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ABSTRACT 

 

A Water Quality Assessment of the Import of Turfgrass Sod Grown with Composted 

Dairy Manure into a Suburban Watershed. (December 2004) 

Chad Edward Richards, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Clyde Munster 
 
 

 Concentrated animal feeding operations (CAFOs) have caused water quality 

concerns in many rural watersheds, sometimes forcing the State of Texas to conduct 

Total Maximum Daily Load (TMDL) assessments of stream nutrients such as nitrogen 

(N) and phosphorus (P). One suggested Best Management Practice (BMP) is the export 

of phosphorus (P) through turfgrass sod produced with composted dairy manure from an 

impaired rural watershed to an urban watershed. The manure-grown sod releases P 

slowly and would not require additional P fertilizer for up to 20 years in the receiving 

watershed. This would eliminate P application to the sod and improve the water quality 

of urban streams.  

The Soil and Water Assessment Tool (SWAT) was used to model a typical 

suburban watershed that would receive the transplanted sod. The objective of the 

modeling was to determine the water quality changes due to the import of sod 

transplanted from turf fields and grown with composted dairy manure. The SWAT model 

was calibrated to simulate historical flow and sediment and nutrient loading to Mary's 

Creek. The total P stream loading to Mary's Creek was lower when manure-grown sod 



 iv

was imported instead of commercial sod grown with inorganic fertilizers. Yet, flow, 

sediment yield, and total N yield increased equally for both cases at the watershed outlet.  

The SWAT simulations indicate that a turfgrass BMP can be used effectively to import 

manure P into an urban watershed and reduce in-stream P levels when compared to sod 

grown with inorganic fertilizers.  
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CHAPTER I 
 

INTRODUCTION 
 

Despite advances in national water quality due to increased federal regulations,   

57% of the nations sampled streams remain phosphorus (P) enriched and 61% remain 

nitrogen (N) enriched (USGS, 1999a).  The majority of nutrient excess is linked to urban 

and agricultural land use through non-point source (NPS) pollution (USGS, 1999a; 

USGS, 1999b; USEPA, 2002).  Agriculture is the leading source of NPS pollution to the 

nation’s rivers, streams, lakes, ponds, and reservoirs (USEPA, 2002). 

NPS pollution to streams and rivers is an economical burden to municipalities, 

agribusiness, and governmental agencies.  Nutrients can cause excessive aquatic plant 

growth leading to congested water intake pipes, reduced recreational value, and foul 

smelling and tasting water.  It is estimated that tens of billions of dollars each year are 

spent to mitigate and prevent the damaging effects of soil erosion alone (U.S. House 

Committee on Conservation Needs and Opportunities, 1986).  The North Bosque River 

(NBR) watershed is an example of the complexity of the social, political, and economic 

ramifications of NPS pollution remediation.   

The NBR lies within 6 north central Texas counties (Erath, Somervell, Hamilton, 

Bosque, McLennan, and Coryell) and is approximately 316,600 ha in size.  The 

watershed terminates at Lake Waco, making up 74 percent of the lake's contributing 

drainage area (Hauck, 2002).  Lake Waco is the major water supply for approximately  

_______________ 
This thesis follows the style and format of the Transactions of the American Society of 
Agricultural Engineers. 
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150,000 people including the City of Waco (Keplinger and Hauck, 2002).  The City of 

Waco has spent an estimated $3.5 million in efforts to remove excess P at their water 

treatment plants since 1995.  An April 2004 lawsuit against eight of the dairies within the 

watershed is an example of the city’s determination to prevent P pollution from reaching 

the river (A.P., 2004).   

The Texas Natural Resource Conservation Commission (TNRCC), now the 

Texas Commission on Environmental Quality (TCEQ), first included the NBR (Segment 

1226) and the Upper North Bosque River (UNBR) (Segment 1255) in the Texas Clean 

Water Act Section 303(d) List in 1992 as impaired stream segments with excessive 

nutrients (McFarland et al., 2001) and both segments currently remain on the list.  

Kiesling et al. (2001) revealed that P is the limiting nutrient in the NBR and Lake Waco 

and the primary cause of the excessive aquatic plant growth that brought the river onto 

the 303(d) List.  Water quality monitoring data collected by the Texas Institute for 

Applied Environmental Research (TIAER) has been used to show that dairy waste 

application fields (WAFs) located in the watershed contribute the largest loadings of P to 

the river (McFarland and Hauck, 1999).  Erath County, which contains the headwaters of 

the watershed, is the largest milk producing county in the State of Texas (USDA-ARS, 

2003).  The number of dairies in the watershed is constantly changing as a function of 

feed costs and milk prices (Hauck, 2002), but approximately 80 active dairies and 

40,000 cows were distributed throughout the watershed in 2002 (Munster et al., 2004).  

Consolidation is the current trend in the dairy industry; the state annual milk production 

is rising, yet the total number of dairies continues to fall.  There could be as few as 300 
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dairy producers in the state by 2010 as opposed to the 1000 present in March 2001 

(Glasson, 2002).   

In 2001, the TCEQ and the U.S. Environmental Protection Agency (USEPA) 

approved the recommendations of two total maximum daily load (TMDL) assessments 

that suggested a 50% reduction of soluble reactive P (SRP) to the NBR segments on the 

303(d) List.  Through the TMDLs, point sources and NPSs were encouraged to reduce 

SRP loadings by a watershed average of 50 percent (TNRCC, 2001).  The TMDL also 

identified the most controllable sources of SRP to be wastewater treatment plants and 

WAFs (TNRCC, 2001). 

As a result of the stakeholder concerns surrounding the NBR, the State of Texas 

spent $5.1 million to initialize composting facilities in Erath County and throughout the 

UNBR watershed (U.S. Water News Online, 2000).  Composting can reduce the manure 

volume by approximately 50 percent (TCEQ, 2003) thus reducing the cost of exporting 

the nutrients out of the watershed.  In September 2000, the TCEQ and the Texas State 

Soil and Water Conservation Board (TSSWCB) began providing subsidies to transport 

fresh manure from dairies to the composting facilities located in the UNBR and the Leon 

River watersheds (TCEQ, 2003).  This compost is currently being used by the Texas 

Department of Transportation (TxDOT) to stabilize roadside construction projects 

(TCEQ, 2003) and by the Texas Water Resources Institute (TWRI) and the U.S. Army to 

revegetate areas of the Fort Hood Western Training Grounds (TWRI, 2004b).  Markets 

are still needed to fully utilize the amount of compost generated in the watershed 

(TCEQ, 2003; TWRI, 2004a).   
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The amount of funding directed towards alleviating the nutrient problem in the 

NBR watershed continues to escalate in the form of private and public water quality 

monitoring, academic and government studies, and the state- and federal- funded TMDL 

implementation plan.  The implementation plan states that "land application remains one 

of the best and most appropriate methods for dealing with large amounts of animal 

wastes" (TCEQ, 2002).  Successful land application is achieved when nutrient transport 

into surface waters is minimized (TCEQ, 2002) and crop nutrient uptake is maximized 

so that a large percentage of the applied nutrients can be harvested and exported.   

The composted dairy manure can be applied to a variety of crops suitable for 

agricultural production in central Texas, but turfgrass sod has an increased potential to 

efficiently remove manure nutrients from the NBR watershed through harvested biomass 

and topsoil.  Also, the dense turfgrass is typically grown on level areas reducing the 

sediment load, increasing infiltration, and enhancing the quality of runoff water.  While 

the current compost subsidy system is a short duration public works project, privately 

grown turfgrass sod is a highly valued crop that could permanently offset the cost of land 

applied dairy manure.  Dairies, turfgrass producers, and the composting facilities could 

benefit from the additional market.   

The amount of land in turfgrass production in Texas in 1993 was approximately 

8,707 ha (Lard, 1996), but it is mostly concentrated near the coast.  Although, there are 

no turfgrass production sites in the NBR watershed, approximately 5,219 ha of suitable 

sites exist in Erath County (Munster et al., 2004).  It is estimated that the additional 

production sites in Erath County would represent a 30% increase in the state's turfgrass 
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production (Munster et al., 2004). This is an industry that contributes $6 billion to the 

Texas economy yet has room to expand (Hall, 1999).   

The nearest (within 160 km) major turfgrass market to the NBR watershed is the 

Dallas/Fort Worth (D/FW) metroplex.  The market for turfgrass in D/FW is expanding 

(Hall, 1999), but the cities receive most of their turfgrass from the Texas Gulf Coast and 

Oklahoma.  The availability of this urban market caused the initial expansion of dairy 

production around the NBR in the 1980s and 1990s.   Efficient transportation of goods is 

possible through major roads that connect the NBR watershed to both cities.  Munster et 

al. (2004) estimated approximately 396,440 kg P/yr could be exported from Erath 

County alone if manure was applied at a rate of 200 kg/ha to turfgrass production sites 

totaling 2,643 ha. 

 Phosphorous is known to accumulate in the upper soil layer causing 

susceptibility to stormwater runoff through erosion.  Livestock WAFs are especially 

susceptible to excessive nutrient losses through runoff, but long-term excessive P 

applications can also lead to a reduced soil P sorption capacity and eventually P leaching 

(Sims et al., 1998).  For this reason, scientific studies have specifically evaluated land 

application of confined animal feeding operation (CAFO) waste and the subsequent 

nutrient uptake by crops and vegetation.  Manure wastes are typically applied on a 

limited amount of sites close to the production area due to the prohibitive cost of 

hauling.  If unregulated, the manure is usually applied according to the N requirements 

of the crop causing P soil levels to escalate due to the low N:P ratio of most manures and 

the high N:P requirements of most crops (Sharpley et al., 1994).  These manure 
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applications cause both immediate and lasting losses of P, a large proportion of which 

can be available for in-stream algal uptake (Daniel et al., 1994).  Generally, P losses in 

stormwater are less than 5% of that applied (Daniel et al., 1994, Choi et al., 2003), but 

continuous long-term P additions to a stream will lead to accelerated eutrophication.  

 Manure applications based on P crop requirements can be problematic also. 

 This can exclude the use of many WAFs due to existing high P soil concentrations.  

Clearly there is a need for nutrient management plans that avoid elevating P levels in the 

soil while providing an economical method of moving nutrients.  

 The role of turfgrass sod as a nutrient Best Management Practice (BMP) has been 

explored by researchers at Texas A&M University.  Vietor et al. (2002) demonstrated 

through plot-scale experiments that 46 to 77% of applied manure P can be removed 

through a single harvest of turfgrass sod and that most of the nutrients are concentrated 

in the soil component of the sod.  Vietor et al. (2002) also found that the amount of 

nutrients exported increased proportionally to the manure application rates.  At a 

turfgrass production site, even the nutrients not captured in the first harvest may be 

captured in the second as nutrients become available for plant uptake and the soil is 

sequentially removed.  The research suggests that it may be possible to apply annual 

rates above the P requirements of the turfgrass in a sustainable manner.   

 Choi et al. (2003) quantified through field-scale experiments a loss of 

approximately 3.8% of total P (TP) applied from composted dairy manure at rates of 75 

kg/ha and 130 kg/ha to turfgrass sod.  It was also demonstrated that sod grown with 

manure P can be imported to a new site without increasing runoff losses of total 



 7

dissolved P (TDP) compared to turfgrass sod grown and established using commercial 

fertilizers (Vietor et al., 2004).  Vietor et al. (2004) demonstrated that losses of TDP and 

total Kjeldahl N (TKN) from turfgrass topdressed with manure or fertilizer can approach 

three times that lost from transplanted composted manure grown sod.  The export of 

nutrients through turfgrass sod is feasible under controlled plot conditions and at the 

field scale.  The impact on the watershed scale needs to be further evaluated.  

 The existing composting facilities around the NBR watershed currently produce 

more composted dairy manure than there is a market for.  The composted dairy manure 

is an excellent source of P for the proposed turfgrass production BMP.  Lammers-Helps 

(1991) states that composted manure N is almost exclusively in the organic form thereby 

reducing N runoff losses compared to fresh manure.  The organic N is converted slowly 

into plant available forms prolonging the benefits of application.  Composted nutrients 

are more stable and typically do not create problems associated with fresh manure, such 

as foul odors, weeds, and pathogens.  However, the composted nutrients tend to be less 

plant available (Mitchell and Browne, 1992).  Composted manure can be easier than 

fresh manure to handle and distribute onto agricultural fields if it is of high quality and is 

cheaper to transport because of its low water content.  The composting facilities 

established in the NBR watershed must produce compost that meets TCEQ 

specifications for quality in order to receive rebates and hauling reimbursements (TCEQ, 

2003).  This reassures that quality compost will be available for use in turfgrass 

production in the NBR watershed.   
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 Models are an effective but sometimes expensive way to evaluate the 

effectiveness of BMPs at the watershed level.  Hydrologic modeling is becoming an 

accepted tool in watershed management, but there is a need to validate as well as expand 

the use of these models.  The UNBR watershed is an excellent example of proper 

scientific use of hydrologic modeling that influenced public policy decisions.  The 

UNBR watershed has been modeled several times by TIAER in conjunction with the 

TCEQ as part of the State's TMDL efforts.  Saleh et al. (2000) used the Soil and Water 

Assessment Tool (SWAT) hydrologic model to estimate flow and sediment and nutrient 

loading for the watershed.  It was demonstrated that conversion of land application fields 

to pristine grassland could alleviate the P loading by 79%, which reaffirmed the earlier 

sample-based findings of McFarland and Hauck (1999).  Santhi et al. (2001) also 

modeled the NBR watershed in an effort to simulate the effectiveness of several dairy 

and wastewater treatment plant (WWTP) BMPs.  The modeling results were mostly 

accepted by the State and used in the formulation of the TMDL mandate (TNRCC, 

2001).  Most recently, a modeling effort is underway that examines the effect turfgrass 

farms may have on the UNBR water quality when composted dairy manure is applied in 

order to export P (Stewart et al., 2003).   

 Turfgrass produced with composted dairy manure can be sold at a premium 

because of its unique properties: increased establishment rate, cation exchange capacity, 

aggregation, organic matter, and water content (Murray, 1981).  The increased amount of 

P in the sod also adds to the value.  If the turfgrass is properly managed, there may be 

enough P transplanted with the sod to satisfy the turfgrass needs for decades or longer 
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(T. Provin, personal communication, 29 January 2004; R. White, personal 

communication, 29 January 2004).  This could reduce urban NPS P pollution caused by 

over-fertilization of green spaces, a phenomenon which led to a partial P fertilizer ban in 

Minnesota (MAWD, 2003). 

 The goal of this study was to contribute to the knowledge base concerning the 

sustainable use of turfgrass sod to export N and P in animal waste from agricultural 

watersheds to suburban watersheds.  Specifically, the water quality impact of importing 

turfgrass sod fertilized with composted dairy manure to a suburban watershed was 

determined to assure that the turfgrass BMP is a sustainable method of P export.   

 The following objectives were selected to achieve the goals of the research: 

1. Calibrate and validate the Soil and Water Assessment Tool (SWAT) model for a 

developing suburban watershed that is suitable for the import of turfgrass sod 

grown with composted dairy manure from the UNBR watershed. 

2. Develop a method of using SWAT to model the transport of turfgrass sod 

including the manure nutrients that incorporates field data from turfgrass sod 

research. 

3. Use the calibrated SWAT model to simulate changes in sediment and nutrient 

loading to streams in response to the import of turfgrass sod grown with 

composted manure to the developing suburban watershed. 
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CHAPTER II 
 

ASSESSMENT OF WATER QUALITY IN A SUBURBAN WATERSHED DUE TO  
 

A TURFGRASS SOD BEST MANAGEMENT PRACTICE  
 

Synopsis 
 

 The turfgrass sod BMP has the potential to export manure P through 

turfgrass sod produced with composted dairy manure.  Turfgrass harvested in the NBR 

watershed would be shipped to developing urban and suburban areas in the D/FW 

metroplex, which may include the Mary’s Creek watershed, a tributary of the Trinity 

River.  The impact on water quality of manure P imported to the Mary's Creek watershed 

needs to be assessed.  The SWAT model was calibrated in this study to the historic flow 

and sediment and nutrient yield of the Mary's Creek watershed.  The SWAT simulations 

revealed that the total P stream loading to Mary's Creek was lower when manure-grown 

sod was imported instead of commercial sod grown with inorganic fertilizers. Yet, flow, 

sediment yield, and total N yield increased equally for both cases at the watershed outlet.  

The SWAT simulations indicate that a turfgrass BMP can be used effectively to import 

manure P into an urban watershed and reduce in-stream P levels when compared to sod 

grown with inorganic fertilizers.  



 11

Introduction 

In 2001, the Texas Commission on Environmental Quality (TCEQ) and the US 

Environmental Protection Agency (USEPA) approved the recommendations of two total 

maximum daily load (TMDL) assessments that suggested a 50% reduction of soluble 

reactive phosphorus (SRP) to sections of the North Bosque River in north central Texas.  

One of these sections at the headwaters of the North Bosque River is known as the 

Upper North Bosque River (UNBR) watershed.  The UNBR watershed is located in 

Erath County, the largest milk producing county in the State of Texas (USDA-ARS, 

2003).  The number of dairies in the watershed constantly changes as a function of feed 

costs and milk prices (Hauck, 2002), but approximately 80 active dairies and 40,000 

cows were distributed throughout the watershed in 2002 (Munster et al., 2004).  

McFarland and Hauck (1999) demonstrated that the largest P loadings to the 

North Bosque River originated from dairy waste application fields (WAFs).  In response 

to the TMDL recommendations, the State of Texas subsidized manure composting 

facilities in the UNBR watershed in order to move approximately 50 percent of the 

manure off of the dairies (TCEQ, 2003) and reduce the cost of exporting the nutrients 

out of the watershed.  In September 2000, the TCEQ and the Texas State Soil and Water 

Conservation Board (TSSWCB) began subsidizing the transport of fresh manure from 

dairies to the composting facilities located in the UNBR and the Leon River watersheds 

(TCEQ, 2003).  This compost has been used by the Texas Department of Transportation 

(TxDOT) to stabilize roadside embankments at construction sites (TCEQ, 2003) and by 

the Texas Water Resources Institute (TWRI) and the U.S. Army to revegetate areas of the 
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Fort Hood Western Training Grounds (TWRI, 2004b).  However, new markets that do 

not require subsidies are needed to utilize the large amount of manure compost available 

in the watershed (TCEQ, 2003; TWRI, 2004a).  Approximately 150,000 cubic meters of 

surplus compost has been generated, although this compost did not meet the Texas 

Department of Transportation requirements of quality for application to State roadsides 

at construction sites (C. Gerngross, personal communication, 23 July 2004).   

The UNBR TMDL implementation plan states that "land application remains one 

of the best and most appropriate methods for dealing with large amounts of animal 

wastes" (TCEQ, 2002).  Successful land application is achieved when nutrient transport 

into surface waters is minimized (TCEQ, 2002) and crop nutrient uptake is maximized 

so that a large percentage of the applied nutrients can be harvested and exported.  The 

suggested turfgrass sod BMP utilizes P in the composted dairy manure to grow turfgrass 

at sod farms in the UNBR watershed.  The manure-grown sod would be harvested an 

average of 1.5 times per year and each harvest would remove the sod, the composted 

dairy manure and a thin layer of topsoil.  The sod and topsoil would be exported out of 

the UNBR watershed to suburban developments in nearby watersheds.  The value of the 

turfgrass sod will allow growers to transport the manure nutrients from the dairies to the 

turfgrass fields and ultimately out of the UNBR watershed.  This turfgrass sod BMP has 

the potential to eliminate the need for state subsidies to move excess manure from 

impaired watersheds.  

Turfgrass produced with composted dairy manure can be sold at a premium 

because of its unique properties, including accelerated establishment rate and increased 
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cation exchange capacity, aggregation, organic matter, and water holding capacity of the 

soil (Murray, 1981).  The increased amount of manure P and organic matter adds value 

to the manure-grown sod.  If the turfgrass is properly managed, there will be enough P 

transplanted with the sod to satisfy the turfgrass requirements for decades or longer (T. 

Provin, personal communication, 29 January 2004; R. White, personal communication, 

29 January 2004).  The residual manure P in the transplanted sod will eliminate the need 

for P fertilizer applications and will reduce urban non-point source (NPS) P pollution.  

The import of manure P with sod over time could alleviate regulatory constraints similar 

to partial P fertilizer bans in Minnesota (MAWD, 2003). 

Although turfgrass sod is not produced in the UNBR watershed at this time, 

approximately 5,219 ha of suitable sites were identified in Erath County (Munster et al., 

2004).  In addition, the market for turfgrass sod near to the UNBR watershed is 

expanding within the Dallas/Fort Worth metroplex (within 160 km of the UNBR) (Hall, 

1999).  Currently, the metroplex purchases and hauls about 60% of needed sod from 

distant locations, including the Texas Gulf Coast and Oklahoma (Munster et al., 2004).  

The proximity of this growing urban market favored expansion of dairy production in 

the UNBR watershed in the 1980s and 1990s.  Major roads connect the UNBR 

watershed to both cities.  Munster et al. (2004) estimated approximately 396,440 kg P/yr 

could be exported from Erath County alone if manure was applied at a rate of 200 kg/ha 

to turfgrass production sites totaling 2,643 ha. 

Vietor et al. (2004) demonstrated that sod grown with manure P can be imported 

to a new site without increasing runoff losses of total dissolved P (TDP) compared to 
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turfgrass sod fertilized with inorganic P before and after transplanting.  It was also 

demonstrated that losses of TDP and total Kjeldahl N (TKN) from turfgrass topdressed 

with manure or fertilizer can approach three times that lost from sod transplanted from 

fields where composted dairy manure was applied (Vietor et al., 2004).  However, the 

impact of importing this turfgrass sod containing manure nutrients on water quality 

needs to be evaluated for suburban watersheds.  

Bednarz and Srinivasan (2002) simulated the impact of suburban development on 

flow and sediment yield at the outlet of a suburban stream named Mary's Creek near Fort 

Worth, Texas.  The study predicted increases in flow and sediment yield for Mary's 

Creek after the construction of a proposed development named Walsh Ranch through 

simulations of a hydrologic model known as the Soil and Water Assessment Tool 

(SWAT).  In this study, the SWAT simulations were used to predict nutrient transport 

responses to two turfgrass import treatments on the Walsh Ranch development.  The first 

treatment was sod transplanted from fields where inorganic fertilizer was applied.  The 

second treatment was turfgrass transplanted from fields where composted dairy manure 

was applied. 

Unfortunately, only limited streamflow, sediment and nutrient data were 

collected on Mary's Creek.  However, hydrologic simulation models, including SWAT, 

can simulate this type of un-gaged and un-monitored watershed.  Previous modeling 

studies simulated and evaluated changes in land management without calibrating the 

watershed model to measured data (He, 2003; Santhi et al., 2003).  In addition, 

techniques are available for estimating sediment and nutrient loadings needed for 
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calibration of watershed models.  Chen et al. (2000) used crop yields and experimental 

field data to calibrate sediment and nutrient loads in the Environmental Policy Integrated 

Climate Model (EPIC).  Land cover and surface flow were considered the predominant 

control factors in simulations of sediment and nutrient export from the watershed.  

Wickham and Wade (2002) similarly demonstrated that land use was a major factor in N 

and P transport and loss in surface waters.  For the Walsh Ranch study, a technique 

proposed by Bhuyan et al. (2003) was used to calibrate the SWAT model.  The technique 

separated nutrient and sediment losses into stormflow and baseflow losses.  

The primary objective of this thesis is to assess water quality changes in a 

suburban watershed due to a turfgrass BMP that imports sod transplanted from turfgrass 

fields where composted diary manure was applied.  This assessment used field data from 

turfgrass sod field research and the SWAT hydrologic simulation model to analyze 

changes in flow and sediment and nutrient loading for Mary's Creek in response to 

turfgrass BMP.  

Materials and Methods 

Watershed Selection 

 The Mary's Creek watershed in Fort Worth, Texas was chosen to receive the 

turfgrass grown with composted dairy manure due to its proximity to the UNBR and the 

proposed Walsh Ranch development. This Walsh Ranch development requires 

installation of turfgrass sod in green areas and is a reasonable hauling distance from the 

UNBR watershed. In addition, a gaging station located at the outlet of Mary’s Creek 

provided historic streamflow data for model calibration. Moreover, Bednarz and 
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Srinivasan (2002) successfully used the streamflow data for SWAT model simulations of 

sediment transport.  

Mary's Creek is a perennial stream located west of the Dallas/Fort Worth (D/FW) 

metroplex that drains approximately 14,272 ha of predominately range and pasture (fig. 

1). Construction of a planned community within the watershed, Walsh Ranch, will begin 

as early as 2020 (W. Frossard, personal communication, 23 June 2003). The 

development will resemble a small, self-sufficient community with schools, industrial 

areas, residential sites, public parks, and a community center and will require turfgrass 

for residential, commercial, and industrial areas. The Walsh Ranch development includes 

approximately 2,800 ha of the Mary’s Creek watershed. The majority of the Mary's 

Creek watershed will remain rangeland after construction of Walsh Ranch (table 1). The 

Walsh Ranch development and the Mary's Creek watershed are located approximately 

100 km from the UNBR watershed. Economically, the distance from the UNBR to 

Mary's Creek is within an acceptable hauling distance for turfgrass sod (Munster et al., 

2004). 
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Figure 1. The location of the Mary’s Creek watershed, the UNBR watershed, and Fort 

Worth, Texas with county boundaries shown. 

Mary's Creek begins in Parker County and terminates at the Clear Fork of the 

Trinity River (CFTR) in Tarrant County within the city limits of Fort Worth. 

Approximately 41% of the land in the Mary's Creek watershed is rangeland and only 

22% is allocated to urban land uses (table 1). Very few nutrients are now applied in the 

watershed (Jon R. Green, personal communication, 17 October 2004), and there are no 

wastewater treatment plants that discharge into the stream. Although nutrient data was 

not collected for the stream, watersheds similar to Mary's Creek in the D/FW metroplex 

area are not typically impaired by nutrients (USGSa, 1999; USGSb, 1999). 
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Table 1. The land use distribution of the Mary's Creek watershed for major land uses 

present before and after the construction of the Walsh Ranch development.  

Land use Watershed Area Pre-
development (%) 

Watershed Area Post-
development (%) 

Urban-High Density 2.39 2.41 
Pasture 19.30 18.85 

Range-Grasses 40.57 31.30 
Forest-Mixed 17.88 14.75 

Industrial/Institutional 0.06 0.72 
Transportation/Commercial 3.58 8.13 
Residential-Medium Density 11.30 19.03 

Residential-Low Density 4.92 4.81 

 
A United States Geological Survey (USGS) gaging station (08047050) was 

located on the stream near the confluence of Mary's Creek and the CFTR. Daily 

streamflow records were available from the gaging station from June 1, 1998 to 

September 30, 2002 

 Mary's Creek begins in Parker County and terminates at the Clear Fork of the 

Trinity River (CFTR) in Tarrant County within the city limits of Fort Worth.  

Approximately 41% of the land use in the Mary's Creek watershed is rangeland and only 

22% is an urban land use classification (Table 1).  Very few nutrients are now applied in 

the watershed and there are no wastewater treatment plants that discharge into the 

stream.  Although nutrient data is not collected for the stream, watersheds similar to 

Mary's Creek in the D/FW metroplex area typically are not impaired by nutrients 

(USGSa, 1999; USGSb, 1999). 
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The SWAT Model 

SWAT 2003 was used in this study interfaced with ArcView 3.2 to allow the 

model to integrate geospatial data, which is often readily available. SWAT model 

simulations allowed the assessment of water quality changes due to the import of sod 

transplanted from turf fields where composted dairy manure was applied to a suburban 

watershed. The SWAT model is capable of detecting changes in water yield and 

sediment, nutrient, and pesticide loading due to the effects of land use and agricultural 

management changes on a river basin scale (Arnold et al., 1998). The model is a daily 

time-step, distributed parameter model that uses the Soil Conservation Service (SCS) 

curve number (CN) method to predict runoff (USDA-SCS, 1972) and the Modified 

Universal Soil Loss Equation (MUSLE) to predict sediment yield (Williams and Berndt, 

1977). The SWAT model simulates impervious cover associated with urban landuses as 

consistent sources of sediment and nutrient loads (USEPA, 1983). The SWAT model was 

chosen for this study to simulate sediment and nutrient transport without large inputs of 

observed data. In addition, the SWAT model allows the user to manipulate management 

routines and incorporates a crop growth model that includes detailed plant production, 

management, and harvest information. 

SWAT Datasets 

SWAT requires inputs of land use, soil, and elevation data. A raster layer (30-m 

resolution) of land use data was available from the Tarrant Regional Water District 

(TRWD) and the Blackland Research Center (BRC). The layer consisted of 1992 

National Land Cover Data (NLCD) meshed with a regional Texas Agricultural 
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Experiment Station (TAES) land use map developed from 1997 Landsat 5 imagery. The 

Multi-Resolution Land Characteristics (MRLC) consortium derived the NLCD from 

Landsat 5 Thematic Mapper satellite imagery. The MRLC classification provides detail 

about urban land uses and the TAES classification details agricultural land uses. The 

collective map contains both the urban and agricultural data. 

Soils data was collected from the Natural Resources Conservation Service 

(NRCS), which provided detailed Soil Survey Geographic (SSURGO) datasets with 

scales ranging from 1:12,000 to 1:24,000. These datasets were digitized from published 

county soil surveys (USDA-NRCS, 1995). A 10-meter raster Digital Elevation Model 

(DEM) of the area and a digitized stream network created by the City of Fort Worth were 

also available from the BRC.  

The SWAT model includes a weather generating function and allows the user to 

input weather data. The National Climatic Data Center (NCDC) was a source of historic 

data for weather stations across the U.S. Weather data from Aledo (480129) and 

Benbrook Dam (480691) which were located within an 8 km radius of the Mary's Creek 

watershed (fig. 2), were available through NCDC. Both stations reported daily 

precipitation totals and the Benbrook Dam station reported daily maximum and 

minimum air temperature data. The Aledo weather station data spanned the period from 

1960 to 2003 and Benbrook Dam weather station data were available for 1990 to 2003.  
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An extensive SWAT weather database was used to generate relative humidity and solar 

radiation data based on inputs from regional weather stations near Fort Worth. 

SWAT Model Configuration 

 An Arcview 3.2 interface, AVSWAT-X (DiLuzio et al, 2003), was used to process 

SWAT model inputs for land use, elevation, and soil. The 10-meter DEM was delineated 

through AVSWAT-X. A 200 ha threshold was used to divide the watershed into 37 sub-

basins (fig. 2). The AVSWAT-X interface linked the land use layers to the SWAT 

databases for land cover and plant growth. In addition, the software integrated a soil 

layer to a corresponding table of specific soil parameters. The watershed outlet was set at 

the USGS gaging station, 08047050, which limited the area of the watershed to 13,976 

ha (fig. 2). The hydrologic response units (HRUs) were constructed similar to the 

Bednarz and Srinivasan (2002) study. The land use threshold was 5% and the soil 

threshold 10%, which resulted in 470 HRUs. 
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Figure 2. The current land uses of the Mary’s Creek watershed with the location of the 

Aledo and Benbrook weather stations, the USGS stream gage (0804750), and the sub-

basins used in the SWAT model simulations also shown. 

 The datasets from the Aledo and Benbrook Dam weather stations and the SWAT 

weather generator database were activated during the SWAT model simulations. The 

SCS Curve Number method was used to simulate surface runoff and the Priestly-Taylor 

method was used to simulate potential evapotranspiration. The Manning's roughness 

coefficient of the stream channel was set at the SWAT default value (0.014) and potential 

heat units (PHUs) were used to simulate biomass production. There was no evidence of 
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preferential flow in the watershed and the crack flow routine in the model was not 

activated. Similarly, in-stream channel degradation and water quality routines were not 

activated for simulations.  

SWAT Model Calibration 

 The MRLC/TAES land use map was used to represent recent land use during 

SWAT model calibration. The SWAT model was calibrated for flow using historic daily 

streamflow data from the USGS gage (08047050) over the period from June 1998 to 

September 2002 until the Nash Sutcliffe (NS) statistic (Nash and Sutcliffe, 1970) was 

greater than 0.50. The actual simulation period for flow calibration started January 1, 

1990 and concluded September 30, 2002. The duration of the calibration allowed an 

eight year adjustment period for equilibrium among soil, water, and plant processes 

before simulating the period in which historic streamflow data was available. After 

calibration, the predicted monthly average streamflow compared to the observed 

monthly average streamflow produced a NS statistic of 0.72 and a root mean square 

error (RMSE) of 0.54.  

Separate annual sediment loading estimations were averaged to predict an 

average annual sediment loading to Mary’s Creek of 2,400 metric tons (table 2). The 

TRWD used sediment removal records below the junction of Mary's Creek and the 

CFTR to estimate an annual sediment loading in Mary's Creek equal to 3,200 metric 

tons. This study estimated the average annual sediment loading to be 1,600 metric tons 

using USGS local urban sediment storm loading data, event mean concentration data 
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(Newell et al., 1992; Baird and Ockerman, 1996), and baseflow sediment data collected 

during this study.    

Table 2. The average annual sediment load estimations used to derive the Mary's Creek 

average annual sediment load calibration value for the SWAT model simulations.   

 Average Annual Sediment Estimation (tonnes/yr) 
TRWD 3,200 

Current Study 1,600 
Average of Estimations 2,4001 

1 The average annual sediment loading value used to calibrate the SWAT model 

calculated from the average annual sediment load estimations by TRWD and the current 

study. 

The estimation made by this study utilized the three separate sources of data to 

estimate stormflow and baseflow as proposed by Bhuyan et al. (2003). The land use 

sources of storm loading were assumed to be comprised of urban and rangeland/pasture 

land use only. Urban storm loads were calculated through a USGS regression equation 

developed from local data (Baldys et al., 1998). Rangeland/pasture storm loads were 

calculated using event mean concentration values based upon the average annual 

stormflow volume. Baseflow data was collected in the summer of 2004 for this study. 

The average constituent concentration was calculated from the collected samples and 

multiplied by the average annual baseflow volume for the calculation of annual load 

(table 3). 
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Table 3. The storm, baseflow and total average annual sediment load values used to 

estimate the average annual sediment load for this study and the sources of each.  

Source of Load Sediment (tonnes/yr) 
Urban Storm1 570 

Rangeland/Pasture 
Storm2 

820 

Baseflow3 210 
Total 1,600 

1 Calculated from USGS regression equation developed by Baldys et al. (1998). 
2 Calculated from EMC values (Newell et al., 1992; Baird and Ockerman, 1996). 
3 Observed from baseflow sampling of Mary's Creek conducted May through July 2004. 

 

The SWAT model was calibrated for average annual sediment loading over the 

period from January 1, 1990 to December 31, 2000, which was the same time period in 

which sediment loading was predicted. The prediction of average annual sediment yield 

after calibration was 2,830 metric tons. The SWAT prediction was approximately 18% 

higher than the calculated average annual sediment yield of 2,400 metric tons (table 2).   

No nutrient data was available from the TRWD for Mary's Creek. Therefore, N 

and P loads in Mary's Creek were estimated. Total N, nitrate and nitrite-N, and total P 

average annual loadings were calculated from the local urban storm loading data 

collected by the USGS, event mean concentration data (Newell et al., 1992; Baird and 

Ockerman, 1996), and the baseflow stream samples collected during this study (table 4). 

The SWAT model was calibrated for total average annual N loading over the same period 

as the sediment calibration (January 1, 1990 to December 31, 2000). The average annual 

organic N yield was estimated by assuming: 
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Norganic = Ntotal - NO3 - NO2   (1) 

The calculated values for total average annual organic N, nitrate-N and nitrite-N 

loads (table 4) were used to calibrate SWAT. 

Table 4. The storm, baseflow and total average annual nutrient load values used to 

estimate the average annual nutrient load and the sources of each.  

Source of Load Total N (kg/yr) NO2 andNO3 
(kg/yr) 

Organic N 
(kg/yr) 

Total P (kg/yr) 

Urban Storm1 7,700 2,690 5,010 1,930 
Rangeland/Pasture 

Storm2 
17,590 3,790 13,800 1,400 

Baseflow3 42,280 140 42,140 12,230 
Total 67,570 6,620 60,950 15,560 

1 Calculated from USGS regression equation developed by Baldys et al. (1998). 
2 Calculated from EMC values (Newell et al., 1992; Baird and Ockerman, 1996). 
3 Observed from baseflow sampling of Mary's Creek conducted May through July 2004. 
 

The simulated average annual total N yield at the outlet of Mary's Creek after 

calibration was approximately 11% lower than the calculated average annual total N 

yield (table 5). The predicted average annual organic yield after calibration was 

approximately 13% lower than the calculated average annual organic N yield (table 5). 

Lastly, the predicted average annual nitrate and nitrite-N yield after calibration was 

approximately 4% higher than the calculated average annual nitrate and nitrite yield 

(table 5). 

Monitoring data for organic and mineral P were not available for calculating 

stream loads of each P form and calibration of SWAT. The model was calibrated to 

predict total P (organic and mineral P). The calibration period was the same as for 
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sediment and N (January 1, 1990 to December 31, 2000). The predicted average annual 

total P yield after calibration was approximately 0.1% higher than the calculated average 

annual total P yield (table 5). 

Table 5. A comparison of the SWAT simulated average annual nutrient loading after 

calibration.  

Constituent Simulated Annual Load Calculated Annual Load % Difference 
Total N (kg/yr) 59,940 67,570 -11 

NO2 andNO3 (kg/yr) 6,880 6,620 4 
Organic N (kg/yr) 53,060 60,950 -13 

Total P (kg/yr) 15,580 15,560 0.1 

 
SWAT Simulations 

SWAT Turfgrass Transplant Routine 

Sod is transplanted in squares or unrolled in strips to form an instant layer of 

vegetation. There were no management practices in the SWAT model to simulate this 

instant addition of soil and biomass. Therefore, a separate turfgrass transplant routine 

was created that modified the SWAT model management practices to instantly add a 

layer of soil and mature grass to the soil profile of HRUs that receive transplanted sod. 

The transplant routine assumed that the layer of soil added was of  the same 

characteristics of the soil presently in the HRU. This did not account for the soil 

characteristics of the soil transplanted with the turfgrass sod, but simplified the analysis 

of the nutrient import. Soils that may be transplanted with the sod would most likely 

have greater clay content than the existing soils and would thus increase the amount of 

water stored in the soil of the HRU and decrease the amount of nutrients that reach the 

stream. The turfgrass import routine required twelve inputs to the model (table 6). 
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Table 6. The SWAT model inputs required for the new turfgrass transplant management 

practice.  

Turfgrass Transplant Input Unit 
MON (Month) 2-digit month 

DAY (Day) 2-digit day 
HEATU (Heat units to maturity of sod) Heat Unit 

SODLAI (leaf area index of sod) Leaf Area Index 
SODBION (N content of biomass) kg/ha 
SODBIOP (P content of biomass) kg/ha 
SODPPLT (depth of soil added) mm 

SODORGN (organic N content of soil) kg/ha 
SODORGP (organic P content of soil) kg/ha 

SODNO3 (nitrate content of soil) kg/ha 
SODSOLP (soluble P content of soil) kg/ha 

SODBIOM (biomass of sod) kg/ha 

 

The addition of the turfgrass transplant routine allowed the SWAT model to 

simulate the implementation of the turfgrass BMP in the Walsh Ranch development. The 

SWAT simulations were used to evaluate the effects of importing turfgrass sod fertilized 

with composted dairy manure on water quality in the Mary's Creek watershed. 

Turfgrass Treatments 

The SWAT model was used to simulate three turfgrass treatments. The treatments 

included the BMP treatment, a conventional treatment, and the status quo. The BMP and 

conventional treatments were implemented on the Walsh Ranch development. The status 

quo simulated only the current land uses in the Mary's Creek watershed.  
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Status Quo 

The land use classifications for the status quo were not changed from the 

calibration simulations. The simulation of the current land uses in Mary’s Creek 

provided a control for evaluation of the Walsh Ranch development on water quality. 

Both the BMP and conventional treatments could be compared to water quality 

predictions for current land uses in the Mary's Creek watershed (table 1).  

The Conventional Treatment 

The conventional treatment comprises turfgrass sod transplanted from fields 

grown with inorganic P fertilizer and top-dressed annually with inorganic P fertilizer 

after transplanting into the Walsh Ranch development. The new SWAT turfgrass 

transplant routine was used to simulate import of the fertilizer-grown sod on residential, 

commercial and public open landscapes planned for the Walsh Ranch development. The 

physical and chemical properties of the imported turfgrass sod in the conventional 

treatment were adjusted to simulate conventional commercial sod grown with inorganic 

fertilizer (Vietor et al., 2002; 2004; Choi et al., 2003) (table 7). Conventional fertilizer 

applications of inorganic N and P were applied to the sod as needed for production and 

establishment after transplanting. The conventional treatment added turfgrass sod to 

approximately 1,400 ha of the Walsh Ranch development. In the SWAT model, 25 HRUs 

in the Mary's Creek watershed were affected (fig. 3). 
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Figure 3. The Mary’s Creek watershed with areas where turfgrass was installed (land use 

category URMA) in the Walsh Ranch development. This land cover map was used for 

both the conventional and BMP treatments. 

Table 7. The SWAT model inputs used to simulate the conventional and BMP treatments 

for the installation of turfgrass sod into the Mary's Creek watershed.  

Turfgrass Sod Import Input Conventional Treatment 
Value 

BMP Treatment Value 

MON (Month) 02 (February) 02 (February) 
DAY (Day) 01 01 

HEATU (Heat units to maturity of sod) 3000 3000 
SODLAI (leaf area index of sod) 4.0 4.0  

SODBION (N content of biomass) 225 kg/ha 244 kg/ha 
SODBIOP (P content of biomass) 36 kg/ha 42 kg/ha 
SODPPLT (depth of soil added) 25 mm 25 mm 

SODORGN (organic N content of soil) 370 kg/ha 540 kg/ha 
SODORGP (organic P content of soil) 126 kg/ha 115 kg/ha 

SODNO3 (nitrate content of soil) 3 kg/ha 3 kg/ha 
SODSOLP (soluble P content of soil) 36 kg/ha 77 kg/ha 

SODBIOM (biomass of sod) 18000 kg/ha 18000 kg/ha 
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The BMP Treatment 

In the BMP treatment, turfgrass sod transplanted from fields top-dressed with 

composted dairy manure was simulated using the new turfgrass import routine. The 

manure-grown sod was transplanted into the same residential, commercial and public 

landscapes in the Walsh Ranch development as simulated in the conventional treatment. 

The properties of the transplanted sod were adjusted in the BMP treatment to represent 

nutrient levels of turfgrass grown with composted dairy manure and inorganic N 

fertilizer (Vietor et al., 2002; 2004; Choi et al., 2003) (table 7). After sod transplant to 

the Walsh Ranch development, inorganic N fertilizer was applied to the sod as needed, 

but no inorganic P fertilizer was added. The turfgrass was placed on the same 1,400 ha 

and in the same 25 HRUs of the SWAT model as simulated in the conventional 

treatment. 

Simulation Procedures 

An initial SWAT simulation was performed to demonstrate the effects that the 

Walsh Ranch development infrastructure (roads, removal of trees, etc.) would have on 

streamflow and sediment and nutrient loading without the turfgrass present. The 

residential, commercial, and public landscapes that  the turfgrass sod was imported to 

was simulated as pasture. This simulation predicted monthly flow and yearly sediment 

and nutrient loading for a 5-year period preceding the sod analysis simulations (1986-

1990) 

Two SWAT simulations were performed to analyze each sod treatment. The first 

model simulation predicted monthly flow and yearly sediment and nutrient loading for a 
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10-year period (1991 to 2000). For simulations of the BMP and conventional treatments, 

the SWAT management files were revised to simulate imports of the contrasting sod 

sources into the Walsh Ranch development on February 1 of year one of the 10-year 

period (1991). The newly installed turfgrass sod was fertilized and irrigated as needed. 

However, no inorganic P was applied to the BMP treatment after transplanting. For the 

status quo, no turfgrass sod was installed and land use classifications were not changed.  

A second model simulation was run to predict yearly flow and sediment and 

nutrient loading from 1950 to 2000 for each sod treatment. These simulations compared 

long term water quality impacts of the turfgrass BMP to that of the status quo and 

conventional treatment. The BMP and conventional treatments turfgrass transplant took 

place on February 1 of year one (1950) and fertilization and irrigation occurred as 

needed. Again, the land use classifications for the simulation of the status quo were 

unchanged. 

Results 

Influence of Development 

Construction of the Walsh Ranch development added 160 ha of impervious cover 

within the watershed causing an increase of surface runoff (table 8). The effect of this 

additional impervious area on streamflow and sediment and nutrient loads in the Mary’s 

Creek watershed was calculated from a 5-year SWAT simulation from 1986 to 1990. 

This simulation modeled the Walsh Ranch development without the installation of 

turfgrass. The green spaces in the development were simulated as pasture. The average 
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increase due to the Walsh Ranch Development without turfgrass above the status quo for 

streamflow and sediment and nutrient loads is shown in table 8.   

Table 8. The simulated average increase of streamflow and sediment and nutrient load in 

Mary’s Creek due to the Walsh Ranch development without turfgrass for a 5-year SWAT 

simulation from 1986 to 1990.  

Constituent Average Increase Due to Development 
Streamflow 0.03 m3/s (per month) 
Sediment 636 tonnes/yr 
Organic N 17,838 kg/yr 
Nitrate N 1,142 kg/yr 
Total P 4,965 kg/yr 

 

Flow 

The 10-year SWAT simulation revealed streamflow was 10% greater for the BMP 

and conventional turfgrass treatments than for the status quo without any development. 

The simulated annual streamflow did not differ between the BMP and conventional 

turfgrass treatments. Simulations of average monthly flow predicted an increase of 0.14 

m3/s per month for the BMP and conventional turfgrass treatments when compared to 

the status quo (fig. 4A).  

The monthly streamflow increase (0.03 m3/s per month) caused by the 

development of the watershed was removed from the BMP and conventional turfgrass 

treatments as shown in figure 4B. As shown in figure 4B, the BMP and conventional 

turfgrass treatments continued to increase streamflow due to the irrigation of the 

turfgrass. The constant irrigation kept the soil water of the HRUs containing the sod near 

field capacity resulting in more runoff than the status quo treatment.  



 34

0

1

2

3

4

5

6

7

8

9

Feb-91 Feb-92 Feb-93 Feb-94 Feb-95 Feb-96 Feb-97 Feb-98 Feb-99 Feb-00
Year

A
ve

ra
ge

 M
on

th
ly

 F
lo

w
 (

m
3/

s)

Status Quo
Conventional Treatment (Commercial Sod Imported)
BMP Treatment (Manure Grown Sod Imported)

(A)

 

0

1

2

3

4

5

6

7

8

9

Fe
b-

91
Au

g-
91

Fe
b-

92
Au

g-
92

Fe
b-

93
Au

g-
93

Fe
b-

94
Au

g-
94

Fe
b-

95
Au

g-
95

Fe
b-

96
Au

g-
96

Fe
b-

97
Au

g-
97

Fe
b-

98
Au

g-
98

Fe
b-

99
Au

g-
99

Fe
b-

00
Au

g-
00

Year

Av
er

ag
e 

M
on

th
ly

 F
lo

w
 (m

3/
s)

Status Quo
Conventional Treatment
BMP Treatment

(B)

 
Figure 4. The simulated average monthly flow for the three treatments at the outlet of the 

Mary’s Creek watershed with, (A) the runoff from impervious urban surfaces included in 

the BMP and conventional treatments, and (B) the runoff from impervious urban 

surfaces not included in the BMP and conventional treatments.  
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The long term, 50-year simulations (1950 to 2000) of streamflow in Mary’s 

Creek were similar between the BMP and conventional turfgrass treatments at the 

watershed outlet. Compared to the status quo, the BMP and conventional treatments 

increased streamflow 5.3% during the long term simulation (fig. 5). The influence of the 

impervious surfaces in the Walsh Ranch development was not factored out of the long 

term simulation. 
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Figure 5. The cumulative annual simulated streamflow for the three treatments at the 

outlet of the Mary's Creek watershed. 

Sediment 

The SWAT simulations indicated both the conventional and BMP turfgrass 

treatments contributed equally to the sediment loadings of Mary’s Creek. The dense 

growth of turf plants and similar physical properties between manure-grown and 
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conventionally-grown turfgrass minimized sediment losses for both treatments (Vietor et 

al., 2004). Yet, the short term (10 year) simulation demonstrated that the BMP and 

conventional turfgrass treatments consistently produced greater sediment loads (135 

metric tons cumulative) when compared to the status quo which represented the 

undisturbed watershed (fig. 6A). The principal difference between the imported sod 

treatments and the status quo was erosion prior to turfgrass installation due to the 

increased impervious area within the Walsh Ranch development. The Walsh Ranch 

development (roads, buildings, sidewalks, driveways, etc.) was in place throughout the 

10-year simulation. Similarly, the long term 50-year simulation indicated that the BMP 

and conventional turfgrass treatments each contributed a total of 23,710 metric tons 

more sediment to the stream than the status quo or undisturbed watershed. As postulated 

for the short-term simulation, the additional sediment loading for both the BMP and 

conventional turfgrass treatments resulted from erosion before the sod was transplanted 

on disturbed soil and from increased runoff due to the increased impervious areas within 

the watershed throughout the simulation.  

The average sediment load (636 tonnes/yr) caused by the development of the 

watershed was factored out of the short term simulation revealing the sediment loads 

contributed by just the turfgrass treatments (fig. 6B). As shown in figure 6B, removing 

the influence of impervious surfaces in the development revealed that the turfgrass sod 

treatments reduced sediment loading to the stream when compared to the status quo 

treatment. 



 37

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
Year

S
tr

ea
m

 S
ed

im
en

t 
Lo

ad
 (

m
et

ric
 t

on
s)

Status Quo
Conventional Treatment
BMP Treatment

(A)

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
Year

S
tre

am
 S

ed
im

en
t L

oa
d 

(m
et

ric
 to

ns
)

Status Quo
Conventional Treatment
BMP Treatment

(B)

 
Figure 6. The simulated annual stream sediment load for the three treatments at the 

outlet of the Mary's Creek watershed with, (A) the sediment due to increases in runoff 

from urban impervious surfaces included in the BMP and conventional treatments, and 

(B) the sediment due to increases in runoff from urban impervious surfaces removed 

from the BMP and conventional treatments. 

Variation of annual total rainfall amount accounted for a greater portion of the 

annual variation of sediment load for the transplanted sod treatments than for the status 

quo treatment as determined by a linear regression analysis (table 9). Monthly factors 

such as time of year and plant growth stage could have exerted greater influence on 
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sediment loss in the status quo simulation than in the transplanted sod treatments. Yet, 

variation of annual rainfall was not significantly related to variation of sediment load for 

any of the simulated treatments. 

Table 9. The adjusted R-square values resulting from a regression analysis between 

variation of annual rainfall and the sediment loads predicted by SWAT for the turfgrass 

treatments. 

Treatments Adjusted R-Square 
Value 

Transplanted Sod (Conventional 
and BMP) 

0.208 

Status Quo 0.168 

 
Nutrients 

The increases in streamflow and sediment loading predicted for imports of 

manure-grown sod (BMP) and fertilizer-grown sod (conventional) were also reflected in 

the predicted differences in stream nutrient loading between the status quo and the BMP 

and conventional turfgrass treatments during the long term simulations (table 10). 

Table 10. Simulated nutrient loading at the outlet of the Mary's Creek watershed for the 

three treatments from 1950 to 2000.  

 Conventional 
Treatment 

BMP Treatment Status Quo 

Organic N (kg) 2,660,860 2,660,860 2,110,560 
Nitrate-N (kg) 484,490 484,930 340,880 
Total P (kg) 816,017 804,282 635,200 

 
The simulated stream organic N loading differed by 550,300 kg between the 

status quo and imports of each fertilizer-grown (conventional) and manure-grown (BMP) 
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sod. Compared to the status quo, the stream nitrate-N loading was 42.5% greater for the 

BMP treatment and 42.1% greater for the conventional treatment. A portion of the 

organic N imported with the manure-grown sod of the BMP treatment was converted to 

nitrate-N over time, which led to slightly higher nitrate-N stream loading (0.09%) 

compared to the conventional treatment. After imports of fertilizer-grown sod 

(conventional), total P loading to the stream was 28.5% greater than the status quo 

treatment. Similarly, predicted P loading for the BMP treatment was 26.6% larger than 

the status quo. The P fertilizer addition to the fertilizer-grown (conventional) sod 

increased total P stream loading by 1.5% compared to the BMP treatment. 

The short term simulation allowed between the manure-grown (BMP) and 

fertilizer-grown (conventional) treatments that were imported into the watershed. A 

linear regression was performed to relate variation of predicted annual sediment load to 

that of the predicted annual organic N load for the turfgrass treatments. The regression 

indicated predicted annual sediment load accounted for a significant portion of variation 

in organic N load among treatments (table 11). 
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Table 11. The adjusted R-square values resulting from a regression analysis between 

annual sediment load and the annual organic N load predicted by SWAT for the turfgrass 

treatments. 

Treatments Adjusted R-Square 
Value 

Transplanted Sod (Conventional and BMP) 0.893 
Status Quo 0.908 

 

The simulated organic N load in Mary’s Creek comparing the status quo and 

BMP and conventional turfgrass treatments is shown in figure 7A. The average stream 

organic N load (17,838 kg/yr) caused by increased runoff from impervious surfaces in 

the development was factored out of the 10-year simulation for the BMP and 

conventional turfgrass treatments as shown in figure 7B. Removing the influence of 

development revealed that both turfgrass treatments reduced organic N loading to the 

stream when compared to the status quo treatment. 
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Figure 7. The simulated annual organic N stream load for the three treatments at the 

outlet of the Mary's Creek watershed with, (A) the organic N due to increases in runoff 

from urban impervious surfaces included in the BMP and conventional treatments, and 

(B) the organic N due to increases in runoff from urban impervious surfaces removed 

from the BMP and conventional treatments. 

In contrast to organic N, the simulated nitrate N load in the stream at the outlet 

increased significantly after the installation of the two turfgrass treatments due to 
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inorganic N fertilization (fig. 8A). The difference in simulated nitrate N loads between 

the status quo and the turfgrass treatments peaked at approximately 35,000 kg in 1992. 

Low stream flows (fig. 4) combined with a reduction in application of inorganic N 

fertilizer lowered the stream nitrate N load in the conventional and BMP turfgrass 

treatments during years 1995 and 1996. When summed over the 10 year period, the 

conventional turfgrass treatment contributed 1,620 kg of nitrate N more to Mary’s Creek 

than the BMP turfgrass treatment. 

The SWAT model applied inorganic N fertilizer based upon a N stress threshold 

of 0.9 (where 0.0 indicates no plant growth due to N stress and 1.0 indicates no reduction 

in plant growth due to N stress). The SWAT model applied enough inorganic N fertilizer 

to replace N losses due to plant growth, surface runoff and leaching.  

The BMP turfgrass treatment imported approximately 170 kg/ha more organic N 

than the conventional turfgrass treatment. This additional organic N was originally 

associated with the humus but was eventually released in years 1993 and 1995 when 

conditions such as the amount of soil water allowed for the decay and mineralization of 

the additional organic N.   

The average stream nitrate N load (1,142 kg/yr) caused by increased runoff from 

urban impervious surfaces in the development was factored out of the 10-year simulation 

for the BMP and conventional turfgrass treatments as shown in figure 8B. Removing the 

influence of the development revealed that the turfgrass treatments were the major 

source of the nitrate N load due to lawn fertilization. 
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Figure 8. The simulated annual nitrate N stream load for the three treatments at the outlet 

of the Mary's Creek watershed with, (A) the nitrate N due to increases in runoff from 

urban impervious surfaces included in the BMP and conventional treatments, and (B) the 

nitrate N due to increases in runoff from urban impervious surfaces removed from the 

BMP and conventional treatments. 

The total P stream loading for the 10 year simulation was greatest for the 

conventional treatment (fig. 9A). The simulation of total P loading to Mary’s Creek for 

fertilizer-grown sod (conventional treatment) was 14,843 kg greater than the manure-
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grown sod (BMP treatment) for the 10-year period. The simulated total P loading to 

Mary’s Creek for the BMP treatment was 69,988 kg greater than the status quo 

treatment. The simulated total P load of the BMP treatment exceeded the conventional 

treatment in 1993 only and may be explained as follows (fig. 9A). Approximately 11 

kg/ha less organic P was imported with the BMP treatment compared to the conventional 

treatment and 41 kg/ha more soluble P and 6 kg/ha more biomass P was imported by the 

BMP treatment (table 7). This additional soluble P was not lost immediately in the BMP 

treatment, but was immobilized and released three years after the transplant either when 

conditions allowed for mineralization of the organic P or when the organic P was 

transported through sediment loss (erosion). Following this release in 1993, the total 

simulated P load to Mary’s Creek for the BMP turfgrass treatment remained at or below 

the conventional turfgrass treatment. 

The average stream total P load (4,965 kg/yr) caused by increased runoff from 

urban impervious surfaces in the development was factored out of the 10-year simulation 

for the BMP and conventional turfgrass treatments as shown in figure 9B. Removing the 

influence of the development revealed that the BMP turfgrass treatment reduced total P 

loading to Mary’s Creek compared to the status quo treatment. The conventional 

treatment increased total P loading to Mary’s Creek compared to the status quo treatment 

after the influence of development was removed (fig. 9B).  



 45

0

5000

10000

15000

20000

25000

30000

35000

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
Year

S
tr

ea
m

 T
ot

al
 P

 L
oa

d 
(k

g)

Status Quo
Conventional Treatment
BMP Treatment

(A)

 

0

5000

10000

15000

20000

25000

30000

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
Year

St
re

am
 T

ot
al

 P
 L

oa
d 

(k
g)

Status Quo
Conventional Treatment
BMP Treatment

(B)

 
Figure 9. The simulated annual total P stream load for the three treatments at the outlet 

of the Mary's Creek watershed with, (A) the total P due to increases in runoff from urban 

impervious surfaces included in the BMP and conventional treatments, and (B) the total 

P due to increases in runoff from urban impervious surfaces removed from the BMP and 

conventional treatments. 

 A linear regression was performed to relate variation of annual total rainfall 

amount to annual variation of nutrient loads for the turfgrass treatments. The variation of 

annual rainfall did not account for a significant portion of variation of nutrient loads of 

treatments, except for the predicted nitrate N load of the status quo treatment (table 12). 
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The low R-square for the regression between nitrate N and rainfall amount for the 

transplanted sod treatments reaffirms that the nitrate N loads for these treatments are 

related more to fertilizer application than streamflow or rainfall amount. 

Table 12. The adjusted R-square values resulting from a regression analysis between 

annual rainfall and the nutrient loads predicted by SWAT for the turfgrass treatments. 

 Adjusted R-Square Value 
Treatments Organic N Nitrate N Total P 

Conventional Treatment 0.149 -0.076 0.127 
BMP Treatment 0.149 -0.076 0.141 

Status Quo 0.146 0.793 0.164 

  
 

Discussion 

The model simulations of the turfgrass BMP indicate that the BMP is an effective 

means of importing manure nutrients from impaired watersheds without raising the in-

stream nutrient levels above conventional commercial turfgrass levels. In fact, the 

turfgrass BMP treatment reduced all in-stream nutrient levels except nitrate N when 

compared to the status quo treatment after the effects of increased runoff from 

impervious surfaces in the development were removed. However, field studies should be 

conducted to confirm the amount of nutrient loss caused by the transplanted turfgrass 

sod grown with composted manure. Water quality sampling of a pilot suburban stream, 

such as Mary's Creek, after receiving turfgrass grown with composted manure would be 

useful for validating the amounts of nutrient loss from the turfgrass on the watershed 

scale.  
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CHAPTER III 
 

CONCLUSIONS 
 

  Through model simulation, the proposed turfgrass BMP was found to reduce 

total P loading to urban streams when compared to conventional commercial sod 

imported and maintained with inorganic P fertilizer. The proposed turfgrass BMP was 

also found to reduce total P loading to the stream compared to an undeveloped suburban 

watershed (the status quo treatment) when the effect of the Walsh Ranch development 

was factored out of the model results. The turfgrass BMP increased the nitrate N stream 

loading compared to the status quo treatment due to N fertilization. However, the 

increase was equivalent to the impact of importing conventional commercially-grown 

sod. The additional nitrate N stream loading could be reduced by utilizing urban nutrient 

BMPs and by homeowner education of proper lawn nutrient application.   

The model simulations of the turfgrass BMP indicate that the BMP is an effective 

means of importing manure nutrients from impaired watersheds without raising the in-

stream nutrient levels above conventional commercial turfgrass levels. In fact, the 

turfgrass BMP treatment reduced all in-stream nutrient levels except nitrate N when 

compared to the status quo treatment after the effects of increased runoff from 

impervious surfaces in the development were removed. However, field studies should be 

conducted to confirm the amount of nutrient loss caused by the transplanted turfgrass 

sod grown with composted manure. Water quality sampling of a pilot suburban stream, 

such as Mary's Creek, after receiving turfgrass grown with composted manure would be 
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useful for validating the amounts of nutrient loss from the turfgrass on the watershed 

scale.  

 



 49

REFERENCES 
 

Arnold, J.G., R. Srinivasan, R.S. Muttiah, and J.R. Williams. 1998. Large area 

hydrologic modeling and assessment part I: Model development. J. of the Amer. 

Water Res. Assoc. 34(1):73-89. 

Associated Press (AP). 2004. Waco sues dairies to get relief from pollution. Waco 

Tribune-Herald, May 1. 

Baird, C., and D. Ockerman. 1996. Characterization of nonpoint sources and loadings to 

Corpus Christi Bay National Estuary Program Study area. CCBNEP-05. Corpus 

Christi, TX: Corpus Christi National Estuary Program. 

Baldys, S. III, T.H. Raines, B.L. Mansfield, and J.T. Sandlin. 1998. Urban stormwater 

quality, event-mean concentrations, and estimates of stormwater pollutant loads, 

Dallas-Fort Worth area, Texas, 1992-93. USGS Water-Resources Investigations 

Report 98-4158. Austin, TX: United States Geological Survey. 

Bednarz, S.T., and R. Srinivasan. 2002. Mary’s and Sycamore Creeks study – Phase I.  

BRC Report No. 02-11. Temple, TX: Blackland Research Center. 

Bhuyan, S.J., J.K. Koelliker, L.J. Marzen, and J.A. Harrington, Jr. 2003. An integrated 

approach for water quality assessment of a Kansas watershed. Environ. Modeling 

and Software. 18:473-484. 



 50

Chen, X., W.L. Harman, M. Magre, E. Wang, R. Srinivasan, and J.R. Williams. 2000. 

Water quality assessment with agro-environmental indexing of non-point 

sources, Trinity River basin. Applied Engineering in Agriculture. 16(4):405-417. 

Choi, I., C.L. Munster, D.M. Vietor, R.H. White, C.E. Richards, G.A. Stewart, and B. 

McDonald. 2003. Use of turfgrass sod to transport manure phosphorus out of 

impaired watersheds. In Proc. of Conference, Total Maximum Daily Load 

Environmental Regulations II, 518-526. St. Joseph, MI: American Society of 

Agricultural Engineers. 

Daniel, T.C., A.N. Sharpley, D.R. Edwards, R. Wedepohl, J.L. Lemunyon. 1994. 

Minimizing surface water eutrophication from agriculture by phosphorus 

management. J. Soil Water Conserv. 49:30-38. 

DiLuzio, M., Srinivasan, R., and Arnold, J.G.  2003.  A GIS-hydrological model system 

for the watershed assessment of agricultural nonpoint and point sources of 

pollution. Transactions in GIS, 2004, 8(1): 113-136. 

Glasson, T. 2002. January Fiscal Notes--Westward Ho?. Austin, TX.: Texas Comptroller 

of Public Accounts. Available at: 

www.window.state.tx.us/comptrol/fnotes/fn0201/westward.html. Accessed 11 

May 2004. 

Hall, M.H. 1999. Texas turfgrass research: 1999. Consolidated Progress Reports TURF-

99-1 thru TURF-99-12. College Station, TX: Texas Agricultural Experiment 

Station. 



 51

Hauck, L.M. 2002. Investigations of phosphorus enrichment and control in the Lake 

Waco-Bosque River watershed: An overview of technical and stakeholder 

aspects. Publication No. PR0204. Stephenville, TX: Texas Institute for Applied 

Environmental Research. 

He, C. 2003. Integration of geographic information systems and simulation model for 

watershed management. Environ. Modeling and Software. 18:809-813. 

Keplinger, K., and L.M. Hauck. 2002. Modeling phosphorus control dairy BMPs for the 

North Bosque River. Fact Sheet FS0204. Stephenville, TX: Texas Institute for 

Applied Environmental Research. 

Kiesling, R.L., A.M.S. McFarland, and L.M. Hauck. 2001. Nutrient targets for Lake 

Waco and North Bosque River: Developing ecosystem restoration criteria. Report 

No. TR0107. Stephenville, TX: Texas Institute for Applied Environmental 

Research. 

Lammers-Helps, H. 1991. Should we be composting manure? Info Source. August 1991. 

Univ. Guelph, ON: Soil and Water Conservation Information Bureau. 

Lard, C.F., C.R. Hall, and R.K. Berry. 1996. The economic impact of the Texas turfgrass 

industry. Horticultural Economics Research Report No. 96-9. College Station, 

TX: Texas A&M University, Department of Horticultural Science. 

MAWD. 2003. Legislative Program: 2000 Annual Meeting Resolutions. St. Paul, Minn.: 

Minnesota Association of Water Districts. Available at: 

http://www.mnwatershed.org/rso.htm. Accessed 13 July 2003. 



 52

McFarland, A.M.S., and L.M. Hauck. 1999. Existing nutrient sources and contributions 

to the Bosque River watershed. Publication No. PR9911. Stephenville, TX: Texas 

Institute for Applied Environmental Research. 

McFarland, A.M.S., L.M. Hauck, and R. Kiesling. 2001. Fate and transport of soluble 

reactive phosphorus in the North Bosque River of Central Texas. Report No. 

TR0101. Stephenville, TX: Texas Institute for Applied Environmental Research. 

Mitchell, C.C. and C.E. Browne. 1992. Plant nutrient availability in fresh and composted 

poultry wastes. In Proc. National Poultry Waste Management Symposium., eds. 

J.P. Blake, J.O. Donald, and P.H. Patterson, 391-395. Auburn, AL: Auburn 

University Printing Service. 

Munster, C.L., J.E. Hanzlik, D.M. Vietor, R.H. White, and A.M.S. McFarland. 2004 (In 

Press). Assessment of manure phosphorus export through turfgrass sod 

production in Erath County, Texas. J. of Environ. Management. 

Murray, J.J. 1981. Utilization of composted sewage sludge in sod production. In Proc. 

Fourth Internat. Turfgrass Research Conf., ed. R.W. Sheard, 544. Univ. Guelph, 

ON. 

Nash, J.E., and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models-

Part I-A discussion of principles. J. Hydrology. 10:282-290. 

Newell, C.J., H.S. Rifai, and P.B. Bedient. 1992. Characterization of nonpoint sources 

and loadings to Galveston Bay. GBNEP Report #15. Webster, TX: Galveston Bay 

National Estuary Program.   



 53

Saleh, A., J.G. Arnold, P.W. Gassman, L.M. Hauck, W.D. Rosenthal, J.R. Williams, 

A.M.S. McFarland. 2000. Application of SWAT for the Upper North Bosque 

River watershed. Trans. ASAE. 43(5):1077-1087. 

Santhi, C., J.G. Arnold, J.R. Williams, L.M. Hauck, and W.A. Dugas. 2001. Application 

of a watershed model to evaluate management effects on point and nonpoint 

source pollution. Trans. ASAE. 44(6):1559-1570. 

Santhi, C., J.G. Arnold, R. Srinivasan, and J.R. Williams. 2003. A modeling approach to 

evaluate the impacts of water quality management plans implemented in the Big 

Cypress Creek watershed. In Proc. of Conference, Total Maximum Daily Load 

Environmental Regulations II, 518-526. St. Joseph, MI: American Society of 

Agricultural Engineers. 

Sharpley, A.N., S.C. Chapra, R. Wedepohl, J.T. Sims, T.C. Daniel, and K.R. Reddy. 

1994. Managing agricultural phosphorus for protection of surface waters: Issues 

and options. J. Environ. Qual. 23:437-451. 

Sims, J.T., R.R. Simard, and B.C. Joern. 1998. Phosphours loss in agricultural drainage: 

Historical perspective and current research. J. Environ. Qual. 27:277-293. 

Stewart, G. R., C.L. Munster, D.M. Vietor, C.E. Richards, I. Choi, and B. McDonald. 

2003. Calibration of the GIS-SWAT model for the simulation of phosphorus 

export in turfgrass sod to a suburban watershed. In Proc. of 2003 ASAE TMDL 

Environmental Regulation II Conference, 184-189. St. Joseph, MI: American 

Society of Agricultural Engineers. 



 54

TCEQ. 2002. An implementation plan for soluble reactive phosphorus in the North 

Bosque River watershed--For segments 1226 and 1255. Austin, TX: Texas 

Commission on Environmental Quality. 

TCEQ. 2003. Composted Manure Incentive Project. Austin, TX: Texas Commission on 

Environmental Quality. Available at: 

http://www.tnrcc.state.tx.us/water/quality/nps/compost/index.html. Accessed 10 

February 2004. 

TNRCC. 2001. Two total maximum daily loads for phosphorous in the North Bosque 

River for segments 1226 and 1255. Austin, TX: Texas Natural Resource 

Conservation Commission. 

TWRI. 2004a. Dairy compost utilization. College Station, TX.: Texas Water Resources 

Institute (TWRI). Available at http://twri.tamu.edu/projects/DairyCompost.pdf. 

Accessed 10 February 2004. 

TWRI. 2004b. Land restoration: Fort Hood rangelands & training areas. College Station, 

TX.: Texas Water Resources Institute (TWRI). Available at 

http://twri.tamu.edu/projects/LandRestoration.pdf. Accessed 10 February 2004. 

USDA-ARS. 2003. The milk administrator’s report: Southwest marketing area. Vol. 

XXVIV, No. 1. Washington, DC: United States Department of Agriculture, 

Agricultural Research Service. 



 55

USDA-NRCS. 1995. Soil survey geographic (SSURGO) data base: Data use 

information. Misc. Pub. No. 1527. Washington, DC: United States Department of 

Agriculture, Natural Resources Conservation Service. 

USDA-SCS. 1972. National Engineering Handbook. Hydrology Section 4. Chapters 4-

10. Washington, DC: United States Department of Agriculture, Soil Conservation 

Service. 

USEPA. 1983. Results of nationwide urban runoff program volume 1-Final report. 

Springfield, VA: United States Environmental Protection Agency, Water Planning 

Division, National Technical Information Service. 

USEPA. 2002. National water quality inventory: 2000 report. EPA-841-R-02-001. 

Washington, DC: United States Environmental Protection Agency. 

USGS. 1999a. The Quality of Our Nation's Waters--Nutrients and Pesticides. USGS 

Circular 1225. Reston, VA: United States Geological Survey. 

USGS. 1999b. The quality of our nation's waters--Nutrients and pesticides--A summary. 

USGS Fact Sheet 116-99. Reston, VA: United States Geological Survey. 

U.S. House Committee on Conservation Needs and Opportunities. 1986. Soil 

Conservation: Assessing the National Resource Inventory, Vol. 1. Washington, 

DC: National Academy Press.   

U.S. Water News Online. 2000. Texas lawmakers hope compost operation cuts water 

pollution. December. Available at: 



 56

www.uswaternews.com/archives/arcquality/ttexlaw12.html. Accessed 3 May 

2004. 

Vietor, D.M., E.N. Griffith, R.H. White, T.L. Provin, J.P. Muir, and J.C. Read. 2002. 

Export of manure P and N in turfgrass sod. J. Environ. Qual. 31:1731-1738. 

Vietor, D.M., T.L. Provin, R.H. White, and C.L. Munster. 2004. Runoff losses of 

phosphorus and nitrogen imported in sod or composted manure for turf 

establishment. J. Environ. Qual. 33: 358-366. 

Wickham, J.D. and T.G. Wade. 2002. Watershed level risk assessment of nitrogen and 

phosphorus export. Computers and Electronics in Ag. 37:15-24. 

Williams, J.R. and H.D. Berndt. 1977. Sediment yield prediction based on watershed 

hydrology. Trans. ASAE. 20(6):1100-1104. 



 57

APPENDIX A 
 

SWAT MODEL CALIBRATION ADJUSTMENTS  
 

Initially, the model monthly flow estimates were higher than the observed 

monthly flows. The SWAT model parameters in Table 13 were adjusted until the 

predicted flow was approximately equal to the observed flow. The base flow fraction 

was first calculated using a base flow filter developed by the BRC. The base flow alpha 

factor (ALPHA_BF) was adjusted to 0.158 according to the filter results. In order to 

bring the simulated flow rate down further, the curve numbers (CN2) were adjusted 

down by a factor of 8, the CN2 limits were adjusted down by 10% and the soil 

evaporation compensation factor (ESCO) and the plant water uptake compensation 

factor (EPCO) were adjusted down. Temporal adjustments to the peak flows and 

baseflow were made by increasing the groundwater delay coefficient (GW_DELAY) and 

increasing the effective hydraulic conductivity of the main channel alluvium (CH_K2). 

Finally, to accurately simulate the amount of water returning to the stream, the amount 

of shallow aquifer water that moved into the soil profile (GW_REVAP) was increased 

and the threshold depth of water in the shallow aquifer for this "revap" to occur 

(REVAPMN) was decreased. 
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Table 13. The SWAT model parameters adjusted during the flow calibration of the 

Mary's Creek watershed.  

Parameter Default Value Calibration Value 
ALPHA_BF 0.0 0.158 

CH_K2 0.0 1.0 
CN2 0 -8 

EPCO 1.0 0.0 
ESCO 0.95 0.01 

GW_DELAY 31 93 
GW_REVAP 0.02 0.2 
REVAPMN 1.0 0.0 

 
A limited amount of sediment loading data was available for Mary’s Creek.  The 

following sources were available to estimate the average annual sediment load: 

• Sediment loading was estimated from sediment removal records from the Clear Fork 

of the Trinity River (CFTR) below the intersection of Mary’s Creek. 

• Sediment storm loading from urban areas was estimated from a regional regression 

analysis using data collected by the USGS from D/FW watersheds. 

• Sediment storm loading from rangeland/pasture was estimated from an event mean 

concentration value (EMC) calculated from a nearby watershed. 

• Sediment baseflow loading was estimated from baseflow sampling of Mary's Creek. 

 Records of sediment removal from the CFTR below Mary's Creek were available 

from the TRWD.  TRWD estimated 3,200 metric tons per year were removed from the 

junction of Mary's Creek and the CFTR.  Although some sediment from Mary's Creek 

may remain suspended beyond this junction, this estimate also takes into account the 
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settled sediment from the CFTR.  Therefore, most of this sediment originated in Mary's 

Creek but it is impossible to determine if this estimate is high or low.  

 A local regression analysis developed by Baldys et al. (1998) was also used to 

estimate the average annual sediment loading to Mary's Creek.  The regression utilized 

data collected as a part of the D/FW National Pollutant Discharge Elimination System 

(NPDES) permit application for urban storm water.  Data collected for this permit 

included sediment concentrations, nutrient concentrations, and other water quality 

parameters from the storm flows of 26 small, single land use watersheds.  Baldys et al. 

(1998) flow-weighted these parameters to allow their estimation from other flow-gaged 

watersheds in the area.  The regression equation used seven explanatory variables: total 

storm rainfall (TRN), total contributing drainage area (DA), impervious area (IA), 

industrial land use (LUI), commercial land use (LUC), residential land use (LUR), and 

nonurban land use (LUN).  Antecedent dry days and maximum 5-minute intensity were 

not used as explanatory variables because there was no significant statistical difference 

in the results when these were included.  The regression equation was given by, 
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The bias correction factor (BCF) provides an unbiased estimate of the mean response 

through a parametric method.  The BCF is defined by 
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The standard error (SE) of the regression equation measures the deviation about 

the regression.  The regression equation coefficients for suspended solid estimation are 

shown in table 14 as taken from Baldys et al. (1998). 

Table 14. The regression analysis coefficients for estimating the sediment load to Mary's 

Creek. 

Coefficient Value 
bo

' 5.85 
b1 0.889 
b2 0.544 
b3 0.913 
b4 0.463 
b5 0.170 
b6 0.328 
b7 -- 

BCF 1.52 
SE 115 

 

 The local regression was applied to each SWAT sub-basin.  TRN was calculated 

from the rain gage data that is described in the SWAT datasets section over the period of 

1990 to 2000.  Land use and land use characteristics were obtained through the 

MRLC/TAES land use raster layer using a land use classification and land use 

imperviousness database.  The sediment load was found to be 530 metric tons per year.  

This load can only be attributed to storm events on urban areas (the non-urban 

coefficient was not available).  

   The remainder of the Mary's Creek watershed is predominantly rangeland and 

pasture land uses.  The forest land use in Mary's Creek is primarily located near the 

stream as riparian vegetation and was not considered in this calculation because the 
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sediment loading from forest land uses are generally lower than from rangeland and 

pasture areas (Newell et al., 1992).  Sediment loading was estimated from the remainder 

of the watershed through the use of an EMC value.  EMC values allow the comparison 

of pollutant loads between watersheds of different sizes and between storms that may 

have different characteristics.  They are calculated by dividing the pollutant load by the 

volume of storm runoff.  This is done by using the flow-weighted average of the 

concentration of the pollutant collected from samples gathered during the course of a 

storm event or by combining these samples into a single, flow-averaged sample. 

 The sediment EMC value (70 mg/L) utilized in this study is the median of EMC 

values calculated from "open" land use watersheds by the USEPA (1983).  This EMC 

value was also applied to rangeland/pasture land use areas near Houston by Newell et al. 

(1992).  This value was selected because it has been used to predict loadings from 

rangeland/pasture dominated watersheds in east Texas and is a large value that will tend 

to overestimate the sediment loading rather than underestimate.  The average annual 

storm sediment loading due to rangeland/pasture was calculated to be 820 metric tons as 

given by, 

LOADING = EMC * STORM RUNOFF VOLUME          (4) 

The storm runoff volume was found by subtracting the baseflow fraction (0.375) 

calculated using the BRC baseflow filter from the total flow through the USGS gage 

08047050 over the 1998 to 2002 period.  The EMC method assumes that pollutant 

concentration is a function of land use and flow only and that neighboring watershed 

land uses mimic each other. 
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 Water quality grab samples that corresponded with baseflow conditions were 

obtained from Mary's Creek on May 18 and 26, and June 14, 2004.  Water quality 

samples were also collected for a one week period (May 18, 2004 to May 25, 2004) with 

the assistance of an automatic ISCO sampler set to composite six samples into a separate 

bottle every twelve hours.  The total suspended solid concentration was calculated for 

these samples and the average baseflow sediment concentration was found to be 

approximately 30 mg/L.  The baseflow loading was then, 

LOADING = AVG. BASEFLOW CONC. * BASEFLOW VOLUME (5) 

The average annual sediment loading during baseflow was calculated as 210 metric tons. 

 Finally, the total average annual sediment loading was found to be approximately 

1,600 metric tons by adding the urban stormwater contribution, the rangeland/pasture 

stormwater contribution, and the baseflow contribution.   

   The average of average annual sediment loads calculated from the TRWD 

sediment removal records and the combination of urban, rangeland/pasture stormflow, 

and baseflow estimation was found to be 2,400 metric tons. 

The SWAT model was calibrated to predict an average annual sediment load of 

2,400 metric tons over the period from January 1, 1990 to December 31, 2000. This 

period was chosen because it coincides with the time periods that were used to estimate 

sediment loading. The model was run on a yearly basis for the period of January 1, 1985 

to December 31, 2000 to give the model a five year adjustment period. 
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Without any calibration, the SWAT model predicted an average annual sediment 

yield greater than the calculated average annual sediment yield. The SWAT model 

parameters shown in table 15 were then adjusted until the predicted average annual 

sediment yield was approximately equal to the calculated average annual sediment yield. 

The average slope length (SLSUBBSN) was reduced to 10 meters as this is a parameter 

that is commonly over-estimated.  Also, the average slope steepness (SLOPE) was 

adjusted down to 0.02 m/m to reduce the HRU contribution of sediment further. The 

universal soil loss equation soil erodibility factor (USLE_K1) was decreased by 

approximately 60% for all soils in the watershed to further reduce the sediment entering 

the stream. 

Table 15. The SWAT model parameters adjusted during the sediment calibration of the 

Mary's Creek watershed.  

Parameter Default Value Calibration Value 
SLOPE 0.129 0.020 

SLSUBBSN 24.390 5.000 
USLE_K1 (all soils) Various -60% 

 

The predicted average annual sediment yield after calibration was 2,830 metric 

tons, approximately 18% higher than the calculated average annual sediment yield.   

 There was little nutrient loading data available for the Mary's Creek watershed. 

The TRWD and the BRC did not make nutrient loading estimates during their studies 

and the USGS did not collect water quality samples at the gaging station, 08047050. For 

this reason, the same estimation method that was utilized for sediment loading was used 

to estimate the total N, nitrate and nitrite N, and total P loadings. First, the urban 
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stormwater average annual nutrient loading was calculated using the local regression 

analysis developed by Baldys et al. (1998). Then, the average annual nutrient loading 

due to the rangeland/pasture stormwater contribution was calculated using an EMC 

value. Lastly, the baseflow contribution was calculated from the sampling routine 

conducted as a part of this study. The calculated values for each nutrient are shown in 

table 16. 

Table 16. The calculated average annual nutrient loadings in kg/yr from the Mary's 

Creek watershed.  

 Total N (kg/yr) NO2 andNO3 
(kg/yr) 

Total P (kg/yr) 

Urban Storm 7,700 2,690 1,930 
Rangeland/Pasture 

Storm 
17,590 3,790 1,400 

Baseflow 42,280 140 12,230 
Total 67,570 6,620 15,560 

 The SWAT model was calibrated to predict an average annual total N load of 

67,570 metric tons over the same period as the sediment calibration (January 1, 1990 to 

December 31, 2000). The model was again run on a yearly basis for the period of 

January 1, 1985 to December 31, 2000 to give the model a 5 year adjustment period. The 

average annual organic N yield was calculated to be 60,950 metric tons by subtracting 

the nitrate and nitrite N yield from the total N yield. This allowed calibration of the 

average annual organic N load and the average annual nitrate and nitrite N load in 

conjunction with the average annual total N load. 

 Without any calibration, the SWAT model over-predicted the average annual total 

N yield compared to the calculated average annual total N yield. The average annual 
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organic N and nitrate and nitrite N yields were then calibrated to the calculated average 

annual organic N and nitrate and nitrite N yields. The biological mixing efficiency 

(BIOMIX) and the organic N enrichment ratio (ERORGN) were increased to improve 

the ratio of organic N to nitrate and nitrite N. The initial soil organic N concentration 

(SOL_ORGN) and the initial residue cover (RSDIN) were increased to enlarge the 

organic N yield. The N in rainfall (RCN) was decreased to reduce nitrate and nitrite 

loading to the stream. The depth of the top layer of the Aledo soil (SOL_Z1) was 

reduced because it contributed a large portion of N to the stream.  Also, the saturated 

hydraulic conductivity (SOL_K) of three soils was reduced in the bottom layers to allow 

nitrate and nitrite to percolate into the deep aquifer and stay out of the stream. Lastly, the 

nitrogen percolation coefficient (NPERCO) was adjusted to increase the N percolation to 

the stream from the shallow aquifer. The total N, organic N, and nitrate and nitrite N 

parameters adjusted during the N calibration are shown in table 17. 

Table 17. The SWAT model parameters adjusted during the N calibration of the Mary's 

Creek watershed.  

Parameter Default Value Calibration Value 
BIOMIX 0.92 0.20 
ERORGN 0.0 5.0 
NPERCO 0.20 0.35 

RCN 1.0 0.3 
RSDIN 0 10,000 

SOL_ORGN 0 10,000 
SOL_K (Aledo, Maloterre, Purves) Various -100% 

SOL_Z1 (Aledo) 101.6 50 

 
The predicted average annual total N yield after calibration was 59,940 metric 

tons, approximately 11% lower than the calculated average annual total N yield. The 
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predicted average annual organic yield after calibration was 53,060 metric tons, 

approximately 13% lower than the calculated average annual organic N yield. Lastly, the 

predicted average annual nitrate and nitrite N yield after calibration was 6,880 metric 

tons, approximately 4% higher than the calculated average annual nitrate and nitrite 

yield. 

After calibration of flow, sediment, and nitrogen, the simulated average annual 

total P yield was close to the calculated average annual total P yield without any 

calibration adjustments. The initial soil organic P concentration (SOL_ORGP) was 

raised to increase P additions to the stream slightly. This adjustment is shown in table 18.  

The SWAT model was calibrated to an average annual total P yield of 15,560 

metric tons. The distinction between the organic and mineral P components could not be 

made because of a lack of regression and EMC data concerning these different phases. 

The calibration period was the same as for sediment and N (January 1, 1990 to 

December 31, 2000) and the model was run for the January 1, 1985 to December 31, 

2000 period for the additional adjustment period.   

Table 18. The SWAT model parameters adjusted during the P calibration of the Mary's 

Creek watershed.  

Parameter Default Value Calibration Value 
SOL_ORGP 0 4,000 

 
 The predicted average annual total P yield after calibration was 15,580 metric 

tons, approximately 0.1% higher than the calculated average annual total P yield. 
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