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ABSTRACT

Stress-Dependent Permeability on Tight Gas Reservoirs. (December 2004)
Cesar Alexander Rodriguez, B.S., Universidad Central de Venezuela

Chair of Advisory Committee: Dr. Robert A. Wattenbarger

People in the oil and gas industry sometimes do not consider pressure-dependent
permeability in reservoir performance calculations. It basically happens due to lack of
lab data to determine level of dependency. This thesis attempts to evaluate the error

introduced in calculations when a constant permeability is assumed in tight gas reservoir.

It is desired to determine how accurate are conventional pressure analysis calculations
when the reservoir has a strong pressure-dependent permeability. The analysis considers
the error due to effects of permeability and skin factor. Also included is the error

associated when calculating Original Gas in Place in the reservoir.

The mathematical model considers analytical and numerical solutions of radial and
linear flow of gas through porous media. The model includes both the conventional
method, which assumes a constant permeability (pressure-independent), and a numerical

method that incorporates a pressure-dependent permeability.

Analysis focuses on different levels of pressure draw down in a well located in the center
of a homogeneous reservoir considering two types of flow field geometries: radial and
linear. Two different producing control modes for the producer well are considered:

constant rate and constant bottom hole pressure.



Methodology consists of simulated tight gas well production with k(p) included. Then,
we analyze results as though k(p) effects were ignored and finally, observe errors in
determining permeability (k) and skin factor (s). Additionally, we calculate pore volume

and OGIP in the reservoir.

Analysis demonstrates that incorporation of pressure-dependence of permeability k(p) is
critical in order to avoid inference of erroneous values of permeability, skin factor and
OGIP from well test analysis of tight gas reservoirs. Estimation of these parameters

depends on draw down in the reservoir.

The great impact of permeability, skin factor and OGIP calculations are useful in
business decisions and profitability for the oil company. Miscalculation of permeability
and skin factor can lead to wrong decisions regarding well stimulation, which reduces

well profitability.

In most cases the OGIP calculated is underestimated. Calculated values are lower than
the correct value. It can be taken as an advantage if we consider that additional gas wells
and reserves would be incorporated in the exploitation plan.
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CHAPTER I
INTRODUCTION

The present work attempts to do an investigation on stress-sensitive tight gas formations.
People in the oil and gas industry some times do not consider pressure-dependent
permeability in engineering calculations, it basically happens due to lack of lab data to
determine level of dependency. This works evaluate the error introduced in calculations

when constant permeability is considered in well test analysis of tight gas reservoirs.

We want to determine how accurate is our conventional pressure analysis calculations
when the reservoir has a strong pressure-dependent permeability. The analysis considers
the error in term of permeability and skin factor. Also include estimation on error

calculating Original Gas in Place due to a false reservoir limit.

1.1  Objectives

This work has the objective to investigate pressure and production performance on tight
gas reservoirs considering stress-dependent permeability during transient and pseudo
steady state flow. It makes focus in the physics of the rock that cause such behavior, the

level of dependency, analytical and numerical modeling regarding radial and linear flow.

In reservoirs with a significant stress-dependent permeability, reservoir models should
include stress-dependent permeability to improve accuracy for purposes of oil and gas
reserve determination and reservoir modeling. The benefits include a better
understanding of the behavior of tight gas sands, lead to a more accurate modeling of
that kind of unconventional reservoirs and get a more realistic forecasting of production

performance and well test analysis

This thesis follows the style and format of SPE Journal.



1.2 Problem Definition

Porous media are not rigid and non-deformable but exhibit elastic and inelastic
deformations. Furthermore, the properties of rock and fluid are pressure-dependent.
Tight gas reservoirs exhibit stress-sensitive permeability. For such reservoirs, pressure-
transient analysis and forecast performance based on constant rock properties, especially
permeability, can lead to significant errors in parameters estimation. Nevertheless, in
most field cases, is not common to have stress-dependent permeability data. This project
investigates the permeability change as a function of pressure in tight gas reservoirs in

the case where laboratory data is not available.

1.3 Methodology

The methodology consists of using both analytical and numerical models of a stress-
sensitive formation saturated with irreducible water saturation and gas. The model
considers analytical and numerical solutions of transient and pseudo steady state (PSS)
flow of gas through porous media for linear and radial geometries. The methodology
includes both the conventional method, which assumed no pressure-dependent
permeability, and a numerical method that incorporate a mathematical function to

describe the dependency of permeability on pressure.

The analysis is based on the concept of a real gas pseudo pressure function, m(p),

defined by Al-Hussainy™. It incorporates variation of gas properties with pressure.

Analysis focuses on different levels of pressure draw down for a well located in the
center of a homogeneous reservoir. Two different producing control modes for the

producer well are considered; constant rate and constant bottom hole pressure.



1.4 Previous Work

Many authors have studied the effect of pressure-dependent permeability on reservoir

performance. Following is a review of some of them.

Raghavan et al.? have treated reservoir porosity, permeability and compressibility,
together with fluid density and viscosity as functions of pressure, they worked with a
second-order, nonlinear, partial differential equation. The equation was reduced by a
change of variables to a form similar to the diffusivity equation, but with a pressure-
dependent diffusivity. They provided correlations in terms of dimensionless potential
and time for a closed radial flow system producing at a constant rate; the solution
obtained also has been compared with the conventional van Everdingen and Hurst

solutions.

Vairogs and Rhoades® present the results of a theoretical investigation of the use of
conventional pressure transient analysis methods in stress-sensitive formations. It was
found that values of kh and wellbore conditions determined from conventional analysis
of drawdown gas well test could be significantly in error when permeability is stress-
dependent. In addition, skin factors determined from buildup test may not be
representative. Because of permeability reduction near the wellbore, a positive skin

factor will be determined even when the well is not damaged.

Samaniego et al.* applied the concept of a continuous succession of steady states to
obtain a solution to the nonlinear partial differential equation describing the transient
flow of a pressure-dependent fluid through a stress-sensitive formation. Samaniego
presents a performance-prediction procedure based on the drainage radius concept and a
material-balance equation. Results were obtained for five different sets of rock and fluid

property data considering radial and linear bounded systems.



Gochnour and Slater® describe the use of a single well gas simulation model to
characterize the properties of gas wells in tight reservoirs. It demonstrates the effective
application of a simulation model to complement a conventional well test analysis. The
single well gas model was used to characterize the reservoir by history matching the well
test data; after a suitable match was obtained, the model was then used to predict the
deliverability of the well.

Walls® investigate the effects of pressure, partial saturation and salinity on permeability
in several cores from the Spirit River tight gas sand of western Alberta and Cotton
Valley formation of east Texas. Samples from both locations showed strong dependence
of permeability on effective pressure and degree of water saturation. It was also found
that pore structure seems to be the major factor in determining permeability behavior and

clay content being of secondary importance.

Pedrosa’ presents a mathematical model that take in account the reduction in
permeability caused by an increase in effective stress. A perturbation technique is
applied to determine approximate analytical solutions for transient flow in an infinite
radial system with constant rate inner boundary. The model includes a new parameter,
the permeability modulus, which measures the permeability dependency on pressure.
The solution of the model leads to the construction of type curves that can be applied to

drawdown and buildup analysis of well test data from stress-sensitive reservoirs.

In a similar way, Ostensen® presents a study of the effect of stress-dependent
permeability on gas production and well testing in tight gas sands by using a modified

pseudo-pressure that include stress dependence.

Samaniego and Cinco-Ley® present a practical procedure to determine the pressure-
dependent characteristics of a reservoir from transient pressure analysis. Expressions are

derived for flow in stress sensitive formations of pressure-dependent liquid flow and of



real gas flow, which allow through the analysis of draw down and buildup tests the
determination of the stress sensitive characteristics of the reservoir. The authors
concluded that draw down and buildup results are complementary. The draw down
analysis yields good estimates of the pressure-dependent parameter {k (p)/ [1-¢ (p)]} at
low values of pressure and the buildup analysis yield good estimates at high values of

pressure.

Kikani and Pedrosa’® analyzed and discussed the nonlinear equation that result by taking
into account the effect of pressure-dependent rock properties. By defining a permeability
modulus, the nonlinearities associated with the governing equation become weaker and
an analytical solution in terms of a regular perturbation series can be obtained for a
radial, infinite acting reservoir. The work presented uses a regular perturbation technique
to solve the nonlinear equation to third order of accuracy. Also investigated are the first

order effects of wellbore storage, skin, and boundary effects.

Zhang and Ambastha'! consider the numerical pressure-transient solutions for stress-
sensitive reservoirs using the one-parameter model and the stepwise permeability model.
The authors analyzed the effects of permeability modulus, wellbore storage, skin, outer
boundary condition, and permeability models on both drawdown and buildup test. The
stepwise permeability model may provide a means to infer permeability versus stress
curves under in-situ reservoir conditions by a proper analysis of a long duration pressure

transient test for a stress-sensitive reservoir.

Jelmert and Selseng® proposed a skin factor calculation that takes in account changes in
permeability. The concept is consistent with steady state flow in a stress-sensitive

reservoir.

Davies and Davies™® considered stress-dependent permeability in unconsolidated, high

porosity sand reservoirs and consolidated reservoirs (tight gas sands). The authors focus



on i) fundamental controls on stress-dependent permeability, ii) rock-based log modeling
of stress-dependent permeability in cored and non-cored wells and iii) implications for
production based on data from reservoir simulation. The practical, fast and cost efficient
methodology improves and enhances the productivity and management of stress-

dependent reservoirs.



CHAPTER II
LITERATURE REVIEW

2.1 Tight Gas Sands®*

Tight gas reservoirs are characterized by having poor rock properties. Those reservoirs
typically have low porosity and permeability. Tight gas reservoirs have been considered
as gas storage rock with low quality. A tight gas reservoir is generally recognized as any
low permeability formation which special well completion technique are required to
stimulate production. Typical values of porosity are lower than 10% and permeability is

usually below 0.1 md.

There are some fundamental differences in rock-water-gas interactions between tight
sandstones and ‘normal’ gas reservoirs. These differences result primarily from

significant pore structure alterations as the rock undergoes compaction and diagenesis.

As gas production begins from the reservoir, pore pressure decreases and the effective
stress increases; the relation between these variables is shown in the following equation:

S corresponds to total stress, o is the effective stress (matrix stress, grain to grain
pressure) and p is the fluid pressure. Eq. 2.1 states that every change in the pore-fluid
pressure under otherwise constant conditions, result automatically in a change of the
effective stress. Rock permeability in tight sands is significantly affected by changing

the effective stress.



The behavior of tight gas sand permeability in response to changing effective stress can
be explained qualitatively by the complex and tortuous pore structure that results from
extensive compaction and diagenesis. Thin section and scanning electron microscope
(SEM) images of the pore structure reveal very narrow slit-like apertures between pores.
These thin cracks provide the major connectivity, which allows fluid to move when the
rock is under low effective pressure conditions. However, increasing effective pressure

easily closes such flats cracks.
2.2 Diffusivity Equation, Liquid Case™

The derivation of the diffusivity equation combines the law of conservation of mass,
Darcy’s law and equations of state for the isothermal flow of fluids in porous media.
Several assumptions about the well and reservoir are introduced in the model. A
summary of these assumptions are: homogeneous and isotropic porous medium of
uniform thickness, pressure independent fluid and rock properties, small pressure
gradients, radial flow, applicability of Darcy’s’ law (laminar flow), and negligible
gravity forces. These assumptions lead to the following general partial differential

equation:

2
o’p 1op__ guc p 22)

or2  ror  0.00633k ot

The general solution of Eq. 2.2 considering liquid flow through a reservoir with a radial

geometry is as follows:

Po =%In(tD)+ 040454 ovvviiieieeiii e, (2.3)



2.3  Diffusivity Equation, Gas Case

In the derivation of the diffusivity equation for real gas reservoirs, Al-Hussainy® defined

in 1966 a pseudo function that account for gas properties variation with pressure as:

Al-Hussainy introduces the real gas pseudo pressure function to transform the diffusivity
equation for real gases. It takes in account the change with pressure of gas properties
such as z-factor and viscosity. The variable m(p) has dimension of pressure squared per
centipoises. Substitution of the real gas pseudo pressure has several important
consequences™. First, second degree pressure gradient terms, which have commonly been
neglected under the assumption that the pressure gradient is small everywhere in the
flow system, are rigorously handled. Omission of second-degree terms leads to serious
errors in estimated pressure distribution for tight formations. Second, flow equations in
terms of the real gas pseudo pressure do not contain viscosity or gas law deviation
factors, and thus avoid the need for selection of an average pressure to evaluate physical
properties. Third, the real gas pseudo pressure can be determined by numerically in
terms of pseudo reduced pressures and temperatures from existing physical property

correlations.

The diffusivity equation for real gas can be expressed as:

Ve kin = %(gﬁﬁj .............................. (2.5)

Including pseudo pressure concept into Eg. 2.5 it can be transformed to:
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Further detail on the derivation of Eq. 2.6 is found in Appendix A. The solution of Eqg.
2.6 considering gas reservoir with radial geometry in terms of pseudo pressure is as

follow:

mp :%In(tD)+ 0.4045+S ooiiiei i (2.7)

In 1967, Wattenbarger'® showed that semi log straight lines (SLSL) of plot mp vs tp give
correct reservoir properties for different constant gas rate cases. Wattenbarger
established that the m(p) linearization is extremely good for the basic case of constant
sand face flow rate, at rates that are likely to be found in practice. This verifies the
results of Al-Hussainy et al.! for production cases. Furthermore, this means that the flow

capacity kh of a gas well can be determined accurately from a draw down plot.

Agarwal'’, working with build up well data, showed that Eq. 2.7 gave wrong values of
permeability for cases with different gas rates. Then, Agarwal introduced a plotting
function that account for properties changes with time and that lead to get better values

of permeability. The plotting function was defined as:

However, Eq. 2.8 defined by Agarwal does not linearize the diffusivity equation. It
means, Eq. 2.8 is a partial integral, fluid viscosity and compressibility varies with time
and pressure. Agarwal demonstrated that better values of permeability were obtained
using that plotting function.
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2.4  Stress-Dependent Formations

As early as 1928 it was recognized that porous media are not always rigid and non-
deformable®. This problem is usually handled by means of properly chosen ‘average
properties’. This method only reduces the errors involved and generally does not
eliminate these errors. A second order, nonlinear, partial differential equation results
when variation of permeability with pressure is considered in the continuity equation. A
different kind of flow-reducing mechanism has been studied experimentally by a number
of investigators® 8. This mechanism is the reduction in permeability caused by an
increase in effective frame stress. In the reservoir an increase in effective frame stress is
caused by fluid withdrawal and the accompanying decrease in pore pressure. Since the
overburden force on the reservoir rock remains the same, the decreasing pore pressure
results in an increased effective frame stress. Because low permeability formations are
more affected by stress changes®, this effect can be expected to be more significant in

deep gas reservoirs.

2.4.1 Laboratory Experiments

The rate of permeability decline with increasing net effective stress is different for each
rock type and is controlled by three interrelated, pore geometrical parameters, length,
and shape and short axis dimension of the throats*® '°. Others important parameters are
clay content, pore volume compressibility and authigenic cementation. The mechanisms
of permeability reduction are much more pronounced in tight formations®. It can be
expected that formations with pore distribution of smaller radio are very sensitive to

compressive stress.

In September 1971, Vairogs et al.®, presented a work based on lab experiments showing
the relation of rock permeability and net confining pressure for cores with different

initial permeability. These results are shown in Fig. 2.1. In this plot, ‘y’ axes correspond
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with the ratio of permeability to a given confining pressure to the permeability at a

confining pressure of 500 psig. ‘X’ axes is net confining pressure. Vairogs et al.

concluded that there is a greater degree of permeability reduction with low permeability

cores than with high permeability cores. In cores with initial permeability less than 1 md,

the permeability is significantly reduced at high net confining pressure. This behavior is

extended to tight gas formations, which exhibit permeability lower than 0.1 md. Usually

this dynamic permeability is not considered in engineering calculations. The current

project evaluates the error introduced in calculations when constant permeability is

considered in well test analysis of tight gas reservoir.

Stress-Dependent Permeability

0.9 A
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0.7 A
0.6 -
0.5 A

0.4 -
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0.2
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Fig. 2.1 — Stress-dependent permeability.

The plot shows an exponential dependence of permeability with pore pressure. A

reduction in the pore pressure in tight gas formations leads to increase the effective rock

stresses. This increasing is counterbalanced by the reduction in pore diameter, which
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results in increased resistance to fluid flow and reduced fluid storage, lower rock

permeability and porosity.

2.4.2 Permeability Modulus

The dependence of permeability on pore pressure makes the flow equation strongly

nonlinear®. To study fluid flow through stress-dependent porous media, a new parameter,

permeability modulus or “y’, is defined by Nur et al.?®

|'10

and studied by Pedrosa and

Kikani et al.”* as follows:

This parameter plays a very important role in systems where changes in effective stress
affect permeability. Basically, it measures the dependence of hydraulic permeability on
pore pressure. For practical purposes, the permeability modulus is assumed constant.

Thus, permeability varies exponentially with pore pressure.
k — k_e—}’(Pi—P )
I

In view of the similar appearance of permeability and density in the diffusion equation, it
may be advantageous to assume an exponential relationship between permeability and
pressure. This choice has some experimental support and mathematical convenience
shown by Kikani and Pedrosa’®. These authors were able to match an exponential rock
model to real pressure data. Using the permeability modulus definition, the real gas

pseudo pressure function can be modified to:

m'(p)zzjpk(p)dp.....................................(2.11)
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Now, the diffusivity equation considering flow of a real gas through a stress sensitive
formation can be expressed as follow:

Further detail on the derivation of Eq. 2.12 is found in Appendix B. Pedrosa’ applied a
perturbation technique to determine approximate analytical solutions for transient flow
in an infinite radial system with constant rate inner boundary. The model includes the
permeability modulus parameter, which measures the permeability dependency on
pressure. The analytical solution presented by Pedrosa for constant gas rate infinite

acting radial flow is:

m'p :%In(tD)+ 0.40454S ..oooeiieiiiiiiieeeee, (2.13)

2.5  Linear Flow???

Linear flow is a regime characterized by parallel flow lines in the reservoir. This results
from flow to a fracture or a long horizontal well, or from flow in an elongated reservoir,
such as a fluvial channel, or as a formation bounded by parallel faults. Linear flow is
recognized as a +1/2 slope in the pressure derivative on the log-log diagnostic plot. Its
presence enables determination of the fracture half-length or the channel or reservoir

width, if permeability can be determined independently.
2.6  Radial Flow"?
Radial flow represents the geometry that approximates fluid flow into a wellbore from a

cylindrical reservoir of constant pay thickness. Flow lines converge to a concentric point

located at the middle of the reservoir and is represented by the wellbore. The important
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parameters that defined the radial flow geometry are: wellbore radius (ry), external
radius (re), thickness (h).

2.7  Transient Flow®

This condition is only applicable for a relatively short period after some pressure
disturbance has been created in the reservoir. In terms of the radial flow model this
disturbance would be typically caused by altering the well’s production rate at r = ry,. In
the time for which the transient condition is applicable it is assumed that the pressure
response in the reservoir is not affected by the presence of the outer boundary, thus the
reservoir appears infinite in extent. In this period, the change of pressure with time in the

reservoir is a function of location and time, thus
op
—— = () 2.14
-y (214)

2.8 Gas Simulator

During the development of this project, the computer-based program GASSIM was
widely used. GASSIM is a single-phase simulator presented by Lee and Wattenbarger®.
It is used in this work for simulating real gas flow for 2-D radial and linear models. It is
a two-dimensional reservoir simulator that can work with x-y or r-z geometries.
Originally this program was written in FORTRAN. This simulator has been modified
and it is under development. Currently the code of the program is based in visual basic
form (Visual Basic for Applications, VBA) and is run from Microsoft Excel program.
The program has two main advantages that are the reasons of being selected during this
project, the program’s code can be modified and allow to introduce the changes

necessaries to account for stress sensitive formations. In addition, the program is time-
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efficient and runs take few minutes. It is also friendly and well known by faculty in T
A&M University.

2.9  Determination of OGIP*

This section deals with the determination of original gas in place (OGIP) for wells in
pseudo steady state flow. The calculation of OGIP is based on analysis of gas well
production performance. In this project is used the normalized pseudo time concept as a
plotting function to calculate more accurate the OGIP. The use of this normalized
pseudo time is particularly important in the analysis of highly depleted reservoirs with

high compressibility where the superposition errors are largest.

The normalized pseudo time provides a plotting function for smoothing the production
data by taking the effect of reservoir properties change with average pressure. The

normalized pseudo time equation is given by the following expression:

t 1
tn: t )i — — — dt
s !¢(p)u(p)ct(p)

This integration can be calculated by using Trapezoidal rule.

[m(p:) —m(pur)]

Qg

A plot of vs. t, for simulation results gives straight line. The slope from

t, plot, denoted mpgs, is then used to calculate OGIP applying the following equations:
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20 S
Constant g4 Case: OGIP = Pi Sg [} j(218)
Zi(ﬂgct)i Mpss
K p; Sy
Constant s Case: OGIP = 0.5538 Ak Pi Sq (~1 J...............(2.19)
Tzi(ﬂgct)il- Mpss

The most important feature about normalized pseudo time is that it improves the
accuracy of calculating OGIP because it takes into account the effect of properties

change with average reservoir pressure.
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CHAPTER Il

PSEUDO PROPERTIES

This project is based on the concept of real gas pseudo pressure m(p). It was initially
defined by Al-Hussainy" in 1966 as:

Al-Hussainy introduces the real gas pseudo pressure function to transform the diffusivity
equation for real gases. It takes in account the change with pressure of gas properties
such as z-factor and viscosity. The variable m(p) has dimensions of pressure squared per

centipoises.

The main objective of this project is to analyze stress sensitive formations, particularly
tight gas reservoirs for radial and linear reservoir geometry. We want to determine the
effect of pressure-dependent permeability k(p) on radial and linear flow analysis for
infinite and finite acting, also investigate how it modify well test analysis results.

Methodology consists of simulation of tight gas well production with k(p) included.
Then, analyze results as though k(p) effects were ignored and finally, observe errors in

determining permeability (k) and skin factor (s).

The current method used to analyze gas well production is based in the solution of
diffusivity equation with constant diffusivity term. The gas diffusivity equation in terms

of m(p) is:
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In Eq. 3.2, permeability is a constant parameter. In this case a plot of m(p) versus log(t)
is necessary to analyze the data. Then, from semi-log straight line is calculated the value

of permeability and skin factor.

Now, we consider the case including pressure-dependent permeability k(p). A new
definition of pseudo pressure is introduced to incorporate pressure dependency of

permeability; it is shown in Eq. 3.3:

Then, the diffusivity equation expressed in term of m'(p) corresponds with the

following expression:

Vzml =¢ﬂct a_m
k ot

In this case, we analyze the gas well production data by plotting m'(p) versus log(t). The

slope of semi-log straight line is related to the permeability and skin factor.

This project uses the concept of permeability modulus, introduced by Kikani and
Pedrosa'®. The permeability modulus, y, called ‘gamma’ express an exponential relation

between permeability and pressure. The mathematical function is:

1k

7kdp ............................................



Making a basic transformation of Eq. 3.5 lead to the following expression:

The use of permeability modulus is shown in Fig. 3.1.
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Fig. 3.1 — Permeability as a function of pore pressure and gamma.

12,000

Fig. 3.1 is a plot of permeability ratio versus pore pressure for different values of gamma

corresponding with a stress-sensitive formation at an initial pore pressure of 12,600 psia.

Permeability ratio is the permeability calculated as a function of pressure divided by the

initial permeability. From the plot we can observe that as the reservoir is depleted the

pore pressure decrease and permeability is significantly reduced. Another important

observation is that as gamma increases the permeability reduction is higher.
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The methodology used in the current project can be summarized for radial and linear

modeling as follows.

Radial Infinite Acting Model

Simulate cases with k(p)
Plot m(p), not m'(p), vs.logt
Find slope of semi-log straight line, m

Calculate k and s

o M W npoE

Compare these with correct values

Radial Finite Acting Model

Simulate cases with k(p)

Plot m(p), not m'(p), vs.t
Find slope of straight line, Mpgg

Calculate Vp and OGIP
Compare these with correct values

o A~ W NP

Linear Infinite Acting Model

Simulate cases with k(p)
Plot m(p), not m'(p), vs. v/t

Find slope of straight line, m

Calculate k and s

o M . npoPE

Compare these with correct values
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Linear Finite Acting Model

Simulate cases with k(p)

Plot m(p), not m'(p), vs.t
Find slope of straight line, Mpgg

Calculate Vp and OGIP
Compare these with correct values

o &M w D

Data used for each model, radial and linear, is described in Appendix C. In addition, in

Appendix D have been included the data files used in GASSIM simulator for each case.
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CHAPTER IV

STRESS-DEPENDENT PERMEABILITY RADIAL CASES

This chapter includes results and discussion of analytical and numerical simulation of
stress-dependent permeability considering a reservoir with radial geometry. The analysis
is presented for transient flow and pseudo-steady state flow, as well as constant gas rate
and constant bottom hole pressure cases. Data files used in simulation runs are included
in Appendix D. In addition, derivation of equations used to calculate permeability and

skin factor as well as reservoir pore volume and OGIP are described in Appendix E.

4.1 Infinite Acting, Constant qgq
4.1.1 Case 1: gy = 10 Mscf/D

This section starts presenting the numerical results from GASSIM simulator for the case
with gas rate 10 Mscf/D. The important point is to analyze the portion of the curve that
correspond with infinite acting or transient flow, to calculate permeability and skin
factor from the slope of each curve that correspond with different values of gamma, y.
The analysis is made in terms of pseudo-pressure m(p); semi log plot of m(p) versus time
indicate a straight line with a slope that is related directly to the value of permeability.
Fig. 4.1 show results of analytical and numerical simulation for y = 0, that means; no

stress dependent permeability is considered.
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Fig. 4.1 — Semi-log plot, analytical and numerical match for infinite acting radial case,

constant g

Fig. 4.1 indicates a satisfactory match between analytical solution and numerical

simulation regarding a radial model, constant gas rate and non-stress dependent

permeability. In the plot is visible a small separation for early time, between 1 and 10

days due to numerical error. The numerical error can be minimized reducing the grid

dimensions and time steps in the simulator. This results validate the simulation model

fory=0.

To investigate the effect of stress-dependent permeability on the reservoir response,

scenarios with different values of gamma (y) are considered. As the value of gamma

increase, means that exists a stronger dependency of permeability on pressure. Fig. 4.2

presents results in terms of pseudo pressure for a radial reservoir in transient flow.
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Fig. 4.2 — Semi-log plot, effect of pressure-dependent permeability for an infinite acting
radial reservoir producing at constant gy = 10 Mscf/D.

Observing Fig. 4.2, we can see that for each value of gamma (y) considered, a semi log
straight line (SLSL) is obtained. Each SLSL has a different slope, which is directly
related to permeability and skin using the analytical solution. As expected, the
permeability (k) and skin factor (s) calculated from the slope of the curve gamma cero
(y=0) is the original reservoir permeability and cero skin. In other words; for y=0, Keaic =
0.0025 md and s = 0. As the value of gamma increase, the slope obtained is higher; it is
due to the permeability reduction in the reservoir as it is being depleted at constant gas
rate. These results make sense and agree with Darcy’s law; keeping the gas rate constant,
whatever reduction in reservoir permeability during depletion time lead to a higher
pressure drop, that explain the higher value of each slope as gamma increase. It is
important to point out that for this particular case of gy = 10 Mscf/D, semi log plot
indicate a straight line for each value of gamma, later on in this chapter, a case with a
higher constant gas rate is also discussed.
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Now, the discussion is moved to the permeability calculations. Permeability is calculated
from the slope of each curve in Fig. 4.2 using the analytical solution equation. The initial
reservoir permeability used in the GASSIM simulator was 0.0025 md. Fig. 4.3 shows the
results of calculations.
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y, psi™

Fig. 4.3 — Permeability ratio vs. gamma, radial case, constant gy = 10 Mscf/D.

Fig. 4.3 is a plot of permeability reduction versus gamma. Permeability ratio is the
permeability calculated in each run divided by the initial permeability (k=0.0025 md).
From that plot we can notice that the higher the value of gamma the higher is the
permeability reduction in the reservoir, a 24% permeability reduction occur for y=0.001.
In addition, as a conclusion for this particular case, where q¢=10 Mscf/D, a linear
relation is obtained between permeability ratio and gamma.

The same analysis can be drawn for skin factor calculations. It is used the definition of

skin factor to investigate the magnitude of permeability reduction in the reservoir in
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terms of pore pressure. That means, the additional pressure drop necessary in the
reservoir to maintain a gas rate constant meanwhile the permeability is reduced due to
reservoir depletion. Skin factor is calculated from Fig. 4.2 at intersect of each curve with

‘y’ axe. Fig. 4.4 shows the results.
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Fig. 4.4 — Skin factor vs. gamma, radial case, constant gy = 10 Mscf/D.

Fig. 4.4 corresponds with a plot of skin factor versus gamma. The analytical solution
imply a non-skin case, s=0. For the range of gamma considered in this case, skin vary
between -0.079 and -0.876. The fact that from numerical simulation we do not get a skin
s=0 for gamma y=0, is explained as numerical error in the simulation runs. In addition,

for this particular run, is obtained a straight-line relation between skin factor and gamma.

Analyzing the results for this particular scenario, is concluded that a linear response is
obtained for [m(pi)-m(pwi)]/qq vs. time for all gamma. Now, it is important to investigate
the range of pressure drop originated by the production at constant gas rate of 10

Mscf/D. Comparison is made in terms of m(p) and m'(p). The term m(p) correspond to
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the pseudo pressure defined originally by Al-Hussany’. The term m'(p) is the pseudo

pressure including the stress-dependent permeability function. Fig. 4.5 shows the results.
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Fig. 4.5 — Plot m'(p) vs. m(p), radial case, constant gq = 10 Mscf/D.

In Fig. 4.5 the plot correspond with m'(p) versus m(p). Gas properties were calculated
using a reservoir temperature of 290 °F, gas specific gravity of 0.717 and initial pressure
of 8,800 psi. Each curve corresponds with a different value of gamma. The line in the
top represents a non-stress sensitive scenario, y = 0, for this case a straight line is
obtained. As gamma start to increase from 0 to 0.001, the curves start to bend
downward, and the relation is not longer linear. The maximum pressure drop (pi-pws)
occurred for the case with y = 0.001 and it was 300 psi (pi=8,800 psi; pwi=8,500psi). The
squared dots localized at the end of each line indicate the range of pressure studied in
this case (q;=10Mscf/D). It is noticeable that the squared dots are localized in a region

over the continuous line where still exist a linear relation between m(p) and m'(p), that

explain the results analyzed in this case, where a linear response is obtained for [m(p;)-
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m(pwi)]/qq vs. time for all gamma. Further details about pseudo pressure and effect of

non-linear term ¢ xc, on permeability and skin factor calculations for Case 1 are given

in Appendix G.

4.1.2 Case 2: qq = 40 Mscf/D

In order to compare results with case 1, it is also considered a different scenario with a
higher gas rate, fluid and reservoir properties are the same, and the only change is the
constant gas rate that is set up to 40 Mscf/D. Running this case is desirable to validate
results obtained in case 1 and try to get a correlation between permeability, skin and
gamma. Similar to case 1, the range of gamma values is from 0 to 0.001. Results of case
2 are shown in Fig. 4.6.
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Fig. 4.6 — Semi-log plot, effect of pressure-dependent permeability for an infinite acting
radial reservoir producing at constant gy = 40 Mscf/D.



30

Fig. 4.6 is a plot of [m(pi)-m(pwr)]/qq vs. time considering gas rate of 40 Mscf/D. The
figure shows that for low values of gamma (between 0 and 0.005) there is a straight line
from the semi log plot. For larger values of gamma the curves start to tilt upward
indicating that no longer exist a linear relation. That behavior is caused by a significant
reduction on permeability as the reservoir is depleted at constant rate. All the curves
correspond with a transient flow period, however, the curves corresponding to y=0.0008
and y=0.001 behave like a response of a smaller reservoir; it means a reservoir with
smaller dimensions than actual. This analysis lead to the fact that the values of
permeability and skin factor calculated depend on the value of gamma and the case

considered (gas rate).

Calculated permeability from the slope of each curve in Fig. 4.6 is compared with the

initial reservoir permeability and results are shown in Fig. 4.7.
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Fig. 4.7 — Permeability ratio vs. gamma, radial case, constant qq = 40 Mscf/D.

Fig. 4.7 is a plot of permeability ratio vs. gamma. The permeability ratio is obtained as
the permeability calculated from each curve in Fig. 4.6 divided by the original
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permeability. For y=0, the permeability ratio is 1; implying a non-stress sensitive
formation. As expected, for a higher value of gamma there is a significant reduction on
the permeability of the reservoir as it is depleted at constant gas rate of 40 Mscf/D. In

this case, a 95% permeability reduction occur for y=0.001.

Skin factor are then calculated from intersect of each curve in Fig. 4.6. Results of skin

calculations are presented in Fig. 4.8.
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Fig. 4.8 — Skin factor vs. gamma, radial case, constant gq = 40 Mscf/D.

The calculated skin factor for this case shows a larger absolute value if compared with
results of case 1, it is due to the higher constant gas rate used in the simulator. Skin

varies from -0.113 to —4.758. The curve does not show a linear relation between skin and

gamma.

Similar to case 1, is made an investigation about the range of pressure drop originated by

the production at constant gas rate of 40 Mscf/D. Comparison is made in terms of m(p)
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and m'(p). The term m(p) correspond to the pseudo pressure defined originally by Al-
Hussany'. The term m'(p) is the pseudo pressure including the stress-dependent

permeability function. Fig. 4.9 shows the results.
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Fig. 4.9 - Plot m'(p) vs. m(p), radial case, constant gy = 40 Mscf/D.

In Fig. 4.9 the plot correspond with m'(p) versus m(p). Gas properties were calculated
using a reservoir temperature of 290°F, gas specific gravity of 0.717 and initial pressure
of 8,800 psi. Each curve corresponds with a different value of gamma. The line in the
top represents a non-stress sensitive scenario, y = 0, for this case a straight line is
obtained. As gamma start to increase from 0 to 0.001, the curves start to tilt downward,
and the relation is not longer linear. The maximum pressure drop (pi-pw) occurred for
the case with gamma = 0.001 and it was 3029 psi (pi=8,800 psi; pwi=5,771psi). The
squared dots localized over each continuous line indicate the range of pressure studied in
this case (gy=40Mscf/D). It is clear that only for gamma between 0 and 0.0005 the

squared dots are localized in a region over the continuous line where still exist a linear
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relation between m(p) and m'(p), that explain the results analyzed in this case, where a
linear response is obtained for [m(pi)-m(pw)l/qg Vvs. time for all gamma. Something
interesting happen for gamma higher than 0.0005, and it is that the pressure range
studied cover a significant portion of the curve that is not straight line, that means, there

is not longer a linear relation between m(p) and m'(p) that can explain the non linear

response obtained for [m(pi)-m(pws)]/qq vs. time for y > 0.005.

4.2 Infinite Acting, Constant pys

4.2.1 Case 3: pws = 4,000 psi

Case 3 corresponds with a simulation run where the control mode is the bottom hole
pressure and it is kept constant to 4,000 psi. It is the special interest to investigate the
reservoir response for a stress dependent permeability in terms of pseudo pressure and
time, and then calculate permeability and skin factor from transient flow period. First at
all, a comparison is made between numerical and analytical solution for non-stress
dependent permeability reservoir; that means gamma is cero (y=0). Fig. 4.10 shows the

match between both solutions.
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Fig. 4.10 - Semi-log plot, analytical and numerical match for infinite acting radial case,
constant pws.

It is presented in Fig. 4.10 the numerical and analytical results in terms of pseudo
pressure, m(p), and time. Semi log plot of this variables indicate a straight line for
transient flow period in a radial reservoir. From the plot is visible that there is a pretty
good match between the numerical and analytical solution, however, the first 2 days of
simulation there is a numerical error, due to time and space dimension specified in the
simulator. The numerical error can be minimized reducing the grid dimensions and time

steps in the simulator. This results validate the simulation model for y = 0.

Then, we will move forward to see the results by incorporating the stress dependent
permeability by increasing the values of gamma in each simulation run. Results are

shown in Fig. 4.11.
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Fig. 4.11 — Semi-log plot, effect of pressure-dependent permeability for an infinite acting
radial reservoir producing at constant p,; = 4000 psi.

Fig. 4.11 corresponds with the numerical simulation results for a radial reservoir with
constant bottom hole pressure (4,000 psi). The plot is in the form 1/qq vs. log t. For a
non-stress dependent permeability formation this plot leads to a straight line and from
the slope is calculated permeability and skin factor. As it is included stress dependent
permeability by considering different values of gamma, the result indicate also a straight
line for the transient flow period with a different slope. The higher the value of gamma
the higher is the slope of the curve. That results imply a reduction on gas rate production
with time as the permeability is reduced in the reservoir and the bottom hole pressure is
kept constant, that obey Darcy’s law. An important point to mention here is that for that

particular case with a pressure draw down of 4,800 psi all the curves are straight lines.
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Then, from each curve in Fig. 4.11 it is calculated the slope and consequently, the
permeability of each simulation run to be compared with the initial permeability

considered in the reservoir. Results are in Fig. 4.12.
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Fig. 4.12 - Permeability ratio vs. gamma, radial case, constant pys= 4000 psi.

Fig. 4.12 shows permeability ratio versus gamma. It is perceived that for gamma cero
there is not reduction on permeability (Kcac / Kpi = 1). For higher values of gamma, the
permeability calculated from each slope in Fig. 4.11 is lower, becoming almost 80%
reduction on permeability for the case with y = 0.001. The correlation between

permeability reduction and gamma has an exponential form.

Skin factor is calculated in a similar way, using the slope of each curve from Fig. 4.11.
Results are shown in Fig. 4.13. The calculation of skin factor for y=0 is very close to
cero (s=-0.017); difference is caused by numerical error introduced in the simulator by
dimensions in the grid and time steps. As expected, for higher values of gamma, the
calculated skin factor increase and is all the time positive. That indicates an introduction

of damage in the reservoir due to the reduction on permeability as the reservoir is
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depleted. The highest value of skin is 1.17 and correspond with the highest value of

gamma, y = 0.001,
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Fig. 4.13 - Skin factor vs. gamma, radial case, constant p,s = 4000 psi.

As it was discussed in the constant gas rate cases, for this constant bottom hole pressure
case, an investigation on the range of pressure drop imposed in the reservoir is made.
The important point here is to know the range of pressure where m(p) and m'(p) have a
linear relation. Results are discussed in Fig. 4.14. The plot is m'(p) vs. m(p). Both
variables are the pseudo pressure defined by Al-Hussainy?, but the first include the effect
of having a stress sensitive formation. Gas properties are calculated using as initial
values, a specific gravity of 0.717 and a reservoir temperature of 290°F. Case 3
correspond with a constant bottom hole pressure of 4,000 psi, which imply that the
pressure drop in the reservoir is constant to 4,800 psi. Each curve corresponds with a
different value of gamma. The line in the top represents a non-stress sensitive scenario, y
= 0, for this case a straight line is obtained. As gamma start to increase from 0 to 0.001,

the curves start to tilt downward, and the relation is not longer linear. The squared dots
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localized over the continuous lines indicate the range of pressure studied in this case (pws
=4,000 psi). From Fig. 4.14 is clear a very important difference between this case and
the one with constant gas rate (cases 1 and 2). The squared dots are localized in a region

over the continuous line where there is not a linear relation between m(p) and m'(p)

That results suggest that lines in Fig. 4.11 (1/qq vs. time) should not be straight lines,

however, based in simulation results they are straight lines.
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Fig. 4.14 - Plot m'(p) vs. m(p), radial case, constant py: = 4000 psi.

4.2.2 Case 4: pws = 2,000 psi

In order to compare results from previous case, it is also considered a case with a
different bottom hole pressure. Case 4 corresponds with a simulation run where the
bottom hole pressure is 2,000 psi. The special interest is to investigate the reservoir

response for a stress dependent permeability in terms of pseudo pressure and time, then
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calculate permeability and skin factor from transient flow period. Fig. 4.15 shows the

simulation results.
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Fig. 4.15 — Semi-log plot, effect of pressure-dependent permeability for an infinite acting

radial reservoir producing at constant p,; = 2000 psi.

Fig. 4.15 present the numerical solution for constant bottom hole pressure 2,000 psi. The

plotting variable is 1/qg vs. time, and is observable that for transient flow period a

straight line is obtained for each value of gamma considered. As the value of gamma

increase a straight line with a higher slope is obtained, that obeys Darcy’s law and

implies that gas rate decline meanwhile permeability decrease as the reservoir is

depleted. An important point to mention here is that for that particular case with a

significant pressure draw down (6,800 psi) all the curves are straight lines. From that

figure is calculated the slope of each curve and plugged into the corresponding equation

to get the values of permeability. Permeability calculations are shown in Fig. 4.16.
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The permeability calculated from each slope is lower as the values of gamma increase.
That indicates a higher reduction in permeability in the reservoir as gamma is increased.
An 86% permeability reduction is obtained for the case with the largest gamma (y =
0.001).
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Fig. 4.16 - Permeability ratio vs. gamma, radial case, constant p,;= 2000 psi.

Skin factor is also calculated from results presented in Fig. 4.15. Getting the slopes of
the curves, plugging them into the corresponding equations allow to get the values of
skin for each gamma considered. Results are shown in Fig. 4.17. For this constant
bottom hole pressure case calculated skin factors increase and are positive as gamma
increase. Due to numerical error in the simulator, the value of skin factor obtained for
v=0 is not cero (s=-0.063), however it is close to cero and is considered satisfactory in
this project. This can be improved reducing time and space dimensions in the simulator

runs.
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Fig. 4.18 - Plot m'(p) vs. m(p), radial case, constant py: = 2000 psi.
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The range of pressure drop considered in this case is 6,800 psi (pi=8,800 psi;
pw=2,000psi), and as it is seen in Fig. 4.18, it covers a significant range of pseudo
pressures values. The squared dots over the continuous lines indicate that range of
pressure. For high values of gammas the plot suggest that there is not linear relation

between m(p) and m'(p), however, numerical results presented in Fig. 4.15 indicate that

for all values of gammas a straight line relation is obtained.

4.3 Finite Acting, Constant ggq

In this section is made a discussion of the pseudo steady state results, and particularly to
calculate the Original Gas in Place (OGIP) in the reservoir. It is desirable to investigate
how is affected the calculation of OGIP considering the stress dependent permeability
through the introduction of the gamma function. The methodology is to deplete the
reservoir at constant rate until it reaches the borders, then estimate the dimensions, pore

volume and estimate the original volume of hydrocarbon in place.

43.1 Case 5: qq = 10 Mscf/D

The discussion starts with the first case that corresponds with a constant gas rate of 10
Mscf/D in a radial reservoir.
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Fig. 4.19 — Semi-log plot, analytical and numerical match for finite acting radial case,
constant qg.

The method uses the analytical solution of pseudo steady state at the inner boundary,
then estimate the reservoir pore volume from the slope of the cartesian plot [m(pi)-

m(pwr)]/dq Vs. time, as described in Appendix D.

Fig. 4.19 shows the results of compare analytical and numerical solutions for a non-
stress sensitive formation. It is clear that there is a satisfactory match for both early time
and late time. Early time corresponds with transient flow where there the reservoir
behaves like to be infinite; no limits are found in that portion, and the match is between
numerical and transient analytical solutions curves. For about 5,000 days start the
transition time to pseudo steady state period and the match corresponds with the PSS
analytical solution curve, the match is pretty good. These results confirm and validate

the numerical model.
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Fig. 4.20 — Cartesian plot, effect of pressure-dependent permeability for a finite acting
radial reservoir producing at constant gy = 10 Mscf/D.

In Fig. 4.20 are shown the numerical simulation results considering stress dependent
permeability, this is, regarding several values of gamma. This is a Cartesian plot of
pseudo pressure versus time and it reflect the pseudo steady state (PSS) period, the
portion of the curve go from t=10,000 days to t=300,000 days. From the plot is seen that
for each gamma a different curve is obtained, in all cases they are straight lines with
different slopes. Non linearity has no significant effects over results due to a low
pressure draw down considered in this case (qy = 10 MScf/D), that is way results show
straight lines for all values of gamma. As the gamma increase results imply that PSS
period start earlier in the model, that agree with the fact that a larger pressure drop is
necessary as the permeability decrease in the reservoir due to depletion, and this lead to
hit the borders of the reservoir in a smaller time. This is represented in Fig. 4.20 by a

higher slope in the line as the value of gamma increase.
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Fig. 4.21 — OGIP ratio vs. gamma, radial case, constant gy = 10 Mscf/D.

Now, it is made a discussion about the calculation of OGIP. The pore volume of the
reservoir is calculated form the slope of each line in Fig. 4.20. Then, using initial gas
saturation, Sgi, of 53% is calculated the OGIP from the volumetric equation. Results are
presented in Fig. 4.21. This figure plot the ratio of gas in place versus gamma, it is, the
OGIP calculated for each value of gamma divided for the OGIP considering a non-stress
sensitive formation, y=0. Fig. 4.21 indicates a proportional reduction of calculated gas in
place in the reservoir as gamma increase. The meaning of that result is that the reservoir
looks to be of smaller dimensions as gamma increase. This obeys the facts that for
higher values of gamma, a larger pressure drop occurs and the limits of the reservoir are

reached in an earlier time.
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4.3.2 Case 6: qq = 20 Mscf/D

Case 6 correspond with a higher constant gas rate to deplete the reservoir, here is

considered a gas rate of 20 Mscf/D.
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Fig. 4.22 — Cartesian plot, effect of pressure-dependent permeability for a finite acting
radial reservoir producing at constant gy = 20 Mscf/D.

The point here is to analyze a case with a higher draw down imposed in the reservoir.
Fig. 4.22 present results for this case. Similar to previous case 5, Fig. 4.22 is a Cartesian
plot of pseudo pressure versus time. The portion of the time important to analyze
correspond with the pseudo steady state period. It is visible that for low values of gamma
a straight line is obtained; however, for larger values of gamma, as y = 0.001, the curve
start to tilt upward and no longer is straight line. This is the direct effect of larger draw
down and higher level of permeability reduction introduced by high value of gamma. It

is clear that each curve is affected by non-linearity in the solution. From that plot is
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obtained a wrong value of OGIP. To overcome the problem, in this project is used the
concept of normalized pseudo time, introduced by Ibraim? and described in chapter 2.
The normalized pseudo time provides a plotting function for smoothing the production

data by taking the effect of reservoir properties change with average pressure.

Fig. 4.23 shows the result of calculating pseudo time, t,, for the case where y = 0.0. It is
visible that the new function linearizes production data by considering reservoir
properties changes. Consequently, from the slope of the straight line is calculated the

OGIP with more accuracy.
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Fig. 4.23 — Time and normalized pseudo time for a finite acting radial reservoir
producing at constant gy = 20 Mscf/D, Case y= 0.0.
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A similar method is applied for each curve in Fig. 4.22; they are linearized in terms of
reservoir properties variation. Then, calculating the slope of each curve, allow us to get

the values of pore volume and OGIP. Results are presented in Fig. 4.24.
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Fig. 4.24 - OGIP ratio vs. gamma, radial case, constant g = 20 Mscf/D.

Fig. 4.24 shows the level of reduction in the calculated OGIP considering a stress

sensitive formation. For y=0.001 the total reduction in the calculated OGIP is about 58%.

4.4 Finite Acting, Constant pus

This section discusses the results of numerical simulation by depleting the radial
reservoir at constant bottom hole pressure. Two cases are considered, the first one with
pwt = 4,000 psi and second one with pys = 2,000 psi. The major interest is to analyze the
PSS period and estimate pore volume and OGIP in the reservoir.
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4.4.1 Case 7: pws = 4,000 psi

Case 7 correspond with a constant pressure drop of 4,800 psi in the reservoir. Numerical

results are presented in the form [m(p;)-m(pws)]/qg versus time in Fig. 4.25.
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Fig. 4.25 — Cartesian plot, effect of pressure-dependent permeability for a finite acting
radial reservoir producing at constant p,; = 4000 psi.

Fig. 4.25 is a Cartesian plot that shows the reservoir response during PSS period, in this
particular plot the solution follows a straight-line behavior. The results are presented for
different level of stress dependent permeability, from the line in the bottom to the line in
the top, the gamma values increase. For all the range of gamma a straight line is
obtained, with different slopes. As gamma is higher, the slope form the curve is higher.
Pore volume and OGIP are calculated from that slope. In Fig. 4.26 it is observable the
effect of a stress dependent permeability on the OGIP calculated. The results indicate a

significant reduction of calculated gas in place in the reservoir as gamma increase. These
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results are similar to the cases with constant gas rate, the reservoir behave like being of

smaller dimensions for higher values of gamma.
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Fig. 4.26 - OGIP ratio vs. gamma, radial case, constant pys = 4000 psi.
4.4.2 Case 8: pws = 2,000 psi

Case 8 correspond with a lower bottom hole pressure to deplete the reservoir, here is
considered a pws of 2,000 psi. The main interest is to analyze a case with a higher draw
down imposed in the reservoir. Fig. 4.27 shows the results for this case.
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Fig. 4.27 — Cartesian plot, effect of pressure-dependent permeability for a finite acting
radial reservoir producing at constant pys = 2000 psi.

Similar to case 7, Fig. 4.27 is a Cartesian plot of [m(pi)-m(pwr)]/0g Versus time. Results
are presented for the PSS period in the reservoir. It is important to mention that for all
the range of gamma studied and for a 6,800 constant pressure drop in the reservoir, a
straight line is obtained. Each curve has a higher slope than previous one as gamma
increase. These results lead to the conclusion that no matter the range of pressure drop in
the reservoir; the Cartesian plot is always a straight line with different slopes.
Calculating the slope of each curve, we come out with reservoir pore volume and OGIP.

Results are shown in Fig. 4.28.
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Fig. 4.28 - OGIP ratio vs. gamma, radial case, constant ps = 2000 psi.

Fig. 4.28 shows the level of reduction in the calculated OGIP considering a stress

sensitive formation. For y=0.001 the total reduction in the calculated OGIP is about 83%.



53

CHAPTER V

STRESS-DEPENDENT PERMEABILITY LINEAR CASES

This chapter includes results and discussion of analytical and numerical simulation of
stress-dependent permeability considering a reservoir with linear geometry. The analysis
is presented for transient flow and pseudo-steady state flow, as well as constant gas rate
and constant bottom hole pressure cases. Data files used in simulations are included in
Appendix D. In addition, derivation of equations used to calculate permeability and skin
factor as well as reservoir pore volume and OGIP are described in Appendix F.

5.1 Infinite Acting, Constant qgq

This section starts presenting the numerical results from GASSIM simulator for the case
with constant gas rate 10 Mscf/D. The main objective here is analyze the portion of the
curve that correspond with infinite acting or transient flow, to calculate permeability and
skin factor from the slope of each curve that correspond with different values of gamma,
y. The analysis for linear flow is made in terms of pseudo-pressure m(p); the plot of
log[m(p)] versus log(t) indicate a straight line with a slope of 1/2 that is related directly
to the value of permeability. Fig. 5.1 show results of analytical and numerical simulation

for y = 0, that means; no stress-dependent permeability is considered.
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Fig. 5.1 — Log-log plot, analytical and numerical match for infinite acting linear case,
constant gg.

Fig. 5.1 indicates a satisfactory match between analytical solution and numerical
simulation regarding a linear model, constant gas rate and non-stress-dependent
permeability. It is also visible a very small separation for early time, between 1 and 2
days due to numerical error. The numerical error can be minimized reducing the grid
dimensions and time steps in the simulator. This results validate the simulation model

fory =0.

To investigate the effect of stress-dependent permeability on the reservoir response,
scenarios with different values of gamma (y) are considered. As the value of gamma
increase, means that exists a stronger dependency of permeability on pressure. Fig. 5.2
presents results in terms of pseudo pressure for a linear reservoir in transient flow

condition.
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Fig. 5.2 — Square root of time plot, effect of pressure-dependent permeability for an
infinite acting linear reservoir producing at constant qq = 10 Mscf/D.

For this scenario, analysis of linear flow is represented by a plot of variables [m(p;)-

m(pwi)]/qq Vversus Jt . For a non-stress sensitive formation, y=0, the slope of that plot
correspond with a straight line. Observing Fig. 5.2, it is seen that for values of gamma
(y) less than 0.001, the response can be considered as straight line, having each straight
line a different slope, which is directly related to permeability and skin using the
analytical solution equations. A very important result is that for values of gamma greater
than 0.001, the reservoir response is not longer straight line, curves start to bending
upward, indicating a stronger dependency of permeability on pore pressure. It means that
at each time, a different tangent is obtained and different results are obtained for
permeability and skin calculated using analytical solution.

As expected, the permeability (k) and skin factor (s) calculated from the slope of the
curve gamma cero (y=0) is the original reservoir permeability and cero skin. In other
words; for y=0, Keac = 0.0025 md and s = 0. As the value of gamma increase, the slope

obtained is higher; it is due to the permeability reduction in the reservoir as it is being
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depleted at constant gas rate. These results make sense and agree with Darcy’s law;
keeping the gas rate constant, whatever reduction in reservoir permeability during
depletion time lead to a higher pressure drop, that explain the higher value of each slope

as gamma increase.

Now, is included some discussion about permeability calculations. Permeability is
calculated from the slope of each curve in Fig. 5.2 using the analytical solution equation.
The initial reservoir permeability used in the GASSIM simulator was 0.0025 md. Fig.

5.3 shows the results of calculations.
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Fig. 5.3 — Permeability ratio vs. gamma, linear case, constant gy = 10 Mscf/D.

Fig. 5.3 is a plot of permeability reduction versus gamma. Permeability ratio is the
permeability calculated in each run divided by the initial permeability (k=0.0025 md).
From that plot is clear that the higher the value of gamma the higher is the permeability
reduction in the reservoir, a 50% permeability reduction occur for y=0.004. In addition,
can be concluded that for this particular case, where qy=10 Mscf/D, a linear relation is

obtained between permeability ratio and gamma.
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The same analysis can be drawn for skin factor calculations. It is used the definition of
skin factor to investigate the magnitude of permeability reduction in the reservoir in
terms of pore pressure. That means, the additional pressure drop necessary in the
reservoir to maintain a gas rate constant meanwhile the permeability is reduced due to
reservoir depletion. Skin factor is calculated from Fig. 5.2 and using equations from
analytical solution of linear flow constant gas rate described in appendix E. Fig. 5.4

shows the results.
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Fig. 5.4 — Skin factor vs. gamma, linear case, constant gq = 10 MScf/D.

Fig. 5.4 corresponds with a plot of skin factor versus gamma. The analytical solution
imply a non-skin case, s=0. For the range of gamma considered in this case, skin varies
between 0.0004 and -0.016. The fact that from numerical simulation we do not get a skin
s=0 for gamma y=0, is explained as numerical error in the simulation runs. However, it is
also understandable that the variation of skin factor for the range of gammas analyzed is

very small. The greater gamma the more negative is skin factor.

Now, is investigated the range of pressure drop originated by the production at constant
gas rate of 10 Mscf/D. Comparison is made in terms of m(p) and m'(p). The term m(p)
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correspond to the pseudo pressure defined originally by Al-Hussainy®. The term m'(p) s

the pseudo pressure including the stress-dependent permeability function. Fig. 5.5 shows

the results.
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Fig. 5.5 - Plot m'(p) vs. m(p), linear case, constant gy = 10 MScf/D.

In Fig. 5.5 the plot correspond with m'(p) versus m(p). Gas properties were calculated
using a reservoir temperature of 290 °F, gas specific gravity of 0.717 and initial pressure
of 8,800 psi. Each curve corresponds with a different value of gamma. For a non-stress
sensitive scenario, y = 0, a straight line is obtained (not shown in the plot). As gamma
start to increase from O to 0.004, the curves start to bend downward, and the relation is
not longer linear. The maximum pressure drop (pi-pws) occurred for the case with y =
0.004 and it was 6,600 psi (pi=8,800 psi; pw=2,200psi). The squared dots localized at the
end of each line indicate the range of pressure studied in this case (qy=10Mscf/D). Can
be seen that for gamma between 0 and 0.001 the squared dots are localized in a region
over the continuous line where still exist a linear relation between m'(p)and m(p), that
explain the results analyzed in this case, where a linear response is obtained for [m(p;)-
m(pwi)]/qq Vvs. time for all gamma. For values of gamma greater than 0.001, dots are
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localized in the curve section of each line, indicating that there is not a linear relation

between m(p) and m'(p).

5.2 Infinite Acting, Constant pys

This case corresponds with a simulation run where the control mode is the bottom hole
pressure and it is kept constant to 8,000 psi. An important point is to investigate the
reservoir response for a stress-dependent permeability in terms of pseudo pressure and
time, then calculate permeability and skin factor from transient flow period. First at all, it
is considered a comparison between the numerical and the analytical solution for non-
stress-dependent permeability reservoir; that means gamma is cero (y=0). Fig. 5.6 shows

the match between both solutions.
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Fig. 5.6 — Log-log plot, analytical and numerical match for infinite acting linear case,
constant pys.

In Fig. 5.6 is presented the numerical and analytical results in terms of pseudo pressure,

m(p), and time. Log-Log plot of this variables indicate a straight line with slope 1/2 for
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transient flow period in a linear reservoir. Can be observed from the plot that there is a
pretty good match between the numerical and analytical solution, however, the first 10
days of simulation there is a numerical error, due to time and space dimension specified
in the simulator. The numerical error can be minimized reducing the grid dimensions

and time steps in the simulator. This results validate the simulation model for y = 0.

Then, we will move forward to see the results by incorporating the stress-dependent
permeability by increasing the values of gamma in each simulation run. Results are

shown in Fig. 5.7.
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Fig. 5.7 — Square root of time plot, effect of pressure-dependent permeability for an
infinite acting linear reservoir producing at constant p,: = 8000 psi.

Fig. 5.7 corresponds with the numerical simulation results for a linear reservoir with
constant bottom hole pressure (8,000 psi) considering pressure-dependent permeability.
The plot is in the form [m(pi)-m(pw)l/ag Vs. Jt. For a non-stress-dependent
permeability formation this plot leads to a straight line and from the slope we calculate
permeability and skin factor. As it is included pressure-dependent permeability by

considering different values of gamma, the result indicate also a straight line for the
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transient flow period with a different slope. The higher the value of gamma the higher is
the slope of the curve. That results imply a reduction on gas rate production with time as
the permeability is reduced in the reservoir and the bottom hole pressure is kept constant,
that results obey Darcy’s law. An important point to mention here is that for that

particular case with a pressure draw down of 8,000 psi all the curves are straight lines.

Then, from each curve in Fig. 5.7 it is calculated the slope and consequently, the
permeability of each simulation run to be compared with the initial permeability

considered in the reservoir. Results are in Fig. 5.8.
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Fig. 5.8 - Permeability ratio vs. gamma, linear case, constant p,s = 8000 psi.

Fig. 5.8 shows permeability ratio versus gamma. It is noticed that for gamma cero there
is not reduction on permeability (Kcac / Kpi = 1). For higher values of gamma, the
permeability calculated from each slope in Fig. 5.7 is lower, becoming almost 82%
reduction on permeability for the case with y = 0.004. The correlation between

permeability reduction and gamma has an exponential form.
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Skin factor is calculated in a similar way, using the slope of each curve from Fig. 5.7.
Equations are described in Appendix E. Results are shown in Fig. 5.9. The calculation of
skin factor for y=0 is very close to cero (s=0.0003); difference is caused by numerical
error introduced in the simulator by dimensions in the grid and time steps. The higher
values of gamma the more negative is calculated skin factor. The lower value of skin is

about —0.0319 and correspond with gamma, y = 0.003.
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Fig. 5.9 - Skin factor vs. gamma, linear case, constant pys = 8000 psi.

As it was discussed in the constant gas rate cases, for this constant bottom hole pressure
case, an investigation on the range of pressure drop imposed in the reservoir is made.
The important point here is to investigate the range of pressure where m(p) and

m'(p) have a linear relation. Results are discussed in Fig. 5.10. The plot is m'(p)vs.

m(p). Both variables are the pseudo pressure defined by Al-Hussainy®, but the first
include the effect of having a stress sensitive formation. Gas properties are calculated
using as initial values, a specific gravity of 0.717 and a reservoir temperature of 290°F.
Current case corresponds with a constant bottom hole pressure of 8,000 psi, which imply

that the pressure drop in the reservoir is constant to 800 psi. Each curve corresponds
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with a different value of gamma. For a non-stress sensitive scenario, y = 0, a straight line
is obtained. As gamma start to increase from 0 to 0.004, the curves start to tilt
downward, and the relation is not longer linear. The squared dots localized over the
continuous lines indicate the range of pressure studied in this case (pw:=8,000 psi). From
Fig. 5.10 we can notice a very important difference between this case and the one with
constant gas rate (previous case). The squared dots are localized in a region over the

continuous line where there is not a linear relation between m(p) and m'(p). That results

suggest that lines in Fig. 5.7 {[m(pi)-m(pw)]/dq Vs. \/f} should not be straight lines,
however, based in simulation results they are straight lines. This is a particular result for
cases with constant bottom hole pressure; same results were obtained in chapter 4 for

cases with a radial geometry.
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Fig. 5.10 - Plot m'(p) vs. m(p), linear case, constant py: = 8000 psi.
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5.3 Finite Acting, Constant qq

In this section the discussion is focused on the pseudo steady state simulation results,
and particularly to calculate the Original Gas in Place (OGIP) in the reservoir. It is
desirable to investigate how is affected the calculation of OGIP considering the stress
dependent permeability through the introduction of the gamma function. The
methodology is to deplete the reservoir at constant rate until it reaches the borders, then
estimate the dimensions, pore volume and estimate the original volume of hydrocarbon
in place. Data files used in simulations are described in Appendix D. Derivation of

equations used in this section is described in Appendix E.

Discussion starts with the first case that corresponds with a constant gas rate of 10

Mscf/D in a linear reservoir.
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Fig. 5.11- Log-log plot, analytical and numerical match for finite acting linear case,
constant qg.
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It is used the analytical solution of pseudo steady state at the inner boundary, then
estimate the reservoir pore volume from the slope of the cartesian plot [m(pi)-m(pwr)]/qq

vs. time.

Fig. 5.11 shows the results of compare analytical and numerical solutions for a non-
stress sensitive formation. From plot is visible a satisfactory match only for early time.
Early time corresponds with transient flow where the reservoir behaves like to be
infinite; no limits are found in that portion, and the match is between numerical and
transient analytical solutions curves. For about 1,000,000 days start the transition time to
pseudo steady state (PSS) period and the match corresponds with the PSS analytical
solution curve; we observe from the plot that the match is not satisfactory for that
condition of flow, simulation results are always below the analytical solution during
PSS. Differences are due to non-linearity in the diffusivity equation, it means that

reservoir properties as ¢ uc; , have a significant change with pore pressure.
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Fig. 5.12 — Cartesian plot, effect of pressure-dependent permeability for a finite acting
linear reservoir producing at constant gy = 10 Mscf/D.
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In Fig. 5.12 are shown the numerical simulation results considering stress dependent
permeability, this is, regarding several values of gamma. This is a Cartesian plot of
pseudo pressure versus time and it reflects the pseudo steady state (PSS) period,
analytical solution imply a straight line for a non pressure dependent permeability and

small change in term ¢ uc,. Can be noticed that for each gamma a different curve is

obtained, and each curve is affected by non-linearity in the diffusivity equation. From
that plot is not good to calculate the OGIP, we would obtain a wrong value. To
overcome the problem, in this project is used the concept of normalized pseudo time,
introduced by Ibraim®® and described in detail in chapter 2. The normalized pseudo time
provides a plotting function for smoothing the production data by taking the effect of

reservoir properties change with average pressure.
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Fig. 5.13 — Normalized pseudo time for y = 0, linear case, constant gy = 10 Mscf/D.

Fig. 5.13 shows the result of calculating normalized pseudo time, t, for the non pressure

dependent permeability, case y=0. It is clear that the new variable linearizes production
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data by considering reservoir properties changes. Then, from the slope of the straight
line is calculated the OGIP with more accuracy.

From this analysis can be concluded that the normalized pseudo time gives the correct
OGIP because it takes into account the effect of properties change with average reservoir

pressure.

A similar method is applied for each curve in Fig. 5.12; they are linearized in terms of
reservoir properties variation. As an example of these calculations, result for the case of
v=0.0003 is shown in Fig. 5.14.
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Fig. 5.14 - Normalized pseudo time for y = 0.0003, linear case, constant gy = 10 Mscf/D.

It is important to notice that, as the gamma increase, results imply that PSS period start
earlier in the model, that agree with the fact that a larger pressure drop is necessary as
the permeability decrease in the reservoir due to depletion, and this lead to hit the
borders of the reservoir in a smaller time. This is derived making a comparison between

Fig. 5.13 and Fig. 5.14; there is a higher slope in the line for a higher gamma.
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Fig. 5.15 — OGIP ratio vs. gamma, linear case, constant ¢y = 10 Mscf/D.

Now, will be discussed the calculation of OGIP. The pore volume of the reservoir is
calculated from the slope of each straight line in Fig. 5.13 and 5.14, see Appendix E for
detailed description of equations. Then, using initial gas saturation Sgi, of 53% is
calculated the OGIP from the volumetric equation. Results are presented in Fig. 5.15.
This figure plot the ratio of gas in place versus gamma, it is, the OGIP calculated for
each value of gamma divided for the OGIP considering a non-stress sensitive formation,
v=0. Fig. 5.15 indicates a proportional reduction of calculated gas in place in the
reservoir as gamma increase. The meaning of that result is that the reservoir looks to be
of smaller dimensions as gamma increase. This obeys the facts that for higher values of
gamma, a larger pressure drop occurs and the limits of the reservoir are reached in an

earlier time.
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54 Finite Acting, Constant pus

This section discusses the results of numerical simulation by depleting the linear
reservoir at constant bottom hole pressure. The case considered correspond with a pus =
8,000 psi, data file is described in Appendix D. The major interest is to analyze the PSS
period and estimate pore volume and OGIP in the reservoir.

This case corresponds with a constant pressure drop of 800 psi in the reservoir. To check
the validity of the simulation, numerical results are compared with analytical solution for

v=0, this is presented in Fig. 5.16.
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Fig. 5.16 — Log-log plot, analytical and numerical match for finite acting linear case,
constant pur.

Results are presented in the form log{[m(pi)-m(pws)]/ag} versus log(t) in Fig. 5.16. From
the plot is clear that there is a satisfactory match for infinite acting period, but for PSS
condition the match is not good enough. Simulations results are always below the

analytical solution during PSS flow, differences are due to non-linearity in the
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term¢ uc,, it means that reservoir properties have a significant change with reservoir

pressure.
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Fig. 5.17 — Cartesian plot, effect of pressure-dependent permeability for a finite acting
linear reservoir producing at constant p,s = 8000 psi.

Fig. 5.17 is a Cartesian plot that shows the reservoir response during PSS period, the
results are presented for different level of stress dependent permeability, from the line in
the top to the line in the bottom, the gamma values increase. For all the range of gamma
a different curve is obtained. The analytical solution described in Appendix E imply that
a plot of log{[m(pi)-m(pwr)]/ag} versus t, lead to a straight line behavior. These results
are presented in Fig. 5.18. In that figure is made linear the PSS portion of the production
data.
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Fig. 5.18 — Semilog plot, pressure-dependent permeability, linear case, constant pys =
8000 psi.

As gamma is higher, the slope form the curve is higher. Each curve in Fig. 5.18 look
straight line, but a closer view reflects that they are not, and are affected by non-linearity

in the term ¢ x.c, . From that plot we would obtain a wrong value for OGIP. To solve the

problem, is used again the concept of normalized pseudo time in a similar way was done
in previous case with constant gas rate, it is described in chapter 2 and taken from
Ibrahim?%. Fig. 5.19 shows the result of calculating normalized pseudo time, t, for the
non pressure dependent permeability, case y = 0. From the plot is observable that the
new variable linearizes production data by considering reservoir properties changes.
Then, from the slope of the straight line is calculated the OGIP with more accuracy. The

same method is applied for each curve in Fig. 5.18.
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Fig. 5.19 - Normalized pseudo time for y = 0.0, linear case, constant py: = 8000 psi.

Then, pore volume and OGIP are calculated from the slope in Fig. 5.19 using the
normalized pseudo time. Results are shown in Fig. 5.20, and can be seen the effect of a
stress dependent permeability on the OGIP calculated. The results indicate a significant
increment of calculated gas in place in the reservoir as gamma increase. These results are
opposite to the cases with constant gas rate, the reservoir behave like being of larger

dimensions for higher values of gamma.
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CHAPTER VI
ANALYSIS OF RESULTS

This section concerns with the results obtained in chapters IV and V. As it was presented
previously, chapter IV refers to a reservoir with a radial geometry and chapter V a linear
reservoir. Discussion is based on the results of analytical solution and numerical

simulation considering stress dependent permeability.

The analysis is oriented toward solving the problem originally defined at the beginning
of this project in chapter I. In that section, was mentioned the necessity to investigate the
errors introduced estimating some reservoir parameters by using conventional well
testing analysis of a tight gas reservoir. Tight gas reservoirs exhibit stress sensitive
permeability, and for such reservoirs, pressure transient analysis and forecast
performance based on constant rock properties, especially permeability, can lead to

significant errors in parameters estimation.

Now, following is a discussion of some important results from this project:

1) For all cases analyzed, radial and linear models, a satisfactory match was reached
between the analytical solution and numerical simulation. Both, infinite acting and finite
acting period time have been matched with the corresponding analytical solution
considering constant qq and pw cases. This validates the performance of simulator
GASSIM.

2) For radial and linear model cases with low constant qg, a straight line is obtained
in the plot of pseudo pressure versus time during infinite acting period. That means, for
low draw down cases a straight line with different slope is obtained when considering
pressure dependent permeability. Permeability calculated from that slope is lower than

the correct value of the reservoir. Skin factor is also miscalculated.



75

3) When considering a larger draw down for radial and linear model, constant qg,
infinite acting results indicate that curves in the plot pseudo pressure versus time are
straight lines for low values of gammas and start to bending upward for large values of
gammas. These cases introduce significantly larger errors when calculating permeability
and skin factor.

4) In all cases with constant pys, radial and linear geometry, an important conclusion
is derived. For low and large draw down, results indicate a straight line for infinite acting
period in all range of gamma. That means a straight line with different slope is obtained
for each value of gamma. These results differ from that obtained with constant qq cases.
A significant error is introduced when estimating permeability and skin factor. That
results lead to the conclusion that is not possible to identify a stress dependent
permeability from the constant bottom hole pressure draw down scenario.

5) From results of reservoir infinite acting period we can conclude that permeability
reduction depends on gamma and reservoir draw down, gy or pwf, and that no correlation

can be made.

6) For finite acting period analysis, in all cases considered with constant gg and pus,
the OGIP is miscalculated. The level of error on calculations depends on the draw down
in the reservoir. The use of normalized pseudo time was necessary to correct for changes

in reservoir properties.

7) From results of reservoir finite acting period we can say that no correlation can
be made for calculation of OGIP; results depend on reservoir draw down, gq or pw and

gamma.
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In this project have been demonstrated the level of errors in the determination of
permeability, skin factor and OGIP using conventional well test analysis instead of a
pressure dependent permeability model. All of these results have a great impact in

business decisions and profitability for the oil company.

Miscalculation in the permeability and skin factor can lead to take wrong decisions
regarding well stimulation. That means to invest additional money to make well

stimulation jobs when there are not necessary, and it reduces the well profitability.

In the case of OGIP calculation, in most of the cases it is sub estimated, calculated
values are lower than the correct value. It can be taken as an advantage; if we consider

that additional gas wells and reserves would be incorporated in the exploitation plan.
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CHAPTER VII
CONCLUSIONS

During the development of this project, the following conclusions were obtained:

If pressure-dependence of permeability k(p) is ignored, erroneous values of
permeability, skin factor and OGIP will be calculated from well test analysis of

tight gas reservoirs.

In constant gas rate cases, for both radial and linear reservoir geometry, the plot
of pseudo pressure versus time give a straight line with different slopes for cases
with small draw down during infinite acting flow. For large draw down (larger
pressure range) curves start to bending up and straight line not longer exist. Then,
calculated k and s are wrong and depend on the case (qq considered).

In constant bottom hole pressure cases, radial and linear reservoir geometry, the
plot of pseudo pressure versus time give a straight line during infinite acting flow
for all range of pys considered, small and large draw down. A straight line with
different slope is obtained for each value of gamma. Results imply that is not
possible to identify a stress dependent permeability from a constant bottom hole
pressure draw down scenario. Calculated k and s are wrong and depend on the

case (pws considered).

From results of reservoir infinite acting period we can conclude that permeability
reduction depends on gamma and reservoir draw down, gq Or pus, and that no

correlation can be made.

For finite acting period analysis, in all cases considered with constant gy and pus,

the OGIP is miscalculated. The level of error on calculations depends on the
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draw down in the reservoir. The use of normalized pseudo time was necessary to

correct for changes in reservoir properties.

From results of reservoir finite acting period we can say that no correlation can
be made for calculation of OGIP; results depend on reservoir draw down, gq or

Pwi and gamma.

In this project | have demonstrated the level of errors in the determination of
permeability, skin factor and OGIP using conventional well test analysis instead
of a pressure dependent permeability model

The great impact of permeability, skin factor and OGIP calculations are traduced
in business decisions and profitability for the oil company. Miscalculation in the
permeability and skin factor can lead to take wrong decisions regarding well
stimulation. That means to invest additional money to make well stimulation jobs

when there are not necessary, and it reduces the well profitability.

In the case of OGIP calculation, in most of the cases it is sub estimated,
calculated values are lower than the correct value. It can be taken as an
advantage; if we consider that additional gas wells and reserves would be
incorporated in the exploitation plan.

In the absence of lab data, this project proves that permeability modulus concept
is a good mathematical approximation to define a relationship for permeability

and pore pressure in the tight gas reservoir.



NOMENCLATURE

B = formation volume factor, rcf/scf

¢ = fluid compressibility, 1/psi

¢t = rock compressibility, 1/psi

c; = total system compressibility, 1/psi

Jg = gas productivity index, Mscf.cp/D/psi®

k = permeability, md

m(p) = real gas pseudo pressure, psi*/cp
m(p_bar) = m(p) at average reservoir pressure, psi>/cp
m(pi) = m(p) at initial reservoir pressure, psi’/cp
m(pwi) = m(p) at flowing wellbore pressure, psi’/cp
OGIP = Original Gas in Place, m®, scf

p = pore pressure, psia

p_bar = average reservoir pressure, psi

pp = dimensionless pressure

pi = initial pore pressure, psia

PSS = pseudo-steady state condition

pwi = bottom-hole pressure, psi

qqy = gas flow rate, Mscf/D

r = radial distance from center of well, ft

rq = drainage boundary radius, ft

rv = wellbore radius, ft

T = temperature, °R

tp = dimensionless time

z = gas deviation factor

¢ = porosity

M= Viscosity, cp
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p = fluid density, Ibm/ft®

V = gradient

y="“gamma” permeability modulus

u(p) = viscosity as function of pressure, cp

Mpgg = Cartesian slope of m(pi)-m(pws)/qq Versus pseudo time, psi?/cp/Mscf

m{p) = modified gas pseudo pressure considering k(p), md*psia®/cp

Subscripts

Ac = cross sectional area
calc = calculated

D = dimensionless

g=gas
i = initial
r = radial

z = vertical
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APPENDIX A
REAL GAS DIFFUSIVITY EQUATION
Following is the derivation of the diffusivity equation considering real gas fluid. It

begins with definition of continuity equation, Darcy’s Law and equation of state for real
gas as:

Continuity Equation:
Vepi = - 00D (A1)
ot
Darcy’s Law:
U=V e, A2
P (A.2)
Equation of State:
pM
T LT T PPV PRIPIN A3
ZRT (A3)

Substituting Eq. (A.2) and (A.3) in Eq. (A.1) yield:

oM (ko) oo M
Ve o (-Zij = - ((;5 ZRT) ............................ (A.4)

Simplifying eq. (A.4):

Vok%Vp _ %((ﬁ?} e (AB)

Defining a pseudo pressure variable as:

And we can write a derivative of Eq. (A.6) as follow:

dm _ 2pdp _2p
de = zude and Vm= > VP oo (A7) & (A.8)
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Rearranging Eq. (A.5) yield:

20

2Py _20( P
Y ZﬂVp kat(¢zj(A9)

Substituting Eq. (A.8) into Eq. (A.9) yield:

V-Vm=33(¢§j e (A10)

k ot

Expanding and using chain rule in Eq. (A.10) yield:

Vzm:g{¢i(ﬁj+£%}@................................(A.ll)
k| dp\z zdp|ot

Multiplying and dividing by the same factor in Eq. (A.11):

vem= 22K ¢i[ﬂj+£d_¢ DB (A.12)
k dp\ z z dp |zu ot

Substituting Eq. (A.7) into Eq. (A.12) yield:

vzmzﬂ{ii(ﬁjﬁd—qa—m ............................... (A.13)
2 |pdplz) ¢dp| ot

Using definition of real gas compressibility:

c= L9 ﬂi(ﬂj = ii(ﬁj .............. (A.14)
o dp pM dp \zRT

Eq. (A.13) is simplified by:
om
vin=tere)

Finally, real gas diffusivity equation is:

2, PuC om
vVim = TR Ot e (A.16)
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APPENDIX B
REAL GAS DIFFUSIVITY EQUATION CONSIDERING PRESSURE DEPENDENT
PERMEABILITY
Following is the derivation of the diffusivity equation considering real gas fluid and

pressure-dependent permeability. It begins with definition of continuity equation,
Darcy’s Law and equation of state for real gas as:

Continuity Equation:
Vepi = - 90 (B.1)
ot
Darcy’s Law:
_ k
U=——Vp B.2
P (B.2)
Equation of State:
pM
T B.3
ZRT B3)

Substituting Eqg. (B.2) and (B.3) into Eq. (B.1) yield:

V.zRT ﬂVp =" ¢zRT P (= 23]
i Al Y _ o(.p
Simplifying Eq. (B.4) yield: Vek—Vp = —| =] e, (B.5)
Zu ot\" z

Defining pseudo pressure as follow:

p
o~ ~ [ kp

m =2 d
(p) _([ 1 P o (BLB)

Derivative of pseudo pressure is defined as:

dm'(p) _ 2kp dp
dé Ju QE oo



Eq. (B.7) can expressed as:

88

: 2k
vVm (p)_—pr ....(B.8)
Zu
Substituting Eq. (B.8) in Eg. (B.5) yield
0
V°Vm(p)—2—(¢£j ............................... (B.9)
ot
Expanding Eq. (B.9) and using chain rule:
. d (p), pd¢ | dp
v? =2/ —| — |+ ——— | —
m'(p) {¢dp(zj+zdp}dt ................ (B.10)
Multiplying and dividing by the same factor in Eq. (B.10):
Zu d (p), pdg |2kp op
VZm =2—— -r
(p)= 2kp {sﬁ i ( j . dp} e ot (B.11)
Rearranging Eq. (B.11) yield:
du| z ( ] 1dg |om'(p)
vZm —_ |—
'(p) = < | pdp Sdp | ot e (B.12)
Using definition of real gas compressibility:
c= 10 ﬂi(ﬂj = 51(3) .............. (B.13)
p dp pM dp \zRT pdp\z
Eqg. (B.13) is simplified by:
om'
vim'(p)= o ( Cf) (p) ..(B.14)
ot
Finally, real gas diffusivity equation is:
. om'(p)
v2m _ Pu Cy
(p) ” ot ...(B.15)
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APPENDIX C

RADIAL AND LINEAR MODELS

Following is a brief description of the radial and linear models used in the current
project. It is included the dimensions of each models as well as some initial reservoir

parameters.

1) Radial Model

Producer
A

«— Fe  —
/7 \
\ . /
\ //
Property Value

re, ft 3,000

I, ft 0.25

h, ft 362

T,°R 750

Bai, rcf/scf 0.0031371

Swi, fraction 0.47

¢, fraction 0.15

k, md 0.0025

Pore Volume, PV, Brcf 1.53

OGIP, Bscf 259.37




2) Linear Model
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Producer Well
A
o L o
Ay
¥
T —>» AC
h
l /
Property Value
L, ft 15,994
A, ft° 640,000
h, ft 800
Ay, ft 800
T, °R 750
Bgi, rcf/scf 0.0031371
Swi, fraction 0.47
¢, fraction 0.15
k, md 0.0025
Pore Volume, PV, Brcf 1.53
OGIP, Bscf 259.37




1) Radial Case, Constant qq

CMNT
CMNT
CMNT
CMNT
IMAX
JMAX
CMNT
RWEL
CROC
GRAV
PREF
TSC
PSC
T
NEWT
BETA
TABL
IMAP
SWAT
CWAT
GAMMA
END
CMNT
CMNT
CMNT
KX
KY
PHI
POI
CMNT
RR

CMNT
DELY
END
CMNT
CMNT
CMNT
PMAP
PLOT
CMNT
NAME
ALPH
DELT
DTMX
QG
PMIN
TIME
END

APPENDIX D

GASSIM DATA FILES

Radial Case, Pressure-Dependent Permeability, Constant Rate for Gas well

Single

53

1
(cfymodel

0.25

4.08E-06

0.717

8800

520

14.65

750

Grid

0.0025
0.0025
0.15
8800

-1

0.3
1.76
10.33
60.8
357.71
2104.7

361.99

Schedule

1000

Value

Data

0.36
2.1
12.34
72.58
427.07
2512.79

Data

10000
100

Data

(cf

0.43

14.73
86.66
509.88
3000

0.51
2.99
17.58
103.46
608.74

Swi*cw)/(1- Correction for

0.61
3.57
20.99
123.52
726.77

0.72
4.26
25.06
147.47
867.68

0.86
5.09
29.92
176.06
1035.92

water

1.03
6.07
35.73
210.2
1236.78

1.23
7.25
42.65
250.96
1474.59

91

1.47
8.65
50.92
299.62
1762.89



2) Radial Case, Constant pus

CMNT
CMNT
CMNT
CMNT
IMAX
JMAX
CMNT
RWEL
CROC
GRAV
PREF
TSC
PSC

NEWT
BETA
TABL
IMAP
SWAT
CWAT
GAMMA
END
CMNT
CMNT
CMNT

KY
PHI
POI
CMNT
RR

CMNT
DELY
END
CMNT
CMNT
CMNT
PMAP
PLOT
CMNT
NAME
ALPH
DELT
DTMX
QG
PWF
TIME
END

Radial Case, Pressure-Dependent Permeability, Constant Pwf for Gas well

Single

53

1
(cf)model

0.25

4.08E-06

0.717

8800

520

14.65

750

Grid

0.0025
0.0025
0.15
8800

-1

0.3
1.76
10.33
60.8
357.71
2104.7

361.99

Schedule

1000

Value

Data

0.36
2.1
12.34
72.58
427.07
2512.79

Data

10000
4000

Data

(cf

0.43
2.5
14.73
86.66
509.88
3000

0.51
2.99
17.58
103.46
608.74

Swi*cw)/(1- Correction for

0.61
3.57
20.99
123.52
726.77

0.72
4.26
25.06
147.47
867.68

0.86
5.09
29.92
176.06
1035.92

water

1.03
6.07
35.73
210.2
1236.78

1.23
7.25
42.65
250.96
1474.59

92

1.47
8.65
50.92
299.62
1762.89



3) Linear Case, Constant qq

CMNT
CMNT
CMNT
CMNT
IMAX
JMAX
CMNT
CMNT
CROC
GRAV
PREF
TSC
PSC

NEWT
BETA
TABL
IMAP
SWAT
CWAT
GAMMA
END
CMNT
CMNT
CMNT
KX
KY
PHI
POI
CMNT
DELX

CMNT
DELY

WIND
PHI
KX
KY
END
CMNT
CMNT
CMNT
PMAP
PLOT
CMNT
NAME
ALPH
DELT
DTMX
QG
PMIN
TIME
END

Linear Case, Pressure-Dependent Permeability, Constant Rate for Gas well

Single

105

1
(cf)model

0.25

4.08E-06

0.717

8800

520

14.65

750

4

0

0

1

0.47

0.0000041

0

Grid

0.0025
0.0025
0.15
8800

-1
0.5
25
100
150
150
200
200
200
200
200
200

800
800

0.075
0.0025
0.0025

Schedule

2
2

1

12

1
100000
1

1
10000000

Value

Data

0.6
30
100
150
150
200
200
200
200
200
200

Data

10000
100

Data

(cf

0.7
35
100
150
150
200
200
200
200
200
200

1
40
100
150
150
200
200
200
200
200
200

Swi*cw)/(1- Correction for

2
50
100
150
150
200
200
200
200
200
232

4

70
150
150
150
200
200
200
200
200

8
100
150
150
150
200
200
200
200
200

water

10
100
150
150
150
200
200
200
200
200

15
100
150
150
150
200
200
200
200
200

93

20
100
150
150
150
200
200
200
200
200
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4) Linear Case, Constant pus

CMNT Linear Case, Pressure-Dependent Permeability, Constant Pwf for Gas well

CMNT

CMNT Single Value Data

CMNT

IMAX 105

JMAX 1

CMNT (cf)model = (cf + Swi*cw)/(1- Correction for water

CMNT 0.25

CROC 4.08E-06

GRAV 0.717

PREF 8800

TSC 520

PSC 14.65

T 750

NEWT 4

BETA 0

TABL 0

IMAP 1

SWAT 0.47

CWAT 0.0000041

GAMMA 0

END

CMNT

CMNT Grid Data

CMNT

KX 0.0025

KY 0.0025

PHI 0.15

POI 8800

CMNT

DELX -1
0.5 0.6 0.7 1 2 4 8 10 15 20
25 30 35 40 50 70 100 100 100 100
100 100 100 100 100 150 150 150 150 150
150 150 150 150 150 150 150 150 150 150
150 150 150 150 150 150 150 150 150 150
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 232

CMNT

DELY 800

H 800

WIND 1 1 1 1

PHI 0.075

KX 0.0025

KY 0.0025

END

CMNT

CMNT Schedule Data

CMNT

PMAP 2

PLOT 2

CMNT

NAME 1 1 1 0 0

ALPH 1.2

DELT 1

DTMX 100000

QG 1 10000

PWF 1 8000

TIME 10000000

END
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APPENDIX E

ANALYTICAL SOLUTION FOR RADIAL DIFFUSIVITY EQUATION
Analytical Solution: Infinite Acting Radial Case

1) Constant g4

The solution of diffusivity equation is:

mp :%In(tD)+O.4045+s ........................... (E.1)

Dimensionless variables are defined as:

_ kh|m(p;)-m(p, )| kham(p)

= =, E.2
P 1422Tq, 1422Tq, (E2)
S = K (E3)
Puc, 1,
Substituting and reordering;

knAm(p) _ 1,1 000633kt | 40as s s (E.4)

1422Tq, 2 duc,r?
Am(p) _ 1422T | 2.303 |og(0'0063‘zkt] +0.4045+ S | ovovien. (E.5)

qg kh 2 ¢luct r-W
Am(p) _1637.4T log o.ooesfk + log(t) + 04045 s | (E.6)
q, kh N 11515 @ 1.1515

Am(p) _16374T |, 1637.4T [Iog(o.ooamk] 04045 s } €7

qq kh kh guc,r? | 1.1515 T11515 |
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Plotting, Am(p)

9

vslog(t) the slope correspond to: m = 163k7h.4T

Solving for Skin, s:

Am(p) 1 =log —0'0063§k +lo (t)+ 0.4045 + > (E.8)
g, m 1.1515 1.1515

puc,r,

1.1515 m

s Am(p)/q, —Iog(

0.4045
~log(t) - 10g(0.00633) - =2 . E.9
¢uctrv3j og(t) - log( )= T1505 €9

For t = 1 day imply that log(t) =0

Am(p)/
S =l.1515{M— |Og[ k 2]+1.8473:| R (=2 10)]
m puc.r,

2) Constant pwr

The solution of diffusivity equation is:

Mgy =— = Lin(t,)+0.4085+5 . ooooooooooio (E.11)
o 2

Dimensionless variables are defined as:

1 _ Kalm(p:)-mip., )] _ knam(p)

D=

= (E.12)
do 1422Tq, 1422Tq,
to = 008 (E.13)
guc.r,,

Substituting and reordering;

kham(p) 1 In[0.00633kt}

1422Tq, 2 | duc,r]
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d, kh 2 2

Am(p) _1422T | 2.303, (0.00633kt
Puc,r,,

j +0.4045 + s} ............... (E.15)

L 1G37AT | 000633k 1oy, 04045 s | (E.16)
d, khAm(p) Quc, 1, 1.1515 1.1515
i: 1637.4T o (t)+ 1637.4T o 0.0063§k +0'4045+ S ..(EA7)
d, khAm(p) khAm(p) Quc, 1, 1.1515 1.1515
) 1 1637.4T
Plotting, —vslog(t) the slope correspond to: m=——«——
g g(t) p p am(e)

g

Solving for Skin, s:

1/
To _jog| Q00633K ) 1og(r) 4 04045, s (E.18)
m e, I, 11515 1.1515
1/
ST o X ] log(t)- log(0.00633)- 240> . (E.19)
11515 m HUC, T 1.1515

For t = 1 day imply that log(t) =0

1/q, K
s=1.1515 —log ~|+1.8473|...................(E.20)
m guc.r,
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Analytical Solution: Finite Acting Radial Case
1) Constant g4

The analytical solution of the diffusivity equation for radial flow during pseudo steady
state (PSS) condition in dimensionless terms is:

2 3
mD :TtD + |n(I’eD)—Z ....................................... (E21)
feD

Dimensionless variables are defined as:

_ khim(p; )~ m(pus )|

Mp = e, E.22

° 1422Tq,, (822

tp =K e (E23)
PUC Ty,

Substituting Egs. 2 and 3 in Eq. 1:

kh[m(pi )— m(pwf )] 2 (0.00633“] N In(rD )_ E

1422Tq, 2

2
oe \ @ucry

Reordering;

[m(pi)-m(pur )] 14227 2 (0.00633 14221 [m(
dg kh rde | gueirig kh

= 5 t
g hepc,re kh

Im(pi)-mlpws )| 187 +1422T{|(D) 3}

Pore volume, Vp, is calculated as:



Substituting pore volume in equation:

[m(pi)-mlpus | 1877 14227 [In(rD ) 3}

g Vp uC kh

lm(pi )- m(pwf )J

g

Then, plotting vs t, we get the slope, m, as:

OGIP is calculated as:

0GIP =187 | —* P s,
IUCt mpss 00282TZ|

2p:S ..
oGIp =P 9'( 1 ]

ZiMCy \ Mpss

2) Constant pwr

99

...(E.28)

(E.29)

(E.30)

...(E31)

(E.32)

(E.33)

The analytical solution of the diffusivity equation for radial flow during pseudo steady

state (PSS) condition in dimensionless terms is:
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Dimensionless variables are defined as:

1 _ khlm(p;) - m(pu )

Mp == e, E.35
° o 1422Tq, (E-39)
_0.00633kt (E.36)

Puc, rv%

Substituting Egs. 2 and 3 in Eq. 1:

khim(p; )—m
(i)~ m{pu )]: 2 | 000833kt |y )= (E.37)
1422Tq, e \ ducirig
Reordering;
[m(pi)—m(pwf )]_1422T 2 | 0.00633kt +1422T [In( )_g} (E.38)
dg kh e\ gueiry |4
m(p; )—m
Im(pi) - mipwr | 187 2t+1422T {I (De)_ﬂ ___________ €39)
dg hec,rg kh
Pore volume, Vp, is calculated as:
Vi S ARG i (E.40)
Substituting pore volume in equation:
m(p; )—m
ey )~ m{puy )J= 181 14221 {In(rDe)—E} ..................... (E.41)
g Vp uc kh



lm(pi )- m(pwf )J

dg

Then, plotting

18xT
m=

OGIP is calculated as:

vs t, we get the slope, m, as:

101

...(E.42)

VpSyi
OGIP = ...(E.43)
By
Tz
Byi = 0.0282— ..o (E.44)
|
0GIP =187 | 1 L (E.45)
,uCt mpSS 00282TZ|
2p:S g
oGip=-Pref 1 et (EL46)
ZiMCy \ Mpss
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APPENDIX F

ANALYTICAL SOLUTION FOR LINEAR DIFFUSIVITY EQUATION

Analytical Solution: Infinite Acting Linear Case

1) Constant qq

The solution of diffusivity equation is:

Dimensionless variables are defined as:

[m(pi)-m(pur )] K YA

M = F.2
° 1422T q (72
t, = Q008K (F.3)

o puci A

Substituting and reordering;

[m(p;) - m(pus )]k\/E_4 0.00633 7Kt __

I e (F.4)
14227 q duic A
[m(pi) - mlput )] 4*1,4227 [0.006337kt A )
. P TV Ny o |
[(ps) = m{pur ) _4%1422%J0.006337 * L« 14221 (F.6)
dq VK A g, A
Imlei)=mlpwr )| o T . fp, L4227 7

. \/_Ac W \/_ ..................
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—|m(p;)—m(pys )] 802.11T
Plotting, vs+/t the slope corresponds to: m =
g VKA e
Solving for permeability, k:
_802.11T
.................................. (F.8)
\/_Ac N2
Jk = T L (F.9)
mA. /duc,
2
k {802'1”} e, (F.10)
m A PLcy
Solving for Skin, s:
Im(pi ) - m(puws )| T 1 14227
=802.11* *Jt+ = S et (F.11)
g VK A iy kA
14227 _ _Im(pi) - mlpwr )
- _802.11% —— o, (F.12)
k\/_ Gq f k A, 1/¢,uCt
s KA (i) ~mlpwr | _s02.11, kYA 1 N S (F.13)
14227 Uq 1422 Jk A, [,
k*/_ [m(p) - mlpu )J—0564075* SN (F.14)

14227 o|q | pc A,
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2) Constant pwr

The solution of diffusivity equation is:

Dimensionless variables are defined as:

1 [(pi)-m(pur KA

Sk UL L R (F.16)
dp 1422T qg4
0.00633k t
ty = ) (F.17)
Pac Pucy A
Substituting and reordering;
m(p; )— k
m(p)-mlpus JKiA _, - ooveszke F18)
14227 q, PuC Ac
Im(p;) = m(pus )J 27*1422T [0006337kt 1422T (F.19)
. T P r .................. .
map; )—m
[m(po) = mlpur )J:27z*1,422*«/0.006337r T s i+ M2 (F20)
qq \/¢/uct \/—
mp; )—m
[m(p:)=mlpur )J=1,259.96* L . I (F.21)
qq \/EAC \/¢:uct k\/E

m(p; )—m
l (p,) (pr )va\/f the slope corresponds to: m 1259 6T

g . \/_Ac\/—t

Plotting,




Solving for permeability, k:

105

_1,259.96T
...(F.22)
Vi A \/ 10,
Jiobe9ser L (F.23)
mA; /duc,
2
k:{l,zsg.geq L (F.24)
m A PLC
Solving for Skin, s:
[m(pi) - m(puws ) T 1 14227
=1,259.96* *Jt+ = S e, (F.25)
qq \/EAC \/¢:uct k\/E
14227 _ _Im(pi)-mlpwr )
- ~1,259.96* I i, (F.26)
k\/— g \/_Ac \ PHC
k\/_ m(pi) - m(pus )J 1259.96 , kyA. 1 o (.27
LT . L2z Jkn Jgua Ve .
k*/_ [m(p1)-mlpu ) —0.886047% |— K * i (F.28)

14227 qq ' duc, A
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Analytical Solution: Finite Acting Linear Case

1) Constant g4

The analytical solution of the diffusivity equation for linear flow during pseudo steady
state (PSS) condition in dimensionless terms is:

mD—27{\/:_0]{?[*/?}:%]...........................F.29)

Dimensionless variables are defined as:

_ k\/A—C[m(pi )_m(pwf )]

.................................... F.30
Mo 14227 q, (F.30)
ty = 200833kt e, (F.31)

P A

Substituting Egs. 2 and 3 in Eq. 1:

2

kA m(pi)-mlpu )| 27 L, L (VA (0'00633'(‘) .................. (F.32)

1422Tq, 3 A JA L L dre A
Reordering;

[m(pi)—m(pus )]:1422T 2r L +(2;z*o.00633)L K (F.33)
qq kA | 3 JA LA, dic

[m(pi)-m(pus )J:14222_”£+(o,00633*1422*2;z) L ) (F.34)
qq 3 KA LA: g

Pore volume, Vp, is calculated as:
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Substituting pore volume in equation:

m(p)-mlpu )| 4027 LT poceT 1 (F.36)

qg 3 kAC Vp NCt

lm(pi )- m(pwf )J

Then, plotting vs t, we get the slope, m, as:

M =56.56 — oeeeeeee e, (F.37)
Vo,
OGIP is calculated as:
V.S
OGIP=—L" i (F.38)
Byi
Tz.
By =0.0282-20 ..o (F.39)
Pi
OGIP = 56,56 (f J( i Jsgi ................................. (F.40)
He \ Mpgs N\ 0.0282Tz;
2piSy
oGip= " 9'(} J ............................... (F.41)
ZiHMCy \ Mpss

2) Constant pwr

The analytical solution of the diffusivity equation for linear flow during pseudo steady
state (PSS) and constant bottom hole pressure condition in dimensionless terms is:
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L
. VA S e (F.42)
Op = 2_2
-n‘z A
2P, (L} {0s
Nodd
Dimensionless variables are defined as:
1 kYA [m(pi)_m(pwf )] (F.43)
0 LazaTqy e :
0.00633kt
DD S e F.44
? Puc A ( )
Substituting Egs. 2 and 3 in Eq. 1:
s L
kAe [m(pi) = m(pus )] JA
= N (F.45)
1,422Tq, ox —° A; 0.00633kt
4 1?2 duciA,
Reordering;
TL
14227 ——
m(p; )—m
[m(pi)-m(pus )] KA (F.46)
dg — 72 A, 0.00633kt
exp —
4 L duciA
m(p: )= m 2
In (pi)-mlpus ) :In(1,4227zT Lj+ 0.006337 ZAth .................. (F.47)
qg KAC 4 L"guci Ac

Pore volume, Vp, is calculated as:
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Substituting pore volume in equation:

mip: )—m 2
In (pi)=mlpwi) :In(1,4227zTLj+ 00063377 ) Akt (F.49)
dg kAC 4 LuciV
m(p;)—m
Then, plotting In{ (p,) (pr ):l vs t, we get the slope, m, as:
g
%) Ak
M=|0.00633"— |— S ..o (F.50)
LuciV
OGIP is calculated as:
VS
OGIP=—"3 (F.51)
Bgi
By 0.02822 5 (F.52)
Pi
2 k .
0GIP =| 0.006337_ | AKX [ _1 T (F.53)
4 ) ue,L| Mpss | 0.0282T z,

K piSgi
oc3|F>=o.5538Ac Pi g'[f j ...................... (F.54)
TZiILlCtL
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APPENDIX G

MISCELLANEOUS

This section includes some discussion regarding pseudo properties in terms of pressure-
dependent and non pressure-dependent permeability. Also show the change of non-linear

term ¢ pc, for the pressure range analyzed in case 1: radial flow, constant g = 10

Mscf/D.
3.0E+09
Yg=0.717 y=0.0
T =290°F
2.5E+09 - p; = 8800 psi
m(p) = 2.66 E9 psi/cp
2.0E+09 =0.0001
a
(&)
o=
2]
Q. 1.5E+09 -
=
= y=0.0003
S
1.0E+09 -
y=0.0005
5.0E+08 v=0.0008
0.0E+00 : ‘ : : :
0.0E+00 5.0E+08 1.0E+09 1.5E+09 2.0E+09 2.5E+09 3.0E+09

m(p), psi¥/cp

Figure G.1 — Cartesian plot m'(p) vs m(p) for a gas of gravity 0.717 and temperature
290°F. Comparison of pseudo pressure for a formation with and without stress-sensitive
permeability is made. As gamma increase, the rock is more stress-dependent and

permeability has a larger reduction, the relation between m'(p) vs m(p) is not longer

linear.
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Radial Flow, Constant g4 = 10 Mscf/D

3.0E+09
g =0.717 Di- Put = (8,000 - 8,500) psi y=0.0
—_ 0
T=290F m(p) - M(pwy) = (2.66 E9 - 2.58 E8) psi®/cp
2.5E+09 pi = 8800 psi
o
(&)
& 2.0E+09 - ¥=10.0001
(%)
o
P
H
& 15E+09
S
. y=0.0003
s Pressure range
(= ]
= 1.0E+09 covered in this case
S ¥ =0.0005
5 0E+08 | y=0.0008
y=0.001
0.0E+00 ‘ ; ‘ ‘ :
0.0E+00 5.0E+08 1.0E+09 1.5E+09 2.0E+09 2.5E+09 3.0E+09

m(p) - M(Pys), PSi-/cp

Fig. G.2 — Cartesian plot of pseudo pressure draw down. Comparison for a formation

with [m'(p;) —m'(pys )] and without [ m(p;) —m(p, ) ] Stress-dependent permeability

is made. Continues lines are analytical solutions for several values of gamma. Darkness
lines represent the pressure range considered in the Case 1: radial flow, infinite acting
period, constant g = 10 Mscf/D. Case 1 consider a small pressure draw down range and

still exist a linear relation between m'(p) vs m(p).
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Radial Flow, Constant qq = 40 Mscf/D

3.0E+09
g =0.717 Pi- Pus = (8,000 - 5,771) psi v=00
T =290°F m(p)) - M(Pu) = (2.66 E9 - 1.52 EB) psi?/c
2.5E+09 - pi = 8800 psi (P} - mipug = ) peticp
o
(&)
& 2.0E+09 - ¥=10.0001
(%)
o
=
H
& L5E+09 |
€
: v=0.0003
-~
& 1.0E+09 -
S ¥ =0.0005
5 0E+08 | v=0.0008
¥=0.001
0.0E+00 ; | ; ; ;
0.0E+00 5.0E+08 1.0E+09 1.5E+09 2.0E+09 2.5E+09 3.0E+09

m(p) - M(Pys), PSi-/cp

Fig. G.3 — Cartesian plot of pseudo pressure draw down. Comparison for a formation

with [m'(p;) —m'(pys )] and without [ m(p;) —m(p,; ) ] Stress-dependent permeability

is made. Continues lines are analytical solutions for several values of gamma. Darkness
lines represent the pressure range considered in the Case 2: radial flow, infinite acting
period, constant g = 40 Mscf/D. Case 2 consider a larger pressure draw down range and

cover a long portion where there is not linear relation between m'(p) vs m(p).
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Radial Flow, Constant g0 mscfio)

9.0
——7=0.0000
8.0 ——7=0.0003 2
—x—=0.0005 /%;W/
70 ——7=0.0008 e o
——y=0.0010 s>
X X
) M%
5.0 R
4.0 A
301 o __kh [m(p)-mip,,)]
° 42T q,
207 Slope = 1.1515 for y = 0.0
k
1.0 tp = 0.00633{ 5|t
«—— Intercept = 0.4045 ¢ HCt Ty i
0.0 ; ; ‘ ; ; ;
1.E+00 1E+01 LE+02 1E+03 LE+04 LE+05 1E+06

1.E+07

Fig. G.4 - Semi-log plot of dimensionless pseudo pressure vs. time. Values of gamma

infinite acting, constant qg = 10 Mscf/D. Analytical solution for y = 0 has the form:

indicate a stress-dependent permeability. Numerical results are for Case 1: radial flow,

mp =1.1515log(tp) + 0.4045+ s . As gamma increase results are straight line with a

different slopes.
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Radial Flow, Constant g (10 msci/p)

150
120 v=0.0
——1v=0.0001
—=—1v=0.0003
90
0
S
60
30
Slope = 1.1515 for y = 0.0
Intercept = 0.4045
0 T T T T T T
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

tp

Fig. G.5 — Semi-log plot of dimensionless pseudo pressure prime vs. time. The value of

m'(p) has been calculated analytically by the integral function including the

Py
permeability modulus as: m'(p) =2 J khiﬂ—pzdp . Values of gamma indicate a stress-
Pwi
dependent permeability. Numerical results are for Case 1: radial flow, infinite acting,
constant qg = 10 Mscf/D. Analytical solution for y = 0 has the form:
mp =1.1515log(tp) + 0.4045+ s . As gamma increase results are straight line with same

slopes and different intercept.
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Non-Linear Term Effect

2.0E-02
—k constant
vy =0.001 k variable, g = 0.0001
——k variable, g = 0.0005
——k variable, g = 0.001
=
~
& 1.0E-02
=3
=
vy =0.0001
0.0E+00 T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000

9000 10000
Pressure, psi

Fig. G.6 - Comparison of non-linear term ¢ x ¢,/ k regarding a non-stress formation (k =
constant) and a stress formation (k = function of pressure) as a function of pore pressure.

Values of gamma indicate a larger dependency on stress. For low pressure and large

gamma the non-linear term has a significant variation.
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Radial Flow, Constant dg (10 wsctin)

130
108 +
—=—m(p)
—o—m'(p)
86 -
£ 64 4
<
[}
42 +
20 A
2 L
0.0E+00 1.0E-04 2.0E-04 3.0E-04
v, psi*t

Fig. G.7 - Comparison of calculated skin factor from conventional real gas pseudo
pressure numerical results, m(p), and also using analytical real gas pseudo pressure

Pi
prime, m'(p).Integral function used is: m'(p) =2 I khidp.
i HZ
Pwi

The case considered correspond with radial flow, infinite acting and constant gqq = 10
Mscf/D.
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