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ABSTRACT 

 
Localization and Partial Immunological Characterization  

of Fasciola hepatica Thioredoxin.  (December 2004) 

Richard Dwayne McKown, B.S., Kansas State University; D.V.M., 

 Kansas State University; M.S., Kansas State University 

Co-Chairs of Advisory Committee:  Dr. Allison C. Rice-Ficht 
                                                    Dr. Thomas M. Craig 

 
 

This study reports the localization and partial characterization of thioredoxin from 

the parasitic trematode Fasciola hepatica.  Snails (Pseudosuccinia columella) were raised 

in culture and infected with F. hepatica so that Western blotting and 

immunohistochemical techniques could be utilized to determine the presence of 

thioredoxin in different stages of the parasite’s development.  The results of these 

experiments showed that thioredoxin was present in the tegument, gut epithelium, 

excretory canal epithelium and sperm, of the adult parasite as well as in the tegument and 

gut of the redia and cercaria intermediate stages.  In situ hybridization was used to 

determine the localization and possible differential mRNA expression of two different F. 

hepatica thioredoxin isotypes (Fh2020.A and Fh2020.SL) in the adult parasite.  The in 

situ hybridization results showed that both isotypes are expressed in the tegument and gut 

epithelium.  Fh2020.A stains with a greater intensity possibly demonstrating a difference 

in the amount of expression between the two isotypes. 

Recombinant F. hepatica thioredoxin expressed in bacteria using the pMAL™ 

Protein Fusion and Expression System was used to test its affects on the production of 

super oxide anion by murine peritoneal macrophages, bovine monocyte-derived 



 
 

iv 

macrophages and bovine whole blood neutrophils, and nitric oxide production by mouse 

peritoneal macrophages and bovine monocyte-derived macrophages.  The results of the 

cellular assays were not definitive due to the fact that the maltose binding protein (MBP) 

moiety of the recombinant thioredoxin, when tested alone, increased production of nitric 

oxide by bovine monocyte-derived macrophages.  Consequently, since the MBP could 

not be effectively separated from the thioredoxin portion of the recombinant, allowing the 

thioredoxin affects to be tested independently, no true conclusions regarding its affects on 

the host immune cells tested could be drawn. 

This is the first report of the localization of thioredoxin in both the adult F. 

hepatica as well as in specific intermediate stages of the parasite.  These studies 

demonstrate the possible affects that a protein tag can have on experimental results and 

demonstrate how such data may be interpreted when a non-cleaved recombinant protein 

is used in cellular or other assays when compared to native or cleaved recombinant 

proteins.   
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW  

 

The earliest evidence of the common liver fluke Fasciola hepatica, was found 

between 1996 and 1999 at a large-scale, multi-period archeological site.  The excavation 

was undertaken at Karsdorf in the Saale-Unstrut Valley in Central Germany.  Human 

habitation of the site dated from the middle Neolithic to the Roman Iron Age, 

approximately 3,500 BC to 200 AD.  Within the excavation area, a cemetery dating from 

the late Neolithic to the middle of the third millennium BC was discovered.  Along with 

horses and cattle, more than 70 human skeletal remains were found.  Soil samples from 

the pelvic area of a single human skeleton and that of a bovine burial were found to 

contain the recognizable eggs of F. hepatica.   Supportive evidence of the existence of 

the full parasite life cycle at the site was also found, within the excavation area small 

snail shells belonging to the genus Lymnea were uncovered (Dittmar and Teegen, 2003). 

  The earliest mention of Fasciola sp. in the historical literature was by Jean de 

Brie in France, 1379, where he described the consequences of "sheep liver rot" in his 

treatise on sheep management and wool production (Reinhard, 1957).  However, as seen 

from the evidence presented above, this is a very ancient parasite and coexistence with 

man and his animals predates its first appearance in the literature.  Since de Brie,  
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F. hepatica has been reported from every continent of the globe with the exception of 

Antarctica.  In addition to humans, cattle, and sheep, it has also been found in goats and 

at least 46 other species of both domestic and wild mammals, infected either naturally or 

experimentally (Boray, 1969).  Taxonomically, it falls into Class: Trematoda, Order: 

Digenea, Family: Fascioloidae.  Other members within the family include Fasciola 

gigantica, Fasciolopsis buski, and Fascioloides magna, all of which are of either human 

or veterinary importance.  Both F. hepatica and F. magna (Figure 1.1) are found within 

the continental United States, and F. gigantica is present in Hawaii. 

  

Figure 1.1:  (A) Adult Fasciola hepatica  and (B) adult Fascioloides magna. 
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History 

As an adult parasite found in the livers of humans and sheep, F. hepatica had 

been known to farmers and scientists for hundreds of years with the first written 

descriptions appearing in Europe around 1523 (Reinhard, 1957).  In 1668, Francesco 

Redi published the first drawing of an adult fluke that had been removed from the liver 

of a ram.  Then in 1698, Govard Bidloo, an anatomy professor at The Hague, wrote and 

illustrated a 34-page book devoted entirely to the sheep liver fluke.  In it he described 

finding the adult flukes in the livers of sheep, calves, and men, as well as observing the 

eggs within the adult fluke and attributing the means by which an animal becomes 

infected to the swallowing of the eggs or the flukes themselves.  Throughout Europe, 

there were several outbreaks of sheep liver rot, the most severe being those in Holland in 

1562 and 1674, and one in Germany in 1663.  At the time, most people realized that 

while having something to do with the presence of the flukes in the affected animals= 

livers, the disease was attributed to divine justice or to the eating of Abad plants@.  The 

bad plant theory was related to the fact that the majority of cases of liver rot occurred in 

those animals that were pastured in low-lying or poorly drained areas.  It was not until 

1758 that the parasite was named Fasciola hepatica by Linnaeus.  The Latin derivation 

of the name “fasciola” meaning fillet or small bandage, referring to its appearance, and 

“hepatica” meaning liver, referring to its location in the host (Borror, 1971). 

During the winter of 1879-1880 a severe outbreak of liver rot occurred in Britain, 

resulting in the death of over three million sheep.  It was after this that the Royal 

Agricultural Society of England offered a grant for the investigation into the natural 

history of the parasite that by this time was believed to be the direct cause of the disease.  
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So, in 1881 from work started one year before in the summer of 1880, and after more 

than 500 years since the first mention of the parasite, two individuals working in 

different laboratories, A. P. W. Thomas in England and Rudolf Leuckart in Germany, 

elucidated the complex life history of F. hepatica. 

Description 

When fully mature, the dorsoventrally flattened adult fluke reaches a size of 

approximately 30 mm long by 13 mm wide.  The adults are somewhat leaf-shaped and 

have a narrow cephalic cone at the broad anterior end.  Two anterior suckers are present, 

an oral sucker at the tip of the cephalic cone and a ventral sucker located at the level of 

the Ashoulders”.  The ventral sucker functions as an organ of attachment, while the oral 

sucker is the opening to the pharynx and the digestive tract.  The digestive tract consists 

of a pair of highly branched intestinal ceca that extends to the posterior end of the body.  

A single branched ovary lies to the right side of the midline and slightly posterior to the 

ventral sucker with the coils of the uterus situated between the ovarian branches.  Two 

extensively branched testes, one anterior to the other, lie posterior to the ovary 

occupying a considerable portion of the remaining body.  Numerous vitelline glands 

extend along the sides of the body from the area of the shoulders to the end of the body 

where they are confluent behind the testes (Olsen, 1974).   

Life Cycle 

As was shown by Thomas and Leuckart (Reinhard, 1957), F. hepatica exhibits a 

life cycle typical of all digenetic trematodes with two stages of multiplication; one that is 

sexual in the adult stage of the parasite and the other that is asexual in the larval or 
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intermediate stages.  In short, the life cycle of the fluke consists of seven phases:  1) 

development to the adult in the definitive host; 2) passage of the eggs from the definitive 

host; 3) embryonation of the eggs in the environment; 4) hatching of the miricidia in 

water and its search for a snail intermediate host; 5) development of larval stages in the 

snail; 6) emergence of cercaria from the snail and successful encystment of the 

metacercaria; and 7) ingestion of the metacercaria by the definitive host. 

Starting with the adult parasite in the biliary system of the liver of the definitive 

host, the adults lay on average between 8,000 and 25,000 eggs per day.  While an 

individual fluke is hermaphroditic, cross-fertilization between two adult flukes is 

believed to be the most common form of sexual reproduction (Chen and Mott, 1990).  

The unembryonated eggs pass out of the liver via the common bile duct into the small 

intestine and are voided with the feces of the host.  The anaerobic conditions found 

within the fecal mass prevent any development; therefore, only those eggs free in water 

will embryonate to hatching.  Under the proper conditions, hatching can occur in as little 

as 9 to 10 days.  Development is temperature dependant, slowing down but continuing at 

lower temperatures and ceasing at or below 10°C.  When activated by light stimulation, 

the miracidium alters the permeability of the egg membrane and the resulting increase in 

internal pressure causes the operculum to rupture and open (Wilson, 1968).  Upon 

hatching, the ciliated miracidia have a life expectancy of about 24 hours, during which 

time a suitable snail intermediate host must be found. 

Some, but not all snails within the family Lymnaeidae will serve as suitable 

intermediate hosts.  In North America, suitable hosts include members of the following 
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genera; Fossaria, Lymnaea, Pseudosuccinea, and Stagnicola (Kendall, 1950; Krull, 

1934; McKown and Ridley, 1995).  Once out of the egg, the free-living, non-feeding 

miracidium will begin its search for a snail.  Chemotactic structures within the 

miracidium triggered by substances in the snail’s mucus aid in locating and directing it 

towards the snail intermediate host.  While the miracidium possesses energy reserves 

that enable it to live for upwards of 24 hours, the successful penetration and infection of 

the snail host is more likely to occur the sooner a snail is found.  Once coming into 

contact with the snail, the miracidium will burrow in, lose its ciliated outer coat, and 

transform into a sac-like sporocyst.  Each sporocyst produces numerous first generation 

or mother redia that will then migrate to the hepatopancreas of the snail where further 

asexual reproduction occurs.  This multiplication results in the formation of numerous 

second generation or daughter redia.  From these second-generation redia, multiple 

cercaria are typically produced within 5 to 7 weeks post-infection.  Once released from 

the snail, the motile cercaria will swim free into the water and then attach to a substrate, 

usually plants or the undersurface of the water film, and secrete a double-walled 

protective cyst around themselves.  These cysts become fully infective to a definitive 

host within 24 hours.  The process of asexual reproduction within the snail allows a 

single miracidium to produce from 10 to 700 metacercaria.  Estimates of the longevity of 

metacercaria in the environment vary with some studies reporting viability of upwards of 

122 days in running water to as little as 95 days in stagnant water.  Others have stated 

that under ideal conditions, metacercaria may remain viable for as long as one year on 

pasture and even live for a few months on dry hay (Haseeb et al., 2002). 
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Once ingested by any of a number of definitive hosts, the metacercaria now 

containing a juvenile fluke will go through a two-stage excystment.  First, while under 

the reducing conditions of the rumen and at a temperature of approximately 39°C, the 

juvenile fluke becomes activated.  After passing into the duodenum, the presence of bile 

enzymes and salts trigger the emergence of the immature fluke by activating enzymes 

present in the metacercaria.  These cause a hole to open in the cyst wall allowing the 

escape of the parasite.  Once free of the cyst, the newly excysted juvenile (NEJ) fluke 

will penetrate the gut wall and enter the celomic cavity of the host, usually within 24 

hours.  Once in the peritoneal cavity, the NEJ will migrate towards and penetrate the liver 

of the host.  From here it will spend the remainder of its life within the liver of its host.  

After penetration of the liver capsule, the juvenile fluke will begin a period of migration, 

feeding, and growth within the liver parenchyma.  After a time it will then penetrate a 

bile duct and enter the biliary system where it will complete its development to the adult 

stage.  The prepatent period i.e., that time from infection until eggs are detectable in the 

feces of the host, will vary from one species of definitive host to another.  Eggs can be 

found in mice in as little as 6 weeks, in sheep as long as 8-12 weeks, and in cattle, 

typically from 12-15 weeks.  Once mature, adult flukes may live in the bile ducts of the 

host for varying periods of time, from 9-12 months in cattle, as long as 11 years in sheep, 

and 9-13 years in man (Chen and Mott, 1990). 

Tegument 

 Throughout the course of its development over its various stages and habitats, one 

of the most studied structures of F. hepatica is the tegument (Threadgold, 1963a; Wilson, 

1969; Southgate, 1970; Davies, 1978; Dunn et al., 1992), in particular that of the juvenile 
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and adult stages (Threadgold, 1963b; Threadgold, 1967; Bennett and Threadgold, 1973).  

The outer layer of the tegument is a continuous living cytoplasmic syncytium, consisting 

of two regions that are an anucleate surface syncytium and a deeper nucleated zone.  Both 

of these are connected to each other by cytoplasmic bridges or tubules that come from the 

tegumental cytons, which are nucleated cells located beneath the underlying muscle layer 

(Threadgold, 1967; Bennett and Threadgold, 1973; Threadgold, 1976; Hanna, 1980).  It 

is speculated that protein expression in the tegument regulated and plays an important 

part in the fluke’s defense against the host’s immune system (Hanna, 1979; Bennet et al., 

1980). 

 Three types of nucleated cells are found within the nucleated layer of the 

tegument, which are active during various stages of the fluke’s development within the 

mammalian host.  These three cell types have been named type 0 (T0), type 1 (T1) and 

type 2 (T2) cells on the basis of the time frame in which they are functional in the 

parasite.  The T0 cells are the first to become active and then only within the 

metacercaria and the newly excysted juvenile stage.  These cells are known to produce 

granules that are then released at the apical surface of the juvenile fluke allowing for the 

continual turnover of the outer tegument in response to host antibody attachment (Hanna, 

1980).   

When the fluke starts to undergo its liver migration the T0 cells begin to 

differentiate towards becoming T1 cells and start producing T1 granules.  These granules 

differ in size from those of the T0 cells (0.20 µm vs 0.12 µm) but are also membrane-

bound, spherical and very electron dense.  The T2 cells are of a separate cell type and 

occur only among groups of T1 cells, usually in a ratio of approximately 1:2-1:3.  These 
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two cell types can be easily differentiated using several criteria including the large dense 

nucleolus within the irregularly shaped nucleus of the T2 cells.  But most evident is the 

presence of great numbers of small biconcave secretion bodies found throughout the 

cytoplasm of the T2 cell (Threadgold, 1967).  T2 cells only produce these granules after 

the fluke has reached the bile duct. 

From the various studies dealing with the structure and function of Fasciola 

tegument, it has been suggested that it has an organization distinctly different from that of 

other flukes of veterinary importance.  Also, it must be considered as both a secretory 

epithelium as well as a protective covering, with one function being no less important 

that the other (Threadgold, 1967, Bennett and Threadgold, 1973). 

Veterinary Importance 

 The economic importance of F. hepatica infection worldwide in veterinary 

medicine is well established.  It has been estimated that both direct and indirect losses in 

excess of $30,000,000 are incurred annually by cattle and sheep producers in the United 

States due to fascioliasis (Malone, 1986; Malone et al., 1982).  In 1969, England reported 

the direct losses due to condemnation of between 600-700,000 bovine livers for a total 

loss of approximately £1 million ($1.7 million U.S.; Haseeb et al., 2002).  Direct losses 

are defined as those due to the condemnation of infected livers at slaughter (Foreyt and 

Todd, 1976; Malone, 1986; Malone et al., 1982).   

Indirect losses are those that include reductions in average daily gain and reduced 

feed conversion ratios in feedlot cattle (Hope-Cawdery et al., 1977), reduced milk 

production in dairy cattle (Randell and Bradley, 1980), and reduced herd performance in 

cow-calf operations (Dargie, 1986; Foreyt and Todd, 1982; Mage et al., 1989; Malone et 
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al., 1982).  Indirect damages can amount to a greater monetary loss to the producer than 

liver condemnation.  In one university study (Hope-Cawdery et al., 1977) using cattle of 

different age groups and dosed with varying numbers of metacercaria, 8-9 month old 

calves given 600 metacercaria (which averaged only 54 adult flukes present at slaughter) 

showed a 8% reduction in weight gain compared to uninfected controls when slaughtered 

at 54 weeks post-infection.  An even greater reduction (28%) was seen in animals given 

1,000 metacercaria at 14-15 months of age.  It was also shown that even with 

antihelminthic treatment, the initial performance reductions remained until slaughter.  

While some compensatory gains may be made after treatment, the infected cattle never 

did reach the performance levels of the uninfected control group.  In the same study, 

similar trends were seen at slaughter, with the group given 600 metacercaria showing a 

2.3% or a 13-pound reduction in hot carcass weight and the 1,000-metacercaria group 

having a 10% or 55-pound reduction, when compared to the uninfected control animals. 

As one would expect, similar findings are seen with naturally infected animals.  

Simpson et al. (1985) estimated that in mature cows and replacement heifers there was a 

2-4% death loss, 6-12 % calf loss in pregnant animals and a 40-100 pound overall weight 

difference seen in F. hepatica infected animals due to fluke infection.  In Louisiana, 

Loyacano et al. (2002) showed that when naturally infected Angus x Brangus heifers 

were treated, there were significant increases in body condition scores and total weight 

gains when compared to untreated animals.  There was, however, no mention made of 

performance comparisons to non-infected animals. 

Reproductive performance in cattle is also affected by fluke infections.  Rees et 

al. (1975) reported the 0.5% occurrence of prenatal infection in 1-3 week old Australian 
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calves.  These were necropsy findings and no correlation was made between the clinical 

significance of finding the flukes and the calves’ death.  Rees speculated a possible 

decreased resistance to infection in advancing age and the effects this could have on the 

epizootiology of the disease as related to increased pasture contamination in intensively 

managed situations.  Effects on fertility have been reported by López-Díaz et al. (1998), 

where studies demonstrated a delay of 39 days in the onset of first estrus when 4 month 

old heifers were given 600 metacercaria as compared to uninfected controls.  In France, 

Mage et al. (1989) showed that when infected dairy cows were treated for Fasciola, there 

was a subsequent 23% increase in first insemination conception rates during the next 

breeding cycle when compared to non-treated control animals.  

In sheep, wool growth and quality have been shown to be depressed in Fasciola 

infections with as few as 30 adult flukes (Clarkson, 1989; Dargie, 1986).  Hawkins and 

Morris (1978) demonstrated that the number of flukes present can have a significant 

impact on wool quantity.  They determined that an infection of 45 flukes decreased wool 

quantity by 14%, 117 flukes, 19%, and 230 flukes, 33%.  Studies indicate that the 

nutritional status of an animal, in particular the intake of iron and protein, plays an 

important role in how severely it will be affected by fascioliasis (Berry and Dargie, 

1978). 

Medical Importance 

The first record of human fascioliasis is that of Pallas in 1760 in a female patient 

found infected upon autopsy in Berlin (Grove, 1990).  Whether or not fascioliasis was the 

cause of death or if these findings were simply incidental is unknown.  At present, 

estimates suggest that between 2.4 to 17 million people in 61 countries are infected with 
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F. hepatica worldwide, with 180 million at risk (Haseeb et al., 2002; Mas-Coma et al., 

1999; Rim et al., 1994).  Geographically, when placed in order of the number of cases 

reported, the human distribution of fascioliasis is highest in South America (primarily 

Bolivia, Peru and Chile), followed by Europe, Africa, and Asia with the fewest cases 

being seen in Oceania (that area of the Pacific containing the islands of New Zealand, 

Australia, the Philippines, etc.).  However, in many instances the distribution of human 

cases does not correlate well with those areas of the world where fascioliasis is a major 

veterinary concern (Chen and Mott, 1990; Estaban et al., 1998).  With human Fasciola 

infection, the primary areas of high prevalence include the Andean countries of South 

America, northern Africa, Iran, and Western Europe (Mas-Coma et al., 1999). 

Due to the complexities of the life cycle as stated above, as well as factors having 

to do with the snail intermediate hosts, human fascioliasis has an uneven geographic focal 

distribution even within those regions where it may be considered endemic.  This can 

hold true even at the superegional level as is seen in Peru where prevalence ranges from a 

comparatively low level of 8.7% in the area of Cajamarca to 34.2% in the Mantaro 

Valley (Mas-Coma et al., 1999; Yanez, 2001).  Several epidemiological characteristics 

are considered to contribute to this patchy distribution, two of which are the occupation 

of those individuals infected (primarily sheep and cattle herders/producers), and 

habitation (rural; Chen and Mott, 1990).  As an example, Bjorland et al. (1995), reported 

an outbreak of fascioliasis among the Aymara Indians within the Altiplano region of 

Bolivia.  In this instance it was shown that in 52% of the cases, the only factor associated 

with illness was the ingestion of aquatic plants while working animals in the fields.  A 

tendency also exists towards familial clustering, in that frequently, multiple members of a 
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single household may become infected due to the sharing of contaminated food items 

(Bechtel et al., 1992; Chen and Mott, 1990; Rodriguez Hernandez et al., 1998). 

While the liver and its associated biliary ducts are the most commonly affected 

organ systems, other ectopic locations have been reported with some frequency in 

infected individuals.  Such unusual locations have included various subcutaneous sites 

(el-Shazly et al., 1993; Prociv et al., 1992), lung and pleural cavity (el-Shazly et al., 

2002), intraocular (Cho et al., 1994), the wall of the cecum (Park, 1984), the epididymis, 

the abdominal wall, heart, pancreas, spleen, blood vessels, skeletal muscle, and brain 

(Chen and Mott, 1990).  A particular syndrome known as halzoun or parasitic pharyngitis 

has been attributed to Fasciola in which immature flukes attach to the pharyngeal mucosa 

after the ingestion of raw liver, primarily from sheep or goats, frequently causing 

irritation and edema of the throat (Kerim, 1956).  Recently, this condition has been 

attributed to the pentastomid Linguatula serrata, so some controversy as to the true 

etiology of this unique disease still exists (Drabick, 1987; Saleha, 1991; Schacher et al., 

1969). 

Protein Biochemistry 

While fascioliasis and its causative agent F. hepatica, have been studied 

extensively, comparatively little research has been performed from a biochemical 

standpoint, in particular, protein biochemistry.  The earlier works predominantly dealt 

with isolation and characterization of the specific protein of interest (Lammas et al., 

1985; Rege et al., 1989), with few attempts at actually localizing the protein anatomically 

(Hanna and Trudgett, 1983; Hanna et al., 1988; Zurita et al., 1989).  In recent years 

however, the localization of proteins using various methods such as 
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immunohistochemistry (Zurita et al., 1989), immunofluorescence (Marin et al., 1992; 

Stitt et al., 1992a), and immunogold labeling (Hanna et al., 1988; Marks et al., 1995; 

Smith et al., 1993), have become more routine in the study of Fasciola as well as 

numerous other helminth species (Bogers et al., 1995; Havercroft et al., 1991; Tuan et al., 

1991). 

Protein biochemistry studies to date consist primarily of protein isolation and 

localization within the adult parasites (Marks et al., 1995; Rege et al., 1989; Stitt et al., 

1992b; Waite and Rice-Ficht, 1989; Waite and Rice-Ficht, 1992; Rice-Ficht et al., 1992).  

Some work has been carried out on newly excysted juvenile flukes or those immatures 

still found in the liver parenchyma (Carmona et al., 1994; Lammas et al., 1985; Stitt et 

al., 1992b).  Very little work has been done regarding the isolation and characterization 

of larval stage proteins or with the localization or occurrence of adult proteins in larval 

stages, such as sporocysts or redia.  The paucity of such studies is most likely due to the 

complexity of the parasite life cycle.  Most of the work completed thus far has been 

performed on stages of the life cycle obtained relatively easily and not requiring the 

raising of the snail intermediate host. 

One protein isolated from adult F. hepatica is thioredoxin (Richardson, 1994). 

First isolated from the bacteria Escherichia coli (Laurent et al., 1964), thioredoxins have 

since been shown to consist of a group of small redox proteins, with molecular masses of 

approximately 12kD.  Since their original isolation, thioredoxins have been found in 

diverse groups of both prokaryotic and eukaryotic organisms from plants, viruses and 

bacteria, up to and including higher mammals.  The thioredoxins appear to represent one 

of the most ancient functional small proteins known.  Comparisons of amino acid 
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sequences have shown between a 50-70% homology among thioredoxins from related 

species.  However, homologies of only 25-30% exist among those of distantly related 

species such as the bacterium E. coli, spinach, and humans (Follmann and Haberlein, 

1995).  While functional and species diversity exists between the various thioredoxins, 

only about 20 amino acids of the roughly 105-110 that comprise the protein are highly 

conserved, those being primarily found in and around the active site.  The active site 

sequence of Cys-Gly-Pro-Cys is conserved among all species, whether plant or animal 

(Arner and Holmgren, 2000; Holmgren and Bjornstedt, 1995; Powis and Montfort, 2001).    

Thioredoxins have been identified as multifunctional proteins that act together 

with nicotinamide adenine dinucleotide phosphate reduced form (NADPH) and 

thioredoxin reductase, thus composing the Athioredoxin system”.  A general protein 

disulfide-reducing system that are comprised of major cellular protein disulfide 

reductases, acting on the disulfide bonds in specific target proteins such as enzymes 

(ribonucleotide reductase, thioredoxin peroxidase and methionine sulfoxide reductase), 

hormones, and storage proteins (Arner and Holmgren, 2000; Follmann and Haberlein, 

1995).  Due to its negative redox potential of around -240 mV, reduced thioredoxin 

should be capable of reducing disulfide bonds in various biomolecules.  In fact, it has 

been demonstrated that its actions are limited to an estimated 20-30 specific targets, 

encompassing processes that are primarily regulatory or catalytic in nature (Follmann and 

Haberlein, 1995). 

Structural studies such as X-ray crystallography and two-dimensional proton 

nuclear magnetic resonance have shown the various thioredoxins to be compact globular 

proteins, each composed of a five-stranded beta sheet forming a hydrophobic core 
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surrounded by four alpha helices and the external surface.  The conserved or active site 

amino acids link the second beta strand to the second alpha helix and form the first turn 

of the second helix.  This tertiary structure protrudes from the molecule and forms what is 

known as the Athioredoxin fold@ (Powis and Montfort, 2001).  

 Thioredoxin isoforms are present in most organisms with the mitochondria of 

those organisms having a separate but equally functional thioredoxin system.  A variety 

of thioredoxin activities have been found be extracellular, such as inducing the 

chemotaxis of neutrophilic granulocytes, monocytes, and T-cells (Nordberg and Arner, 

2001).  Intracellularly, it can function as an antioxidant and a reductant cofactor, with its 

intracellular expression dependant on the cell cycle, suggesting its possible involvement 

in the redox regulation of the cell cycle itself (Nakamura et al., 1997).  It has also been 

found to have functional activity within the nucleus as well as the mitochondria (Powis 

and Montfort, 2001).  All eukaryotic cells contain numerous thioredoxins that are 

encoded on the nuclear genomes of these cells.  When bacterial, mammalian and plant 

extracts are viewed, cytoplasmic thioredoxins are by far the most abundant forms overall 

(Follmann and Haberlein, 1995). 

Thioredoxin has recently been shown to have protective activity against some 

host cellular immune functions.  It exhibits protective action against the effects of tumor 

necrosis factor (TNF; Matsuda et al., 1991), hydrogen peroxide and activated neutrophils 

(Nakamura et al., 1997),  as well as acts as an inhibitor of nuclear factor kappa B (NF-kB; 

Flohe et al., 1997).  Another study (Fernando et al., 1992) demonstrated that thioredoxin 

is a component in the regeneration of proteins that have been inactivated by oxidative 

stress in endothelial cells. 
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It is well known that reactive oxygen species are an effective host defense 

mechanism against both intracellular and extracellular parasites (Callahan et al., 1988). 

Phagocytic cells such as eosinophils and neutrophils have been shown to kill parasites by 

undergoing a respiratory burst and releasing reactive oxygen species such as hydrogen 

peroxide (H2O2) and superoxide anions (O2
-).  With the discovery of thioredoxin in 

several parasite genera such as Fasciola (Richardson, 1994) and Schistosoma (Alger et 

al., 2002; Finken-Eigen and Kunz, 1997), and the growing evidence that thioredoxin acts 

as a redox-regulating molecule in the maintenance of cellular redox status (Nakamura et 

al., 1997), it is reasonable to speculate that thioredoxin may play a role in the protection 

of the parasite against the host immune response. 

While the thioredoxin systems of parasitic organisms have been studied and 

comprehensive reviews written (Rahlfs et al., 2002), the majority of this work has dealt 

with protozoal parasites such as Plasmodium sp. (Krnajski et al., 2001; Muller et al., 

2001), Trypanosoma sp. (Reckenfelderbaumer et al., 2000), and Giardia duodenalis 

(Brown et al., 1996).  On a lesser scale, work dealing with the thioredoxin system of 

helminths has centered primarily around nematodes such as Onchocerca volvulus (Lu et 

al., 1998) and Brugia malayi (Ghosh et al., 1998), with little research directed towards 

the platyhelminths i.e., cestodes and trematodes (Table 1.1). 
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Table 1.1. National Library of Medicine - PubMed search results as of 3 May 2004 for 
journal articles related to thioredoxin. 
 

 
Search Query 

 
Number of Articles Found 

 
                   thioredoxin 

 
3219 

 
thioredoxin + protozoa 

 
 151 

 
thioredoxin + helminth 

 
  42 

 
thioredoxin + nematode 

 
  23 

 
                  thioredoxin + cestode 

 
    6 

 
thioredoxin + trematode 

 
   111 

 
thioredoxin + Fasciola 

 
    51 

1Six references describing thioredoxin in Schistosoma sp. (Alger et al., 2002; Alger and 
Williams, 2002; Stadecker et al., 2001; Yu et al., 2001; Kwatia et al., 2000; Finken-Eigen 
and Kunz; 1997), and 5 references describing thioredoxin in F. hepatica (Maggioli et al., 
2004; Jeffries et al., 2001; Salazar-Calderon et al., 2001; Salazar-Calderon et al., 2000; 
Shoda et al., 1999). 

 

The first study of thioredoxin in Fasciola was that of Richardson (1994) reporting 

the expression of thioredoxin in F. hepatica.  In this study, a series of three tegument 

specific clones were isolated from an adult F. hepatica  λgt11 library.  Using 

immunohistochemical staining, these clones were shown to be localized in the tegument 

surface of the spines of the parasite.  Nucleotide sequence analysis showed that each of 

the clones shared an approximately 500 base pair region of homology with previously 

reported thioredoxins from various species.  A later study by Salazar-Calderón et al. 

(2001), also using a cloned F. hepatica recombinant protein, showed this thioredoxin to 

be biologically active using an insulin reduction assay.  This suggests that the protein 



 19

could be involved in protection of the parasite from reactive oxygen species produced by 

the infected host.  A more recent study dealing specifically with the effects of Fasciola 

thioredoxin on host immune cell function is that of Shoda et al. (1999).  In this work, 

recombinant F. hepatica thioredoxin was found to be only weakly antigenic to bovine T-

cells and was considered to be a poor candidate for inducing protective immunity even 

after repeated stimulation. 

The following chapters detail the investigation of F. hepatica thioredoxin 

localization in adult parasites as well as intermediate stages, and the effects recombinant 

thioredoxin has on the bovine and murine host immune responses, specifically as it 

relates to superoxide and nitric oxide production.  The specific objectives for this study 

are as follows:  

Objective 1- Localization of the tissue distribution of thioredoxin in various life 

cycle stages of F. hepatica.  To accomplish this, an immunohistochemical technique 

using polyclonal antiserum produced against F. hepatica thioredoxin was used on 

paraffin-embedded sections of the various stages of the parasite. 

Objective 2- Identification of the site or sites of F. hepatica thioredoxin mRNA 

expression and determination of differential expression of two of the known isotypes.  

This was accomplished using an in situ hybridization method utilizing probes of 

approximately 20-22 bases designed to differentiate between two isotypes of F. hepatica 

thioredoxin as previously reported by Richardson (1994). 

Objective 3- Identification of the effect(s) of F. hepatica thioredoxin on host 

immune cell function.  The effects of recombinant F. hepatica thioredoxin on superoxide 

production by mouse peritoneal macrophages, bovine monocyte-derived macrophages 
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and bovine neutrophils were measured.  In addition, the effects on nitric oxide production 

by mouse peritoneal macrophages and bovine whole blood neutrophils were examined. 
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CHAPTER II 

MATERIALS AND METHODS 

 

Fasciola hepatica Adult and Intermediate Stage Collection  

Adult Flukes and Eggs 

Adult worms, present in the common bile duct were removed from bovine livers 

obtained at a commercial slaughter facility.  The bile duct was incised and the flukes 

were removed intact and placed in 1X phosphate buffered saline (PBS; 0.9% NaCl, 0.83 

mM KH2PO4, 2.95 mM Na2HPO4•7H2), pH 7.4 (Life Technologies, Inc., Rockville, MD).  

Those to be used in later immunohistochemistry studies were then placed into a fixative 

solution consisting of 0.4% glutaraldehyde and 4.0% formalin in distilled water.  They 

were allowed to remain in this fixative for no longer than four hours, at which time they 

were removed, rinsed in distilled water, then placed in 70% ethyl alcohol for storage until 

processing and embedding. 

Adults used for egg collection were placed into tap water and kept at 4°C for 12-

24 hours during which time the flukes expelled the contents of both the caeca and uterus.  

At the end of this period the adults were removed and the eggs were concentrated by use 

of a AFluke-Finder@ apparatus (Visual Differences, Moscow, ID), a screen mesh filtration 

system used to detect F. hepatica eggs in bovine and ovine feces.  Briefly, the apparatus 

itself consists of two fine mesh screens of different pore size, each mounted within a 

short section of plastic pipe.  Once fitted together, the material to be examined is washed 

through the device with coarse debris being caught by the upper screen while eggs and 

finer debris collected on the second screen, with the finest material being washed away.  
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After several washes, the apparatus is then separated and the contents of the second 

screen (eggs and fine material) are back-flushed off and into a container.  The eggs are 

then further concentrated by gravity sedimentation, eggs and debris are placed in a 

graduated cylinder, then filled with water and the eggs are allowed to sink. The eggs, 

being heavier than some of the fine debris, will sink to the bottom of the cylinder faster 

with the debris remaining suspended for a longer period of time thus allowing it to be 

decanted.  Once concentrated, the eggs are kept at room temperature (23°C) for 

embryonation with hatching usually occurring between day 19 and 21 of the incubation.  

When miracidia are first seen, the eggs are placed at 4°C for approximately three days 

then returned to room temperature.  The resulting increase in both temperature and light 

will cause an almost simultaneous hatch of all viable eggs.  

Miracidia 

With the hatching of the eggs and release of the miracidia, the collection 

technique was dependent upon the proposed use of the miracidia.  Those used to further 

the life cycle by snail infection were collected individually via aspiration using a fine tip 

glass pipette; whereas, those needed for protein and immunohistochemical studies had to 

be collected in much greater numbers.  This was accomplished by a technique described 

by Faust et al. (1975) used for the collection of Schistosoma mansoni miracidia with 

minor modifications as described below.  After hatching, the miracidia were placed into a 

250-milliliter side arm flask to which a small glass test tube had been attached via plastic 

tubing.  The flask was then filled with water to a point where the water level was slightly 

below that of the top of the opening of the side arm.  This allowed the attached test tube 

to be filled with water allowing access to the miracidia.  The entire flask apparatus was 
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then covered with aluminum foil with the exception of the end of the test tube, which was 

left open.  At this point a light source was placed at the end of the test tube and the 

phototropic tendencies of the miracidia attracted them to the light and into the tube.  By 

using this method almost all miracidia could be collected into a relatively small volume 

of water.  Miracidia used for protein extraction were killed by placing them at –20°C, 

after which time they were pelleted by centrifugation. Excess water was removed and the 

pelleted miracidia were then flash frozen with liquid nitrogen and stored at –80°C until 

further processing.  Those to be used for immunohistochemical staining were fixed as 

described for the adult parasites and stored in 70% ethyl alcohol. 

Snail Culture 

Snails (Pseudosuccinea columella) used in this study were obtained from a 

laboratory colony established by Dr. Robert K. Ridley of Kansas State University.  These 

snails had been in continuous laboratory culture since first collected from Labette 

County, Kansas, in 1988.  The snails were kept at room temperature in modified aquaria 

consisting of plastic storage boxes with lids.  A modification (McKown and Ridley, 

1995) of the technique described by Whitlock et al. (1976) was used in which a soil-

bentonite-agar slope was poured at one end of the aquaria so that the snails could crawl 

out of the water.  Preparation of the agar slope consisted of dissolving 2.5 g of 

bacteriologic agar in 400 ml of artificial spring water by gentle boiling.  To this, 0.5 g 

gelatin was added.  A mixture of 300 g soil and 5 g bentonite was then added to the 

boiling solution.  This mixture was heated continuously and stirred for approximately 5 

minutes.  The warm soil agar mixture was then poured into the plastic containers, one end 

of which had been elevated so that the agar would form a gentle slope when cooled.   
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Water used in the snail culture aquaria was again prepared as described by 

Whitlock et al. (1976).  Briefly, stock solutions of the following were made using double 

distilled deionized water 1) ferric chloride, 0.25 g/liter; 2) calcium chloride, 11.0 g/liter; 

3) magnesium sulfate, 10.0 g/liter; 4) phosphate buffer - prepared by dissolving 34 g 

potassium acid phosphate in 500 ml double distilled deionized water, to which was added 

approximately 175 ml 1N sodium hydroxide until a pH of 7.2 is reached.  Ammonium 

sulfate, 1.5 g, was then added to this solution and the volume brought to 1 liter with 

distilled water.  Just prior to use, the following proportions of stock solutions were added 

to 1 liter of deionized water: 1) 0.5 ml; 2) 2.5 ml; 3) 2.5 ml; 4) 1.25 ml. 

The snails were fed a commercial fish food (Tetramin, TetraWerke, Dr. rer.nat. 

Ulrich Baensch GmbH, D-4520 Melle 1, Germany) once daily.  Enough food was placed 

in each aquarium so that all was eaten prior to the next feeding.  It was found that any 

uneaten food would quickly decompose and foul the water, requiring more frequent 

cleaning of the aquaria. 

Snail Infection 

Viable miracidia were collected from egg cultures by pipette at the time of 

hatching.  Laboratory raised snails having a shell length of less than 3 mm were used.  

Infection was accomplished by placing a single snail into a well of a 24-well microtiter 

plate containing enough artificial spring water to cover the snail.  To this was added 5-10 

active miracidia per well per snail.  The snail was left in the well for 12-24 hours to allow 

sufficient time for miracidial penetration.  At the end of the exposure period, the snail 

was removed and returned to a clean aquarium in which only other exposed snails were 

housed.  Each well of the microtiter plate was then examined by use of a dissecting 
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microscope to determine if any miracidia remained.  The progress of the infection was 

checked weekly beginning day 21 post-infection by randomly selecting one or two snails 

from the test group and crushing them to check for asexual stages of the parasite. 

Sporocysts 

The first intermediate stage collected, were sporocysts.  Due to the close tissue 

association of this stage to that of the snail host, it was impossible to dissect the parasite 

away from the snail tissue.  Consequently, the entire snail was fixed and processed for 

sectioning and microscopic examination.  Prior to fixation each snail to be examined was 

relaxed and anesthetized by placing menthol crystals on the surface of the water.  The 

snail was left until it no longer responded to external stimuli and was fully anesthetized 

which was indicated by a failure to withdrawal into the shell when touched.  At this point 

the snail was placed into fixative consisting of 0.4% glutaraldehyde and 4.0% formalin in 

water.   It was left for no longer than four hours after which the snail was briefly rinsed in 

distilled water then placed into 70% ethyl alcohol for storage until later processing and 

embedding.  After each snail was embedded in paraffin, several 5 µm sections were cut 

with every fourth section being stained with hematoxylin and eosin by standard 

histological methods.  Each of the stained sections was then microscopically examined 

for the presence of one or more sporocysts.  If sporocysts were seen in a particular slide 

section the unstained sections preceding and following the stained  

section were saved for immunohistochemical staining.   

Redia 

As stated previously in the introduction, two redial stages are found in the snail, 

the first being what is termed the mother redia and the second the daughter redia.  These 
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were collected separately from snails solely on the basis of the time of examination post 

infection.  Mother redia were collected from day 10 through day 18 post-infection and 

daughter redia were collected any time after day 21 post-infection.  One stage could be 

distinguished from the other by internal contents, i.e., whether they contained additional 

redia (mother) or cercaria (daughter).  Each stage was collected by first anesthetizing the 

snail as described previously, then crushing the snail and teasing apart the tissues in order 

to separate the parasite stages from the snail tissue.  Once separated from the snail 

tissues, the redia were aspirated via pipette and fixed as described previously in the 

combination glutaraldehyde/formalin solution for a short period then placed in 70% ethyl 

alcohol for storage.  Additional redia were collected and placed into 1.5 ml 

microcentrifuge tubes, allowed to settle, then excess water was removed and the redia 

pellet was then flash frozen in liquid nitrogen and stored at –80°C for later protein 

extraction. 

Cercaria 

Cercaria were collected in one of two ways, either by crushing snails in the latter 

stages of infection, usually 35-40 days post-infection, or by collecting those cercaria shed 

naturally, which occurred around 45-70 days post-infection.  Whatever the time of 

collection, the cercaria were treated differently dependent upon their subsequent use.  

Those used for protein analysis were frozen and stored as described for redia and those to 

be used for immunohistochemistry were fixed and processed as described for previous 

stages. 
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Metacercaria 

When cercaria were seen in a specific aquarium, the snails were removed and 

placed into individual covered petri dishes where the cercaria were allowed to encyst on 

the sides of the dish.  Once cercaria were no longer seen to be swimming in the petri dish, 

the snails were removed and the metacercaria were allowed to remain for a minimum of 

24 hours in order to become fully encysted.  At the end of the 24 hours period, the 

metacercaria were either scraped off the glass or were digested off using a 20% solution 

of sodium hypochlorite (5.25% household bleach) in distilled water, as described by 

Fried and Stromberg (1985).  After the metacercaria were freed, they were rinsed with 

distilled water and either stored at 4°C, fixed, or frozen as described previously. 

Mouse Infection 

Each animal was inoculated per os with a suspension of 0.5 ml distilled water 

containing metacercaria.  The suspension was administered via a small diameter (1 mm 

outside, 0.8 mm inside diameter) stomach tube attached to a 3 ml plastic syringe.  Each 

mouse was anesthetized with methoxyflurane to lessen discomfort and to facilitate ease 

of tube placement.  After intubation, the metacercaria were expelled from the syringe into 

the stomach.  Each rodent was then returned to its individual cage and observed until 

recovery.  Little or no discomfort appeared to be experienced by the mice and no 

complications occurred in relation to the procedure.  All procedures were carried out as 

described and approved under Animal Use Protocol RF#93-685. 

Juvenile Flukes 

Juvenile flukes were collected from experimentally infected mice 14 to 40 days 

post-exposure.  The process of collecting the young flukes, those still found within the 
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liver parenchyma prior to entry into the bile duct, was initiated by first removing the 

intact liver from a previously infected mouse host and placing it into PBS, pH 7.4.  Once 

in the PBS the liver was either cut into 3-5 mm thick slices or carefully teased apart with 

blunt dissection and allowed to set for 30-60 minutes during which time any flukes 

present would extricate themselves from the surrounding liver tissue and remain free in 

the medium.  Any flukes recovered were washed in fresh cold PBS then either flash-

frozen and stored at –80°C for protein isolation or placed into fixative for use in 

immunohistochemistry. 

Parasite Soluble Protein Preparation and Analysis 

 Preparation of Soluble Parasite Protein 

Protein was isolated from the following F. hepatica life cycle stages; adult worm, 

egg, miracidia, redia, cercaria and metacercaria.  The initial step in the soluble protein 

isolation differed somewhat between the adult worms and all other stages.  Adult worms 

were placed into a previously chilled mortar, covered with liquid nitrogen and ground 

into a fine powder using a pestle.  Approximately 0.5 g of powdered tissue was 

transferred to a 30 ml capacity glass tissue grinder containing 15 ml of a protease 

inhibitor buffer on ice.  The buffer consisted of a working solution of the CompleteΤΜ 

Protease Inhibitor Cocktail (Roche Diagnostics Corporation, Indianapolis, IN) prepared 

as per the manufacturer’s instructions.  Due to their small size, all other stages of the 

parasite were processed en masse.  The intermediate parasite stage pellet was thawed in 

the presence of the protease inhibitor buffer and then placed directly into a 2 ml capacity 

glass tissue homogenizer.  From this point on, the processing of the parasite protein was 

the same for all stages. 
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Once the powdered adult or pellet of one of the intermediate stages was placed in 

the glass tissue homogenizer on ice, it was homogenized for 5-10 strokes.  The resulting 

suspension was transferred to a polycarbonate tube, centrifuged at 30,000 x g for 30 

minutes at 4°C to pellet insoluble material.  The supernatant was then aliquoted, flash-

frozen in liquid nitrogen and stored at –80°C until used. 

Determination of Protein Concentration 

The protein concentration of each supernatant sample was determined by using 

the BCA Protein Assay Reagent Kit (Pierce, Rockford, IL).  The microtiter plate protocol 

was followed as per the manufacturer’s instructions.  Each assay plate contained a 

standard curve prepared using dilutions of the 2.0 mg/ml bovine serum albumin (BSA) 

stock standard provided ranging from 0 µg/ml to 2,000 µg/ml.  Absorbance of the wells 

was measured at 560 nm on an ELISA plate reader, and protein concentration was 

determined by regression analysis of the sample absorbance compared to the standard 

curve.  

Sodium Dodecyl Sulfate - Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Proteins were separated according to molecular weight utilizing Ready Gel 

Precast denaturing 4-20% Tris-HCl gradient gels (50 µl comb, BIO-RAD, Hercules, CA).  

The samples were diluted 1:1 in 2X SDS sample buffer (6.25 ml 4X Tris-HCl/ SDS [6.05 

g Tris base, 0.4 g SDS], 5.0 ml glycerol, 1 g SDS, 0.5 ml 2-ß- mercaptoethanol, 0.25 mg 

bromphenol blue) and boiled for 5 minutes prior to loading.  The samples were loaded 

along with a lane containing a molecular weight standard (Kaleidoscope Prestained 

Standards, BIO-RAD, Hercules, CA) and the gel was electrophoresed in a Mini-

PROTEAN II gel chamber (BIO-RAD, Hercules, CA) containing 1X SDS-PAGE 
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running buffer (3.02 g Tris base, 14.4 g glycine, 1 g SDS) at constant 180 volts using a 

PowerPac 300 power supply (BIO-RAD, Hercules, CA) for approximately 45 minutes or 

until the bromphenol blue tracking dye front reached the bottom of the gel. 

Coomassie7 Brilliant Blue Staining of Polyacrylamide Gel 

Coomassie7 Brilliant Blue (BIO-RAD, Rockford, IL) was used in order to resolve 

the protein bands separated by polyacrylamide gel electrophoresis.  The detection limit of 

this procedure is 0.3 to 1 µg protein per band (Sasse and Gallagher, 1991), and is 

dependent upon the nonspecific binding of the stain to the proteins.  Briefly, after 

electrophoresis, the polyacrylamide gel was removed from the gel apparatus and 

transferred to a fixing solution consisting of 500 ml methanol, 100 ml glacial acetic acid 

and 400 ml distilled water.  The gel was then allowed to equilibrate with gentle agitation 

for a minimum of two hours before being transferred to the staining solution.  The 

staining solution was identical to the fixation solution with the addition of 0.5 gm 

Coomassie7 Brilliant Blue R-250.  The gels were stained for 2-4 hours, and were placed 

into a destaining solution containing 5 ml methanol, 7 ml glacial acetic acid and 88 ml 

distilled water until the desired staining intensity of the protein bands was achieved. 

Polyacrylamide Gel Drying 

To provide a permanent record of the gel results each gel was dried using the 

DryEaseΤΜ Mini-Gel Drying System (NOVEX - Novel Experimental Technologies, San 

Diego, CA) as per the manufacturer’s instructions.  Briefly, the gel was washed in 

distilled water prior to equilibration in Gel-Dry Solution and was then sandwiched 

between two sheets of cellophane, which were also equilibrated in Gel-Dry solution.  

These layers were in turn clamped into a gel-drying frame, which was set upright to dry 
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at ambient temperature for 2-3 days.  When the cellophane was dry to the touch, it was 

removed from the drying frame, the excess trimmed from around the gel, and allowed to 

dry completely for approximately 2 days.  The gels were then stored at room temperature 

where they were stable indefinitely. 

Electrophoretic Transfer of Protein from SDS-PAGE to Nitrocellulose 

Once the proteins were separated using the SDS-PAGE procedure they were 

electrophoretically transferred to nitrocellulose paper utilizing a Mini Trans-Blot 

Electrophoretic Transfer Cell (BIO-RAD, Hercules, CA) as per the manufacturer’s 

instructions.  Briefly, after electrophoresis, the gel was removed from the SDS-PAGE 

apparatus and equilibrated in –20°C transfer buffer (3.03 g Tris base, 14.6 g glycine, 200 

ml 100% methanol, QS to 1 liter with deionized water) for approximately 15 minutes.  

Nitrocellulose membrane (0.45 µm Trans-Blot7 Transfer Membrane, BIO-RAD, 

Hercules, CA) and Whatman 3 mm CHR chromatography paper (Whatman International, 

Ltd., Maidstone, England) were cut to a size slightly larger than the size of the gel and 

were wetted in transfer buffer prior to the assembly of the transfer apparatus. The gel 

transfer Asandwich@ was assembled in the following order: 1) pre-wetted fiber pad, 2) 

chromatography paper, 3) polyacrylamide gel, 4) nitrocellulose, 5) chromatography 

paper, and 6) fiber pad.  The gel holder cassette was then closed, locked and placed into 

the electrode module within the buffer tank containing a Bio-Ice7 cooling unit (BIO-

RAD, Hercules, CA) and filled with cold transfer buffer.  The cassette was placed with 

the nitrocellulose membrane on the anode (positive) side of the transfer apparatus 

allowing the negatively charged proteins to be transferred electrophoretically from the gel 

onto the nitrocellulose membrane.  The transfer was completed by running at constant 
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voltage (100 V) for 60 minutes utilizing the PowerPac 300 power supply (BIO-RAD, 

Hercules, CA). 

Protein Immunodetection 

Western Blotting 

In order to detect the thioredoxin protein of interest, Western Blotting was used 

whereby proteins are analyzed immunologically by means of labeled antibody.  Antibody 

against Fasciola thioredoxin (Fh2020) was obtained from Dr. Charlene Richardson and 

Dr. Allison Rice-Ficht.  Once the proteins were transferred onto a nitrocellulose 

membrane, the membrane was placed into a solution of 3% gelatin (3 g gelatin, 100 ml 

tris buffered saline (TBS; 10 mM Tris, 150 mM NaCl), pH 7.5, for 45 minutes.  The 

membrane was washed 3 times for 10 minutes per wash using TBS containing a 0.1% 

concentration of Tween7 20 (Sigma-Aldrich, St. Louis, MO), then exposed to primary 

antibody (rabbit anti-Fh2020) at a 1:1000 dilution in 1% gelatin for 2 hours.  Unbound 

antibody was removed by a series of three 10 minute TBS-Tween washes.  The 

membrane was then exposed the alkaline phosphatase-labeled goat anti-rabbit secondary 

antibody (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD) at a 1:5000 dilution 

in 1% gelatin for 1 hour.  Unbound antibody was removed by a series of two 10-minute 

TBS-Tween washes, followed by a single 10 minute TBS wash.  The protein bands were 

identified on the membrane by a color reaction utilizing the chromagens nitrotetrazolium 

blue chloride (NBT; Sigma-Aldrich, St. Louis, MO) and 5-bromo-4-chloro-3-indolyl 

phosphate (BCIP; Sigma-Aldrich, St. Louis, MO).  The NBT/BCIP solution was prepared 

using 33 µl NBT stock (50 mg/ml in 70% dimethyl formamide) plus 17 µl BCIP stock 

(50 mg/ml in 100% dimethyl formamide) per 5 ml alkaline phosphate substrate buffer 
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(100 mM Tris, pH 9.5, 100 mM sodium chloride, 5 mM magnesium chloride).  The 

membrane was soaked with gentle agitation in this solution until the band or bands of 

interest were easily seen.  The color reaction was terminated by rinsing the membrane 

several times in PBS.  The membrane was patted dry with paper toweling and placed 

between several layers of toweling.  A light-weight was added to the top and the 

membrane was allowed to dry flat for 24-48 hours. 

Sample Handling for Immunohistochemistry 

Fixation of Tissues 

All parasite stages and mouse tissues were fixed using a combined solution of 

0.4% glutaraldehyde and 4.0% formalin.  Minute samples such as the intermediate stages 

of the parasite, (redia, cercaria, etc.) were first suspended in melted agar that was allowed 

to cool so that a large agar block was available for ease of further handling.  This agar 

block and small newly infected snails were fixed whole.  Adult flukes and mouse tissues 

were cut into pieces no more than 2 mm in thickness.  Dependent upon the size/thickness 

of the specimen, each was fixed for approximately 1-2 hours, but no longer than 4 hours, 

even for the thickest sections of mouse liver.  After the initial fixation period all samples 

were rinsed with distilled water then placed in 70% ethanol for storage. 

Processing and Embedding of Tissues  

All samples to be used for immunohistochemical study were processed and 

embedded in paraffin (Paraplast7 Tissue Embedding Medium, Oxford Labware, St. 

Louis, MO) via standard histological procedures (Stevens and Wilson, 1996).  Sectioning 

was done at 5-7 µm with each section then floated on warm water and then placed on a 

silanized slide. 
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Silanization of Glass Slides 

For increased adherence of tissue sections to the glass slides used for both 

immunohistochemistry and in situ hybridization each slide was silane-coated prior to 

tissue placement on the slide.  This procedure, commonly known as Asubbing@, was 

performed as follows.  A large number of slides were coated at one time using staining 

racks with a 20-slide capacity.  Solutions used in the procedure were placed in 300 ml 

staining dishes to facilitate rapid movement of a rack from one solution to the next.  The 

slide were initially placed in 100% acetone for 2 minutes then drained on paper toweling.  

Next they were placed into a solution of 2% aminopropyltriethorsilane (silane; Sigma-

Aldrich, St. Louis, MO) in acetone for 2 minutes, then drained.  This was followed by 

three double-distilled deionized water washes of five dips each.  Excess water was 

drained and the slides were dried in a 60-80°C oven overnight.  The adhesiveness of the 

slide was checked by dipping it into deionized water; if properly coated the water quickly 

dispersed and the slide appeared dry, otherwise it remained wet in appearance. 

Immunohistochemistry 

Protein Localization 

Immunohistochemical staining and localization of the thioredoxin protein within 

various parasite life cycle stages was accomplished via the use of the HistomarkTM 

Streptavidin-HRP System (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD) 

using rabbit derived anti-thioredoxin primary antibody and biotinylated goat-derived anti-

rabbit secondary antibody as provided in the HistomarkTM kit.  The staining procedure 

started by placing both a negative control slide (no primary antibody) through two xylene 

deparaffinizing steps of 5 minutes each.  Each slide was then rehydrated through a 
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decreasing series of four one-minute ethanol steps, decreasing in concentration from 

100% (twice), to 95% (once), to 80% (once), to TBS.  The slides were then tipped and 

excess TBS allowed to drain and 3% hydrogen peroxide flooded over the slide and 

section for five minutes in an endogenous peroxidase-blocking step.  This was followed 

by another TBS rinse after which the rabbit anti-thioredoxin primary antibody was 

applied at a 1:500 dilution and was allowed to incubate either for one hour at room 

temperature or overnight at 4°C.   

At the end of the primary antibody incubation, the slides were rinsed with TBS 

and biotinylated goat anti-rabbit secondary antibody was applied to each section for a 30-

minute incubation.  The slides were rinsed with TBS and streptavidin peroxidase was 

applied to each section for a period of 30 minutes.  The slides were again rinsed with 

TBS and the color detection reaction started by the addition of the chromogen 

diaminobenzidine (DAB; Diaminobenzidine Reagent Set, Kirkegaard & Perry 

Laboratories, Inc., Gaithersburg, MD) as per the manufacturer’s instructions.  The proper 

color intensity was determined by viewing each section microscopically until the desired 

difference between intense positive staining and low background could be visually 

determined.  At this point, each slide was rinsed with tap water and then counterstained 

with Harris=s hematoxylin to provide a light blue background and nuclear staining against 

which to better visualize any positive brown staining.  No positive staining should be 

seen on the negative control slide. 
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In situ Hybridization 

Preparation of Reagents and Glassware 

All glassware used for in situ hybridization was rendered RNase free by baking at 180°C 

for four hours then stored covered under dust-free conditions.  All prepared solutions 

were made using RNase-free water and stored in baked glassware.  

Parasite Preparation and Fixation 

Arrangements were made with a local abattoir, and a fresh F. hepatica-infected 

liver was obtained and the flukes collected and fixed within two hours of removal from 

the infected cow in order to minimize nucleic acid degradation.  Fixation time was kept to 

a minimum to avoid over-fixation and all subsequent processing was done under the 

strictest RNase-free conditions with sections being cut within one week from the time of 

collection.  All adult flukes, once removed from the bile duct, were rinsed in sterile PBS, 

pH 7.4 then placed into a fixative mixture of 0.4% glutaraldehyde / 4.0% formalin.  After 

a period of fixation not exceeding four hours, the tissues were rinsed in distilled water 

and placed in 70% ethanol until processing. 

Processing and Embedding 

Tissues were processed and embedded according to standard histological 

techniques (Stevens and Wilson, 1996).  Sections were cut to a thickness of 

approximately 5 µm, and attached to RNase-free silanized glass slides and stored under 

dust-free conditions at room temperature.  

Design of Oligonucleotide Probes 

DNA-antisense probes S. mansoni actin and F. hepatica tubulin were designed 

using the hybridization probe analysis option of Vector NTI, Suite5.5 sequence analysis 



 37

software (InforMax, Inc., North Bethesda, MD) using nucleic acid sequence information 

obtained from Genbank (http://www.ncbi.nlm.nih.gov; Accession numbers M80334, and 

AJ297256, respectively).  Briefly, the nucleic acid sequence was entered into the Vector 

program along with the desired parameters of probe length (>50, <70 bases), melting 

temperature (Tm; >40°C, <65°C), %GC content (>35, <60), hairpin loop stem (>3), 

palindromes (<8) and nucleotide repeats (<4).   

Nucleic acid sequences for Fh2020.A and Fh2020.SL were obtained from 

Richardson (1994).  Because these isotypes are highly homologous, isotype-specific 

probes were designed by comparing the sequence differences at the 5’ ends (the 

differences between the two isotypes were seen within the first 36 bases), and selecting 

probes that were complementary to a region of 20-25 bases from the 5’ end.  The selected 

probes were then analyzed using the hybridization probe analysis option of Vector NTI, 

Suite5.5 sequence analysis software (InforMax, Inc., North Bethesda, MD) to determine 

if they fit the parameters used to select the S. mansoni actin and F. hepatica tubulin 

probes. 

All probes were checked for specificity for their respective proteins by 

performing BLAST sequence analysis (http://www.ncbi.nlm.nih.gov/BLAST). 

Digoxigenin Tailing of Probes 

Unlabeled oligonucleotide probes (Fh2020.A, Fh2020.SL, S. mansoni actin, and 

F. hepatica tubulin) were purchased from Integrated DNA Technologies, Coralville, IA.  

Digoxigenin labeling was carried out as per manufacturer’s instructions using the DIG 

Oligonucleotide Tailing Kit, 2nd Generation (Roche Diagnostics GmbH, Mannheim, 

Germany).   Briefly, the required reagents were added to 100 pmol of unlabeled probe (F. 
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hepatica tubulin, S. mansoni actin, Fh2020.A or Fh2020.SL) in distilled water, incubated 

at 37°C for 15 minutes and the reaction stopped using 0.2 M EDTA.  This procedure 

resulted in the binding of 10-100 DIG labels to each probe. 

Dot Blot 

 In order to test that the DIG label was attached to the probes, a dot blot procedure 

was performed individually for each probe after the labeling reaction.  The unlabeled 

controls were tested as well.  Briefly, after each labeling reaction 1 µl (100 ng) of probe 

was spotted onto a nylon membrane (Zeta-Probe Membrane, Bio-Rad, Hercules CA), air- 

dried and UV irradiated to bind the probe to the membrane.  The membrane was then 

washed three times for 10 minutes each wash in TBS buffer containing 0.1% Tween® 20 

(Bio-Rad Laboratories, Hercules, CA).  The membrane with its associated DIG-labeled 

probe dots was then placed in AP-conjugated sheep anti-DIG antiserum (1:500 dilution) 

in TBS buffer containing 1% gelatin at room temperature for 2 hours.  The membrane 

was further washed with TBS buffer containing 0.1% Tween® two times for 10 minutes 

each and finally, once for 10 minutes.  Label was detected using the chromagen 

NBT/BCIP.  The NBT/BCIP visualization solution was prepared using 33 µl NBT stock 

(50 mg/ml in 70% dimethyl formamide) plus 17 µl BCIP stock (50 mg/ml in 100% 

dimethyl formamide) per 5 ml alkaline phosphate substrate buffer (100 mM Tris, pH 9.5, 

100 mM NaCl, 5 mM MgCl). 

Calculation of Hybridization Temperature 

 The TM for each of the probes was calculated using the following formula:  

TM = 81.5 + 16.6(log M) + 0.41(%G+C) - 0.61(% formamide) - 500/n 

M = Na+ concentration in moles/liter 
n = shortest chain in the hybrid 
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For DNA:RNA hybridization such as that used in this study, 10-15°C was added to the 

result.  The optimal hybridization temperature was calculated to be 25°C below the TM of 

the hybridized probe.   

In situ Hybridization Protocol 

This protocol was based on the manufacturer’s instructions for the Rembrandt® In 

situ Hybridization and Detection Kit (PanPath, Amsterdam, The Netherlands).  Briefly, 

two sections were mounted per slide so that both a test and negative control could be 

processed simultaneously.  Each slide was deparaffinized in two changes of xylene then 

placed in 100% ethanol.  A proteolytic digestion step using hydrochloric acid and pepsin 

as provided in the kit was carried out on each section at 37°C for 30 minutes.  Each slide 

was then dehydrated through a series of graded ethanols (70%, 80%, 95%, 100%, 100%), 

for one minute each, then air-dried.  Each section was then covered with hybridization 

solution containing the appropriate probe at a concentration of 150-200 ng per section 

and incubated at 37°C for two hours.  The hybridizations were carried out utilizing a 

PTC-200TM  Thermal Cycler with block/heat pump assembly and model SG96P glass 

slide adapter (MJ Research, Inc., Watertown, MA).   At the end of that time the coverslip 

was removed by soaking in TBS and the slide was further washed with three additional 

TBS rinses.  At this time, 2-3 drops of conjugate (AP-conjugated anti-DIG as provided in 

the kit) was added to each section and incubated at 37°C for 30 minutes.  The slide was 

then rinsed with TBS and a detection step using NBT/BCIP substrate was carried out at 

37°C for 15 minutes after which the slides were washed with distilled water, dehydrated 

and coverslipped.  Probes tested with this protocol included, F. hepatica tubulin (the 
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positive control), S. mansoni actin (an additional positive control), and thioredoxin 

isotype Fh2020.A and Fh2020.SL probes.   Negative control slides consisted of sections 

that had mRNA hybridization solution (DAKO Corp., Carpinteria, CA) without probe.  

Additionally, a negative control probe included in the Rembrandt® kit consisting of 100 

bases of a DIG-labeled pSP vector sequence was utilized to detect non-specific binding.  

When this probe was applied to the fluke tissue under the same hybridization conditions 

as used for the test probes (F. hepatica tubulin, Fh2020.A, Fh2020.SL), no positive 

staining was demonstrated.  

Immune Cell Collection and Isolation 

Murine Peritoneal Macrophages 

All mice used were 6-8 week old C57BL/10ScN, stock originally obtained from 

Dr. S.K. Chapes, Kansas State University.  Peritoneal macrophages were obtained by 

intraperitoneal injection of thioglycollate as described by Meltzer (1981).  Briefly, a 

solution of 3% thioglycollate medium (Sigma-Aldrich, St. Louis, MO) was prepared in 

distilled water then autoclaved to sterilize.  Four to five days prior to the date 

macrophages were used, approximately 1-1.5 ml of media was injected into the peritoneal 

cavity of a donor mouse to initiate an inflammatory response.  At the end of this period 

the mouse was euthanized via a gas anesthetic overdose.  The abdomen was wetted with 

70% ethyl alcohol and massaged gently between the fingers which increased the cell 

yield by freeing the inflammatory cells within the cavity (Smith et al., 1992).  The skin 

was wetted again with 70% ethyl alcohol and a small incision made with scissors and the 

skin retracted to each side exposing the abdominal musculature.  At no time during the 

procedure was the abdomen itself opened.  Once the skin was reflected, the muscles were 



 41

picked up in a tent-like manner using sterile forceps.  An 18 gauge needle attached a 12 

ml syringe filled with cold PBS was inserted at the midline, while at the same time a 

small amount of PBS was injected to Apush@ away the intestines in order to avoid 

contamination of the abdominal cavity with gut contents.  Each mouse was injected with 

8-12 mls of PBS that was then withdrawn into the same syringe.  Without removing the 

needle from the abdomen, the syringe was detached and the contents of the syringe 

placed into a sterile 50 ml plastic conical centrifuge tube.  The syringe was again filled 

with cold PBS, reattached to the needle and PBS again injected into the abdominal cavity.  

This process was repeated 2-3 times resulting in a total yield of 30-36 mls of cellular 

fluid.  If performed properly, contamination of the recovered cells with intestinal contents 

or blood does not occur.  All procedures and manipulations of mice for the procurement 

of peritoneal macrophages were carried out under the approval of the United States 

Department of Agriculture Experimental Outline, Experiment # 5438-32000-013-08 and 

Texas A&M University Animal Use Protocol #9-173. 

After the cells were harvested, the lavage fluid was centrifuged at 400 x g at 4°C 

for 7 minutes.  The supernatant was discarded and a red blood cell lysis step was 

performed if necessary by adding 1 ml of Red Cell Lysing Reagent (Sigma, St. Louis, 

MO) to the cell pellet, resuspending the pellet then incubating at 37°C for 5 minutes.  

Following incubation, 40 mls of sterile PBS were added and the suspension was again 

centrifuged as described above to pellet the cells.  The lysis step was repeated once more 

if red blood cell contamination was visible.  The supernatant was discarded and the cells 

again washed in cold sterile PBS.  After the final wash and centrifugation, the supernatant 

was discarded and the cells resuspended in 5 mls cold sterile PBS.  At this time 200 µls 
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of cell suspension were removed and placed into a 500 µl microfuge tube for cell 

counting and differential staining.  The remainder of the cells was placed on ice until the 

count was completed. 

In order to plate a consistent number of cells into each test well, the number of 

cells obtained from each lavage procedure were counted using a hemacytometer.  Briefly, 

5 µl of cell suspension was added to 95 µl of 0.4% Trypan Blue Stain (Life Technologies, 

Rockville, MD) and gently mixed.  Approximately 15 µl of the mixture was added to 

each side of a hemacytometer (Fisher Scientific, Pittsburgh, PA) and all cells in the four 

corner squares were counted, and cell concentrations calculated.  Ideally, 1 x 105 cells per 

well were used in all experimental samples and all samples were run in triplicate. 

Bovine Monocyte-Derived Macrophages 

Bovine monocyte-derived macrophages were obtained from whole blood via a 

density gradient separation as described by Chitko-McKown et al. (2004).  Briefly, 60 

mls of blood were obtained via jugular venipuncture into a syringe containing 1 ml of 0.1 

M EDTA as an anticoagulant.  15 mls of 1X PBS were added to each 50 ml 

polypropylene conical tube, then 15 mls whole blood were added and mixed with gentle 

agitation.  The diluted whole blood was then underlayed with 14 mls of Ficoll-Paque™ 

Plus (Amersham Biosciences AB, Uppsala, Sweden) via gravity a 10 ml plastic pipette.  

The pipette was slowly removed so as to not disrupt the bilayer, the tube was capped then 

centrifuged at 913 x g for 45 minutes at room temperature.  Following centrifugation, the 

mixture resolved into four layers.  The uppermost layer contained serum and buffer (1X 

PBS), the next a cloudy layer of peripheral blood mononuclear cells (PBMCs), the next 

Ficoll-Paque™ Plus and the lowest contained red blood cells and neutrophils.  The 
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plasma/PBS layer was pipetted off and discarded, and the PBMC layer was retained.  

Contaminating red blood cells were removed using Red Cell Lysis solution, and the 

PBMC pellet washed in cold PBS as described above.  The resulting pellet was 

suspended in 10 mls RPMI 1640 (Life Technologies, Rockville, MD) tissue culture 

medium containing Penicillin G/Streptomycin Sulfate (Life Technologies, Rockville, 

MD) and L-Glutamine (Life Technologies, Rockville, MD).  A 200 µl aliquot was 

removed for counting and differential staining.  After the cell concentration was 

determined, the cells were plated into a 24-well microtiter plate at a concentration of 

1x106 cells per ml per well.  The plate was then placed in a 37°C, 5% CO2 incubator and 

left undisturbed for one hour to allow the monocytes to adhere to the plate.  The contents 

of each well were pipetted up and down and the supernatant discarded with only adherent 

cells, i.e. monocytes, remaining.  One ml of fresh media containing 5% fetal bovine 

serum (FBS) was then added to each well and the plate returned to the incubator and 

allowed to remain until the following day when the cellular assay was carried out. 

Bovine Whole Blood Neutrophils 

Bovine neutrophils were obtained from the red blood cell and neutrophil layer 

obtained after whole blood density gradient separation as described above.  Once the 

plasma and monocyte layer were removed, the RBC/neutrophil layer was suspended in 

20 mls of cold 0.2 % NaCl for 30 seconds (Clark and Nauseef, 1998), which lysed the 

majority of red blood cells and left the neutrophils intact.  At the end of 30 seconds, 20 

mls of cold 1.6% NaCl were added to restore the solution to physiological osmolarity.  

The solution was centrifuged at 250 x g for 6 minutes at 5°C.  Following centrifugation, 

the supernatant was discarded and the RBC lysis procedure and centrifugation were 
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repeated 2 additional times, or until the neutrophil pellet appeared free of contaminating 

red blood cells.  The pellet was suspended in 1 ml of Red Cell Lysing Reagent (Sigma, 

St. Louis, MO) and incubated for 5 minutes at 37°C to remove any remaining red cells.  

The neutrophils were then resuspended to a volume of 50 mls with cold PBS and 

centrifuged at 250 x g for 6 minutes at 5°C.  The supernatant was discarded and the cold 

PBS wash was repeated two additional times.  The remaining cell pellet was then 

suspended in 10 ml of cold PBS and placed on ice with an aliquot removed for counting 

and differential staining (Chitko-McKown et al., 1991). 

Cytospin Preparation and Differential Staining 

Differential staining of all cell isolates was used for confirmation of cell type 

recovered.  This procedure was accomplished using of a Cytospin® 3 cell preparation 

system (Shandon Lipshaw, Pittsburgh, PA).  Approximately 3 x 105 cells were 

resuspended in 500 µl medium and loaded into a Cytofunnel® (Disposable Sample 

Chamber, Shandon Lipshaw, Pittsburgh, PA).  The cell suspension was centrifuged at 

approximately 48 x g for 4 minutes at room temperature to permit adherence of the cells 

onto Cytoslide® microscope slides (Shandon Lipshaw, Pittsburgh, PA).  The slides were 

dried at room temperature and stained with a modified Wright=s stain (Leukostat Stain 

Kit, Fischer Scientific, St. Louis, MO) and microscopically examined at 1000X to 

determine the types and percentages of cells present in the cell suspension. 

Cellular Assays 

Endotoxin Assay 

The Limulus Ameboctye Lysate assay was used to detect the presence of LPS 

contamination in MBP that had been run through the Detoxi-GelTM column as well as the 
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untreated MBP as a control.  This assay was carried out as per manufacturer’s 

instructions for the E-Toxate® Kit for the detection and semi-quantitation of endotoxin 

(Sigma-Aldrich, St. Louis, MO.). 

Insulin Reduction Assay 

The biological activity of the recombinant F. hepatica thioredoxin was 

determined by the dithiothreitol/insulin reduction assay described by (Holmgren, 1979) 

and further used and described by Salazar-Calderón et al. (2001) and Alger et al. (2002).  

This was a turbidity assay in which active thioredoxin served as a catalyst for the 

cleavage of insulin into its α and ß-chains by dithiothreitol (DTT), with the ß-chains 

forming an insoluble precipitate that was then detected spectrophotometrically by its 

absorbance at 630-650 nm.   

 Initially, a 10 mg/ml insulin stock solution was prepared by resuspending 50 mg 

of insulin powder (Sigma, St. Louis, MO) in 4 ml of 0.05 M Tris-HCl, pH 8.0 and 

adjusting the pH to 2.0-3.0 by the addition of 1.0 M hydrochloric acid.  The pH was 

immediately brought up to 8.0 with 1M NaOH, and the volume adjusted to 5 ml with 

distilled water.  The resulting solution was separated into 500 µl aliquots and frozen at –

20°C.  An insulin working solution (IWS) was prepared from the stock solution by 

adding 400 µl of 10 mg/ml stock solution, 400 µl phosphate buffer (PBS), and 16 µl of 

500 mM EDTA to 3.2 ml of distilled water.  The assay was carried out in triplicate in a 

96-well microtiter plate with the following treatments: 1) Blank (IWS + water); 2) 

Control (IWS + water + DTT; demonstrates spontaneous insulin cleavage); 3) MBP Test 

(IWS + water + DTT + MBP at 0.23 µM / well); 4) LPS Test (IWS + water + DTT + LPS 

at 1 µM / well) and 5) TRX•MBP Test (IWS + water + DTT + TRX•MBP at 4 µM/well).  
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Each well had a final volume of 200 µl consisting of 150 µl IWS and 2 µl 33 mM DTT in 

all wells and additional reagents in the following proportions dependant upon the test 

reagent: TRX•MBP wells - 50 µl with no additional water; MBP alone and LPS wells - 1 

µl MBP or LPS + 47 µl water.  The test reactions were carried out on ice with the 

microtiter plate agitated slightly to insure mixing of all reagents.  The plate was then 

placed within a microtiter plate reader and the absorbance was measured at 630 nm at 1 

minute intervals for 15-60 minutes depending on activity/concentration of the test 

samples.  

Superoxide Assay 

The super oxide anion (O2
-) assay was performed as described by Pick and Mizel 

(1981) to determine the production of superoxide anion by intact neutrophils and 

macrophages as a function of cytochrome C reduction.  Briefly, 150 µl of cell suspension 

at a concentration of 1 x 106 cells per well were tested in triplicate in flat bottom, 96-well 

microtiter plates.  Additional reagents were added in the following order and volumes:  

20 µl superoxide dismutase (SOD, 3000 U/ml in colorless HANK=s buffer, Life 

Technologies, Rockville, MD, appropriate test wells), 20 µl cytochrome C (Fc, 1 mg/ml 

in colorless HANK=s buffer, all wells), 2 µl phorbol 12-myristate 13-acetate (PMA, 

Sigma-Aldrich, St. Louis, MO,10 µg/ml in dimethyl sulfoxide, DMSO, Sigma-Aldrich, 

St. Louis, MO; appropriate test wells), and 10 µl recombinant F. hepatica thioredoxin 

(TRX, 10 µg/ml, kindly provided by Drs. W.C. Brown and L.K.M. Shoda, Washington 

State University, Pullman, WA; appropriate test wells), and brought to a final volume of 

200 µl.  The plate was incubated at 37°C for 15 minutes, removed and centrifuged at 450 

x g for five minutes.  The cell-free supernatant was then carefully removed and placed 
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into a new 96-well microtiter plate and kept on ice.  The optical density of each well was 

then determined by reading the plate at 550 nm on a microtiter plate spectrophotometer.  

The µM concentration of O2
- was determined by dividing the optical density (OD) 

reading by 9.5. 

Nitric Oxide Assay 

The procedure for this assay was the same for both macrophage types -- murine 

peritoneal macrophages and bovine monocyte-derived macrophages.  The only difference 

between these assays was the chemical stimulus used, either lipopolysaccharide (LPS) for 

the bovine cells or peptidoglycan (Sigma - Aldrich, St. Louis, MO) for the murine cells.  

Purified LPS from E. coli O157:H7 was kindly provided by Dr. James Keen (United 

States Department of Agriculture - Meat Animal Research Center, Clay Center, 

Nebraska) and was prepared as previously described (Laegreid et al., 1998).  Activity of 

the LPS was determined by using the E-Toxate Limulus Amoebocyte kit (Sigma - 

Aldrich, St. Louis, MO).  Both cell type assays were carried out using 24-well microtiter 

plates with each column representing a single animal and each row representing a single 

treatment group.  The four treatments consisted of 1) cells only, 2) cells plus stimulus, 3) 

cells plus thioredoxin and 4) cells plus stimulus plus thioredoxin.  All treatments were 

run in triplicate. 

Briefly, serum-free RPMI 1640 (Life Technologies, Rockville, MD) containing 

Penicillin G/Streptomycin Sulfate (Life Technologies, Rockville, MD) and L-Glutamine 

(Life Technologies, Rockville, MD) was added to all 24 wells of the microtiter plate, 

cells were then added at a concentration of 1 x 106 cells per ml per well.  The cells were 

allowed to adhere for one hour at 37°C, 5% CO2, the medium and non-adherent cells were 
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removed and medium was replaced with 1 ml fresh RPMI 1640 containing 5% FBS and 

antibiotics.  At this time, either recombinant thioredoxin (10 µg; Shoda et al., 1999), 

peptidoglycan (20 µg), or both were added to the appropriate test wells.  The cells were 

incubated for 30-36 hours after which the supernatant was collected and frozen at –80°C 

until nitric oxide assay. 

The assay for nitric oxide was carried out as described by Stuehr et al. (1989) 

utilizing the Griess Reagent.  Griess Reagent was made up of two separate solutions, 

Solution A: a 1% (w/v) solution of sulfanilamide (Sigma-Aldrich, St. Louis, MO) in a 

2.5% solution of phosphoric acid (Sigma-Aldrich, St. Louis, MO) and Solution B: a 0.1% 

(w/v) solution of naphthylethylenediamine dihydrochloride (Sigma-Aldrich, St. Louis, 

MO) in 2.5% phosphoric acid.  Each was kept separately at 4°C until used.   

A sodium nitrite standard was established at the time of the assay using solutions 

of sodium nitrite (Sigma-Aldrich, St. Louis, MO) in concentrations of 0, 0.5, 1, 5, 10 and 

25 µM.  Triplicate 100 µl samples of each cell culture supernatant were plated into wells 

of 96-well, flat-bottom microtiter plates with wells containing 100 µl of medium acting 

as controls along with the appropriate standards.  To all culture supernatants, medium 

controls and standards, 50 µl each of Solution A and Solution B were added and the plate 

incubated for 10 minutes at room temperature.  The plate was then read at 550 nm on a 

microtiter plate reader to determine the optical density of each well, after which the 

nitrite concentration of all supernatant wells was determined by linear regression analysis 

onto the standard curve. 
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CHAPTER III 

IMMUNOLOCALIZATION OF THIOREDOXIN (Fh2020.A) IN 

ADULT AND IMMATURE STATES OF THE LIVER FLUKE, 

Fasciola hepatica 

 

Introduction 

Thioredoxin, along with NADPH and thioredoxin reductase make up the 

thioredoxin system.  Thioredoxins are small 12 kDa proteins first isolated by Laurent et 

al. (1964) from the bacteria Escherichia coli.  Since its original isolation, thioredoxin 

has been found in diverse groups of both prokaryotic and eukaryotic organisms up to 

and including higher mammals.  Within these species, thioredoxin performs or 

participates in a wide variety of biochemical processes (Arner and Holmgren, 2000; 

Nakamura et al., 1997), among them protein disulfide reduction, ribonucleotide 

reduction, light regulation of chloroplast enzymes, and sulfur metabolism.  While 

functional and species diversity exists between the various thioredoxins, the active site 

sequence of Cys-Gly-Pro-Cys is highly conserved among all species (Follmann and 

Haberlein, 1995; Nakamura et al., 1997; Powis and Montfort, 2001). 

 With the discovery of thioredoxin in several parasitic genera such as Fasciola 

(Richardson, 1994; Salazar-Calderon et al., 2001), Schistosoma (Alger et al., 2002; 

Finken-Eigen and Kunz, 1997), Echinococcus (Chalar et al., 1999), Plasmodium (Rahlfs et 

al., 2002), and Brugia (Kunchithapautham et al., 2003) and with the growing evidence that 

thioredoxin acts as a redox-regulating molecule in the maintenance of cellular redox status 

(Nakamura et al., 1997), it is reasonable to speculate that thioredoxin may play a role in 
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the protection of certain parasites against the host immune response (Alger et al., 2002).  

To this end, (Objective 1) experiments were designed to extend the knowledge gained by 

earlier studies of Fasciola hepatica by Richardson (1994) and to localize, anatomically, 

where thioredoxin was present in the parasite.  Since previous work dealt with only adult 

parasites, it was also deemed important to determine whether or not this protein was 

present in earlier immature stages, those that could be considered free-living, eggs and 

miracidia, as well as those stages associated with the snail intermediate host, i.e., 

sporocysts, redia and cercaria.  

Materials and Methods 

Parasites 

Adult flukes were obtained from bovine livers collected at a slaughter facility and 

processed as described previously for either protein analysis or immunohistochemical 

staining (Richardson, 1994).  Immature stages of the parasite were collected from 

laboratory-raised and -infected snails (Pseudosuccinia columella). 

Snail Culture and Infection 

The culture system was based upon that described by Whitlock, et al. (1976) with 

slight modifications as described by McKown and Ridley (1995).  Snails were infected 

with miracidia hatched from eggs collected from the gall bladders of the same cattle from 

which the adult flukes were collected.  Intermediate stages were collected from snails at 

the appropriate day of infection to produce the desired parasite life cycle stage.  They were 

then fixed in a solution of 0.4% glutaraldehyde/4% formalin for no longer than four hours, 

at which time they were transferred to 70% ethyl alcohol for storage.  
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Mouse Infection 

Mice were infected as described for cotton rats (Sigmodon hispidus) by McKown 

et al. (2000).  However, in this case, Metofane (methoxyflurane; Pitman Moore, 

Washington Crossing, NJ) was used as the anesthetic of choice (Texas A&M University 

Animal Use Protocol RF #93-685).   

Tissue Processing for Immunohistochemistry 

 Processing and paraffin embedding were carried out using standard histological 

techniques.  All sections were cut at a thickness of approximately 5 µm.  All parasite 

stages were collected and processed en masse and separate from host tissue with minor 

exceptions.  Due to the close association of this parasite stage to the tissue of the host, 

sporocysts were processed within the snail without being separated from the snail tissue.  

Each snail was fixed intact and the shell was then either removed or decalcified prior to 

further processing.  In addition, some early stage juvenile flukes were processed in situ 

within the liver tissue of the mouse host while others were removed and processed 

individually. 

Polyclonal Antibody Production 

Polyclonal antiserum against a recombinant protein, F. hepatica thioredoxin 

(Fh2020.A) was kindly provided by Dr. Charlene Richardson and Dr. Allison Rice-Ficht 

of Texas A&M University.  Antibody production was accomplished using standard 

techniques as described previously by Richardson (1994) utilizing New Zealand white 

rabbits and the injection of the Fh2020.A fusion protein produced in the pGEX vector.   
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Western Blotting 

Parasite antigen, whether that of adult or immature stages, was prepared as 

described by Richardson (1994) then stored at –80°C until used.  Protein electrophoresis 

and Western blot detection was performed using standard techniques (Sambrook et al., 

1989).  After transfer, the nitrocellulose membrane with the bound protein was blocked 

using 3% gelatin in TBS for one hour, then incubated in 1% gelatin with primary antibody 

at a concentration of 1:1000 for one hour at room temperature or overnight at 4°C.  At the 

end of the primary antibody incubation the membrane was rinsed then incubated in 

secondary antibody (alkaline phosphatase-conjugated goat anti-rabbit IgG; Kirkegaard & 

Perry Laboratories, Inc., Gaithersburg, MD) at a concentration of 1:500.  Detection was 

with nitrotetrazolium blue chloride (NBT; Sigma-Aldrich, St. Louis, MO) and 5-bromo-4-

chloro-3-indolyl phosphate (BCIP; Sigma-Aldrich, St. Louis, MO) in alkaline phosphatase 

substrate buffer at room temperature. 

Immunohistochemical Staining 

Immunohistochemistry was performed using the HistomarkTM Streptavidin-HRP 

System (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD) as per the 

manufacturer’s instructions with a primary antibody dilution of 1:500 in TBS.  A negative 

control slide of similar tissue was processed at the same time as the test slide only PBS not 

containing the primary antibody.  After staining with DAB chromagen as per the 

manufacturer’s instructions, all slides were counter-stained with Harris=s hemotoxylin, 

dehydrated through graded ethanols to xylene, and coverslips were applied to each section 

using Permount® (Fisher Scientific, Pittsburgh, PA), a non-aqueous mounting media.  
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Results 

Western Blotting 

Soluble parasite protein extracts were collected from the following species and 

stages: Fascioloides magna adult, F. hepatica adult, miracidia, redia, and cercaria.  

Western blot results showed a 12 kDa band representing thioredoxin present in lanes  

containing soluble parasite extracts of adult F. magna and adult F. hepatica, as well as in 

those lanes containing homogenates of redia and cercaria.  No bands were observed from 

miracidial homogenates (Figure 3.1). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1:  Coomassie Brilliant Blue (A) and Western blot (B) of Fasciola hepatica 
whole parasite soluble protein.  A) Proteins separated by SDS-PAGE on a 4-20% 
gradient gel. B) Proteins transferred to nitrocellulose membrane. Primary rabbit anti-F. 
hepatica thioredoxin (Fh2020) antibody and goat anti-rabbit alkaline phosphatase 
conjugated secondary antibody.  Lane 1 - molecular weight marker (kDa); lane 2 - adult 
F. hepatica; lane 3 - adult Fasciolodies magna; lane 4 - F. hepatica miracidia; lane 5 - F. 
hepatica redia; lane 6 - F. hepatica cercaria. 
 

B 

12   

2 3 4 5 61

A

200   
116   
97     
66     
45     

31     

21     
14     
6 

1 2 3 4 5 6



 54

Immunohistochemistry 

Immunohistochemical staining of 5 µm paraffin sections of various intermediate 

stages and adult parasites showed no staining of egg contents within the uterus but did 

show positive staining of sperm surrounding the eggs (Figure 3.2). There was no staining 

of sporocysts or surrounding snail tissue (Figure 3.3).  Positive staining was seen in the 

tegument of redia (Figure 3.4) and the tegument and excretory vesicle of cercaria (Figure 

3.5).  Positive staining was seen in the tegument of a 28-day-old immature fluke but not 

in surrounding mouse liver tissue (Figure 3.6).  Positive staining was also found in adult 

tegument and the outer layer of the associated spines (Figure 3.7).  There was also 

positive staining found in association with the cecal epithelium as well as that of the 

excretory canal (Figures 3.8 and 3.9).  Inconsistent staining of the vitelline glands was 

also seen, positive in some sections (Figure 3.8) but negative in others (Figure 3.9).  This 

may have been due to slight differences in the fixation of the parasite or chromagen 

incubation times.  Due to the inability to cut quality sections of metacercaria, no 

immunohistochemical staining was attempted on this stage of the parasite life cycle. 
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Figure 3.2:  Photomicrograph of Fasciola hepatica uterus containing eggs (*).  A) 
Negative control slide without rabbit anti-F. hepatica thioredoxin (Fh2020) primary 
antibody.  B) Similar section with rabbit anti-F. hepatica thioredoxin (Fh2020) primary 
antibody.  No positive staining of eggs or their contents are seen in either section.  
However, sperm (S) within the uterus and surrounding the eggs, exhibit positive 
staining. (400X) 
 

 

 

 

 

 

 

 

 

Figure 3.3:  Photomicrograph of 3-day post-infection  Fasciola hepatica sporocyst (►) 
within the tissues of a Pseudosuccinea columella snail intermediate host.  A) Negative 
control slide without rabbit anti-F. hepatica thioredoxin (Fh2020.A) primary antibody.  
B) Similar section with rabbit anti-F. hepatica thioredoxin (Fh2020.A) primary 
antibody.  No positive staining of parasite or snail tissue is present on either section. 
(400X) 
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Figure 3.4:  Photomicrographs of serial sections of a Fasciola hepatica 30-day post-
infection redia dissected from the snail intermediate host, Pseudosuccinea columella.  A) 
Negative control slide without rabbit anti-F. hepatica thioredoxin (Fh2020.A) primary 
antibody.  B) Next 5 µm section with rabbit anti-F. hepatica thioredoxin (Fh2020.A) 
primary antibody.  Section shows positive staining of the tegument surface (►). (200X) 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5:  Photomicrograph of naturally shed Fasciola hepatica cercaria from 
experimentally infected Pseudosuccinea columella.  A) Negative control slide without 
rabbit anti-F. hepatica thioredoxin (Fh2020.A) primary antibody.  B) Similar section 
with rabbit anti-F. hepatica thioredoxin (Fh2020.A) primary antibody.  Positive staining 
can be seen in the area of the outer tegument of the tail (►) as well as in the epithelial 
lining of the excretory vesicle (        ). (200X) 

A  B 

►

►

►

A B 

 ►



 57

B

*
► 

 

► 

 

 

 

     

Figure 3.6:  Photomicrographs of serial sections of 28-day post infection immature 
Fasciola hepatica within the liver of the mouse host (*).  A) Negative control slide 
without rabbit anti-F. hepatica thioredoxin (Fh2020.A) primary antibody.   B) Next 5 µm 
section with rabbit anti-F. hepatica thioredoxin (Fh2020.A) primary antibody. Positive 
staining can be seen particularly in the area of the outer tegument (►).  No positive 
staining of mouse liver tissue can be seen. (200X) 
 

       

 

 

 

 

 

 

 

 

Figure 3.7:  Photomicrograph of adult Fasciola hepatica tegument and spines.  A) 
Negative control without rabbit anti-F. hepatica thioredoxin (Fh2020.A) primary 
antibody.  B) Test section with rabbit anti-F. hepatica thioredoxin (Fh2020.A) primary 
antibody showing positive staining of the tegument (       ) and spine surface (►).  
Vitelline glands (*) appear positive in this section but not in subsequent slides (Figure 
3.8) where sections of the glands are also present. (200X) 
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Figure 3.8:  Photomicrograph of adult Fasciola hepatica intestinal cecum and 
surrounding tissues.  A) Negative control slide without rabbit anti-F. hepatica 
thioredoxin (Fh2020.A) primary antibody.  B) Similar test section with anti-F. hepatica 
thioredoxin (Fh2020.A) primary antibody showing positive staining of the cecal 
epithelium (►) and lining of the excretory canal (        ).  No apparent staining of the 
vitelline glands (*) present on this section. (200X) 
 

 

 

 

     

 

 

 

 
 
 
Figure 3.9:  Photomicrograph of adult Fasciola hepatica excretory canal and 
surrounding tissues.  A) Negative control slide without anti-F. hepatica thioredoxin 
(Fh2020.A) primary antibody.  B) Similar section with anti-F. hepatica thioredoxin 
(Fh2020.A) primary antibody showing intense staining of the epithelial lining of the 
excretory canal (►). (200X) 
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Discussion 

It is well known that reactive oxygen species are an effective host defense 

mechanism against both intracellular and extracellular parasites (Callahan et al., 1988).  

Phagocytic cells such as eosinophils and neutrophils have been shown to kill parasites by 

undergoing a respiratory burst and releasing such reactive oxygen species as hydrogen 

peroxide and superoxide anion (Clark et al., 1986; Klebanoff, 1992; Miller and Britigan, 

1997).  A number of functions of thioredoxin have been elucidated to date, one being that 

of an antioxidant, as well as a modulator of apoptosis, cell growth and differentiation, and 

also a regulator of DNA-binding activity of several transcription factors.  With the 

localization of thioredoxin within adult Fasciola and Fascioloides parasites, as well as 

within several of the other life cycle stages, this could add further support to the idea of it 

being involved in possible protective functions for the parasite.   

During the portion of its life cycle during which Fasciola is parasitic within the 

mammalian host, two organ systems in particular are exposed to host defense 

mechanisms, these being the tegument and the cecal epithelium.  As shown by this study, 

Fasciola thioredoxin is found in locations that would deem it appropriate for a protein 

that is involved in a protective role against possible host cellular defenses.  Once ingested 

by the definitive host, the newly excysted juvenile fluke spends little time  

within the confines of the digestive tract.  It quickly penetrates through the intestinal wall 

and enters the peritoneal cavity on its way to the liver.  During this migration the newly 

emerged fluke is exposed to various host cellular defenses by way of peritoneal 

macrophages, eosinophils and neutrophils.  Not only are these cells encountered during 

the tissue disruption of migration but also during feeding by the parasite as well.  During 
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feeding, blood as well as tissue debris is actively ingested by the flukes (Cheng, 1986; 

Halton, 1997), exposing them internally to various host cellular components.  

Consequently, both the external surface of the fluke as well as the internal lining of its 

digestive tract are bathed in host cellular debris and metabolic products. 

The demonstration of thioredoxin’s association with the tegument of the redia 

may also indicate a protective function.  Of the intermediate stages of Fasciola, the 

sporocyst and redia are exposed to snail host defense mechanisms to a greater extent than 

any other.  Of these two stages, the redia showed immunohistochemical evidence of the 

presence of thioredoxin while the sporocyst stage did not.  In fact, both stages are found 

within the tissues of the snail intermediate host and it would be expected that each would 

trigger and be equally susceptible to host defenses.  However, while there are several 

differences between the two stages, one of possible importance to this discussion is that 

the sporocyst is non-feeding, whereas the redia is a feeding stage and can cause 

considerable tissue damage to the host.  This extensive disruption of host tissue could 

promote a much greater host response to the presence of the redia than that elicited by the 

much smaller and less damaging sporocyst (Kendall, 1965).  Thus, different host 

responses to each of these parasite stages could generate the production of thioredoxin or 

the activation of the thioredoxin system as a defense response in one stage but not the 

other. 

While not localizing thioredoxin anatomically, in studying its production in S.  

mansoni, Alger et al. (2002) recorded positive bands via Western blotting in the 

following parasite stages: cercaria, 3-hour-old schistosomula, and in adult male and 

female flukes as well as egg secretory products and soluble egg proteins.  Some of the 
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differences noted between that study and those of our current work with Fasciola can be 

explained by the differences in the life cycles of these two parasites.  Starting with the 

adult fluke in the common bile duct of the definitive host, eggs are shed into the bile, then 

pass into the small intestine, are mixed with intestinal contents and expelled in the feces 

with little or no contact with the host immune system.  Whereas, adult S. mansoni reside 

within the mesenteric vessels of the infected host and eggs are shed into the host 

vasculature and must pass through the vessel wall and the wall of the intestine before 

entering the intestinal lumen and then being voided with the feces.  During this passage 

through the host tissue, a significant host response is elicited.  To counter this response, 

the production of thioredoxin by the developing miracidia could enable the eggs to pass, 

without triggering such a tremendous host reaction so as to prevent the passage of the 

eggs to the outside.  Even with this mechanism in place, numerous eggs are trapped, 

ectopically, particularly within the liver of the host with extensive granulation tissue 

formation surrounding the egg as the end result.  This could simply be due to the period 

of time the egg spends in contact with host tissue.  For if the eggs, once released, pass 

rather quickly through the host tissue and enter the intestinal lumen, they are exposed to 

comparatively little contact with host defense mechanisms and thus any thioredoxin 

antioxidant activity could be sufficient to allow the eggs to pass unhindered.  However, if 

they are carried by the circulation to a location where their entry into the intestine is 

prevented, the duration of time spent exposed to host defenses is greatly increased and 

thioredoxin production could be effectively overwhelmed by the host with the resulting 

granuloma formation, characteristic of schistosomiasis. 
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As previously stated, production of thioredoxin has been identified in cercaria of 

both Fasciola and Schistosoma.  Once again, differences in the life cycles of the two 

parasites could explain why this protein appears to be present in greater abundance in 

Schistosoma than in Fasciola.  The major difference in the two is that cercaria of 

schistosomes initiate infection by actively penetrating the skin of the definitive host, 

while the cercaria of Fasciola are simply a motile stage used to get away from the snail 

intermediate and to locate a suitable substrate upon which to encyst.  These cercaria 

never come into contact with the definitive host and its cellular defenses and only briefly 

with those of the snail intermediate host.  Also, during their development, the cercaria are 

encased within the redia and are thus not exposed to the snail immune system.  Being 

essentially protected by the redia, which does exhibit a strong thioredoxin presence in its 

tegument, there would be little necessity for the cercaria to generate a defense it didn’t 

require at that particular time. 

The other interesting finding of thioredoxin in Fasciola was its apparent 

occurrence in sperm within the uterus.  While this finding has not been reported 

previously in a parasitic species, the expression of thioredoxin has recently been shown to 

occur in both murine and human spermatozoa (Miranda-Vizuete et al., 2001; Yu et al., 

2002).  Both studies suggest that this sperm-specific thioredoxin could be important in 

regulating spermatogenesis.  One major difference in these findings and those in F. 

hepatica is that the mammalian sperm specific thioredoxin is just that, specific to 

spematozoa and no other tissues, whereas fluke thioredoxin is found in various tissues 

throughout multiple stage in the parasite life cycle. 
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While considerable evidence can be found as to the role thioredoxin and the 

thioredoxin system play in the antioxidant defenses of numerous species, its role in most 

helminth parasites remains to be elucidated.  Experimental evidence of the existence of 

thioredoxin and the thioredoxin system in different life cycle stages of Fasciola as well as 

the anatomical locations of the protein in this parasite, lends credence to its possible role 

in the redox balance and in the antioxidant defenses of F. hepatica.  While considerable 

work remains to be done, these few insights into the possible functions of thioredoxin in 

this parasite show promise for future study. 
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CHAPTER IV 

LOCALIZATION OF Fasciola hepatica THIOREDOXIN ISOTYPES 

Fh2020.A AND Fh2020.SL IN ADULT Fasciola hepatica BY IN SITU 

HYBRIDIZATION  

 

Introduction 

Thioredoxins are low molecular weight (12 kDa) proteins that are maintained in 

their active, reduced form by the flavoenzyme thioredoxin reductase.  Along with 

NADPH, these three compounds function as a general protein disulfide reducing system 

and make up what is commonly known as the Athioredoxin system@ (Holmgren and 

Bjornstedt, 1995; Nakamura et al., 1997), which plays an important role in maintaining 

the redox environment of the cell.  It would appear that most, if not all, organisms from 

bacteria to the higher mammals, have at least one complete thioredoxin system, and that 

with increasing organismic complexity there are also an increasing number of functional 

thioredoxin systems within the organism.  In many organisms with multiple thioredoxins, 

a mitochondrial system frequently exists in parallel to a cytoplasmic one (Powis and 

Montfort, 2001; Rahlfs et al., 2002).  The intracellular expression of thioredoxin is 

dependent upon the cell cycle suggesting its possible involvement in the redox regulation 

of the cycle itself (Nakamura et al., 1997). 

In previous work on Fasciola hepatica thioredoxin (Richardson, 1994), two 

isotypes designated Fh2020.A (555 base pairs) and Fh2020.SL (491 base pairs) were 

found to have extensive homology, however, significant variability was present within 

their initial 30 base pair sequences (Richardson, 1994).  Using this information and that 
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from other workers studying multiple thioredoxins within an organism, probes were 

designed for each of the two Fasciola isotypes.  An in situ hybridization method was 

developed in an attempt to determine whether or not these two isotypes were expressed in 

different anatomical locations within the adult parasite (Objective 2).   

Materials and Methods 

Parasites 

Adult F. hepatica were obtained at slaughter from the liver of a single naturally 

infected cow.  The slaughter facility was located in Hastings, Nebraska, however the 

origins of the affected animal are unknown. 

Fixation 

All adult flukes, once removed from the bile duct, were rinsed in sterile PBS, pH 

7.4 then placed into a fixative mixture of 0.4% glutaraldehyde/4.0% formalin.  After a 

period of fixation not exceeding four hours, the tissues were rinsed in distilled water and 

placed in 70% ethanol until processing. 

Processing and Embedding 

Tissues were processed and embedded according to standard histological 

techniques.  Sections were cut to a thickness of approximately 5 µm, and attached to 

RNase-free silanized glass slides and stored under dust-free conditions at room 

temperature.  

Design of Oligonucleotide Probes 

DNA-antisense probes for the control proteins Schistosoma mansoni actin and F. 

hepatica tubulin were designed using the hybridization probe analysis option of Vector 

NTI, Suite 5.5 sequence analysis software (InforMax, Inc., North Bethesda, MD) using 
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nucleic acid sequence information obtained from Genbank (http://www.ncbi.nlm.nih.gov; 

Accession numbers M80334, and AJ297256, respectively).  Briefly, the nucleic acid 

sequence was entered into the Vector program along with the desired parameters of probe 

length (>50, <70 bases), melting temperature (Tm; >40°C, <65°C), %GC content (>35, 

<60), hairpin loop stem (>3), palindromes (<8) and nucleotide repeats (<4).   

Nucleic acid sequences for Fh2020.A and Fh2020.SL were obtained from 

Richardson (1994).  Because these isotypes are highly homologous, isotype-specific 

probes were designed by comparing the sequence differences at the 5’ ends (the 

differences between the two isotypes were seen within the first 36 bases), and selecting 

probes that were complementary to a region of 20-25 bases from the 5’ end.  The selected 

probes were then analyzed using the hybridization probe analysis option of Vector NTI, 

Suite5.5 sequence analysis software (InforMax, Inc., North Bethesda, MD) to determine 

if they fit the parameters used to select the S. mansoni actin and F. hepatica tubulin 

probes.  All probes were checked for specificity for their respective proteins by 

performing BLAST sequence analysis (http://www.ncbi.nlm.nih.gov/BLAST). 

Digoxigenin Tailing 

Unlabeled oligonucleotide probes (Fh2020.A, Fh2020.SL, S. mansoni actin, and 

F. hepatica tubulin) were purchased from Integrated DNA Technologies, Coralville, IA.  

Digoxigenin labeling was carried out as per manufacturer’s instructions using the DIG 

Oligonucleotide Tailing Kit, 2nd Generation (Roche Diagnostics GmbH, Mannheim, 

Germany).   Briefly, the required reagents were added to 100 pmol of unlabeled probe (F. 

hepatica tubulin, S. mansoni actin, Fh2020.A or Fh2020.SL) in distilled water, incubated 
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at 37°C for 15 minutes and the reaction stopped using 0.2 M EDTA.  This procedure 

resulted in the binding of 10-100 DIG labels to each probe. 

Dot Blot 

 In order to test that the DIG label was attached to the probes, a dot blot procedure 

was performed individually for each probe after the labeling reaction.  The unlabeled 

controls were tested as well.  Briefly, after each labeling reaction 1 µl (100 ng) of probe 

was spotted onto a nylon membrane (Zeta-Probe Membrane, Bio-Rad, Hercules CA), air- 

dried and UV irradiated to bind the probe to the membrane.  The membrane was then 

washed three times for 10 minutes each wash in TBS buffer containing 0.1% Tween® 20 

(Bio-Rad Laboratories, Hercules, CA).  The membrane with its associated DIG-labeled 

probe dots was then placed in AP-conjugated sheep anti-DIG antiserum (1:500 dilution) 

in TBS buffer containing 1% gelatin at room temperature for 2 hours.  The membrane 

was further washed with TBS buffer containing 0.1% Tween® two times for 10 minutes 

each and finally, once for 10 minutes.  Label was detected using the chromagen 

NBT/BCIP.  The NBT/BCIP visualization solution was prepared using 33 µl NBT stock 

(50 mg/ml in 70% dimethyl formamide) plus 17 µl BCIP stock (50 mg/ml in 100% 

dimethyl formamide) per 5 ml alkaline phosphate substrate buffer (100 mM Tris, pH 9.5, 

100 mM NaCl, 5 mM MgCl). 

Calculation of Hybridization Temperature 

 The TM for each of the probes was calculated using the following formula:  

TM = 81.5 + 16.6(log M) + 0.41(%G+C) - 0.61(% formamide) - 500/n 

M = Na+ concentration in moles/liter 
n = shortest chain in the hybrid 
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For DNA:RNA hybridization such as was used in this study, 10-15°C was added to the 

result.  The optimal hybridization temperature was calculated to be 25°C below the TM of 

the hybridized probe.   

In Situ Hybridization Protocol 

All glassware used for in situ hybridization was rendered RNase-free by baking at 

180°C for four hours then stored under dust-free conditions.  All prepared solutions were 

made using RNase-free water and stored in baked glassware.  

This protocol was based on the manufacturer’s instructions for the Rembrandt® In 

Situ Hybridization and Detection Kit (PanPath, Amsterdam, The Netherlands).  Briefly, 

two sections were mounted per slide so that both a test and negative control could be 

processed simultaneously.  Each slide was deparaffinized in two changes of xylene then 

placed in 100% ethanol.  A proteolytic digestion step using hydrochloric acid and pepsin 

as provided in the kit was carried out on each section at 37°C for 30 minutes.  Each slide 

was then dehydrated through a series of graded ethanols (70%, 80%, 95%, 100%, 100%), 

for one minute each, then air-dried.  Each section was then covered with hybridization 

solution containing the appropriate probe at a concentration of 150 – 200 ng per section 

and incubated at 37°C for two hours.  The hybridizations were carried out utilizing a 

PTC-200TM Thermal Cycler with block/heat pump assembly and model SG96P glass slide 

adapter (MJ Research, Inc., Watertown, MA).   At the end of that time the coverslip was 

removed by soaking in TBS and the slide was washed with three additional TBS rinses.  

At this time, 2-3 drops of conjugate (AP-conjugated anti-DIG as provided in the kit) was 

added to each section and incubated at 37°C for 30 minutes.  The slide was then rinsed 

with TBS and a detection step using NBT/BCIP substrate was carried out at 37°C for 15 
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minutes after which the slides were washed with distilled water, dehydrated and cover 

slipped.  Probes tested with this protocol included, F. hepatica tubulin (the positive 

control), S. mansoni actin (an additional positive control), and thioredoxin isotype 

Fh2020.A and Fh2020.SL probes.   Negative control slides consisted of sections that had 

mRNA hybridization solution (DAKO Corp., Carpinteria, CA) without probe. 

Additionally, a negative control probe included in the Rembrandt® kit consisting of 100 

bases of a DIG-labeled pSP vector sequence was utilized to detect non-specific binding.   

Results 

Probe Analysis 

 The Vector analysis showed that the S. mansoni Actin and Fh2020.A probes were 

of high quality with no indication that there would be any structural inhibition of 

hybridization.  When the same analysis was performed on the Fh2020.SL probe, a hairpin 

was detected that might, under certain conditions, render it non-functional.  In addition, 

the BLAST search of each of the two thioredoxin probes testing probe lengths of 32, 26, 

and 21 bases indicated that the 21 base probe had the highest specificity to F. hepatica 

thioredoxin.  Calculation of melting temperatures determined that at the 21-base length, 

the melting temperature of the two thioredoxin isotypes would be identical.  Table 4.1 

lists the probe sizes, sequences, and hybridization temperatures for all of the probes 

utilized.  Dot blot analysis showed that all of the probes were labeled with sufficient DIG 

tails to be visualized upon hybridization and color development. 
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Table 4.1:  In situ probe sequences and hybridization temperatures.  

  Probe            Number of Bases        Sequence (5'-3')        Hybridization Temp. (°C) 

  S. mansoni Actin          23              atcttctccatatcatcccagtt         43-48 
 
  Fh2020.A                      21             gagccgcatcgtggcaaaacg               41-46 
 
  Fh2020.SL                    21             gggcagagaaccgttaaggtt                 41-46 
 
  F. hepatica Tubulin      50             ttgtaaatcggagtctccatgataa   39-44 

         gtaccagttgggtcaattccgtgct 
        

 

In Situ Hybridization  

Using DIG-tailed probes and the Rembrandt® in situ hybridization kit, successful 

positive staining was achieved in 5 µm sections of adult flukes with all probes tested, F. 

hepatica tubulin (Figure 4.1), S. mansoni actin (Figure 4.2), and thioredoxins Fh2020.A 

(Figure 4.3) and Fh2020.SL (Figure 4.4).  Fh2020.A and Fh2020.SL signals were 

primarily located in the tegument of the worm as well as in the cecal and excretory canal 

epithelium.  Interestingly, it was also located in the vitelline glands, a finding not 

apparent in the immunohistochemical trials.  This could be due to the natural color 

(golden brown) of the glands and the difference in the colors of the two chromagens used 

in the different techniques, immunohistochemistry - DAB (brown) and in situ 

hybridization - NBT/BCIP (black).  Without counter-staining, the negative control tissues 

were difficult to discern under brightfield conditions (Figure 4.5) and phase contrast was 

used to better visualize the sections (Figure 4.6).  As stated previously, the negative 

control slides consisted of both the kit negative control probe and hybridization solution 

without the respective test probe.  In all cases, the negative control sections showed no 
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positive staining indicating no non-specific background.  This would also indicate that 

the positive staining seen was specific for the probe sequence tested. 

 

 

 

 
 
 
 
 
 
 
Figure 4.1: Section of adult Fasciola hepatica showing positive in situ hybridization 
staining of tissues by a 50-base digoxigenin-labeled F. hepatica tubulin probe (150 ng), 2 
hour incubation at 37°C with 20 minute chromagen exposure. (200X) 
 
 
 
 
 

 

 

Figure 4.2: Section of adult Fasciola hepatica showing positive in situ hybridization 
staining of tissues by a 23-base digoxigenin-labeled Schistosoma mansoni actin probe 
(150 ng), 2 hour incubation at 37°C with 20 minute chromagen exposure. (200X) 
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Figure 4.3: Section of adult Fasciola hepatica showing positive in situ hybridization 
staining of tissues by a 21-base digoxigenin-labeled Fh2020.A F. hepatica thioredoxin 
probe (150 ng), 2 hour incubation at 37°C with 20 minute chromagen exposure. (400X) 
 

  

 

 

 

 

Figure 4.4: Section of adult Fasciola hepatica showing positive in situ hybridization 
staining of tissues by a 21-base digoxigenin-labeled Fh2020.SL F. hepatica thioredoxin 
probe (150 ng), 2 hour incubation at 37°C with 20 minute chromagen exposure. (200X) 
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Figure 4.5: Section of adult Fasciola hepatica without digoxigenin-labeled probe 
(negative control) showing no non-specific in situ hybridization staining of tissues, 2 
hour incubation at 37°C with 20 minute chromagen exposure (Brightfield). (200X) 
 

 

 

 

 

 

 

 
 
 
Figure 4.6: Section of adult Fasciola hepatica without digoxigenin-labeled probe 
(negative control) showing no non-specific in situ hybridization staining of tissues, 2 
hour incubation at 37°C with 20 minute chromagen exposure (Phase Contrast - same field 
of view as seen in Figure 4.6). (200X) 
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Discussion 

As a technique for the detection of DNA and RNA sequences in tissues, in situ 

hybridization has been used extensively since its first introduction by Gall and Pardue 

(1971) for the localization of specific DNA sequences on chromosomes.  Its specific uses 

in the detection of parasite gene sequences are abundant (Rice-Ficht et al., 1992; Tuan et 

al., 1991; Velasquez et al., 1999; Zurita et al., 1989), as are those references of its use in 

the detection of thioredoxin (Lippoldt et al., 1995; Mansur et al., 1998; Rundlof et al., 

2000).  Consequently, the use of this technique seemed appropriate for the detection of 

thioredoxin isotypes in adult F. hepatica. 

To test this hypothesis, a 50-base F. hepatica tubulin sequence was selected and a 

DIG tailing kit was used to label the probe with the greatest number of DIG labels 

available for detection.  Also, a standardized in situ hybridization kit was used to 

eliminate the possibility of reagent RNase contamination and to use reagents at an 

established concentration in a protocol that was known to work under a variety of 

conditions and circumstances.  This strategy was well founded and positive results were 

obtained in all cases with negative controls having no signal and positive controls 

exhibiting strong signal (Figures 4.1-4.6). 

From these results, it would appear that the two different mRNA isotypes of F. 

hepatica thioredoxin are produced in the same anatomical locations within the adult 

fluke.  The in situ findings complemented those of the immunohistochemical experiments 

in that it appeared that the thioredoxin protein production and RNA transcription are 

coincident.  One difference seen with the in situ hybridization was the difference in the 

intensity of staining between the two isotypes.  In this procedure a concentration of 150 
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ng of labeled probe per section was used for both the Fh2020.A and the Fh2020.SL, 

however, the staining intensity of the Fh2020.A (Figure 4.4) was much greater than that 

of the Fh2020.SL (Figure 4.5).  This increased intensity could indicate a difference in the 

amount of expression between the two isotypes, with Fh2020.A being expressed in 

greater quantities.  This may also indicate a difference in function between the two or 

simply a redundancy within the Fasciola thioredoxin system.  Alternatively, it could 

indicate that the chromogen remained on one slide longer than the other, or was simply 

an artifact resulting from human error, but due to the repeatability of the results, this was 

most likely not the case. 

Richardson (1994) reported identifying two different sized transcripts, one 530-bp 

and the other 1.5kb (apparently unprocessed transcript) for F. hepatica thioredoxin.  

Additional work by Richardson (1994), utilizing reverse-transcriptase polymerase chain 

reaction with thioredoxin isotype-specific primers, further demonstrated that the 530-bp 

transcript was composed of both trans-spliced and cis-spliced thioredoxin transcripts.  By 

using a ribonuclease protection assay and subsequent visualization of the RNA products, 

it was determined by comparison of the relative intensities of the bands that the cis-

spliced message (Fh2020.A) was more abundant than the trans-spliced message 

(Fh2020.SL).  Thus, the in situ hybridization results and the comparative staining 

intensities of the Fh2020.A and Fh2020.SL probes correspond exactly with what was 

found in the earlier study.   

At the light microscopic level, it would appear from the in situ results that both 

Fh2020.A and Fh2020.SL are expressed in the same or similar tissues.  Although the 

message is produced in the same anatomical region, there is the possibility exists that 
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different cell types produced the isotypes.  One way to confirm or refute this would be by 

using electron microscopy so that the transcripts could be detected at a specific cellular 

location. 

Coupling the results of this work and knowledge of the various functions of 

thioredoxin in other organisms, a case can be made as to what possible functions this 

protein may have in parasitic trematodes.  F. hepatica thioredoxin could be involved in a 

protective antioxidant function against oxidative stresses as has been shown in previous 

studies (Arner and Holmgren, 2000; Holmgren, 2000; Powis and Montfort, 2001).  

Anatomically, its location would correspond well with areas where the fluke would be 

exposed to the greatest stresses from both its environment and the host’s defenses.  These 

anatomical sites include the outer tegument and the gut lining, both of which are exposed 

to host defense factors both cellular and chemical, as well as the rigors faced by living in 

a sea of bile and its enzymatic components.  Secondly, when one considers these 

anatomical sites (tegument and gut) as well as the presence of thioredoxin in the 

epithelium of the excretory canal and associated with the vitelline glands, these organs 

are undergoing rapid cellular division and metabolism.  As seen in other organisms, one 

of the biological activities of thioredoxin includes that of cofactor, where it plays an 

important function in the growth of several cell types.  In areas of intense cellular growth 

and proliferation, thioredoxin could provide a source of reducing equivalents for 

ribonucleotide reductase which catalyzes the conversion of nucleotides to 

deoxynucleotides, the first step in DNA synthesis (Powis and Montfort, 2001). 

The results of this study indicate that first, the general anatomical location of both 

isotypes of thioredoxin studied are very similar and second, the intensity of staining of 
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the two isotypes is dissimilar, possible indicating a difference in the degree of expression 

between the two.  The fact that the two isotypes are expressed differently is interesting in 

that it could simply be a means of redundancy in the system insuring that there is always 

a source for the protein even if for some reason one Apathway@ is non-operational, or it 

could be that the two types perform different functions.  Without further work at the 

cellular or even sub-cellular level, the locations of the two isotypes remain general at 

best, and without further molecular characterization the true function or functions of the 

two isotypes will remain uncertain as well. 
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CHAPTER V 

EFFECTS OF RECOMBINANT Fasciola hepatica THIOREDOXIN 

ON NITRIC OXIDE AND SUPER OXIDE ANION PRODUCTION IN 

BOVINE AND MURINE IMMUNE CELLS 

 

Introduction 

It is well known that reactive oxygen species are effective host defense 

mechanisms against both intracellular and extracellular parasites (Callahan et al., 1988). 

Phagocytic cells such as eosinophils, neutrophils and macrophages have been shown to 

kill parasites by undergoing a respiratory burst and releasing such reactive oxygen 

species as hydrogen peroxide (H2O2), hydroxyl radical (OH-) and superoxide anions    

(O2
-), as well as reactive nitrogen species such as nitric oxide (NO).   

The redox activity of thioredoxin and the thioredoxin system have been shown in 

species within many classes of parasitic organisms (Krnajski et al., 2001; Lu et al., 1998; 

Rahlfs et al., 2002; Richardson, 1994).  In addition to the three primary components of 

the thioredoxin system; thioredoxin, thioredoxin reductase and NADPH, there are other 

protein, enzyme and metabolite components that are dependent upon reduced 

thioredoxin for their functional ability, whether that is for host defense against infection 

or parasite defense against host response (McGonigle et al., 1997; Rahlfs et al., 2002).  

Within the digenea, a complete thioredoxin system has been reported from Schistosoma 

mansoni.  Experimental results indicate that the system plays a significant role in the 

redox balance and antioxidant defenses of the parasite (Alger et al., 2002; Rahlfs et al., 

2002).  A functional thioredoxin system also appears to be present in Fasciola hepatica 
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(Richardson, 1994; Salazar-Calderon et al., 2001).  Because no functional catalase 

system and only a trace of glutathione peroxidase activity having been described in 

Fasciola, this may place even greater importance on this parasite=s thioredoxin system. 

Previous studies have shown that F. hepatica is attacked by the host=s immune 

response at the earliest stages of the infection.  Smith et al. (1992) showed that antibody-

coated, newly excysted juvenile (NEJ) flukes were attacked and damaged by various 

host immune cells, particularly eosinophils, neutrophils, macrophages and mast cells, 

while still passing through the wall of the small intestine and into the peritoneal cavity.  

When compared to S. mansoni schistosomula, NEJs were considerably more resistant to 

killing by reactive nitrogen intermediates (Piedrafita et al., 2000).  Using 7-8 week old 

naive male white Wistar rats, NEJs experienced mortalities of only 7-15% even in the 

presence of what were considered high nitric oxide levels of 75-97 µM.  By comparison, 

schistosomula experienced 78-87% killing at equal or lesser levels of nitric oxide. 

The immune response elicited by infection with F. hepatica varies depending 

upon the species of host involved.  Utilizing this response as a criteria, various natural 

and experimental hosts have been deemed either susceptible (mice and sheep) or 

resistant (rats and cattle) to infection by F. hepatica (Boray, 1969; Smith et al., 1992).  

Smith et al. (1992) showed that while murine (susceptible) peritoneal macrophages 

respond to challenge with F. hepatica by producing reactive oxygen intermediates, they 

do so with much lower concentrations than do laboratory rats (resistant).  Rats, whose 

primary peritoneal response is mediated by eosinophils, will produce upwards of 30 

times more reactive radical per animal than observed in mice.   
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The redox function of thioredoxin has been reported and reviewed extensively 

(Follmann and Haberlein, 1995; Nakamura et al., 1997; Nordberg and Arner, 2001; 

Powis and Montfort, 2001; Shao et al., 2002).  The occurrence of thioredoxin and the 

thioredoxin system in various classes of parasitic organisms is also well documented 

(Alger et al., 2002; Henkle-Duhrsen and Kampkotter, 2001; Rahlfs et al., 2002) and its 

occurrence in F. hepatica has been described (Richardson, 1994; Salazar-Calderon et al., 

2001).  Abo-Shousha, et al. (1999), have shown that in humans infected with either F. 

hepatica, S. mansoni, or a combined infection, there were detectably higher levels of 

both superoxide anion and nitric oxide produced by monocytes from these individuals 

than from monocytes of non-infected controls.  This would indicate that these reactive 

intermediates could play a role in the host defense against the parasite. 

In the presence of such an onslaught from the host, the parasite must bring into 

play some type of defensive mechanisms.  Jefferies, et al. (1997), demonstrated that 

when either sheep or human resting neutrophils were exposed to adult F. hepatica 

excretory-secretory (ES) products there was a significant increase in nitric oxide 

production, while at the same time there was no change in superoxide anion production 

in either cell type when exposed to ES products.  El-Ghaysh et al. (1999), in similar in 

vitro studies using Fasciola gigantica, convincingly demonstrated that there was a 

significant inhibition of superoxide production by PMA-stimulated sheep neutrophils 

when exposed to both parasite somatic extracts and ES products. 

In the current investigation, two reactive intermediates, superoxide anion (O2
-) 

and nitric oxide (NO) were chosen for study (Objective 3) due to the fact that they are 
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produced by cells that are involved in the host immune response to parasite infection, i.e. 

neutrophils and macrophages, and both have been reported previously to be involved 

specifically with the host response to F. hepatica infection (el-Ghaysh et al., 1999; 

Haslett et al., 1989; Smith et al., 1992).  

Materials and Methods 

Endotoxin Assay 

Since the recombinant thioredoxin was produced in a bacterial system the 

determination of the presence or absence of endotoxin associated with the recombinant 

was deemed necessary.  Endotoxin contamination of Maltose Binding Protein (MBP) 

was measured using the E-Toxate® assay (Sigma-Aldrich, St. Louis, MO).  The principle 

of this assay is that a lysate of circulating amebocytes from the horseshoe crab, when 

exposed to minute quantities of endotoxin, will increase in opacity as well as viscosity to 

the point of gelling dependent upon the concentration of endotoxin present.   

The assay was run as per the manufacturer’s instructions.  Briefly, after 

reconstituting the Working Solution, a series of standard dilutions were prepared using 

endotoxin-free water (Sigma-Aldrich, St. Louis, MO) within a concentration range of 

400 to 0.015 endotoxin units (EU) per milliliter.  The unknown sample along with 

negative and positive control samples were then mixed and incubated in a 37°C water 

bath for one hour.  At the end of the incubation the tubes were removed and inverted.  A 

sample was considered positive for the presence of endotoxin if the solution formed a 

hard gel in the bottom of the tube.  All other results, clear liquid, increased turbidity, soft 

gel, or increased viscosity were considered negative. 
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Insulin Reduction Assay 

The biological activity of the recombinant F. hepatica thioredoxin was 

determined by the dithiothreitol/insulin reduction assay described by (Holmgren, 1979) 

and further used and described by Salazar-Calderón et al. (2001) and Alger et al. (2002).  

This is a turbidity assay in which active thioredoxin serves as a catalyst for the cleavage 

of insulin into its α and ß-chains by dithiothreitol (DTT), with the ß-chains forming an 

insoluble precipitate that was then detected spectrophotometrically by its absorbance at 

630-650 nm.   

 Initially, a 10 mg/ml insulin stock solution was prepared by resuspending 50 mg 

of insulin powder (Sigma, St. Louis, MO) in 4 ml of 0.05 M Tris-HCl, pH 8.0 and 

adjusting the pH to 2.0-3.0 by the addition of 1.0 M hydrochloric acid.  The pH was 

immediately brought up to 8.0 with 1M NaOH, and the volume adjusted to 5 ml with 

distilled water.  The resulting solution was separated into 500 µl aliquots and frozen at –

20°C.  An insulin working solution (IWS) was prepared from the stock solution by 

adding 400 µl of 10 mg/ml stock solution, 400 µl phosphate buffer (PBS), and 16 µl of 

500 mM EDTA to 3.2 ml of distilled water.  The assay was carried out in triplicate in a 

96-well microtiter plate with the following treatments: 1) Blank (IWS + water); 2) 

Control (IWS + water + DTT; demonstrates spontaneous insulin cleavage); 3) MBP Test 

(IWS + water + DTT + MBP at 0.23 µM / well); 4) LPS Test (IWS + water + DTT + 

LPS at 1 µM / well) and 5) TRX•MBP Test (IWS + water + DTT + TRX•MBP at 4 

µM/well).  Each well had a final volume of 200 µl consisting of 150 µl IWS and 2 µl 33 

mM DTT in all wells and additional reagents in the following proportions dependant 
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upon the test reagent: TRX•MBP wells - 50 µl with no additional water; MBP alone and 

LPS wells - 1 µl MBP or LPS + 47 µl water.  The test reactions were carried out on ice 

with the microtiter plate agitated slightly to insure mixing of all reagents.  The plate was 

then placed within a microtiter plate reader and the absorbance was measured at 630 nm 

at 1 minute intervals for 15-60 minutes depending on activity/concentration of the test 

samples.  

Maltose Binding Protein Control 

 Since the thioredoxin used in the cellular assays was a recombinant bound to a 

MBP moiety, a covalently linked MBP control was tested for stimulatory activity in one 

assay and cell type.  MBP was obtained from the laboratory of Dr. W.C. Brown at 

Washington State University.  To correctly determine the concentration of MBP to be 

used in the assay, all calculations comparing MBP with recombinant thioredoxin were 

based upon the molecular weight of each, free MBP: 42.7 kDa and recombinant 

thioredoxin: 54.7 kDa. 

Murine Peritoneal Macrophages 

Six to eight week old C57 Black/10ScN mice (n = 10) were used as outlined in 

USDA Protocol, Experiment # 5438-32000-013-08 and Texas A&M Animal Use 

Protocol #9-173.  The original stock was kindly provided by Dr. S.K. Chapes, Kansas 

State University.  Macrophages were obtained by the method described by Meltzer 

(1981), using 3% thioglycollate medium injected into the peritoneal cavity to stimulate 

macrophage recruitment, with activated cells collected 4-5 days post-injection via cold 

PBS lavage.  The lavage fluid was centrifuged at 400 x g at 4°C for 7 minutes to  
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pellet the cells, which consisted of  peritoneal macrophages and a small number of  

contaminating red blood cells.  Red blood cells were removed using Red Cell Lysis 

Solution (Sigma-Aldrich, St. Louis, MO) as per the manufacturer=s instructions.  The 

cells were brought up to a 50 ml volume with cold PBS, pelleted by centrifugation, and 

resuspended in 10 ml cold PBS.  An aliquot was taken and a Cytospin preparation was 

made (Figure 5.1) to determine the cell types present, and a total cell count was 

performed using a hemacytometer.  The cells were then transferred into 24-well 

microtiter plates at a concentration of 1 x 106 cells per well. 

 

 

 
Figure 5.1: Photomicrograph of a Romanowsky=s stained (DifQuikTM) CytospinTM slide 
preparation of mouse peritoneal macrophages collected four days after intraperitoneal 
injection of 3% thioglycollate (400X). 
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Bovine Cells 

All bovine cells (macrophages and neutrophils) were collected from whole blood 

as described below and outlined in USDA Experimental Outline, Experiment #5438-

32000-022-02.  All cattle were from an area in south central Nebraska where no 

incidence of F. hepatica infection has been known to occur. 

Bovine Monocyte-Derived Macrophages 

Whole blood was obtained by jugular venipuncture from animals (n = 21) within 

a commercial cattle herd and monocytes were separated using a density gradient 

procedure as outlined by Clark and Nauseef (1998).  The PBMC layer was carefully 

removed via pipette and brought to a volume of 50 ml with cold PBS then centrifuged at 

400 x g at 4°C for 7 minutes to pellet the cells.  Any red blood cell contamination was 

removed by lysis using Red Cell Lysis Solution (Sigma, St. Louis, MO) as per the 

manufacturer=s instructions.  The pellet was suspended in 10 ml of cold PBS and an 

aliquot was removed for differential staining (Figure 5.2) and cell count determination as 

described above.  After counting, cells were transferred into a 24-well microtiter plate at 

a concentration of 1 x 106 macrophages per well in RPMI 1640 medium plus antibiotics 

and allowed to adhere to the plate for one hour at 37°C.  After this time the medium was 

removed along with any non-adherent cells and replaced with RPMI 1640 containing 5% 

fetal bovine serum and antibiotics then returned to 37°C and left undisturbed until the 

following day. 
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Figure 5.2: Photomicrograph of a Romanowsky=s stained (DifQuikTM) CytospinTM slide 
preparation of bovine peripheral blood mononuclear cells after density gradient 
concentration and red cell lysis and prior to overnight adherence (400X). 

 
 

Bovine Whole Blood Neutrophils 

Whole blood was obtained by jugular venipuncture from animals (n = 22) within 

a commercial cattle herd and neutrophils were separated using a density gradient 

procedure as outlined in Clark and Nauseef (1998).  After centrifugation, all buffer and 

cell layers above the red blood cell/neutrophil layer were removed via pipette, leaving 

only the red blood cell/neutrophil pellet.  The red cells were removed using cold saline 

lysis (Clark and Nauseef, 1998).  Typically, 2 or 3 lysis steps were required to remove 

the majority of the red cell contamination, resulting in an essentially pure neutrophil 

population (Figure 5.3). 
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Figure 5.3: Photomicrograph of a Romanowsky=s stained (DifQuikTM) CytospinTM slide 
preparation of bovine neutrophils after density gradient concentration and red cell lysis 
(400X). 
 
 
 
Recombinant Thioredoxin Titration 

In order to determine the best concentration of thioredoxin to use in the assays, 

a titration of different recombinant thioredoxin concentrations was run.  Measuring nitric 

oxide in the supernatants from murine peritoneal macrophages (n = 2) stimulated with 

four different thioredoxin concentrations (1, 2, 5, and 10 µg/ml), the one determined to 

be the most stimulatory was used in all subsequent assays, both nitric oxide and 

superoxide. 

Superoxide Assay 

The super oxide anion (O2
-) assay was preformed as described by Pick and Mizel 

(1981).  This assay is a means by which the production of superoxide anion by intact 

neutrophils and macrophages can be measured spectrophotometrically as a function of 
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cytochrome C (Fc) reduction.  Optical density readings were made at 550 nm using a 

Microplate Autoreader (Bio-Tek Instruments, Winooski, VT).  The control activator or 

stimulant in this assay was phorbol 12-myristate 13-acetate (PMA) at a stock 

concentration of 10 µg/ml.  Recombinant TRX was used at a stock concentration of 10 

µg/ml.  Four treatment groups of three wells each were used, with treatments consisting 

of the following: 1) cells only, 2) cells + PMA, 3) cells + TRX and 4) cells + PMA + 

TRX.  The cell types tested included bovine monocyte-derived macrophages, bovine 

neutrophils, and mouse peritoneal macrophages.   

Briefly, in a flat-bottom 96-well microtiter plate each sample to be tested was 

plated in triplicate, i.e. 3 wells per sample, to a total final volume of 200 µl.  Starting 

with 150 µl of cell suspension at a concentration of 1 x 106 cells per well, stock reagents 

were added in the following amounts and order: 20 µl superoxide dismutase (SOD; 

appropriate test wells), 20 µl Fc (all wells), 2 µl PMA (appropriate test wells) and 10 µl 

TRX (appropriate test wells).  The plate was then incubated at 37°C for 15 minutes, 

removed and centrifuged at 450 x g for five minutes.  The cell-free supernatant was then 

carefully removed and placed into a new 96-well microtiter plate and kept on ice.  The 

optical density of each well was then determined by reading the plate at 550 nm on a 

microtiter plate spectrophotometer.  The µM concentration of O2
- was determined by 

dividing the optical density (OD) reading by 9.5. 

Nitric Oxide Assay 

This assay, using the Greiss reagent, detects the accumulation of nitric oxide by 

activated macrophages in cell culture supernatants by measuring the more stable end-
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product, nitrite (NO2
-).  This colorimetric assay was performed on bovine monocyte-

derived macrophages and murine peritoneal macrophages as described by Chitko-

McKown et al. (1991), and was used to determine the amount of NO2
- present in both 

stimulated and non-stimulated supernatants.  The control stimulus for this assay was 

different for each cell type.  Lipopolysaccharide (LPS) was used on the bovine cells and 

peptidoglycan (PGN) was used on the murine cells.  The reason for this difference is that 

the C57 Black/10ScN strain of mice are LPS-resistant and were used to eliminate 

stimulation of the cells by possible LPS contamination since the recombinant protein 

was generated in bacteria.  Treatments were carried out in 24-well microtiter plates with 

four treatment wells for each animal.  The five treatment groups used were 1) cells only, 

2) cells + LPS (bovine macrophages) or PGN (murine macrophages), 3) cells + 

thioredoxin (TRX), 4) cells + TRX + LPS (or PGN) and 5) cells (bovine macrophages) + 

MBP.   

Briefly, serum free RPMI 1640 (Life Technologies, Rockville, MD) containing 

Penicillin G/Streptomycin Sulfate (Life Technologies, Rockville, MD) and L-Glutamine 

(Life Technologies, Rockville, MD) was added to all 24 wells of the microtiter plate, 

then cells were added at a concentration of 1 x 106 cells per well.  The plate was then 

placed in a 37°C, 5% CO2 incubator and the cells were allowed to adhere for one hour.  

At the end of the one hour incubation, the spent RPMI 1640 was removed via pipette and 

was replaced with 1 ml fresh RPMI 1640 plus 5% fetal bovine serum (Life 

Technologies, Rockville, MD) and antibiotics. At this time, recombinant thioredoxin (10 

µg; Shoda et al., 1999), peptidoglycan (20 µg), or both were added to the appropriate test 
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wells.  The cells were then allowed to incubate for 30-36 hours after which the 

supernatant was collected and frozen at –80°C for later nitric oxide assay.  

Results 

Endotoxin Assay 

The E-Toxate assay for the presence of endotoxin showed there was no 

endotoxin (LPS) present in the MBP solution used for the cellular assays. 

Insulin Reduction Assay  

The biological activity of the recombinant TRX was determined by the reduction 

of insulin in the presence of the reducing agent DTT.  In the negative control treatment 

in the absence of TRX, minimal reduction was seen over the assay period.  However, in 

the presence of recombinant TRX, a significant increase (p < 0.05) in insulin reduction 

was observed.  MBP and LPS had no effect on insulin reduction above that of the non-

enzymatic control (Figure 5.4). 

Recombinant Thioredoxin Titration 

 Four different recombinant TRX concentrations (1, 2, 5 and 10 µg/ml) 

were tested using murine (n = 2) peritoneal macrophage production of nitric oxide.  The 

µg/ml concentrations of nitric oxide produced at each thioredoxin concentration were as 

follows: 1µg/ml, 0.004 µg/ml; 2 µg/ml, 0.008 µg/ml; 5 µg/ml, 0.0175 µg/ml; 10µg/ml, 

0.029 µg/ml.  From the assay results it was determined that 10 µg/ml recombinant TRX 

was the optimum concentration to be used in all of the cellular assays. 



 91

 
 

Figure 5.4: Results of the insulin reduction assay used to determine the biological 
activity of recombinant Fasciola hepatica thioredoxin. 

 

Superoxide Assay 

With significance set at p < 0.05, an analysis of variance test revealed no 

significant differences between the cell activator (PMA) and the activator plus TRX in 

any of the cell types tested (Figures 5.5 - 5.7).   
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Effect of TRX on Murine Peritoneal Macrophage Superoxide 
Production (n = 10)
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Figure 5.5: Effects of phorbol 12-myristate 13-acetate (PMA) and recombinant Fasciola 
hepatica thioredoxin (TRX) on the production of superoxide anion (O2

-) on activated 
mouse peritoneal macrophages after 15 minutes exposure and measured 
spectrophotometrically by reduction of cytochrome c (Fc) at 550 nm (n = 10; PMA, 2 µl 
of 10 µg/ml stock per well; TRX, 10 µl of 10 µg/ml stock per well).  After initial 
analysis, in order to normalize all values, the control value was subtracted from the 
treatment values in order to have all represented values greater than zero.  
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Effects of TRX on Bovine Monocyte Derived Macrophage 
Superoxide Production (n = 21)
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Figure 5.6: Effects of phorbol 12-myristate 13-acetate (PMA) and recombinant Fasciola 
hepatica thioredoxin (TRX) on the production of superoxide anion (O2

-) on bovine 
monocyte-derived macrophages after 15 minutes exposure and measured 
spectrophotometrically by reduction of cytochrome c (Fc) at 550 nm (n = 21; PMA, 2 µl 
of 10 µg/ml stock per well; TRX, 10 µl of 10 µg/ml stock per well). 
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Effects of TRX on Bovine Neutrophil 
Superoxide Production (n = 22)
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Figure 5.7: Effects of phorbol 12-myristate 13-acetate (PMA) and recombinant Fasciola 
hepatica thioredoxin (TRX) on the production of superoxide anion (O2

-) on bovine 
neutrophils after 15 minutes exposure and measured spectrophotometrically by reduction 
of cytochrome c (Fc) at 550 nm (n = 22; PMA, 2 µl of 10 µg/ml stock per well; TRX, 10 
µl of 10 µg/ml stock per well). 
 

 

 

Nitric Oxide Assay 

Results of the nitric oxide assay showed that TRX had no significant effects (p = 

0.12) on the suppression of NO formation by murine peritoneal macrophages exposed to 

PGN.  (Figure 5.8)  
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Effects of TRX on Mouse Peritoneal Macrophage  
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Figure 5.8: Effects of peptidoglycan (PGN) and recombinant Fasciola hepatica 
thioredoxin (TRX) on the nitric oxide production of activated mouse peritoneal 
macrophages as assayed by use of the Greiss reagent and measured 
spectrophotometrically at 550 nm. (n = 10; PGN, 20 µg; TRX, 10 µg). 
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The results of the nitric oxide assay showed all treatments were stimulatory to 

bovine monocyte-derived macrophages compared to control values.  With significance 

set at p < 0.05 an analysis of variance test (ANOVA) showed that the differences seen 

between treatment groups were significant (p = 0.02) when compared to the non-treated 

control group (Figure 5.9). 
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Figure 5.9: Effects of lipopolysaccharide (LPS) and recombinant Fasciola hepatica 
thioredoxin (TRX) on the nitric oxide production of bovine monocyte-derived 
macrophages as assayed by use of the Greiss reagent and measured 
spectrophotometrically at 550 nm. (n = 15; LPS, 20 µg; TRX, 10 µg). 
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Discussion 

When considering the generic phrase Afunctions of thioredoxin@ as it relates to 

parasitic infections, there appears to be some glaring differences dependent upon whether 

one is speaking about the host thioredoxin or that of the infecting parasite.  Human 

thioredoxin has been shown, among numerous other functions, to provide cells with 

protection from oxidative stresses, the effects of hydrogen peroxide and the activities of 

stimulated neutrophils (Follmann and Haberlein, 1995; McGonigle et al., 1997; 

Nakamura et al., 1997; Rahlfs et al., 2002).  While protecting the host from such events, 

all of which can and do occur during parasite invasion, thioredoxin has at the same time 

been shown to be a strongly chemoattractive to neutrophils, monocytes and lymphocytes 

(Bertini et al., 1999) as well as eosinophils (Hori et al., 1993).  All of which are involved 

in the release of the very compounds needed in the defense against a parasitic infection.   

Components of parasite thioredoxin systems such as the peroxiredoxins, if not 

thioredoxin itself, have been shown, by the use of electrons derived from the system, to 

reduce hydrogen peroxide produced by host cells (Henkle-Duhrsen and Kampkotter, 

2001).  It has also been suggested that in parasitic nematodes the peroxiredoxins are an 

essential component in the parasite=s defense against reactive oxygen species generated 

by the macrophages, neutrophils and eosinophils of the infected host.  They may also be 

of particular importance to those parasites responsible for chronic infections as seen with 

some nematode and trematode (Schistosoma and Fasciola) species of veterinary and 

human importance (Henkle-Duhrsen and Kampkotter, 2001).  Another host protective 

mechanism is the production of immunoglobulins in response to various infections be 

they parasitic, bacterial, etc.  In the case of F. hepatica, both Smith et al. (1992) and van 
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Milligen et al. (1998) demonstrated that immunoglobulins, in particular IgG, coated the 

surface of NEJs.  It was also shown that these antibody-coated flukes were attacked and 

damaged by host eosinophils, neutrophils and macrophages, suggesting that the NEJs are 

killed by an antibody-dependent cell-mediated cytotoxic response involving IgG.  Using 

Paragonimus westermani, Shin (2000) determined that neutrophils and eosinophils 

express cell surface receptors for IgG and that a cell=s efficiency at phagocytosis is 

increased when specific IgG is bound to the worm.   

 In the late 1990s, various laboratories studying thioredoxin showed that human 

IgG was a suitable substrate for thioredoxin at physiological concentrations typically 

found within the tissues (Magnusson et al., 1997).  Differences were also demonstrated in 

the susceptibility of different IgG isotypes to cleavage by thioredoxin, with IgG2 

showing no cleavage, but IgG1, IgG3 and IgG4 readily cleaved into heavy and light 

chains (Berasain et al., 2000; Kerblat et al., 1999).  Interestingly, it has been shown in 

both naive and chronically F. hepatica-infected cattle and rats, that IgM, IgG1 and IgG2 

are the most commonly detected immunoglobulins, with IgG1 being dominant (Clery et 

al., 1996; Poitou et al., 1993; van Milligen et al., 1999).  Whether the same cleavage 

action against the various IgGs can be attributed to Fasciola thioredoxin is unknown. 

It would appear that thioredoxin functions in ways that may be either beneficial or 

detrimental to an invading parasite.  Prior to this study, the only specific evidence of the 

effects of Fasciola thioredoxin on host (cattle) immune function is the work of Shoda et 

al., (1999) and el-Ghaysh et al., (1999).  Shoda et al., (1999) determined that bovine T- 
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cell clones responded specifically, but weakly, to recombinant F. hepatica thioredoxin.  

Appearing to be only weakly antigenic, F. hepatica thioredoxin would thus most likely 

be a poor candidate for inducing an adaptive immune response in the host to infection.  

Similarly, el-Ghaysh et al. (1999) showed that both somatic extracts (which possibly 

contained thioredoxin even though this was not mentioned specifically) as well as 

excretory-secretory products from Fasciola gigantica, a species very closely related to F. 

hepatica, actually inhibited the production of superoxide anion by PMA-stimulated sheep 

neutrophils.  Taken together, these two studies suggest a possible protective role for fluke 

thioredoxin against the host immune response. 

The current study did not support the hypothesis and conclusions as demonstrated 

by el-Ghaysh et al. (1999) with F. gigantica or those of Jefferies et al. (1997) with F. 

hepatica;  in that the production of O2
- was not significant in the presence of recombinant 

F. hepatica thioredoxin unlike that seen with somatic extracts used in the other studies.  

The inhibition of O2
- by somatic extracts in both studies was shown to be dose-dependent 

with greater concentrations causing more inhibition.  However, this inhibition was only 

seen in those cells stimulated with PMA and not in resting cell populations.  No such 

inhibition occurred in PMA-stimulated cells in the presence of TRX alone in the current 

study.  The differences seen could be explained by the actions other compounds found in 

the extracts, and while the composition of the extracts was not determined, the amount or 

concentration of thioredoxin, if present at all, is unknown.  

The purpose of this study was to determine the effects of Fasciola recombinant 

TRX on bovine immune cell types.  When the results of the current study were taken into 
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account the factor that must be considered was demonstrated in Figure 5.9, which showed 

the results of nitric oxide production by bovine monocyte-derived macrophages.  

Included in this particular assay was the use of an MBP control to determine its effects on 

cellular NO production.  When compared to the control group, consisting of cells only, 

all other treatment groups were stimulatory and increased the amount of NO produced to 

a significant level (p = 0.02).  A further breakdown of the data gave a clearer picture of 

the results.  When the effects of recombinant TRX were compared to the control, there 

was a significant (p = 0.01) increase in the amount of NO produced.  At the same time it 

must be taken into account that the recombinant TRX was bound to an MBP moiety that 

could also be having an effect on NO production.  When this was considered, and the NO 

production of the control, the recombinant and MBP alone were analyzed, there was a 

significant (p = 0.04) increase in NO production, but not to as high a level. This indicated 

that MBP stimulated bovine monocyte-derived macrophages to produce NO. 

Further speculation can be made about the effects of MBP and TRX together and 

separately.  From these results it would appear that the MBP is stimulatory to the bovine 

cells.  Since the concentration of MBP in both the recombinant and the MBP alone were 

the same, and if the MBP was stimulatory as it appeared to be, then one would expect 

that the increase in NO production in both would be close to the same.  This is in fact 

proven statistically when the two are compared and no significant (p = 0.39) differences 

in NO production were seen. 

In order to see what effects recombinant TRX has in its ability to affect immune 

cells of a given host, it would appear that TRX would have to be cleaved from the MBP 

so that it could be tested alone and not in combination with the fusion protein.  After 
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many attempts at cleaving the two, the decision was made to test the recombinant in the 

uncleaved form (TRX•MBP).  Further review of the literature dealing with recombinant 

TRX (Alger et al., 2002; Salazar-Calderón et al., 2001; Shoda et al., 1999) and 

consultation with the primary author of one of these papers (David L. Williams, personal 

communication), it was found that all work done on trematode recombinant TRX has 

been performed using the recombinant attached to its fusion protein.  In all cases 

including the present study, it was impossible to separate the two portions of the 

recombinant protein and test the TRX alone.  In the previous studies where cleavage was 

attempted, each used a recombinant construct other than MBP, Salazar-Chalderón et al., 

used a glutathione S transferase (GST) carrier while Alger et al., used a histidine carrier, 

with neither able to obtain sufficient cleavage and separation of the carrier from the 

thioredoxin to test the recombinant thioredoxin alone.  Only by using purified native 

protein isolated from the parasite or until such time as the separation of the recombinant 

from its fusion protein can be accomplished, will the true effects of recombinant Fasciola 

TRX on host immune cells become clear.  
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

While fascioliasis and its causative agent Fasciola hepatica have been studied 

extensively, comparatively little of this research has been performed on the protein 

biochemistry of this parasite.  The early work in this area has predominantly described 

the isolation and characterization of Fasciola proteins (Lammas et al., 1985; Rege et al., 

1989) with few examples of actually localizing the proteins anatomically within the 

parasite (Hanna and Trudgett, 1983; Hanna et al., 1988; Zurita et al., 1989).  In recent 

years however, the localization of proteins using various methods such as 

immunohistochemistry (Zurita et al., 1989), immunofluorescence (Marin et al., 1992; 

Stitt et al., 1992a), and immunogold labeling (Hanna et al., 1988; Marks et al., 1995; 

Smith et al., 1993), have become more routine in the study of Fasciola as well as 

numerous other helminth species (Bogers et al., 1995; Havercroft et al., 1991; Tuan et al., 

1991).Protein biochemical studies to date primarily consist of protein isolation and 

localization in adult parasites (Marks et al., 1995; Rege et al., 1989; Stitt et al., 1992b; 

Waite and Rice-Ficht, 1989).  Some work has been carried out on newly excysted 

juvenile flukes (NEJs) or those immatures still found in the liver parenchyma (Carmona 

et al., 1994; Lammas et al., 1985; Stitt et al., 1992b).  However, very little has been done 

regarding the isolation and characterization of larval stage proteins or localization or 

occurrence of adult proteins in larval stages, such as sporocysts and redia.  The paucity of 

such studies is most likely due to the complexity of the parasite life cycle and the inherent 

difficulty of obtaining the various life cycle stages for study.  
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One specific protein isolated from adult F. hepatica is thioredoxin (Richardson, 

1994; Salazar-Calderon et al., 2001).  Since its original isolation from the bacteria 

Escherichia coli (Laurent et al., 1964), thioredoxin has been found in diverse groups of 

both prokaryotic and eukaryotic organisms from plants, viruses, and bacteria, up to and 

including higher mammals.  Within these species, thioredoxin performs or participates in 

a wide variety of biochemical processes, including protein disulfide reduction, 

ribonucleotide reduction, light regulation of chloroplast enzymes, sulfur metabolism, 

signal transduction and cytokine-like effects.  Consisting of a group of small redox 

proteins with molecular masses of approximately 12 kD and showing functional and 

species diversity among the various thioredoxins, the active site sequence of Cys-Gly-

Pro-Cys is conserved among all species, whether bacterial, viral, plant, or animal. 

Recently thioredoxin has been shown to have protective activity against some 

host cellular immune functions (Follmann and Haberlein, 1995; Henkle-Duhrsen and 

Kampkotter, 2001; Magnusson et al., 1997; Nakamura et al., 1997).  It exhibits protective 

action against the effects of tumor necrosis factor (TNF; Matsuda et al., 1991), as well as 

acting as an inhibitor of nuclear factor kappa B (NF-kB; Flohe et al., 1997).  Another 

study, Fernando et al. (1992) demonstrated that thioredoxin is a component in the 

regeneration of proteins that have been inactivated by oxidative stress in endothelial cells. 

It is well known that reactive oxygen species are an effective host defense 

mechanism against both intracellular and extracellular parasites (Abo-Shousha et al., 

1999; Burnet, 2001; Callahan et al., 1988; James, 1995; Otsuka et al., 2001; Smith et al., 

1992).  Phagocytic cells such as eosinophils and neutrophils have been shown to kill 

parasites by undergoing a respiratory burst and releasing such reactive oxygen species as 



  104 
 

hydrogen peroxide (H2O2) and superoxide anions (O2
-) as well as reactive nitrogen 

species such as nitric oxide (NO).  With the discovery of thioredoxin in several parasite 

genera such as Fasciola (Richardson, 1994), Schistosoma (Finken-Eigen and Kunz, 

1997), Echinococcus (Chalar et al., 1999), Plasmodium (Muller et al., 2001), and 

Trypanosoma (Reckenfelderbaumer et al., 2000), and the growing evidence that 

thioredoxin can act as a redox-regulating molecule in the maintenance of cellular redox 

status (Nakamura et al., 1997), it was reasonable to speculate that thioredoxin may play a 

role in the protection of the parasite against the host immune response. 

By utilizing an organism such as F. hepatica with its complex life cycle to study a 

protein like thioredoxin, it was deemed possible to determine if the protein was expressed 

throughout all stages of the life cycle or expressed selectively in some stages and not in 

others.  Also, it was felt important to determine if its presence was consistent in the same 

organ systems or tissues between the various stages.  Since some protective functions 

have been attributed to thioredoxin in other organisms, it was deemed pertinent to 

determine if it provided any protection against the host immune response to Fasciola 

infection.  

Based on previous reports of the expression of thioredoxin in adult F. hepatica 

(Richardson, 1994; Salazar-Calderon et al., 2001), Western blot and 

immunohistochemical techniques were used to determine the presence and localization of 

this protein in the various life cycle stages of the parasite.  Western blotting showed that 

thioredoxin was present not only in adult flukes, but also in redia and cercaria; however, 

it was not detected in eggs, miracidia, or sporocysts.  Immunohistochemical studies using 

rabbit anti-Fasciola thioredoxin antibodies on paraffin embedded sections showed the 
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thioredoxin to be located within the tegument and cecal epithelium of the migrating 

juvenile, adult, redia, tegument of cercaria, and sperm within the uterus.  The Western 

results obtained in this study were very similar to those of Alger et al. (2002), and their 

work with the thioredoxin of  Schistosoma mansoni that described its location in cercaria, 

3-hour schistosomula and adults, both males and females. 

A BLAST 2 sequence comparison of the 560-base pair sequence of Fasciola 

thioredoxin (Fh2020.A) as described by Richardson (1994), to various other mammalian 

thioredoxins (mouse, rat, ovine, bovine, and human) resulted in no significant sequence 

similarities.  While previous work and database searches have shown that numerous 

potential hosts of F. hepatica produce thioredoxin, the current immunohistochemical 

study convincingly showed the specificity of the primary antibody to Fasciola 

thioredoxin and not to that of the host.  When sections of mouse liver containing 

migrating flukes where stained, distinct positive staining of fluke structures were 

demonstrated but no staining of the host tissues occurred.  

Along with immunohistochemistry, in situ hybridization studies have shown that 

the two previously described isotypes of Fasciola thioredoxin are processed in what 

appears to be the same anatomical locations as where the protein itself is located.  In 

addition, part of the previous work of Richardson (1994) was confirmed via in situ 

hybridization in that there appears to be variation in the expression of the two isotypes 

with Fh2020.A having a much greater staining intensity than does Fh2020.SL, which 

could demonstrate its greater production and abundance. 

Because of the localization of thioredoxin within the different stages, its location 

in various tissues of the fluke and its known redox functions in other species, it was 
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deemed logical that Fasciola thioredoxin could have a possible role in the protection of 

the parasite against the host’s response to infection.  This hypothesis was tested using 

different blood cell types typically present in parasitic infections i.e. neutrophils, 

peripheral blood mononuclear cells, and monocyte-derived macrophages from cattle and 

peritoneal macrophages from mice.  In the presence of recombinant Fasciola thioredoxin, 

the production of either superoxide anion or nitric oxide was determined against that of 

unexposed cells as well as cells exposed to a known stimulant as controls.   

No significant effects were seen in superoxide production in any cell type tested 

(p > 0.05) and no significant effects were seen in nitric oxide production in mouse 

peritoneal macrophages (p = 0.12).  However, in bovine monocyte-derived macrophage 

cultures, all treatments groups including an MBP control, showed significant differences 

in nitric oxide production (p = 0.002), when compared to the control group.  When this 

finding is contemplated further, it must be remembered that the Fasciola recombinant 

thioredoxin is still bound to the MBP fusion protein.  When the two treatment groups 

consisting of recombinant thioredoxin and TRX•MBP were compared, there was no 

significant difference in nitric oxide production (p = 0.39).  Thus, these results must be 

viewed in the context of the role of MBP as a stimulant to nitric oxide production, at least 

in bovine monocyte-derived macrophages.  While test results confirmed the stimulatory 

effects on that one cell type, whether this can be applied to the other cell types studied, 

remains to be seen.   Intuitively, it seems likely that this effect would occur in the other 

cells as well.  Thus, more work involving either native Fasciola thioredoxin or 

recombinant thioredoxin cleaved from the MBP will have to be performed in order to 

state with any certainty what the true effects of thioredoxin are on host immune cells. 



  107 
 

As with most studies, in the process of answering the proposed questions, new 

questions have been generated.  The presence and location of thioredoxin within the 

various stages of the parasite have been addressed in both the Western blotting studies 

and the immunohistochemical work.  More detailed electron microscopy utilizing other 

immunostaining techniques (immunogold) could further isolate the cellular location of 

thioredoxin within the fluke and whether or not multiple cytoplasmic or mitochondrial 

systems are at work (Rahlfs et al., 2002).  Such information could enhance understanding 

of its function as well.   However, to date the function of Fasciola thioredoxin within the 

parasite remains to be fully elucidated.  From an immunological standpoint, much 

remains to be worked out, for example, does recombinant thioredoxin, as used in the 

current study, have the same effects on host cellular activity as would the native protein?  

Previous work has shown the cleavage effects of human thioredoxin-1 on various IgG 

subtypes (Kerblat et al., 1999; Magnusson et al., 1997).  Does Fasciola thioredoxin have 

the same effects?  The location of the protein would seem to indicate that it could. 

Since thioredoxin was first discovered and isolated from the bacteria Escherichia 

coli (Laurent et al., 1964), a tremendous amount of research has been directed towards 

revealing the functions of this small but multi-functional protein in a wide variety of 

organisms.  From a parasitological viewpoint it has been shown that various parasites and 

their host organisms possess forms of thioredoxin with similar sequence homologies.  But 

only recently have endeavors been directed towards a better understanding of the 

relationships between thioredoxin and how both the hosts and the parasites infecting them 

utilize this protein in their protection and defense against each other.  With current 
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technology, the answers to these and many other questions are within reach and could 

contribute greatly to our understanding of the functions of this highly important protein.  
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