiple proteins were 

separated and identified with this new TFT-connected microchannel device. An 

improved device performance was achieved by removing undesirable current (I) 

perturbations, which typically exist during the microchannel electrophoresis. The TFT 

connected to the microchannel acted as a current regulator to reduce signal noise from 

the detection electrode. Therefore, the introduction of the TFT to a microchannel 

electrophoresis device makes its system more stable and reliable. 

In summary, new conceptual microchannel devices for protein and DNA 

electrophoresis have been developed and discussed. Separation and identification of 

protein or DNA were clearly realized in the devices. The performance and efficiency of 

these kinds of devices were improved with a microelectronic device such as a-Si:H TFT.  
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