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ABSTRACT

Using the Bootstrap to Analyze

Variable Stars Data. (December 2004)

Mickey P. Dunlap B.S., University of Tennessee at Martin;

M.S., Mississippi State University

Chair of Advisory Committee: Dr. Jeffrey D. Hart

Often in statistics it is of interest to investigate whether or not a trend is significant.

Methods for testing such a trend depend on the assumptions of the error terms such

as whether the distribution is known and also if the error terms are independent.

Likelihood ratio tests may be used if the distribution is known but in some instances

one may not want to make such assumptions. In a time series, these errors will

not always be independent. In this case, the error terms are often modelled by an

autoregressive or moving average process. There are resampling techniques for testing

the hypothesis of interest when the error terms are dependent, such as, model-based

bootstrapping and the wild bootstrap, but the error terms need to be whitened. In

this dissertation, a bootstrap procedure is used to test the hypothesis of no trend

for variable stars when the error structure assumes a particular form. In some cases,

the bootstrap to be implemented is preferred over large sample tests in terms of the

level of the test. The bootstrap procedure is able to correctly identify the underlying

distribution which may not be χ2.
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CHAPTER I

INTRODUCTION

Often in statistics it is of interest to investigate whether or not a trend is significant.

Consider a model of the form

Yi = m(xi) + Zi, i = 1, . . . , n, (1.1)

for which we are interested in testing H0 : m(x) = constant,∀ x. The manner in

which the tests are carried out depends on the nature of the error terms, Zi. The

most common setting is to assume that Z1, . . . , Zn are independent and identically

distributed (i.i.d.) N(0, σ2) random variables.

If the forms of the error distribution and m(·) are known, likelihood ratio tests

can be used to test hypotheses of interest. However, in a time series, for example,

errors are not always independent, and may be modelled by an autoregressive or

moving average process for instance. Again, it may be possible to assume that the

distribution is normal. In some instances, one may not want to make such assumptions

about the distribution of the error terms and therefore some form of resampling such

as bootstrapping or the jackknife could be used to test hypotheses about the model.

An example of a situation where interest centers on testing constancy of a func-

tion arises in the analysis of variable star data. For a given variable star, astronomers

observe the times at which the star’s brightness achieves a minimum or maximum.

Koen & Lombard (2001) propose a model which utilizes both the minima and maxima.

Denoting by Ti the ith time at which the brightness of a star achieves a maximum,

The format and style follow that of Journal of the American Statistical Association.
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then the ith pseudo-period is Yi = Ti − Ti−1. The term pseudo-period is used to

distinguish between a single time interval between maxima and the actual period,

which is the long-run average of the pseudo-periods. The model that we want to

consider is just as in (1.1) with m(·) being a polynomial of specified degree with xi

being the time of maximum brightness and the error structure as follows:

Zi = Ii + εi − εi−1, i = 1, . . . , n,

where Ii represents random intrinsic variation peculiar to the star and εi is the mea-

surement error at time Ti. It is assumed that I1, . . . , In ∼ (0, σ2
I ) i.i.d., ε0, . . . , εn ∼

(0, σ2
ε ) i.i.d., and the process {Ii} is independent of {εi}. Note that there is no mention

of the distributional form for I or ε. The covariance matrix of Z has the form

Σ =




σ2
I + 2σ2

ε −σ2
ε 0 · · · 0

−σ2
ε σ2

I + 2σ2
ε −σ2

ε 0
...

0
. . .

. . .
. . . 0

... 0
. . .

. . . −σ2
ε

0 · · · 0 −σ2
ε σ2

I + 2σ2
ε




= σ2
ε




r + 2 −1 0 · · · 0

−1 r + 2 −1 0
...

0
. . .

. . .
. . . 0

... 0
. . .

. . . −1

0 · · · 0 −1 r + 2




= σ2
ε A (1.2)

where r = σ2
I /σ

2
ε .
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The goals of this dissertation are as follows:

1. Develop a test statistic for testing H0.

2. Obtain the large-sample distribution of the test statistic under H0.

3. Obtain estimates of the covariance parameters which the distribution of the test

statistic depends on.

4. Determine what moments of I and ε the test statistic depends on.

5. Use knowledge of 4. to develop a bootstrap procedure for approximating the

small-sample distribution of the test statistic.

6. Apply the test procedure to variable star data.
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CHAPTER II

RELATED LITERATURE

To begin testing H0, a suitable test statistic and the distribution of this test statistic

under H0 will be needed. The distribution will depend on the parameters in the

covariance matrix (1.2) and also on the distributions of I and ε. In this case, a

distribution will not be imposed upon I and ε.

2.1 Model Fitting

It will first need to be determined how to fit the model, m(x). The method chosen to

fit the model determines the residuals, which in turn determine the estimates of the

parameters in the covariance matrix. One possibility for fitting the model that comes

to mind is to use a nonparametric approach. This would involve estimating a smooth-

ing parameter. Opsomer, Wang & Yang (2001) point out that ignoring correlation

between the errors causes the commonly used automatic tuning parameter selection

methods, such as cross-validation or plug-in, to break down. Furthermore, they state

that a wrong choice of the smoothing parameter can lead to an estimated correla-

tion that does not reflect the true correlation in the random error. Some authors

make modifications in bandwidth selection techniques by modelling the correlation

structure parametrically and use this estimate to adjust for the bandwidth selection.

Another possible approach is to fit a polynomial of specified degree, with the

degree being analagous to the smoothing parameter mentioned in the nonparametric

approach. To use ordinary least squares (OLS), we first rewrite the original model in

matrix form:
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Y = Xβ + Z.

This results in estimates of β as

β̂OLS = (X ′X)−1X ′Y.

Recalling that the covariance matrix of Z has the structure as in (1.2), generalized

least squares (GLS) performs a transformation so that the errors are at least approx-

imately uncorrelated. In this case, Z∗ = A−1/2Z will have covariance σ2
ε I. Carrying

this transformation throughout, the transformed model becomes

Y∗ = X∗β + Z∗. (2.1)

Applying ordinary least squares (OLS) to this model yields

β̂GLS = (X∗′X∗)−1X∗′Y∗

= (X ′A−1X)−1X ′A−1Y. (2.2)

One should note, however, that if r is unknown, β̂GLS is not usuable in practice.

According to Fang & Koreisha (2001), both β̂OLS and β̂GLS are consistent estimates of

β when the errors are correlated. If X is non-stochastic, the columns of X are linearly

independent, and limn→∞( 1
n
X ′X) is finite and non-singular, then β̂OLS is a consistent

estimate of β. The off-diagonal elements of A do not bias the ordinary least squares

estimates but even fairly small off-diagonal elements can cause the variance of the

estimates to increase substantially (Sen & Srivastava 1990). Another consideration

when comparing ordinary and generalized least squares estimates is that A is not

generally known exactly so it must be estimated. This obviously complicates matters
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a great deal. Fortunately, for the covariance structure of interest, i.e, (1.2), there are

only two parameters to estimate, r and σ2
ε , and only r must be estimated in A. If we

imposed no structure whatsoever on the covariance matrix, there would be n(n+1)/2

elements, which could result in very unreliable estimates.

2.2 Bootstrap

The bootstrap involves drawing samples from the observed data to approximate a

statistic’s sampling distribution. The basic idea is to treat the sample as if it were

the population so that we may make inferences without assuming a distribution, such

as the normal.

Let X1, . . . ,Xn be a random sample of size n. The bootstrap sample, X∗
1 , . . . ,X∗

n,

is a random sample with replacement from {X1, . . . ,Xn}. For each resample, statis-

tics of interest such as the sample mean can be obtained in order to approximate

their sampling distributions. An advantage of the bootstrap over other resampling

methods, such as the jackknife, is that the number of resamples is not limited to the

sample size. The bootstrap can be used to obtain confidence intervals and perform

hypothesis tests.

Hall (1992) points out that the bootstrap performs best when using a pivotal

quantity, such as
√

n(θ̂−θ0)/σ̂, rather than a nonpivotal quantity such as,
√

n(θ̂−θ0).

The error in the bootstrap is generally only Op(n
−1) when using a pivotal quantity

but Op(n
−1/2) when using a nonpivotal quantity.

Since the basic bootstrap assumes the sample is random, modifications are needed

when the data are dependent. There are various ways to bootstrap when the variables

are dependent. Davison & Hinkley (1997) mention methods such as model-based

resampling, block resampling and wild bootstrap. With model-based resampling, the

idea is to create a whitened sequence, {Wt}, from the original data. How the data
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are whitened depends on the model used, such as AR(p), MA(q), etc. A bootstrap

sample is generated by reconstructing the time series based on the whitened data.

This may require a burn-in period to insure the bootstrap sample is stationary. For

block resampling, b blocks of length l, (B1, . . . , Bb), are created based on the original

data. The blocks are then resampled and placed end-to-end to create a new series.

The series generated here may be less dependent than the original data. For the wild

bootstrap, an i.i.d. sequence {ηt} with first three moments 0, 1 and 1 is needed. After

whitening the original data just as in model-based resampling, the whitened data is

multiplied by the i.i.d. sequence to yield {ηtWt}. The bootstrap sample is generated

just as in model-based resampling except that it is not based on the whitened data

but rather a modified version of the whitened data.

2.3 Edgeworth Expansion

Often times, the exact distribution of a test statistic is unknown and inferences depend

upon the approximate or limiting distribution, which may, for example, be normal or

chi-square. Let X1, . . . ,Xn be i.i.d. random variables with mean µ and finite variance

σ2. It is well known, according to the central limit theorem, that

Sn =
√

n(X̄ − µ)/σ

is approximately normally distributed with mean 0 and variance 1. The Edgeworth

expansion is a mathematical procedure which attempts to improve upon the ap-

proximation given by the central limit theorem. Hall (1992) has shown that after

expanding the cumulative distribution function (cdf) of Sn in a power series in n−1/2,

the Edgeworth expansion of P(Sn < x) takes the form

Φ(x) + n−1/2p1(x)φ(x) + · · · + n−j/2pj(x)φ(x) + · · ·
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where Φ(x) and φ(x) are the respective cdf and probability density function for the

standard normal distribution. The quantities, pj(x), are functions of the moments of

X̄ − µ and Hermite polynomials. For example,

p1(x) = −{A1/σ +
1

6
A2σ

−3(x2 − 1)}

where

E(Sn) = n−1/2A1 + O(n−1)

E(S2
n) − (E(Sn))2 = σ2 + O(n−1)

and E(S3
n) − 3E(S2

n)E(Sn) + 2(E(Sn))3 = n−1/2A2 + O(n−1). (2.3)

The analogous Edgeworth expansion for the cdf of the bootstrap test statistic,

S∗
n, has the form

Φ(x) + n−1/2p̂1(x)φ(x) + · · · + n−j/2p̂j(x)φ(x) + · · ·

where p̂j(x) is the result of using the bootstrap to estimate the moments of Sn.

Therefore,

P (Sn < x) − P (S∗
n < x) = n−1/2p1(x)φ(x) − n−1/2p̂1(x)φ(x) + O(n−1)

= n−1/2(p1(x) − p̂1(x))φ(x) + Op(n
−1).

The bootstrap procedure will then be more accurate than the large sample test if

the moments of Sn can be estimated efficiently. Typically, when a pivotal quantity is

used, (p1(x)− p̂1(x)) is Op(n
−1/2) yielding an error in the bootstrap of only Op(n

−1).
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If the first and third moments of Sn were 0, the bootstrap procedure would have no

major advantage over using a large sample test. However, when, in particular, there

is skewness, the bootstrap procedure can be quite useful.
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CHAPTER III

BOOTSTRAPPING THE TEST STATISTIC

In order to test the hypothesis of interest, a test statistic needs to be chosen. There

are various test statistics which are suitable for testing no trend. The choice of the

test statistic is important since it can greatly influence results such as the performance

of the bootstrap. In this chapter, we want to consider possible test statistics as well

as properties of the bootstrap scheme to be used.

3.1 Test Statistic

In multiple regression, the F statistic used is

∑n
i=1(m̂(xi) − ȳ)2

∑n
i=1 Ẑ2

i

.

For the model,

Y = Xβ + Z,

the usual F statistic is equivalent to

F =
(JY − Xβ̂OLS)

′(JY − Xβ̂OLS)/df1

(Y − Xβ̂OLS)
′(Y − Xβ̂OLS)/df2

(3.1)

where J = 1
n
11′. The numerator and denominator degrees of freedom in this case,

df1 and df2, correspond to the respective ranks of the following matrices:

(J − X(X ′X)−1X−1)2 and (In − X(X ′X)−1X−1)2,

where In is the identity matrix of size n.
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The above test statistic (3.1) is for error terms that are independent. Another

possibility hinges upon (2.1), which accounts for the covariance of the error terms.

By applying the necessary transformation to Y and the design matrix X the test

statistic now has the form

F
∗

=
(JY

∗ − X
∗
β̂GLS)

′(JY
∗ − X

∗
β̂GLS)/df

∗
1

(Y∗ − X∗β̂GLS)
′(Y∗ − X∗β̂GLS)/df

∗
2

where J is as above, Y
∗

= A−1/2Y and X
∗

= A−1/2X. In this case, the degrees of

freedom are the ranks of

(JA−1/2 −X∗(X∗′X∗)−1X∗′A−1/2)2

and (A−1/2 − X∗(X∗′X∗)−1X∗′A−1/2)2

respectively. If A contains unknown parameters, then A may be replaced by an

estimator, Â.

Another choice for the test statistic is to take a likelihood ratio approach. Begin

by assuming that the error terms are normally distributed with mean 0 and covariance

matrix Σ = σ2
ε A. The log-likelihood has the form

l(β, σ2
ε , r) = −n

2
log(2π) − n

2
log(σ2

ε ) −
1

2
log(| Â |) − 1

2σ2
ε

(Y − Xβ)′A−1(Y − Xβ).

The log-likelihood ratio statistic is given by

log(Λ) = −l(β̂, σ̂2
ε , r̂) + l(β̂0, σ̂

2
ε0, r̂0)

where β̂ = (β̂00, 0, . . . , 0)
′, σ̂2

ε0 and r̂0 are estimates under H0 and β̂,σ̂2
ε and r̂ are

unrestricted estimates. Alternatively the statistic can be transformed by
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−2 log(Λ) = 2l(β̂, σ̂ε, r̂)) − 2l(β̂, σ̂ε0, r̂0))

= −n log(σ̂2
ε ) − log(| Â |) − n

2

+n log(σ̂2
ε0) + log(| Â0 |) +

n

2

= n log

(
σ̂2

ε0

σ̂2
ε

)
+ log

(
| Â0 |
| Â |

)
. (3.2)

As mentioned by Davison & Hinkley (1997), in most cases, −2 log(Λ) is dis-

tributed approximately χ2
d under H0, where d is the difference in the dimension of

the parameter space under Ha and H0. In our case, d is the degree of the polynomial

fitted under Ha. The distribution does not depend upon any unknown quantities

and hence −2 log(Λ) is an approximate pivotal quantity, which makes it ideal for

bootstrap purposes.

3.2 Edgeworth Expansion of a Test Statistic

An Edgeworth expansion will be used to determine which moments need to be esti-

mated in order to carry out the bootstrap procedure. Let x1, . . . , xn be evenly spaced

design points on (0,1) and let φ be a function defined on [0,1] that has the following

properties:

1. φ is continuously differentiable.

2.
∑n

i=1 φ(xi) = 0.

3.
∫ 1

0
φ2(x) dx = 1.

Consider a test statistic of the form

Tn =

∑n
i=1 φ(xi)Yi√

σ̂2
IAn + σ̂2

ε Bn

. (3.3)
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Under H0, the numerator of Tn will have the form

µ
n∑

i=1

φ(xi) +
n∑

i=1

φ(xi)Zi =
n∑

i=1

φ(xi)Zi

where Zj = Ij + εj − εj−1, j = 1, . . . , n. Standardized estimates of regression co-

efficients, for example, take on the form (3.3). The Edgeworth expansion will be

developed using ideas from Hall on the assumption that the data are, if not indepen-

dent, only weakly dependent. In practice, the test statistic will take the form (3.2) but

for theoretical facility the Edgeworth expansion will be based on (3.3). Ultimately,

both expressions should depend on the same moments in the expansion. The variance

estimators are defined as follows:

σ̂2
I =

1

n

n∑

i=1

Ẑ2
i +

2

n

n∑

i=2

ẐiẐi−1 and σ̂2
ε =

−1

n

n∑

i=2

ẐiẐi−1,

where Ẑ1, . . . , Ẑn are residuals from a fitted model. The quantities An and Bn are

An =
n∑

i=1

φ2(xi) and Bn = 2

[
An −

n−1∑

i=1

φ(xi)φ(xi+1)

]
.

We will assume that H0 is true (meaning the regression function is constant) and

that σ2
I > 0. In this case we have

Tn =

∑n
i=1 φ(xi)(Ii + εi − εi−1)/

√
n√

σ̂2
I An/n + σ̂2

ε Bn/n
.

Now, An/n = 1+O(n−1) since φ is continuously differentiable and
∫ 1

0
φ2(x)dx =

1. Also,

An

n
− 1

n

n−1∑

i=1

φ(xi)φ(xi+1) =
An

n
− 1

n

n−1∑

i=1

φ(xi)
[
φ(xi) + n−1φ′(x̃i)

]

= n−1φ2(xn) −
1

n2

n−1∑

i=1

φ(xi)φ
′(x̃i)
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= n−1φ2(xn) −
1

n

∫ 1

0

φ(x)φ′(x) dx + O(n−2)

=
φ2(0) + φ2(1)

2n
+ O(n−2)

where x̃i is in a neighborhood of xi. Now consider

n∑

i=1

φ(xi)(εi − εi−1) =
n∑

i=1

φ(xi)εi −
n−1∑

i=0

φ(xi+1)εi

= φ(xn)εn − φ(x1)ε0 +
n−1∑

i=1

[φ(xi) − φ(xi+1)]εi

= φ(xn)εn − φ(x1)ε0 −
1

n

n−1∑

i=1

φ′(x̃i)εi.

Combining the above results implies that

Tn = Sn +
[φ(xn)εn − φ(x1)ε0]√

nσ̂I
+ Op(n

−1), (3.4)

where

Sn =

∑n
i=1 φ(xi)Ii/

√
n

σ̂I

.

Therefore, the effect of the εi’s is negligible, and we see that

Tn − Sn = Op(n
−1/2).

A standard central limit theorem implies that Tn
D−→ N(0, 1).

More interesting is what (3.4) says about our bootstrap scheme. To be able to

use existing results, the second summand on the right hand side of equation (3.4) is

potentially troublesome. Why? Well, that term is Op(n
−1/2), which is the same size

as the first order error term in an Edgeworth expansion. But using a function φ with

the property that φ(0) = φ(1) = 0 effectively eliminates that term, since then
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[φ(xn)εn − φ(x1)ε0]√
nσ̂I

= Op(n
−3/2).

Examples of functions that satisfy 1.-3. and φ(0) = φ(1) = 0 are sin(2πjx), j =

1, 2, . . .. For such functions we have

Tn = Sn + δn,

where δn = Op(n
−1). For a positive sequence {γn} we have

P (Sn ≤ x− γn ∩ δn ≤ γn) ≤ P (Tn ≤ x) ≤ P (Sn ≤ x + γn ∪ δn ≤ −γn) =⇒

P (Sn ≤ x− γn) − P (δn > γn) ≤ P (Tn ≤ x) ≤ P (Sn ≤ x + γn) + P (δn ≤ −γn).

Suppose we assume that Sn has a density gn such that gn(x) ≤ C for all n and x.

Then P (Sn ≤ x ± γn) = P (Sn ≤ x) ± γngn(x̃n) = P (Sn ≤ x) + O(γn), uniformly in

x. In order for this bound to be useful, we need to take γn to be smaller than n−1/2.

However, γn needs to be bigger than n−1 in order to guarantee that P (|δn| > γn)

tends to 0.

Now, examining δn and using Markov’s inequality, we can show that if the εi’s

are i.i.d. with E(ε2k
i ) < ∞ and the Ii’s are i.i.d. with E(I2k

i ) < ∞ for some positive

integer k, then

P (|δn| > γn) = O

(
1

(nγn)2k

)
.

Suppose γn = Cn−α. Then for a given k, the two errors are balanced when 2k(1−α) =

α, or when α = 2k/(2k + 1). So, we have shown that

P (Tn ≤ x) = P (Sn ≤ x) + O(n−2k/(2k+1)) (3.5)

when Ii and εi each has 2k moments.
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Given an Edgeworth expansion for P (Sn ≤ x), the error term in (3.5) will dom-

inate all but the leading error term of order n−1/2. However, this is not all bad since

the error in the bootstrap is typically Op(n
−1). With enough moments, the error term

in (3.5) will be arbitrarily close to n−1, and more importantly, even if k is only 1,

we will have a rigorous proof that the bootstrap provides smaller error than simply

comparing Tn with percentiles of the standard normal.

Now let T ∗
n and S∗

n be our bootstrap versions of Tn and Sn. Then so long as we

use an appropriate absolutely continuous distribution for the I∗
i ’s, the distribution of

S∗
n will satisfy all the conditions above, and we will have

P (T ∗
n ≤ x) = P (S∗

n ≤ x) + Op(n
−2k/(2k+1)),

which is enough to ensure that

P (T ∗
n ≤ x) = P (Tn ≤ x) + Op(n

−2k/(2k+1)).

3.3 Edgeworth Expansion of Sn

In this section, it is of interest to find an Edgeworth expansion for a statistic of the

form

Sn =
√

n
1
n

∑n
i=1 φ(xi)Ii

σ̌2
I

where I1, . . . , In ∼ (0, σ2
I ) and φ(xi) has the properties as defined in Section 3.2. Also,

σ̌2
I is

σ̌2
I =

1

n − 1

n∑

i=2

Z2
i +

2

n − 1

n∑

i=2

ZiZi−1.

Note that the estimator σ̂2
I used in practice has residuals Ẑi in place of Zi. However,

it is easily shown that σ̂I = σ̌I + Op(n
−1). The Op(n

−1) term may be absorbed into

the O(n−2k/(2k+1)) term in the previous section.
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The Edgeworth expansion in Chapter 3 of Hall’s book depends upon the first

three moments of Sn. To obtain moments of Sn, first write Sn as

√
n

X√
Y

where X = 1
n

∑n
i=1 φ(xi)Ii and Y = σ̌2

I . If Y −1/2 is expanded in a Taylor series about

y0 = E(Y 2) = σ2
I ,

√
n

X√
Y

≈
√

n
X
√

y0

(
1 − Y − y0

2y0

)
.

Let κI = E(I3), κε = E(ε3), γI = E(I4) and γε = E(ε4). Since E(X) = 0,

E(Sn) ≈ −
√

n

2y
3/2
0

E(XY )

=
−
√

n

2y
3/2
0

( 1

n(n − 1)

n∑

i=1

n∑

j=2

φ(xi)E(IiZ
2
j )

+
1

n(n − 1)

n∑

i=1

n∑

j=2

φ(xi)E(IiZjZj−1)
)

=
−
√

n

2y
3/2
0

1

n(n − 1)

n∑

i=2

φ(xi)E(I3
i )

=
−κI

2
√

ny
3/2
0

1

n − 1

n∑

i=2

φ(xi)

=
−κI

2
√

nσ3
I

O(n−1).

Futhermore,

S2
n ≈ nX2

σ2
I

(
1 − Y − σ2

I

2σ2
I

)2

=
nX2

σ2
I

(
1 − Y − σ2

I

σ2
I

+
(Y − σ2

I )
2

4σ4
I

)
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which yields

E(S2
n) ≈ n

σ2
I

E(X2) − n

σ4
I

E(X2(Y − σ2
I )) + O(n−1)

=
1

n

n∑

i=1

φ2(xi) −
n

σ4
I

E(X2(Y − σ2
I )) + O(n−1)

= 1 − n

σ4
I

E(X2(Y − σ2
I )) + O(n−1).

Define δk = εk − εk−1. Then

Y − σ2
I = σ̃2

I − σ2
I + An + Bn + Cn + Dn

+
1

n − 1

n∑

k=2

(δ2
k + 2δkδk−1)

where

σ̃2
I =

1

n − 1

n∑

k=2

I2
k ,

An =
2

n − 1

n∑

k=2

Ikδk,

Bn =
2

n − 1

n∑

k=2

IkIk−1,

Cn =
2

n − 1

n∑

k=2

Ikδk−1

and Dn =
2

n − 1

n∑

k=2

Ik−1δk.

Since E(X2An) = E(X2Bn) = E(X2Cn) = E(X2Dn) = 0,

E(X2(Y − σ2
I )) ≈ E(X2(σ̃2

I − σ2
I )) + E(X2(An + Bn + Cn + Dn))
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=
1

n2(n − 1)

n∑

i=1

n∑

j=1

n∑

k=2

φ(xi)φ(xj)E(IiIj(I
2
k − σ2

I ))

=
1

n2(n − 1)

n∑

i=1

φ2(xi)(E(I4
i ) − σ4

I )

= O(n−2).

So, E(S2
n) = 1 + O(n−1). The constant A1 = 0 when

∫ 1

0
φ(x)dx = 0, which it must

be or other aspects of our argument break down (see Section 3.2). Therefore, from

Hall’s notation

σ2 = E(S2
n) − (E(Sn))2 = 1 + O(n−1).

Similarly,

S3
n ≈ n3/2X3

y
3/2
0

(
1 − Y − y0

2y0

)3

=
n3/2X3

y
3/2
0

(
1 − 3

Y − y0

2y0
+ Op(n

−1)
)
.

E(n3/2X3) =
n3/2

n3

n∑

i=1

n∑

j=1

n∑

k=1

φ(xi)φ(xk)φ(xk)IiIjIk

=
κI

n
√

n

n∑

i=1

φ3(xi)

=
κI√
n

∫ 1

0

φ3(x)dx + O(n−3/2).

E(n3/2X3(Y − y0)) = E(n3/2X3(σ̃2
I − y0)) + E(n3/2X3(An + Bn + Cn + Dn))

= n3/2E(X3(σ̃2
I − y0)) + n3/2E(X3Bn)

=
n3/2

n3(n − 1)

( n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=2

φ(xi)φ(xj)φ(xk)IiIjIk(I
2
l − y0)
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+

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=2

φ(xi)φ(xj)φ(xk)IiIjIkIlIl−1

)

= O(n−3/2) +
n3/2

n3(n − 1)

n∑

i=1

∑

j 6=i

φ3(xi)E(I3
i I2

j )

=
n3/2(n − 1)

n2(n − 1)
κIσ

2
I

1

n

n∑

i=1

φ3(xi) + O(n−3/2)

=
n3/2(n − 1)

n2(n − 1)
κIσ

2
I

[∫ 1

0

φ3(x)dx + O(n−1)
]

+ O(n−3/2)

=
1√
n

κIσ
2
I

∫ 1

0

φ3(x)dx + O(n−3/2).

This means that

E(S3
n) = − 1

2
√

n

κI

σ3
I

∫ 1

0

φ3(x)dx + O(n−1).

Therefore, from (2.3), we can write

P (Sn ≤ x) = Φ(x) + φ(x)n−1/2(1/12)(κI /σ
3
I )

∫ 1

0

φ3(x)dx + O(n−1).

3.4 Bootstrap Procedure

For linear time series models, the usual bootstrap approach is to (approximately)

whiten the series, and to then resample from residuals. Ordinarily when applying a

bootstrap procedure, the resamples are from the original data. However, for the model

of interest (1.1), the Zi’s cannot be whitened as in the case for ARMA processes.

Note that the covariance structure of Z1, . . . , Zn is identical to that of an MA(1)

process. However, application of the linear filter that would whiten an MA(1) process

with the same covariance function as {Zi} does not whiten {Zi}. We must, therefore,
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use a different approach to bootstrap. A single bootstrap sample will be generated

from distributions which have the same first 3 estimated moments as I and ε.

1. Generate I∗
1 , I

∗
2 , . . . , I

∗
n ∼ FI such that E(I∗

i ) = 0, E(I∗
i

2) = r̂σ̂2
ε and E(I∗

i
3) = κ̂I .

2. Generate ε∗0, ε
∗
1, . . . , ε

∗
n ∼ Fε such that E(ε∗i ) = 0,E(ε∗i

2) = σ̂2
ε and E(ε∗I

3) = κ̂ε

where r̂, σ̂ε, κ̂Iand κ̂ε are estimates of parameters of interest. Estimation of these

parameters will be investigated in Chapter IV.

A bootstrap sample, Z∗
1 , Z∗

2 , . . . , Z
∗
n, will be constructed by forming

Z∗
i = I∗

i + ε∗i − ε∗i−1, i = 1, 2, . . . , n.

For each bootstrap sample, the test statistic will be calculated. The process is

repeated as many times as desired. We can then obtain approximate percentiles of

the test statistic under the null hypothesis.

The motivation for this method is that resampling from any distributions whose

first three moments are
√

n consistent for the corresponding population moments will

produce an error of order n−1 in the bootstrap sampling distribution. Even were one

able to sample from
√

n consistent empirical distributions, the bootstrap error would

not generally be less than O(n−1). This is because estimation error of order n−1/2

dominates higher order terms in an Edgeworth expansion. So, in an asymptotic sense,

the proposed bootstrap scheme should work just as well as sampling from empirical

distributions.

3.5 Bootstrap Distributions

There are various distributions which can be used in the bootstrap process so that

the first three moments are 0, c1 and c2. For instance, a discrete distribution of the

form
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X x1 x2

p(X) p1 1 − p1

can be used. Values of x1, x2 and p1 need to be found such that E(X)=0, E(X2)=c1

and E(X3)=c2. In general,

p1 = − x2

x1 − x2
,

x1 = − c1

x2

,

and x2 =
c2 ±

√
c2
2 + 4c2

1

2c1

In the case of the wild bootstrap, it is common to use the above distribution for

which c1 and c2 are both equal to 1.

An alternative to using the discrete distribution above is to use a mixture of

normals. We have the following pdf for a mixture of 2 normal random variables with

the same standard deviation, σ:

f(x) = p1
1

σ
φ

(
x − µ1

σ

)
+ (1 − p1)

1

σ
φ

(
x − µ2

σ

)
.

We want to find p1, µ1, µ2 and σ such that

0 = p1µ1 + (1 − p1)µ2

c1 = p1(σ
2 + µ2

1) + (1 − p1)(σ
2 + µ2

2)

c2 = p1(3µ1σ
2 + µ3

1) + (1 − p1)(3µ2σ
2 + µ3

2)

This yields the following values of p1, µ1, µ2 and σ2:
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p1 = − µ2

µ1 − µ2

µ1 =
−µ2

2 ±
√

µ4
2 − 4µ2c2

2µ2

and σ2 = c1− | µ1µ2 | .

We need only choose µ2 to obtain the rest of the values. There are an infinite

number of possibilities that will satisfy the conditions. Note that µ2 will need to be

chosen such that c1 >| µ1µ2 |.

Yet another possibility is to generate data from a shifted gamma. If we let X ∼

Gamma(α, β) and Y = X − αβ, then

E(Y ) = 0

E(Y 2) = αβ2

E(Y 3) = 2αβ3.

The parameters α and β then need to found in order to satisfy

αβ2 = c1 and 2αβ3 = c2.

This yields

β =
c2

2c2
1

and α =
2c3

1

c2
2

.

Of course, α and β can only be positive but c2 can be negative. To take this into

account, α and β can be found based on | c2 | and then the distribution is reflected
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about 0 if c2 is negative.

3.6 Bootstrap Simulation

In this section, we want to compare the Type I error probabilities of the bootstrap

procedure to the large sample test. Consider the test statistic mentioned in Sec-

tion 3.2:

Tn =

∑n
i=1 φ(xi)Yi√

σ̂2
IAn + σ̂2

ε Bn

.

Y1, . . . , Yn were generated under the assumption that β0 and β1 are both 0 for the

model

Yi = β0 + β1xi + Zi,

where the xi’s were taken to be equally spaced points on (0,1). The distribution of I

and ε were generated in three ways:

1. I ∼
√

rN(0, 1) and ε ∼ N(0, 1)

2. I ∼
√

rexp(−1, 1) and ε ∼ exp(−1, 1)

3. I ∼
√

rexp(−1, 1) and ε ∼ N(0, 1)

where exp(a, b) represents a shifted exponential having probability density function

b−1e(x−a)/bI(a,∞)(x), b > 0.

In the cases where I and ε are generated from a shifted exponential, the reason for the

shift is so that their population means are 0. Other considerations in the simulation

were:
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• Choices for φ(x) : sin(2πx) and x − x̄.

• Choices for α, the nominal Type I error probability: 0.05 and 0.1.

• When comparing values of r, the sample size was taken to be n=75 since the

variable stars to be analyzed later have sample sizes comparable to this.

The simulation procedure was carried out in the following manner:

1. 1000 samples from each of the combinations for the distribution of I and ε as

mentioned aboved were generated. For each sample:

(a) The test statistic for the original data, Tn, was computed as well as moment

estimates of σ2
I , σ2

ε , κI and κε. Denote these estimates as σ̃2
I , σ̃2

ε , κ̃I and

κ̃ε respectively. See Section 4.1 for a discussion of the exact forms of the

moment estimates and their properties.

(b) For the large sample test, H0 is rejected if | Tn | is larger than Φ−1(1−α/2)

which is the 1 − α/2 percentile of a standard normal distribution.

(c) For the bootstrap test, H0 is rejected if | Tn | is larger than | T ∗
n |1−α. Here,

| T ∗
n |1−α represents the (1 − α) percentile of the bootstrap test statistics

generated after taking the absolute value. In this case, 500 bootstrap

statistics were generated and therefore, with α = 0.05, | Tn | would be

compared to the 475th. Each bootstrap test statistic was computed in the

following manner:

i. Generate I∗
1 , . . . , I∗

n from a shifted gamma distribution with first 3

moments equal to 0, σ̃2
I and κ̃I .

ii. Generate ε∗0, . . . , ε
∗
n from a shifted gamma distribution with first 3 mo-

ments equal to 0, σ̃2
ε and κ̃ε.
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iii. Generate a bootstrap sample, Z∗
1 , . . . , Z∗

n as

Z∗
i = I∗

i + ε∗i − ε∗i−1, i = 1, . . . , n.

iv. Compute a single bootstrap test statistic, T ∗
n , from (3.3) using the

bootstrap sample.

2. Compute the percentage of rejections for the large sample test as well as the

bootstrap test. This yields the approximate Type I error rate.

The following tables summarize results of the simulations. For Table 1, r = 0,

0.5,1 and n = 75. In this case, φ(x) = sin(2πx) and φ(x) = x − x̄ were both used.

The latter corresponds to the Type I error rates in parentheses. Above the columns

are the nominal Type I error rates, α = 0.05 and α = 0.1. In some instances, the

Type I error rate for both tests is approximately 2α but in most cases, it is fairly

close to α. For the case I ∼
√

r exp(-1,1) and ε ∼ N(0,1) with r = 0.5, the Type

I error using the standard normal stays at 2α while the bootstrap method is much

closer to α. Except for when r = 0, the bootstrap probabilities are less than those

for the standard normal. Figures 1-3 correspond to quantile plots of the 1000 test

statistics generated using φ(x) = sin(2πx). Figure 1 gives quantile plots of 1000 test

statistics in each of the cases: r = 0, 0.5 and 1. The three plots support the idea that

when r=0, the test statistics do not follow a normal distribution and therefore, the

large sample test should not be used. However, when r = 1, the percentage of test

statistics in the tails that deviate from the standard normal lessens. The quantile

plots in Figure 2 behave similarly to those in Figure 1. However, in particular, for

the case r = 1, there is a larger percentage of test statistics in the tails, likely due to

the skewness of the distribution of I. Interestingly, Figure 3 does not show the test

statistics becoming closer to the standard normal as was the case in Figures 1 and 2..
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Figure 1. Quantile plots for test statistics. I ∼
√

rN(0, 1) and ε ∼ N(0, 1).
Clockwise from upper left, r = 0, 0.5 and 1.
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Figure 2. Quantile plots for test statistics. I ∼
√

r exp(−1, 1) and ε ∼
exp(−1, 1). Clockwise from upper left, r = 0, 0.5 and 1.
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Figure 3. Quantile plots for test statistics. I ∼
√

r exp(−1, 1) and ε ∼ N(0, 1).
Clockwise from upper left, r = 0, 0.5 and 1.
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Table 1. Simulation results for comparing the bootstrap and large sample test Type I
error rates for r = 0, 0.5 and 1.

Dist’n Bootstrap N(0,1)
of I & ε r α = 0.05 α = 0.1 α = 0.05 α = 0.1
I ∼

√
r N(0,1) 0 0.056 0.098 0.02 0.036

(0.036) (0.084) (0.011) (0.027)
ε ∼ N(0,1) 0.5 0.126 0.154 0.169 0.202

(0.088) (0.143) (0.089) (0.137)
1 0.03 0.067 0.078 0.117

(0.057) (0.099) (0.071) (0.115)
I ∼

√
r exp(−1, 1) 0 0.058 0.107 0.021 0.041

(0.041) (0.078) (0.014) (0.034)
ε ∼ exp(−1, 1) 0.5 0.106 0.13 0.14 0.186

(0.102) (0.152) (0.095) (0.15)
1 0.059 0.099 0.098 0.161

(0.066) (0.111) (0.069) (0.118)
I ∼

√
r exp(−1, 1) 0 0.051 0.089 0.02 0.039

(0.051) (0.09) (0.02) (0.039)
ε ∼ N(0,1) 0.5 0.053 0.097 0.106 0.162

(0.084) (0.127) (0.082) (0.124)
1 0.04 0.098 0.017 0.029

(0.063) (0.123) (0.078) (0.143)
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In Table 2, φ(x) was taken to be sin(2πx), r = 0 and n = 100, 150, 200. It is of

interest to see the effect of sample size on the probabilities. As can be seen in the

table below, when n increases, the bootstrap probabilities remain close to α while the

large sample results are approximately α/2. This illustrates that the bootstrap is the

preferred procedure when r = 0 as opposed to the large sample test.

Table 2. Simulation results for comparing the bootstrap and large sample test Type I
error rates for n = 100, 150 and 200 when r = 0.

Dist’n Bootstrap N(0,1)
of I & ε n α = 0.05 α = 0.1 α = 0.05 α = 0.1
I ∼

√
rN(0, 1) 100 0.046 0.107 0.013 0.033

ε ∼ N(0, 1) 150 0.058 0.117 0.017 0.042
200 0.048 0.099 0.018 0.037

I ∼
√

r exp(−1, 1) 100 0.05 0.093 0.013 0.036
ε ∼ exp(−1, 1) 150 0.055 0.102 0.017 0.045

200 0.049 0.091 0.019 0.038
I ∼

√
r exp(−1, 1) 100 0.057 0.101 0.024 0.045

ε ∼ N(0, 1) 150 0.05 0.102 0.018 0.041
200 0.057 0.103 0.022 0.045

Table 3 is from a simulation to determine the effect of increasing r away from 0.

φ(x) is taken as sin(2πx), n = 75 and r = 2, 5, 10. As the table shows, all probabilities

are approximately α, but also the bootstrap probabilities are all smaller than those

from the standard normal, and in some instances, the large sample test is closer to

α. This is likely due to the fact that the lag 1 correlation decreases to 0 as r becomes

larger.
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Table 3. Simulation results for comparing the bootstrap and large sample test Type I
error rates for r = 2, 5, and 10.

Dist’n Bootstrap N(0,1)
of I & ε r α = 0.05 α = 0.1 α = 0.05 α = 0.1
I ∼

√
rN(0, 1) 2 0.029 0.084 0.077 0.123

ε ∼ N(0, 1) 5 0.033 0.079 0.042 0.093
10 0.043 0.091 0.054 0.104

I ∼
√

r exp(−1, 1) 2 0.026 0.075 0.06 0.12
ε ∼ exp(−1, 1) 5 0.045 0.097 0.059 0.107

10 0.039 0.088 0.046 0.108
I ∼

√
r exp(−1, 1) 2 0.029 0.07 0.059 0.111

ε ∼ exp(−1, 1) 5 0.038 0.077 0.05 0.091
10 0.037 0.089 0.05 0.105
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CHAPTER IV

ESTIMATION

Based on the Edgeworth expansion in Section 3.3, the only moments of I and ε that

are of particular interest are the second and third moments: σ2
I , σ2

ε , κI and κε. These

parameters need to be estimated as efficiently as possible to effectively bootstrap the

test statistic.

4.1 Method of Moments

For method of moments, population moments are set equal to sample moments, re-

sulting in a set of equations which can be used to solve for the parameters of interest.

In this case, we note first that

E

(
1

n

n∑

i=1

Z2
i

)
= σ2

I + 2σ2
ε

E

(
1

n

n∑

i=2

ZiZi−1

)
= −σ2

ε

E

(
1

n

n∑

i=1

Z3
i

)
= κI

and E

(
1

n

n∑

i=2

Z2
i Zi−1

)
= κε.

Note that Zi must be replaced by residuals Ẑi to obtain the following moment esti-

mates:

σ̃2
ε = −1

n

n∑

i=2

ẐiẐi−1,
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σ̃2
I =

1

n

n∑

i=1

Ẑ2
i +

2

n

n∑

i=2

ẐiẐi−1,

κ̃I =
1

n

n∑

i=1

Ẑ3
i ,

κ̃ε =
1

n

n∑

i=2

Ẑ2
i Ẑi−1.

and thus r̃ = σ̃2
I/σ̃

2
ε .

The advantage of using moment estimates is that they are
√

n consistent and

easy to compute. Two disadvantages are that we are not guaranteed to obtain esti-

mates in the parameter space and moment estimators are often inefficient. The third

population moments, κI and κε, may be negative but σ2
ε and σ2

I cannot be. Therefore,

we need to modify the moment estimates for σ2
ε and σ2

I in the following manner:

σ̃2
ε = max(0,−1

n

n∑

i=2

ẐiẐi−1)

σ̃2
I = max(0,

1

n

n∑

i=1

Ẑ2
i − 2σ̃2

ε ).

4.2 Consistency of Estimates

Method of moments estimates are guaranteed to be consistent when the correspond-

ing population moments exist. Furthermore, they are functions of quantities that

are sample means. However, it is not clear whether r̂, σ̂2
ε and β̂ are consistent or

not. Maximum likelihood estimates are special cases of M-estimators. Furrer (2002)

discusses four hypotheses necessary for M-estimators to be consistent for dependent

random variables. To establish consistency for r̂ and other estimates, the hypotheses

stated by Furrer will be verified. In addition to the model assumptions already stated
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in Chapter I, the only conditions needed to establish consistency are the following:

1. E(I2α) < ∞ for some α > 1.

2. E(ε2β) < ∞ for some β > 1.

3. σ2
I > 0.

4. The ith column of X is Ui(x1), . . . , Ui(xn), where U1, . . . , Um are orthogonal

polynomials.

Define Gn(r, σ2
ε ,β) = l(r, σ2

ε ,β)/n, where

l(r, σ2
ε ,β) = −n

2
log(2π) − n

2
log(σ2

ε ) −
1

2
log(|A |) − 1

2σ2
ε

(Y − Xβ)′A−1(Y − Xβ),

and let Z = Y −Xβ. In Furrer’s paper, he mentions that that the parameters must

be in an open interval. The implications of this are that his results cannot be applied

to the case r = 0. Aside from this detail, there are four hypotheses that need to be

satisfied for the mles to be consistent:

1. Gn is almost surely twice differentiable with respect to θ = r, σ2
ε ,β.

2. ∂Gn/∂θi −→ 0 almost surely.

3. For i, j = 1, . . . , n, H ij
n (θ) = ∂Gn/∂θi∂θj is almost surely Lij

n -Lipschitz contin-

uous in θ.

4. The matrix H(θ) converges almost surely to a negative definite matrix.

The first hypothesis is verified since the first and second partial derivatives of Gn

with respect to θ exist. They are
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∂Gn

∂σ2
ε

= − 1

2σ2
ε

+
1

2nσ4
ε

(Y − Xβ)′A−1(Y − Xβ)

= − 1

2σ2
ε

+
1

2nσ4
ε

Z′A−1Z,

∂Gn

∂β
=

1

nσ2
ε

X ′A−1Z,

∂Gn

∂r
= − 1

2n
tr(A−1) +

1

2nσ2
ε

Z′A−2Z,

∂2Gn

∂σ4
ε

=
1

2σ4
ε

− 1

nσ6
ε

Z′A−1Z,

∂2Gn

∂β2 = − 1

nσ2
ε

X ′A−1X,

∂2Gn

∂r2
=

1

2n
tr(A−2) − 1

nσ2
ε

Z′A−3Z,

∂2Gn

∂σ2
ε ∂β

= − 1

nσ4
ε

X ′A−1Z,

∂2Gn

∂σ2
ε ∂r

= − 1

2nσ4
ε

Z′A−2Z

and
∂2Gn

∂β∂r
= − 1

nσ2
ε

X ′A−2Z.

His second hypothesis is that the first partial derivatives evaluated at the true param-

eter values converge almost surely to 0 as n → ∞. Appendices A and B give proofs

that the linear and quadratic forms of interest converge almost surely to their means

which are
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E

(
∂Gn

∂σ2
ε

)
= E

(
− 1

2σ2
ε

+
1

2nσ4
ε

Z′A−1Z
)

= − 1

2σ2
ε

+
1

2nσ4
ε

σ2
ε tr(A

−1A)

= − 1

2σ2
ε

+
1

2σ2
ε

= 0,

E

(
∂Gn

∂β

)
= E

( 1

nσ2
ε

X ′A−1Z
)

= 0,

and finally

E

(
∂Gn

∂r

)
= E

(
− 1

2n
tr(A−1) +

1

2nσ2
ε

Z′A−2Z
)

= − 1

2n
tr(A−1) +

1

2nσ2
ε

σ2
ε tr(A

−2A)

= − 1

2n
tr(A−1) +

1

2n
tr(A−1)

= 0.

Denote H(θ) =




∂2Gn/∂β2 ∂2Gn/∂σ2
ε ∂β ∂2Gn/∂r∂β

∂2Gn/∂σ2
ε ∂β ∂2Gn/∂σ4

ε ∂2Gn/∂σ2
ε ∂r

∂2Gn/∂σ2
ε ∂r ∂2Gn/∂r∂β ∂2Gn/∂r2




=




− 1
nσ2

ε
(X ′A−1X) − 1

nσ2
ε
X ′A−1Z − 1

nσ2
ε
X ′A−2Z

− 1
nσ2

ε
X ′A−1Z 1

2σ4
ε
− 1

nσ6
ε
Z′A−1Z − 1

2nσ4
ε
Z′A−2Z

− 1
nσ2

ε
X ′A−2Z − 1

2nσ4
ε
Z′A−2Z 1

2n
tr(A−2) − 1

nσ2
ε
Z′A−3Z
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To show that the third hypothesis is satisfied, it is sufficient to show that

∂(H(θ))/∂θ exists and is finite almost surely.

∂Hn(θ)/∂β =




0 1
nσ2

ε
X ′A−1X 1

nσ2
ε
X ′A−2X

1
nσ2

ε
X ′A−1X 2

nσ6
ε
X ′A−1Z 1

2nσ4
ε
X ′A−2Z

1
nσ2

ε
X ′A−2X 1

2nσ4
ε
X ′A−2Z 1

nσ2
ε
X ′A−3Z




,

∂Hn(θ)/∂σ2
ε =




1
nσ4

ε
(X ′A−1X) 1

nσ4
ε
X ′A−1Z 1

nσ4
ε
X ′A−2Z

1
nσ4

ε
X ′A−1Z − 1

σ6
ε

+ 3
nσ6

ε
Z′A−1Z 1

nσ6
ε
Z′A−2Z

1
nσ4

ε
X ′A−2Z 1

nσ6
ε
Z′A−2Z 1

nσ4
ε
Z′A−3Z




,

and ∂Hn(θ)/∂r =




1
nσ2

ε
(X ′A−2X) 1

nσ2
ε
X ′A−2Z 2

nσ2
ε
X ′A−3Z

1
nσ2

ε
X ′A−2Z 1

σ6
ε
− 1

nσ6
ε
Z′A−2Z 1

2nσ4
ε
Z′A−3Z

2
nσ2

ε
X ′A−3Z 1

nσ4
ε
Z′A−3Z −3

nσ2
ε
Z′A−4Z




.

The elements in the above matrices have 3 general forms: 1
n
X ′A−kZ, 1

n
Z′A−kZ and

1
n
X ′A−kX. Appendices B and C show that 1

n
X ′A−kZ and 1

n
Z′A−kZ both converge

almost surely to their respective means. To show that the ijth element of 1
n
X ′A−kX

is less than ∞ follows the same argument as in Appendix B for showing 1
n
X ′A−kZ

converges almost surely. That is, the ijth element of 1
n
X ′A−kX can be expressed as

1

n

n∑

r=1

n∑

s=1

Ui(xr)[A
−k]rsUj(xs).
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By assumption, Ui and Uj are orthogonal polynomials, and hence | Ui(x) |< c < ∞

and | Uj(x) |< c for all x ∈ (0, 1). It then follows that the ijth element is bounded in

absolute value by

c2

n

n∑

r=1

n∑

s=1

[A−k]rs

since the elements of A−1 are all positive. The limit as n → ∞ of the last quantity is

less than ∞ when k = 1 from results in Appendix A. A similar proof can be obtained

for when k = 2.

To show that the last hypothesis holds, first take the expectation of the elements

of H(θ)) which yields.

E(H(θ)) =




− 1
nσ2

ε
(X ′A−1X) 0 0

0 −1
2σ4

ε

−1
2nσ2

ε
tr(A−1)

0 −1
2nσ2

ε
tr(A−1) −1

2n
tr(A−2)


 .

To show that E(H(θ)) is negative definite is equivalent to showing that −E(H(θ)) is

positive definite. The determinant of −E(H(θ)) is

∣∣∣∣
1

nσ2
ε

(X ′A−1X)

∣∣∣∣
(

1

2σ4
ε

( 1

2n
tr(A−2)

)
−
( 1

2nσ2
ε

tr(A−1)
)2
)

=

∣∣∣∣
1

nσ2
ε

(X ′A−1X)

∣∣∣∣
(

1

4nσ4
ε

tr(A−2) − 1

4n2σ4
ε

(
tr(A−1)

)2
)

and so it only needs to be shown that

1. | −E(H(θ)) |−→ positive constant

2. 1
4nσ4

ε
tr(A−2) − 1

4nσ4
ε
tr(A−1)2 −→ positive constant

3. 1
2n

tr(A−2) −→ positive constant
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It is straightforward to show that

1

n
X ′A−1X → 1 + e−λ

(1 − e−λ)(eλ − e−λ)
Ip+1

assuming the columns of X are orthogonal polynomials and design points are evenly

spaced. Ip+1 is a p + 1 by p + 1 Identity matrix and λ = cosh−1((r + 2)/2) as defined

in Appendix A. This along with 2. from above implies 1. For a more detailed proof,

see Appendix A.

Below are proofs of 2. and 3. The expression for the ijth element of A−1 can be

found in Appendix A.

1

n
tr(A−2) =

1

n

n∑

i=1

n∑

j=1

[A−1]2ij

=
1

n

(sinh(iλ) sinh((n − i + 1)λ)

sinh(λ) sinh((n + 1)λ)

)2

+
2

n

n−1∑

i=1

n∑

j=i+1

sinh(iλ) sinh((n − j + 1)λ)

sinh(λ) sinh((n + 1)λ)

−→ (eλ − e−λ)2 + 2(eλ − e−λ)(e2λ − 1)

= (eλ − e−λ)−2
(1 + e2λ

e2λ − 1

)
.
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Therefore,

1

n
tr(A−2) − 1

n2
(tr(A−1)2

−→ (eλ − e−λ)−2
(1 + e2λ

e2λ − 1

)
− (eλ − e−λ)−2

= (eλ − e−λ)−2
(1 + e2λ − (e2λ − 1)

e2λ − 1

)

=
2

(eλ − e−λ)2(e2λ − 1)

> 0.
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CHAPTER V

APPLICATION OF THE BOOTSTRAP PROCEDURE

In this chapter, the bootstrap procedure is applied to data from five stars. These

stars are the same ones analyzed by Koen & Lombard (2001). They are R. Aquilae,

R. Bootis, R. Canum Venaticorum, W. Draconis and Y. Aquarii. The following is an

outline of the bootstrap procedure used to analyze the data for the 5 stars:

1. Fit a sixth degree polynomial to the original data. Note: In testing for trend,

our model for the mean does not have to be correct in order for the test to be

valid or powerful. So long as the true degree is less than six, the coefficients

will be unbiased. A degree of six usually suffices for purposes of power.

2. The restricted and unrestricted maximum likelihood estimates are used to ob-

tain the test statistic for the original data. The form of the test statistic is the

same as (3.2).

3. Perform the following bootstrap as many times as desired. In this case, the

number of bootstrap replications was 1000.

(a) Generate data for I and ε whose first 3 population moments correspond to

the first 3 estimates of the moments from the original data. The bootstrap

distribution used here is a mixture of normals.

(b) Based on the data that were generated, obtain the test statistic as was

done for the original data.

4. Approximate the p-value by the proportion of all bootstrap statistics that exceed

the actual test statistic.
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5.1 R. Aquilae

The variable star R. Aquilae has 86 observations. Figure 4 is a plot of the period

versus the time of maximum brightness. The solid line is the result of fitting a sixth

degree polynomial. The likelihood ratio test statistic is 118.35. The p-value is less

than 0.0001. In comparison, the p-value based on a χ2
d distribution with d=6 is also

less than 0.0001. Figure 5 is a density estimate based on the 1000 bootstrapped test

statistics. A χ2
6 density is plotted for comparison. It is known that the mode, or

the point at which the χ2 achieves a maximum is M − 2 where M is the degrees of

freedom. In the plot, χ2
M is also plotted for comparison. M was chosen by determining

the approximate value at which the maximum is attained from the density of the

bootstrapped test statistics. In this case, M ≈ 6.38. From the figure, it is apparent

that although the mode is approximately the same for the density of the bootstrapped

test statistics and a χ2
6 distribution, there is, however, quite a discrepency between

the distributions. Figure 6 provides a quantile plot of the 1000 bootstrapped test

statistics generated to further compare the test statistic from the original data to

the bootstrapped distribution. In this case, the original test statistic is much larger

than even the 99th percentile in this case. The maximum likelihood estimates in

Table 4 help to illustrate which coefficients are possibly significant. Obviously the

standardized estimate of β1 stands out the most as it should judging from Figure 4.

The standard errors are the square root of the diagonal elements of the matrix

σ̂2
ε (X

′Â−1X)−1.
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Table 4. Maximum likelihood estimates and standard errors of the regression
coefficients for R. Aquilae.

coefficient estimate standard standardized
error estimate

β1 -96.1764 3.5085 -27.4122
β2 5.6147 3.6058 1.5571
β3 -18.7091 3.6755 -5.0902
β4 -1.5182 3.7644 -0.4033
β5 -0.9508 3.7893 -0.2509
β6 1.0282 3.8641 0.2661
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Figure 4. Plot of pseudo-periods for R. Aquilae.



46

0 10 20 30 40

0.
00

0.
04

0.
08

0.
12

Bootstrapped Test Statistics

Bootstrap Density

χ6
2 Density

χM
2  Density

Figure 5. Density estimate of the bootstrapped test statistic for R. Aquilae.
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Figure 6. Quantile plot of the bootstrapped test statistic for R. Aquilae. Vertical
and horizontal lines mark the 90th, 95th, 98th and 99th percentiles of the bootstrapped
test statistic.
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5.2 R. Bootis

The variable star R. Bootis has 115 observations. Figure 7 is a plot of the pseudo-

period versus the time of maximum brightness. The solid line is the result of fitting

a sixth degree polynomial. The observed test statistic obtained is 15.3238. The

p-value in this case was 0.1997 whereas the p-value from χ2
6 is 0.0179. Figure 8

illustrates the possible reason for the difference in p-values. The value of M in this

case is approximately 6.48. The quantile plot in Figure 9 further illustrates that the

observed test statistic is not extremely large, in fact less than the 90th percentile.

The maximum likelihood estimates in Table 5 illustrate which coefficients might be

significant.

Table 5. Maximum likelihood estimates and standard errors of the regression
coefficients for R. Bootis.

coefficient estimate standard standardized
error estimate

β1 1.183 1.9646 0.6022
β2 -1.8736 2.0508 -0.9136
β3 0.477 2.1058 0.2265
β4 2.6005 2.1817 1.192
β5 -8.8203 2.1851 -4.0366
β6 5.9707 2.2441 2.6607
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Figure 7. Plot of pseudo-periods for R. Bootis.
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Figure 8. Density estimate of the bootstrapped test statistic for R. Bootis.
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Figure 9. Quantile plot of the bootstrapped test statistic for R. Bootis. Vertical
and horizontal lines mark the 90th, 95th, 98th and 99th percentiles of the bootstrapped
test statistic.
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5.3 R. Canum Venaticorum

The variable star R. Canum Venaticorum has 78 observations. Figure 10 is a plot

of the period versus the time of maximum brightness. The solid line is the result of

fitting a sixth degree polynomial. The test statistic obtained for the original data was

13.7379 and the p-value was found to be 0.1381. The corresponding p-value from χ2
6

is 0.0327. Figure 11 shows larger values in the tail of the bootstrapped density than

would is the case for a χ2
6 distribution. The value of M in this case is approximately

6.41, again close to 6. In Figure 12, we see that the test statistic is slightly less than

the 90th percentile. The maximum likelihood estimates are given in Table 6 below:

Table 6. Maximum likelihood estimates and standard errors of the regression
coefficients for R. Canum Venaticorum.

coefficient estimate standard standardized
error estimate

β1 10.597 5.9608 1.7778
β2 -12.5934 6.0146 -2.0938
β3 0.6104 6.0609 0.1007
β4 13.762 6.1126 2.2514
β5 0.7478 6.1467 0.1217
β6 -16.5324 6.1936 -2.6693
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Figure 10. Plot of pseudo-periods for R. Canum Venaticorum.
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Figure 11. Density estimate of the bootstrapped test statistic for R. Canum Ve-
naticorum.
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Figure 12. Quantile plot of the bootstrapped test statistic for R. Canum Venati-
corum. Vertical and horizontal lines mark the 90th, 95th, 98th and 99th percentiles
of the bootstrapped test statistic.
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5.4 W. Draconis

The variable star W. Draconis has 98 observations. There is one missing observation

however. To account for this, the correlation matrix is modified so that after deleting

the ith observation the correlation between observation i−1 and i+1 is 0. Figure 13

is a plot of the pseudo-period versus the time of maximum brightness. The solid line

is the result of fitting a sixth degree polynomial. The test statistic obtained from the

original data was 75.8866 and the p-value is less than 0.0001. The p-value using χ2
6

is also less than 0.0001. Figure 14 shows that the density of the bootstrapped test

statistic is quite close to that of a χ2
6. The value M in this case is 6.08. Figure 15

illustrates that the observed test statistic is much larger than the 99th percentile. The

maximum likelihood estimates in Table 7 help to illustrate which coefficients could

be significant.

Table 7. Maximum likelihood estimates and standard errors of the regression
coefficients for W. Draconis.

coefficient estimate standard standardized
error estimate

β1 55.4072 1.5378 36.0306
β2 8.6105 0.7072 12.1762
β3 12.6113 1.8423 6.8453
β4 -0.5929 1.7058 -0.3476
β5 8.4405 1.7141 4.9241
β6 7.4912 2.0628 3.6316
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Figure 13. Plot of pseudo-periods for W. Draconis.
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Figure 14. Density estimate of the bootstrapped test statistic for W. Draconis.
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Figure 15. Quantile plot of the bootstrapped test statistic for W. Draconis. Ver-
tical and horizontal lines mark the 90th, 95th, 98th and 99th percentiles of the boot-
strapped test statistic.
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5.5 Y. Aquarii

The variable star Y. Aquarii has 68 observations. There are missing observations in

this dataset as well. After the fifth observation the next five observations are missing.

The correlation matrix was modified as before to account for the missing observations.

Figure 16 is a plot of the pseudo-period versus the time of maximum brightness. The

solid line is the result of fitting a sixth degree polynomial. The test statistic obtained

from the original data is 22.3489 while the p-value is 0.0250. The p-value from χ2
6 is

0.0011. Figure 17 shows that there is a large discrepency between the density of the

bootstrapped test statistics and the χ2
6 density. In this case, M is 15.44. Figure 18

provides a quantile plot of the bootstrapped test statistics which also shows that the

observed test statistic lies near the 98th percentile. Table 8 below provides maximum

likelihood estimates as well as standard errors to illustrate which coefficients may be

significant.

Table 8. Maximum likelihood estimates and standard errors of the regression
coefficients for Y. Aquarii.

coefficient estimate standard standardized
error estimate

β1 9.72 2.1094 4.6079
β2 14.6017 1.7764 8.2199
β3 -4.574 2.7582 -1.6583
β4 2.4337 3.3236 0.7323
β5 -7.6298 2.5484 -2.9939
β6 -10.2411 3.0991 -3.3046
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Figure 16. Plot of pseudo-periods for Y. Aquarii.
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Figure 17. Density estimate of the bootstrapped test statistic for Y. Aquarii.
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Figure 18. Quantile plot of the bootstrapped test statistic for Y. Aquarii. Vertical
and horizontal lines mark the 90th, 95th, 98th and 99th percentiles of the bootstrapped
test statistic.
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CHAPTER VI

CONCLUSION

This dissertation discussed using a bootstrap procedure for a test of no trend when

the error process has a particular dependence structure. It has been shown that only

the first three moments of I and ε need to be estimated as efficiently as possible for the

bootstrap procedure to be effective. Simulations show that for the case r = 0, i.e.,

when a star’s intrinsic variance vanishes, the large sample test is not appropriate.

From the analysis of the five variable stars, the bootstrap distribution of the test

statistic may be approximately χ2 but this is not always the case. There can be quite

a discrepency in results between the bootstrap and large sample test.
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APPENDIX A

MISCELLANEOUS RESULTS

In this section, we want to establish a few things:

1. The form of the ijth element of A−1.

2. The elements of 1
n
X ′A−1X → positive constants.

3. limn→∞
c2

n

∑n
r=1

∑n
s=1[A

−k]rs < ∞.

Hu & O’Connell (1996) give an expression for the inverse of a symmetric tridi-

agonal matrix similar to that of A which we are interested in. After simplifying their

results, the i, jth element of A−1 can be shown to be

sinh(min(i, j)λ)sinh((n −max(i, j) + 1)λ)

sinh(λ)sinh((n + 1)λ)
(A.1)

where λ = cosh−1((r + 2)/2). Note that λ = 0 only if r = 0.

Proof of 2.: Let the elements of A−1 be bn
ij. Then

(
1

n
X ′A−1X)rs =

1

n

n∑

i=1

bn
iiφr(xi)φs(xi) +

2

n

n−1∑

i=1

n∑

j=i+1

bn
ijφr(xi)φs(xj)

= (eλ − e−λ)−1

∫ 1

0

φr(x)φs(x)dx + O
( 1

n

)

+
2

n

n−1∑

i=1

n∑

j=i+1

bn
ijφr(xi)φs(xj).
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Now,

2

n

n−1∑

i=1

n∑

j=i+1

bn
ijφr(xi)φs(xj)

= (eλ − e−λ)−1(1 + cne
−2(n+1)λ)

×2

n

n−1∑

i=1

φr(xi)
n∑

j=i+1

e−(j−i)λφs(xj) + O
( 1

n

)

= (eλ − e−λ)−1 2

n

n−1∑

i=1

φr(xi)
n−i∑

k=1

e−kλφs(xk+i) + O
( 1

n

)

where cn = (1 − an)
−2 with an ∈ [0, e−2(n+1)λ]. Let mn = o(n), but mn → ∞. Then

we have

2

n

n−1∑

i=1

φr(xi)
n−i∑

k=1

e−kλφs(xk+i) =
2

n

n−1∑

i=1

φr(xi)
mn∑

k=1

e−kλφs(xk+i)

+
2

n

n−1∑

i=1

φr(xi)

n−i∑

k=mn+1

e−kλφs(xk+i)

The absolute value of the second term is bounded by

2C2

∞∑

k=mn+1

e−kλ =
2C2e−(mn+1)λ

1 − e−λ

where | φl |≤ C. The last quantity tends to 0 since mn → ∞.

2

n

n−1∑

i=1

φr(xi)
mn∑

k=1

e−kλφs(xk+i) =
2

n

n−1∑

i=1

φr(xi)
mn∑

k=1

e−kλ(φs(xi) +
k

n
φ′(xi,k))

=
2

n

n−1∑

i=1

φr(xi)φs(xi)
mn∑

r=1

e−rλ + O
(mn

n

)

= 2
e−λ

1 − e−λ

∫ 1

0

φr(x)φs(x)dx + O
(mn

n

)
+ O

(
e−mn

)
.
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It follows that the elements of 1
n
X ′A−1X converge to

∫ 1

0

φr(x)φs(x)dx(eλ − e−λ)−1
(
1 +

2e−λ

1 − e−λ

)

=

∫ 1

0

φr(x)φs(x)dx
1 + e−λ

(1 − e−λ)(eλ − e−λ)

with error of order O( log n
n

) if mn = log n.

Proof of 3: It has been noted in Appendix B that the ijth element of A−1 is less

than

Cλe
min(i,j)λe−max(i,j)λ

where Cλ = (eλ − e−λ)−1(1 − e−2λ)−1, which implies that

c2

n

n∑

r=1

n∑

s=1

[A−1]rs

< Cλ
c2

n

n∑

r=1

n∑

s=1

emin(r,s)λe−max(r,s)λ

= Cλ
c2

n

( n∑

r=1

r∑

s=1

emin(r,s)λe−max(r,s)λ

+
n−1∑

r=1

n∑

s=r+1

emin(r,s)λe−max(r,s)λ
)

= Cλ
c2

n

( n∑

r=1

r∑

s=1

esλe−rλ

+
n−1∑

r=1

n∑

s=r+1

erλe−sλ
)

= Cλ
c2

n

ne2λ − n + 2eλe−nλ − 2eλ

(eλ − 1)2

= Cλc
2 e2λ − 1 + (2/n)eλe−nλ − (2/n)eλ

(eλ − 1)2
.
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Taking the limit as n tends to ∞ yields

Cλc
2(e2λ − 1)

(eλ − 1)2

which is less than ∞.
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APPENDIX B

ALMOST SURE CONVERGENCE OF LINEAR FORMS

We want to show that each element of 1
n
X ′A−1Z and 1

n
X ′A−2Z converges almost

surely, where

Zi = Ii + εi − εi−1.

X is the design matrix with dimension n x p. If it can be shown that 1
n
X ′A−1I,

1
n
X ′A−1ε1 and 1

n
X ′A−1ε0 all converge almost surely to 0, then it also holds for

1
n
X ′A−1Z. In fact, if it holds for any one of the expressions, it holds for the oth-

ers. The ith element of 1
n
X ′A−1I can be written as

CiI =
n∑

j=1

CijIj

where I1, . . . , In are i.i.d. random variables with mean 0 and finite variance. Ck

is the kth row of the matrix C = X ′A−1/n, where A is as defined in (1.2). Let

xi = i−1/2
n

, i = 1, . . . , n. Denote the ikth element of X as Uk(xi), j = 1, . . . , 6, where

we assume that U1, . . . , U6 are orthogonal polynomials. We know that | Uk(xi) |< c1

for all xi and k = 1, . . . , 6, where c1 is some constant less than ∞. According to

Stout (1974, p. 231), in order that the sum above converges almost surely to 0, it is

sufficient to show that

∞∑

j=1

C2
ij < Kn−α and C2

ij < Kj−1

where α > 0, K < ∞ and k ≥ 1.
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∞∑

j=1

C2
ij =

n∑

j=1

(1

n

n∑

k=1

Xki[A
−1]kj

)2

≤ c2
1

n2

n∑

j=1

( n∑

k=1

[A−1]kj

)2

=
c2
1

n2

( n∑

j=1

n∑

k=1

[A−1]2kj

+2
n∑

j=1

n−1∑

k=1

n∑

l=k+1

[A−1]kj[A
−1]lj

)

Each of these summations will be simplified separately. Appendix A gives the ex-

pression for the ijth element of A−1. Denote Dn(λ) as sinh(λ)sinh((n + 1)λ). Since

sinh(x) < ex, the ijth element of A−1 is less than

emin(i,j)λe−max(i,j)λe(n+1)λ

Dn(λ)

≤ Cλe
min(i,j)λe−max(i,j)λ

where Cλ is defined in Appendix A. Therefore,

n∑

j=1

n∑

k=1

[A−1]2kj

≤ C2
λ

n∑

j=1

n∑

k=1

e2min(i,j)λe−2max(i,j)λ

= C2
λ

( n∑

j=1

j∑

k=1

e2min(j,k)λe−2 max(j,k)λ

+
n−1∑

j=1

n∑

k=j+1

e2 min(j,k)λe−2max(j,k)λ
)
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= C2
λe

−2λ
( n∑

j=1

j∑

k=1

e2kλe−2jλ
)

+

n−1∑

j=1

n∑

k=j+1

e2jλe−2kλ
)

= C2
λ

n(e4λ − 1) − 2e2λ(1 − e−2nλ)

(e2λ − 1)2

≤ C2n

for a positive constant C2.

The second summation is

2
n∑

j=1

n−1∑

k=1

n∑

l=k+1

[A−1]kj[A
−1]lj

< 2C2
λ

( n∑

j=1

n−1∑

k=1

n∑

l=k+1

emin(j,k)λe−max(j,k)λemin(j,l)λe−max(j,l)λ
)

= 2C2
λ

(n−1∑

j=1

n−1∑

k=j

n∑

l=k+1

emin(j,k)λe−max(j,k)λemin(j,l)λe−max(j,l)λ

+
n−1∑

k=1

n∑

j=k+1

n∑

l=j

emin(j,k)λe−max(j,k)λemin(j,l)λe−max(j,l)λ

+
n−2∑

k=1

n−1∑

l=k+1

n∑

j=l+1

emin(j,k)λe−max(j,k)λemin(j,l)λe−max(j,l)λ
)

= 2C2
λ

(n−1∑

j=1

n−1∑

k=j

n∑

l=k+1

e2jλe−kλe−lλ

+
n−1∑

k=1

n∑

j=k+1

n∑

l=j

ekλe−lλ

+
n−2∑

k=1

n−1∑

l=k+1

n∑

j=l+1

ekλe−2jλelλ
)

It is easily verified that the last expression is bounded by C3n, where C3 is a positive

constant. Combining both summations,
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∞∑

j=1

C2
ij ≤

c2
1

n2
(C2n + C3n) ≤ C4

n
,

which verifies one of Stout’s two conditions.

Finally, it needs to be shown that C2
ij < Kj−1.

| Cij | ≤ 1

n

n∑

r=1

| Ui(xr) | [A−1]rj

≤ c1

n

n∑

r=1

[A−1]rj

=
c1

n

( j∑

r=1

[A−1]rj +

n−j∑

r=1

[A−1](r+j),j

)
.

Arguing as before, each of these two sums is bounded by a constant, call it C5, and

hence | Cij |≤ 2C1C5

n
. Therefore

C2
ij ≤ C6/n

2 ≤ C6/(nj) ≤ C6/j.

A similar proof can be obtained when A−2 is used instead of A−1.
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APPENDIX C

ALMOST SURE CONVERGENCE OF QUADRATIC FORMS

Consider

−1

2σ2
ε

+
1

2nσ4
ε

Z′A−1Z

where

Z′A−1Z =
n∑

i=1

n∑

j=1

bn
ij(Ii + εi − εi−1)(Ij + εj − εj−1)

= QI + 2
n∑

i=1

n∑

j=1

bn
ijIiεj − 2

n∑

i=1

n∑

j=1

bn
ijIiεj−1 + Qε

−2
n∑

i=1

n∑

j=1

bn
ijεiεj−1 +

n∑

i=1

n∑

j=1

bn
ijεi−1εj−1

where QI and Qε are quadratic forms equal to I′A−1I and ε′A−1ε. We have

n∑

i=1

n∑

j=1

bn
ijεiεj−1 =

n∑

i=1

n−1∑

k=0

bn
i(k+1)εiεk

=
n∑

i=1

n∑

k=0

bn
i(k+1)εiεk

where bi(n+1) = 0 ∀ i. Now we have that the last term is

n∑

i=1

n∑

k=1

b̃ikεiεk +
n∑

i=1

bn
i1εiε0,

where

b̃ik =

{
bn
i(k+1), k = 1, . . . , n − 1,

0, k = n.
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We know that

E(Z′A−1Z) = tr(A−1σ2
ε A) = nσ2

ε ,

E
( n∑

i=1

n∑

j=1

bn
ijIiεj

)
= 0 and E

( n∑

i=1

n∑

j=1

bn
ijIiεj−1

)
= 0,

which together imply that

E
( n∑

i=1

bn
ii(I

2
i + ε2

i + ε2
i−1) − 2

n−1∑

i=1

bn
i(i+1)ε

2
i

)
= nσ2

ε .

Below is a proof that bn
ij is essentially free of n. For i ≤ j, by (A.1),

bn
ij = (eλ − e−λ)−1(1 − e−2(n+1)λ)−1(eiλ − e−iλ)(e−jλ − ejλe−2(n+1)λ)

= (eλ − e−λ)−1(1 + e−2(n+1)λ(1 − an)
−2)(e−(j−i)λ − e−(i+j)λ

−e−2(n+1)λ(e(i+j)λ − e(j−i)λ))

= (eλ − e−λ)−1(e−(j−i)λ − e−(i+j)λ) + (eλ − e−λ)−1e−2(n+1)λ

×cn(e
−(j−i)λ − e−(i+j)λ) + dne

−2(n+1)λ(e(i+j)λ − e−(j−i)λ),

where an ∈ [0, e−2(n+1)λ], cn = (1 − an)
−2 and dn = −(eλ − e−λ)−1(1 + cne−2(n+1)λ).

It will be shown that

1. 1
n

∑n
i=1 bn

iiI
2
i

a.s−→ σ2
I limn→∞

1
n

∑n
i=1 bn

ii

2. 1
n

∑n
i=1 bn

iiε
2
i

a.s−→ σ2
ε limn→∞

1
n

∑n
i=1 bn

ii

3. 1
n

∑n
i=1 bn

i(i+1)ε
2
i

a.s−→ σ2
ε limn→∞

1
n

∑n−1
i=1 bn

i(i+1)

4. 1
n

∑
i 6=j bn

ijIiIj
a.s−→ 0

5. 1
n

∑n
i=1

∑n
j=1 bn

ijIiεj
a.s−→ 0
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6. 1
n

∑n
i 6=j bn

ijεiεj
a.s−→ 0

7. 1
n

∑n
i=1

∑n
j=1 b̃n

ijεiεj
a.s−→ 0

8. 1
n

∑n
i=1 bn

iiεiε0
a.s−→ 0.

If the above hold, this will show that

1

2nσ4
ε

Z′A−1Z
a.s−→ 1

2σ2
ε

,

since

n∑

i=1

bn
ii(σ

2
I + 2σ2

ε ) − 2σ2
ε

n∑

i=1

bn
i(i+1) = nσ2

ε .

Proof of 1.:

bn
ii =

1 − e−2iλ

eλ − e−λ
(1 + cne

−2(n+1)λ) + dne
−2(n+1)λ(e2iλ − 1)

and therefore

1

n

n∑

i=1

bn
iiI

2
i =

1 + cne−2(n+1)λ

eλ − e−λ

1

n

n∑

i=1

(1 − e−2iλ)I2
i + dne−2(n+1)λ 1

n

n∑

i=1

(e2iλ − 1)I2
i .

Rewrite

1

n

n∑

i=1

(1 − e−2iλ)I2
i =

1

n

n∑

i=1

(1 − e−2iλ)Zi + σ2
I

1

n

n∑

i=1

(1 − e−2iλ),

where Zi = I2
i − σ2

I . Corollary to Theorem 5.4.1 in Chung (1974) now implies that

1

n

n∑

i=1

(1 − e−2iλ)Zi
a.s−→ 0

so long as E | Zi |< ∞, and hence
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1

n

n∑

i=1

(1 − e−2iλ)I2
i

a.s.→ σ2
I .

Now,

dne−2(n+1)λ 1

n

n∑

i=1

(e2iλ − 1)I2
i = dne−2(n+1)λ 1

n

n∑

i=1

(e2iλ − 1)Zi + O
( 1

n

)
.

Define Vi = (e2iλ − 1)Zi and apply corollary to Theorem 5.4.1 to e−2nλ 1
n

∑n
i=1 Vi. In

Chung’s notation, ai = ie2iλ and let φ(v) =| v |α for 1 < α ≤ 2.

∞∑

i=1

E | Vi |α
(ie2iλ)α

= E | Z1 |α
∞∑

i=1

(e2iλ − 1)α

iαe2iλα

= E | Z1 |α
∞∑

i=1

(1 − e−2iλ)α

iα

< ∞.

Therefore, by corollary to Theorem 5.4.1,

dne−2(n+1)λ 1

n

n∑

i=1

(e2iλ − 1)Zi
a.s.−→ 0.

Combining the above results shows that

1

n

n∑

i=1

bn
iiI

2
i

a.s.−→ (eλ − e−λ)−1σ2
I

under the single condition that E | Z1 |α< ∞ for some 1 < α ≤ 2. Propositions 2. and

3. are proven in exactly the same manner under the condition that E | ε2
1−σ2

ε |α< ∞

for some 1 < α ≤ 2.

Proof of 4.: Consider the quadratic form

Qn =
1

n

n−1∑

i=1

n∑

j=i+1

e−(j−i)λIiIj,
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where λ > 0 and I1, . . . , In are i.i.d. with E(Ii) = 0. Write

Qn =
1

n

n−1∑

i=1

Ii

n−i∑

j=1

e−jλIi+j .

So long as E(|Ii|) < ∞, Theorem 5.4.1, p. 124 of Chung implies that each of the series
∑m

j=1 e−jλIi+j, i = 1, . . . , n − 1, converges almost surely, and hence we may write

Qn =
1

n

n−1∑

i=1

IiVi −
1

n

n−1∑

i=1

Ii

∞∑

j=n−i+1

e−jλIi+j , (C.1)

where Vi =
∑∞

j=1 e−jλIi+j, i = 1, 2, . . ..

Now, (C.1) may be written

Qn =
1

n

n−1∑

i=1

IiVi −
1

n

n−1∑

i=1

Ii

∞∑

r=1

e−(r+n−i)λIn+r

=
1

n

n−1∑

i=1

IiVi −
1

n

n−1∑

s=1

e−sλIn−s

∞∑

r=1

e−rλIn+r.

We will show that each of the two quantities on the right hand side of the last

expression tend to 0 almost surely. We use the Borel-Cantelli lemma to prove that

the second tends to 0. We have

∞∑

n=1

P

(
1

n

∣∣∣∣∣
n−1∑

s=1

e−sλIn−s

∞∑

r=1

e−rλIn+r

∣∣∣∣∣ > ε

)
≤

∞∑

n=1

E(S2
n)E(T 2

n)

n2ε2
, (C.2)

where Sn =
∑n−1

s=1 e−sλIn−s, Tn =
∑∞

r=1 e−rλIn+r and we have used the fact that Sn

and Tn are independent. Now,

E(T 2
n) = σ2

I

∞∑

r=1

e−2rλ =
σ2

Ie
−2λ

1 − e−2λ
.

Similarly, E(S2
n) is bounded by the same constant, and so the right hand side of (C.2)

converges for each ε > 0.
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We turn now to
∑n−1

i=1 IiVi/n, to which we apply Theorem E, p. 27 of Serfling

(1980). First note that E(IiVi) = 0 since Ii and Vi are independent. Also, IiVi,

i = 1, 2, . . . are uncorrelated, since (for i < j)

Cov(IiVi, IjVj) = E(IiViIjVj) = E(Ii)E(IjViVj) = 0.

We have also

Var(IiVi) = E(I2
i )E(V 2

i ) = σ4
I

∞∑

r=1

e−2rλ,

and hence
∑∞

i=1 Var(IiVi)(log i)2/i2 converges. It follows that
∑n−1

i=1 IiVi/n converges

almost surely to 0. Looking back at the proof, the only condition needed is that

Var(Ii) < ∞.

6. and 7. are proven in the same manner with the only condition being that

σ2
ε < ∞.

Proof of 8.:

1

n

n∑

i=1

bn
iiεiε0

= ε0
1

n
(eλ − e−λ)−1(1 + cne−2(n+1)λ)

n∑

i=1

(e−(i−1)λ − e−(i+1)λ)εi

+ε0
1

n
dnε−2(n+1)λ

n∑

i=1

(e(i+1)λ − e(i−1)λ)εi.

It is enough to show that

1

n

n∑

i=1

e−iλεi
a.s.−→ 0,

since



80

1

n
e−(n+1)λ

n∑

i=1

eiλεi = e−λ 1

n

n∑

i=1

e(n−i)λεi

= e−λ 1

n

n−1∑

r=0

e−rλεn−r.

The Borel-Cantelli lemma can be used to show that either of these sums converges

almost surely to 0, so long as σ2
ε < ∞.

Proof of 5.: Consider

1

n

n∑

i=1

n∑

j=1

e−|i−j|λIiεj.

Using similar arguments to previous, if it can be shown that this term tends to 0

almost surely, then clearly

1

n

n∑

i=1

n∑

j=1

bn
ijIiεj

a.s.−→ 0.

The sum can be written as

1

n

n∑

i=1

Iiεi +
1

n

n−1∑

i=1

n∑

j=i+1

e−(j−i)λIiεj +
1

n

n∑

i=2

i−1∑

j=1

e−(i−j)λIiεj

=
1

n

n∑

i=1

Iiεi +
1

n

n−1∑

i=1

Ii

n∑

j=i+1

e−(j−i)λεj +
1

n

n−1∑

j=1

εj

n∑

i=j+1

e−(i−j)λIi.

1
n

∑n
i=1 Iiεi

a.s.−→ 0 since Iiεi, i = 1, . . . , n, are i.i.d. and σ2
ε < ∞, σ2

I < ∞. The other 2

terms can be handled in the same manner as those in the proof of 4.
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