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ABSTRACT 

 

Stress-Dependent Permeability on Tight Gas Reservoirs. (December 2004) 

Cesar Alexander Rodriguez, B.S., Universidad Central de Venezuela 

Chair of Advisory Committee: Dr. Robert A. Wattenbarger 

 

People in the oil and gas industry sometimes do not consider pressure-dependent 

permeability in reservoir performance calculations. It basically happens due to lack of 

lab data to determine level of dependency. This thesis attempts to evaluate the error 

introduced in calculations when a constant permeability is assumed in tight gas reservoir. 

 

It is desired to determine how accurate are conventional pressure analysis calculations 

when the reservoir has a strong pressure-dependent permeability. The analysis considers 

the error due to effects of permeability and skin factor. Also included is the error 

associated when calculating Original Gas in Place in the reservoir. 

  

The mathematical model considers analytical and numerical solutions of radial and 

linear flow of gas through porous media. The model includes both the conventional 

method, which assumes a constant permeability (pressure-independent), and a numerical 

method that incorporates a pressure-dependent permeability. 

 

Analysis focuses on different levels of pressure draw down in a well located in the center 

of a homogeneous reservoir considering two types of flow field geometries: radial and 

linear. Two different producing control modes for the producer well are considered: 

constant rate and constant bottom hole pressure. 
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Methodology consists of simulated tight gas well production with k(p) included. Then, 

we analyze results as though k(p) effects were ignored and finally, observe errors in 

determining permeability (k) and skin factor (s). Additionally, we calculate pore volume 

and OGIP in the reservoir. 

 

Analysis demonstrates that incorporation of pressure-dependence of permeability k(p) is 

critical in order to avoid inference of erroneous values of permeability, skin factor and 

OGIP from well test analysis of tight gas reservoirs. Estimation of these parameters 

depends on draw down in the reservoir.  

 

The great impact of permeability, skin factor and OGIP calculations are useful in 

business decisions and profitability for the oil company. Miscalculation of permeability 

and skin factor can lead to wrong decisions regarding well stimulation, which reduces 

well profitability. 

 

In most cases the OGIP calculated is underestimated. Calculated values are lower than 

the correct value. It can be taken as an advantage if we consider that additional gas wells 

and reserves would be incorporated in the exploitation plan. 
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CHAPTER I 

INTRODUCTION 

 

The present work attempts to do an investigation on stress-sensitive tight gas formations. 

People in the oil and gas industry some times do not consider pressure-dependent 

permeability in engineering calculations, it basically happens due to lack of lab data to 

determine level of dependency. This works evaluate the error introduced in calculations 

when constant permeability is considered in well test analysis of tight gas reservoirs. 

 

We want to determine how accurate is our conventional pressure analysis calculations 

when the reservoir has a strong pressure-dependent permeability. The analysis considers 

the error in term of permeability and skin factor. Also include estimation on error 

calculating Original Gas in Place due to a false reservoir limit. 

 

1.1 Objectives 

 

This work has the objective to investigate pressure and production performance on tight 

gas reservoirs considering stress-dependent permeability during transient and pseudo 

steady state flow. It makes focus in the physics of the rock that cause such behavior, the 

level of dependency, analytical and numerical modeling regarding radial and linear flow. 

 

In reservoirs with a significant stress-dependent permeability, reservoir models should 

include stress-dependent permeability to improve accuracy for purposes of oil and gas 

reserve determination and reservoir modeling. The benefits include a better 

understanding of the behavior of tight gas sands, lead to a more accurate modeling of 

that kind of unconventional reservoirs and get a more realistic forecasting of production 

performance and well test analysis 

 
______________ 
This thesis follows the style and format of SPE Journal. 
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1.2 Problem Definition 

 

Porous media are not rigid and non-deformable but exhibit elastic and inelastic 

deformations. Furthermore, the properties of rock and fluid are pressure-dependent. 

Tight gas reservoirs exhibit stress-sensitive permeability. For such reservoirs, pressure-

transient analysis and forecast performance based on constant rock properties, especially 

permeability, can lead to significant errors in parameters estimation. Nevertheless, in 

most field cases, is not common to have stress-dependent permeability data. This project 

investigates the permeability change as a function of pressure in tight gas reservoirs in 

the case where laboratory data is not available.  

 

1.3 Methodology 

 

The methodology consists of using both analytical and numerical models of a stress-

sensitive formation saturated with irreducible water saturation and gas. The model 

considers analytical and numerical solutions of transient and pseudo steady state (PSS) 

flow of gas through porous media for linear and radial geometries. The methodology 

includes both the conventional method, which assumed no pressure-dependent 

permeability, and a numerical method that incorporate a mathematical function to 

describe the dependency of permeability on pressure. 

 

The analysis is based on the concept of a real gas pseudo pressure function, m(p), 

defined by Al-Hussainy1. It incorporates variation of gas properties with pressure. 

 

Analysis focuses on different levels of pressure draw down for a well located in the 

center of a homogeneous reservoir. Two different producing control modes for the 

producer well are considered; constant rate and constant bottom hole pressure. 
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1.4 Previous Work 

 

Many authors have studied the effect of pressure-dependent permeability on reservoir 

performance. Following is a review of some of them. 

 

Raghavan et al.2 have treated reservoir porosity, permeability and compressibility, 

together with fluid density and viscosity as functions of pressure, they worked with a 

second-order, nonlinear, partial differential equation. The equation was reduced by a 

change of variables to a form similar to the diffusivity equation, but with a pressure-

dependent diffusivity. They provided correlations in terms of dimensionless potential 

and time for a closed radial flow system producing at a constant rate; the solution 

obtained also has been compared with the conventional van Everdingen and Hurst 

solutions.  

 

Vairogs and Rhoades3 present the results of a theoretical investigation of the use of 

conventional pressure transient analysis methods in stress-sensitive formations. It was 

found that values of kh and wellbore conditions determined from conventional analysis 

of drawdown gas well test could be significantly in error when permeability is stress-

dependent. In addition, skin factors determined from buildup test may not be 

representative. Because of permeability reduction near the wellbore, a positive skin 

factor will be determined even when the well is not damaged. 

 

Samaniego et al.4 applied the concept of a continuous succession of steady states to 

obtain a solution to the nonlinear partial differential equation describing the transient 

flow of a pressure-dependent fluid through a stress-sensitive formation. Samaniego 

presents a performance-prediction procedure based on the drainage radius concept and a 

material-balance equation. Results were obtained for five different sets of rock and fluid 

property data considering radial and linear bounded systems.  
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Gochnour and Slater5 describe the use of a single well gas simulation model to 

characterize the properties of gas wells in tight reservoirs. It demonstrates the effective 

application of a simulation model to complement a conventional well test analysis. The 

single well gas model was used to characterize the reservoir by history matching the well 

test data; after a suitable match was obtained, the model was then used to predict the 

deliverability of the well. 

 

Walls6 investigate the effects of pressure, partial saturation and salinity on permeability 

in several cores from the Spirit River tight gas sand of western Alberta and Cotton 

Valley formation of east Texas. Samples from both locations showed strong dependence 

of permeability on effective pressure and degree of water saturation. It was also found 

that pore structure seems to be the major factor in determining permeability behavior and 

clay content being of secondary importance. 

 

Pedrosa7 presents a mathematical model that take in account the reduction in 

permeability caused by an increase in effective stress. A perturbation technique is 

applied to determine approximate analytical solutions for transient flow in an infinite 

radial system with constant rate inner boundary. The model includes a new parameter, 

the permeability modulus, which measures the permeability dependency on pressure. 

The solution of the model leads to the construction of type curves that can be applied to 

drawdown and buildup analysis of well test data from stress-sensitive reservoirs. 

 

In a similar way, Ostensen8 presents a study of the effect of stress-dependent 

permeability on gas production and well testing in tight gas sands by using a modified 

pseudo-pressure that include stress dependence.  

 

Samaniego and Cinco-Ley9 present a practical procedure to determine the pressure-

dependent characteristics of a reservoir from transient pressure analysis. Expressions are 

derived for flow in stress sensitive formations of pressure-dependent liquid flow and of 
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real gas flow, which allow through the analysis of draw down and buildup tests the 

determination of the stress sensitive characteristics of the reservoir. The authors 

concluded that draw down and buildup results are complementary. The draw down 

analysis yields good estimates of the pressure-dependent parameter {k (p)/ [1-φ (p)]} at 

low values of pressure and the buildup analysis yield good estimates at high values of 

pressure. 

 

Kikani and Pedrosa10 analyzed and discussed the nonlinear equation that result by taking 

into account the effect of pressure-dependent rock properties. By defining a permeability 

modulus, the nonlinearities associated with the governing equation become weaker and 

an analytical solution in terms of a regular perturbation series can be obtained for a 

radial, infinite acting reservoir. The work presented uses a regular perturbation technique 

to solve the nonlinear equation to third order of accuracy. Also investigated are the first 

order effects of wellbore storage, skin, and boundary effects.  

  

Zhang and Ambastha11 consider the numerical pressure-transient solutions for stress-

sensitive reservoirs using the one-parameter model and the stepwise permeability model. 

The authors analyzed the effects of permeability modulus, wellbore storage, skin, outer 

boundary condition, and permeability models on both drawdown and buildup test. The 

stepwise permeability model may provide a means to infer permeability versus stress 

curves under in-situ reservoir conditions by a proper analysis of a long duration pressure 

transient test for a stress-sensitive reservoir. 

 

Jelmert and Selseng12 proposed a skin factor calculation that takes in account changes in 

permeability. The concept is consistent with steady state flow in a stress-sensitive 

reservoir.   

 

Davies and Davies13 considered stress-dependent permeability in unconsolidated, high 

porosity sand reservoirs and consolidated reservoirs (tight gas sands). The authors focus 
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on i) fundamental controls on stress-dependent permeability, ii) rock-based log modeling 

of stress-dependent permeability in cored and non-cored wells and iii) implications for 

production based on data from reservoir simulation. The practical, fast and cost efficient 

methodology improves and enhances the productivity and management of stress-

dependent reservoirs. 
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CHAPTER II 

LITERATURE REVIEW 

 

 

2.1 Tight Gas Sands6,14 

 

Tight gas reservoirs are characterized by having poor rock properties. Those reservoirs 

typically have low porosity and permeability. Tight gas reservoirs have been considered 

as gas storage rock with low quality. A tight gas reservoir is generally recognized as any 

low permeability formation which special well completion technique are required to 

stimulate production. Typical values of porosity are lower than 10% and permeability is 

usually below 0.1 md.  

 

There are some fundamental differences in rock-water-gas interactions between tight 

sandstones and ‘normal’ gas reservoirs. These differences result primarily from 

significant pore structure alterations as the rock undergoes compaction and diagenesis. 

 

As gas production begins from the reservoir, pore pressure decreases and the effective 

stress increases; the relation between these variables is shown in the following equation: 

 

pS ασ += ………………………………….. (2.1) 

 

S corresponds to total stress, σ is the effective stress (matrix stress, grain to grain 

pressure) and p is the fluid pressure. Eq. 2.1 states that every change in the pore-fluid 

pressure under otherwise constant conditions, result automatically in a change of the 

effective stress. Rock permeability in tight sands is significantly affected by changing 

the effective stress. 
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The behavior of tight gas sand permeability in response to changing effective stress can 

be explained qualitatively by the complex and tortuous pore structure that results from 

extensive compaction and diagenesis. Thin section and scanning electron microscope 

(SEM) images of the pore structure reveal very narrow slit-like apertures between pores. 

These thin cracks provide the major connectivity, which allows fluid to move when the 

rock is under low effective pressure conditions. However, increasing effective pressure 

easily closes such flats cracks. 

 

2.2 Diffusivity Equation, Liquid Case15 

 

The derivation of the diffusivity equation combines the law of conservation of mass, 

Darcy’s law and equations of state for the isothermal flow of fluids in porous media. 

Several assumptions about the well and reservoir are introduced in the model. A 

summary of these assumptions are: homogeneous and isotropic porous medium of 

uniform thickness, pressure independent fluid and rock properties, small pressure 

gradients, radial flow, applicability of Darcy’s’ law (laminar flow), and negligible 

gravity forces. These assumptions lead to the following general partial differential 

equation: 

 

t
p

k
c

r
p

rr
p

∂
∂

=
∂
∂

+
∂

∂
00633.0

1
2

2 φµ ……………………… (2.2) 

 

The general solution of Eq. 2.2 considering liquid flow through a reservoir with a radial 

geometry is as follows: 

 

( ) stp DD ++= 4045.0ln
2
1 ……………………… (2.3) 
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2.3 Diffusivity Equation, Gas Case 

 

In the derivation of the diffusivity equation for real gas reservoirs, Al-Hussainy1 defined 

in 1966 a pseudo function that account for gas properties variation with pressure as: 

 

∫=
p

po

dp
z
ppm
µ

2)( ………………………………….(2.4) 

Al-Hussainy introduces the real gas pseudo pressure function to transform the diffusivity 

equation for real gases. It takes in account the change with pressure of gas properties 

such as z-factor and viscosity. The variable m(p) has dimension of pressure squared per 

centipoises. Substitution of the real gas pseudo pressure has several important 

consequences1. First, second degree pressure gradient terms, which have commonly been 

neglected under the assumption that the pressure gradient is small everywhere in the 

flow system, are rigorously handled. Omission of second-degree terms leads to serious 

errors in estimated pressure distribution for tight formations. Second, flow equations in 

terms of the real gas pseudo pressure do not contain viscosity or gas law deviation 

factors, and thus avoid the need for selection of an average pressure to evaluate physical 

properties. Third, the real gas pseudo pressure can be determined by numerically in 

terms of pseudo reduced pressures and temperatures from existing physical property 

correlations.  

 

The diffusivity equation for real gas can be expressed as: 

 

∇ • ∇
∂
∂

⎛
⎝⎜

⎞
⎠⎟

k p
z

p =  
t

p
zµ

φ ………………………...(2.5) 

 

Including pseudo pressure concept into Eq. 2.5 it can be transformed to: 
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t
m

k
c

m t

∂
∂

=∇
µφ2

…………………………...(2.6) 

 

Further detail on the derivation of Eq. 2.6 is found in Appendix A. The solution of Eq. 

2.6 considering gas reservoir with radial geometry in terms of pseudo pressure is as 

follow: 

( ) stm DD ++= 4045.0ln
2
1 ……………….………(2.7) 

 

In 1967, Wattenbarger16 showed that semi log straight lines (SLSL) of plot mD vs tD give 

correct reservoir properties for different constant gas rate cases. Wattenbarger 

established that the m(p) linearization is extremely good for the basic case of constant 

sand face flow rate, at rates that are likely to be found in practice. This verifies the 

results of Al-Hussainy et al.1 for production cases.  Furthermore, this means that the flow 

capacity kh of a gas well can be determined accurately from a draw down plot. 

 

Agarwal17, working with build up well data, showed that Eq. 2.7 gave wrong values of 

permeability for cases with different gas rates. Then, Agarwal introduced a plotting 

function that account for properties changes with time and that lead to get better values 

of permeability. The plotting function was defined as: 

 

∫=
t

t
t

a

o

dt
c

t
µ

1
………………………………….(2.8) 

 

However, Eq. 2.8 defined by Agarwal does not linearize the diffusivity equation. It 

means, Eq. 2.8 is a partial integral, fluid viscosity and compressibility varies with time 

and pressure. Agarwal demonstrated that better values of permeability were obtained 

using that plotting function. 
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2.4 Stress-Dependent Formations 

 

As early as 1928 it was recognized that porous media are not always rigid and non-

deformable4. This problem is usually handled by means of properly chosen ‘average 

properties’. This method only reduces the errors involved and generally does not 

eliminate these errors. A second order, nonlinear, partial differential equation results 

when variation of permeability with pressure is considered in the continuity equation. A 

different kind of flow-reducing mechanism has been studied experimentally by a number 

of investigators3, 18. This mechanism is the reduction in permeability caused by an 

increase in effective frame stress. In the reservoir an increase in effective frame stress is 

caused by fluid withdrawal and the accompanying decrease in pore pressure. Since the 

overburden force on the reservoir rock remains the same, the decreasing pore pressure 

results in an increased effective frame stress. Because low permeability formations are 

more affected by stress changes3, this effect can be expected to be more significant in 

deep gas reservoirs. 

 

2.4.1 Laboratory Experiments 

 

The rate of permeability decline with increasing net effective stress is different for each 

rock type and is controlled by three interrelated, pore geometrical parameters, length, 

and shape and short axis dimension of the throats13, 19. Others important parameters are 

clay content, pore volume compressibility and authigenic cementation. The mechanisms 

of permeability reduction are much more pronounced in tight formations3. It can be 

expected that formations with pore distribution of smaller radio are very sensitive to 

compressive stress. 

 

In September 1971, Vairogs et al.3, presented a work based on lab experiments showing 

the relation of rock permeability and net confining pressure for cores with different 

initial permeability. These results are shown in Fig. 2.1. In this plot, ‘y’ axes correspond 
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with the ratio of permeability to a given confining pressure to the permeability at a 

confining pressure of 500 psig. ‘x’ axes is net confining pressure. Vairogs et al. 

concluded that there is a greater degree of permeability reduction with low permeability 

cores than with high permeability cores. In cores with initial permeability less than 1 md, 

the permeability is significantly reduced at high net confining pressure. This behavior is 

extended to tight gas formations, which exhibit permeability lower than 0.1 md. Usually 

this dynamic permeability is not considered in engineering calculations. The current 

project evaluates the error introduced in calculations when constant permeability is 

considered in well test analysis of tight gas reservoir. 
 

Fig. 2.1 – Stress-dependent permeability. 

 

The plot shows an exponential dependence of permeability with pore pressure. A 

reduction in the pore pressure in tight gas formations leads to increase the effective rock 

stresses. This increasing is counterbalanced by the reduction in pore diameter, which 
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results in increased resistance to fluid flow and reduced fluid storage, lower rock 

permeability and porosity.  

 

2.4.2 Permeability Modulus 

 

The dependence of permeability on pore pressure makes the flow equation strongly 

nonlinear4. To study fluid flow through stress-dependent porous media, a new parameter, 

permeability modulus or ‘γ’, is defined by Nur et al.20 and studied by Pedrosa and 

Kikani et al.10 as follows: 

 

p
k

k ∂
∂

=
1γ ……………………………….……. (2.9) 

This parameter plays a very important role in systems where changes in effective stress 

affect permeability. Basically, it measures the dependence of hydraulic permeability on 

pore pressure. For practical purposes, the permeability modulus is assumed constant. 

Thus, permeability varies exponentially with pore pressure. 

( )p
iekk −−= ip γ

………………….……….… (2.10) 

In view of the similar appearance of permeability and density in the diffusion equation, it 

may be advantageous to assume an exponential relationship between permeability and 

pressure. This choice has some experimental support and mathematical convenience 

shown by Kikani and Pedrosa10. These authors were able to match an exponential rock 

model to real pressure data. Using the permeability modulus definition, the real gas 

pseudo pressure function can be modified to: 

( ) ( )∫=
p

po

dp
z

pkppm
µ

2' ……………………………….(2.11) 
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Now, the diffusivity equation considering flow of a real gas through a stress sensitive 

formation can be expressed as follow: 

( ) t
m

pk
cm t

∂
∂

=∇
''

2 φµ
………………………………..(2.12) 

Further detail on the derivation of Eq. 2.12 is found in Appendix B. Pedrosa7 applied a 

perturbation technique to determine approximate analytical solutions for transient flow 

in an infinite radial system with constant rate inner boundary. The model includes the 

permeability modulus parameter, which measures the permeability dependency on 

pressure. The analytical solution presented by Pedrosa for constant gas rate infinite 

acting radial flow is: 

( ) stm DD ++= 4045.0ln
2
1' ………………………….(2.13) 

 

2.5 Linear Flow21,22 

 

Linear flow is a regime characterized by parallel flow lines in the reservoir. This results 

from flow to a fracture or a long horizontal well, or from flow in an elongated reservoir, 

such as a fluvial channel, or as a formation bounded by parallel faults. Linear flow is 

recognized as a +1/2 slope in the pressure derivative on the log-log diagnostic plot. Its 

presence enables determination of the fracture half-length or the channel or reservoir 

width, if permeability can be determined independently. 

 

2.6 Radial Flow15,23 

 

Radial flow represents the geometry that approximates fluid flow into a wellbore from a 

cylindrical reservoir of constant pay thickness. Flow lines converge to a concentric point 

located at the middle of the reservoir and is represented by the wellbore. The important 
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parameters that defined the radial flow geometry are: wellbore radius (rw), external 

radius (re), thickness (h). 

 

2.7 Transient Flow15 

 

This condition is only applicable for a relatively short period after some pressure 

disturbance has been created in the reservoir. In terms of the radial flow model this 

disturbance would be typically caused by altering the well’s production rate at r = rw. In 

the time for which the transient condition is applicable it is assumed that the pressure 

response in the reservoir is not affected by the presence of the outer boundary, thus the 

reservoir appears infinite in extent. In this period, the change of pressure with time in the 

reservoir is a function of location and time, thus 

 

( )trf
t
p ,=

∂
∂ ………………………………..… (2.14) 

 

2.8 Gas Simulator 

 

During the development of this project, the computer-based program GASSIM was 

widely used. GASSIM is a single-phase simulator presented by Lee and Wattenbarger23. 

It is used in this work for simulating real gas flow for 2-D radial and linear models. It is 

a two-dimensional reservoir simulator that can work with x-y or r-z geometries. 

Originally this program was written in FORTRAN. This simulator has been modified 

and it is under development. Currently the code of the program is based in visual basic 

form (Visual Basic for Applications, VBA) and is run from Microsoft Excel program. 

The program has two main advantages that are the reasons of being selected during this 

project, the program’s code can be modified and allow to introduce the changes 

necessaries to account for stress sensitive formations. In addition, the program is time-
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efficient and runs take few minutes. It is also friendly and well known by faculty in T 

A&M University.  

 

2.9 Determination of OGIP24  

 

This section deals with the determination of original gas in place (OGIP) for wells in 

pseudo steady state flow. The calculation of OGIP is based on analysis of gas well 

production performance. In this project is used the normalized pseudo time concept as a 

plotting function to calculate more accurate the OGIP. The use of this normalized 

pseudo time is particularly important in the analysis of highly depleted reservoirs with 

high compressibility where the superposition errors are largest. 

 

The normalized pseudo time provides a plotting function for smoothing the production 

data by taking the effect of reservoir properties change with average pressure. The 

normalized pseudo time equation is given by the following expression: 

( ) ∫=
t

t
itn dt

pcpp
ct

0
)()()(

1
µφ

µφ ……………………….. (2.17) 

This integration can be calculated by using Trapezoidal rule. 

 

A plot of 
[ ]

n
g

wfi tvs
q

pmpm
.

)()( −
for simulation results gives straight line. The slope from 

tn plot, denoted PSSm~ , is then used to calculate OGIP applying the following equations: 
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Constant qg Case:                              ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

PSSitgi

gii

mcz
Sp

OGIP ~
12

µ
……………………. (2.18) 

 

Constant pwf Case:                    ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

PSSitgi

giic

mLczT
SpkA

OGIP ~
15538.0

µ
……………(2.19) 

 

The most important feature about normalized pseudo time is that it improves the 

accuracy of calculating OGIP because it takes into account the effect of properties 

change with average reservoir pressure. 
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CHAPTER III 

PSEUDO PROPERTIES 

 

This project is based on the concept of real gas pseudo pressure m(p).  It was initially 

defined by Al-Hussainy1 in 1966 as: 

 

∫=
p

po

dp
z
ppm
µ

2)( ………………………………….(3.1) 

Al-Hussainy introduces the real gas pseudo pressure function to transform the diffusivity 

equation for real gases. It takes in account the change with pressure of gas properties 

such as z-factor and viscosity. The variable m(p) has dimensions of pressure squared per 

centipoises.  

 

The main objective of this project is to analyze stress sensitive formations, particularly 

tight gas reservoirs for radial and linear reservoir geometry. We want to determine the 

effect of pressure-dependent permeability k(p) on radial and linear flow analysis for 

infinite and finite acting, also investigate how it modify well test analysis results. 

 

Methodology consists of simulation of tight gas well production with k(p) included. 

Then, analyze results as though k(p) effects were ignored and finally, observe errors in 

determining permeability (k) and skin factor (s). 

 

The current method used to analyze gas well production is based in the solution of 

diffusivity equation with constant diffusivity term. The gas diffusivity equation in terms 

of m(p) is: 

 

t
m

k
cm t

∂
∂

=∇
φµ2

…………………….…………….(3.2) 
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In Eq. 3.2, permeability is a constant parameter. In this case a plot of m(p) versus log(t) 

is necessary to analyze the data. Then, from semi-log straight line is calculated the value 

of permeability and skin factor. 

 

Now, we consider the case including pressure-dependent permeability k(p). A new 

definition of pseudo pressure is introduced to incorporate pressure dependency of 

permeability; it is shown in Eq. 3.3: 

 

∫=
p

po

dp
z

ppk
pm

µ
)(

2)(' …………………..…………….(3.3) 

Then, the diffusivity equation expressed in term of )(' pm  corresponds with the 

following expression: 

 

t
m

k
c

m t

∂
∂

=∇
''

2 µφ
………………………………(3.4) 

 

In this case, we analyze the gas well production data by plotting )(' pm versus log(t). The 

slope of semi-log straight line is related to the permeability and skin factor. 

 

This project uses the concept of permeability modulus, introduced by Kikani and 

Pedrosa10. The permeability modulus, γ, called ‘gamma’ express an exponential relation 

between permeability and pressure. The mathematical function is: 

 

dp
dk

k
1

=γ …………………………….….…...(3.5) 
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Making a basic transformation of Eq. 3.5 lead to the following expression: 

 

( )pp
i

i
ekk

−−
=

γ
………………………………(3.6) 

  

The use of permeability modulus is shown in Fig. 3.1. 

  

Fig. 3.1 – Permeability as a function of pore pressure and gamma. 

 

Fig. 3.1 is a plot of permeability ratio versus pore pressure for different values of gamma 

corresponding with a stress-sensitive formation at an initial pore pressure of 12,600 psia. 

Permeability ratio is the permeability calculated as a function of pressure divided by the 

initial permeability. From the plot we can observe that as the reservoir is depleted the 

pore pressure decrease and permeability is significantly reduced. Another important 

observation is that as gamma increases the permeability reduction is higher. 

  

0.01

0.1

1

0 2,000 4,000 6,000 8,000 10,000 12,000

Pore Pressure, psia

K
(p

)/K
(p

i)

Gamma = 0.0003

Gamma = 0.0002

Gamma = 0.0001

Gamma = 4.0E-5

Gamma =2.0E-5



 21

 

The methodology used in the current project can be summarized for radial and linear 

modeling as follows. 

 

Radial Infinite Acting Model 

 

1. Simulate cases with k(p) 

2. Plot m(p), not  )(' pm ,  vs. log t 

3. Find slope of semi-log straight line, m  

4. Calculate k and s 

5. Compare these with correct values 

 

Radial Finite Acting Model 

 

1. Simulate cases with k(p) 

2. Plot m(p), not  )(' pm ,  vs. t 

3. Find slope of straight line, PSSm~  

4. Calculate Vp and OGIP 

5. Compare these with correct values 

 

Linear Infinite Acting Model 

 

1. Simulate cases with k(p) 

2. Plot m(p), not  )(' pm ,  vs. t   

3. Find slope of straight line, m  

4. Calculate k and s 

5. Compare these with correct values 
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Linear Finite Acting Model 

 

1. Simulate cases with k(p) 

2. Plot m(p), not  )(' pm ,  vs. t 

3. Find slope of straight line, PSSm~  

4. Calculate Vp and OGIP 

5. Compare these with correct values 

 

Data used for each model, radial and linear, is described in Appendix C. In addition, in 

Appendix D have been included the data files used in GASSIM simulator for each case. 
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CHAPTER IV 

STRESS-DEPENDENT PERMEABILITY RADIAL CASES  

 

This chapter includes results and discussion of analytical and numerical simulation of 

stress-dependent permeability considering a reservoir with radial geometry. The analysis 

is presented for transient flow and pseudo-steady state flow, as well as constant gas rate 

and constant bottom hole pressure cases. Data files used in simulation runs are included 

in Appendix D. In addition, derivation of equations used to calculate permeability and 

skin factor as well as reservoir pore volume and OGIP are described in Appendix E. 

 

4.1 Infinite Acting, Constant qg  

4.1.1 Case 1: qg = 10 Mscf/D 

 

This section starts presenting the numerical results from GASSIM simulator for the case 

with gas rate 10 Mscf/D. The important point is to analyze the portion of the curve that 

correspond with infinite acting or transient flow, to calculate permeability and skin 

factor from the slope of each curve that correspond with different values of gamma, γ. 

The analysis is made in terms of pseudo-pressure m(p); semi log plot of m(p) versus time 

indicate a straight line with a slope that is related directly to the value of permeability. 

Fig. 4.1 show results of analytical and numerical simulation for γ = 0, that means; no 

stress dependent permeability is considered. 

 



 24

  
Fig. 4.1 – Semi-log plot, analytical and numerical match for infinite acting radial case, 

constant qg. 
 

Fig. 4.1 indicates a satisfactory match between analytical solution and numerical 

simulation regarding a radial model, constant gas rate and non-stress dependent 

permeability. In the plot is visible a small separation for early time, between 1 and 10 

days due to numerical error. The numerical error can be minimized reducing the grid 

dimensions and time steps in the simulator. This results validate the simulation model 

for γ = 0. 

 

To investigate the effect of stress-dependent permeability on the reservoir response, 

scenarios with different values of gamma (γ) are considered. As the value of gamma 

increase, means that exists a stronger dependency of permeability on pressure. Fig. 4.2 

presents results in terms of pseudo pressure for a radial reservoir in transient flow. 
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Fig. 4.2 – Semi-log plot, effect of pressure-dependent permeability for an infinite acting 
radial reservoir producing at constant qg = 10 Mscf/D. 

 

Observing Fig. 4.2, we can see that for each value of gamma (γ) considered, a semi log 

straight line (SLSL) is obtained. Each SLSL has a different slope, which is directly 

related to permeability and skin using the analytical solution. As expected, the 

permeability (k) and skin factor (s) calculated from the slope of the curve gamma cero 

(γ=0) is the original reservoir permeability and cero skin. In other words; for γ=0, kcalc = 

0.0025 md and s = 0. As the value of gamma increase, the slope obtained is higher; it is 

due to the permeability reduction in the reservoir as it is being depleted at constant gas 

rate. These results make sense and agree with Darcy’s law; keeping the gas rate constant, 

whatever reduction in reservoir permeability during depletion time lead to a higher 

pressure drop, that explain the higher value of each slope as gamma increase. It is 

important to point out that for this particular case of qg = 10 Mscf/D, semi log plot 

indicate a straight line for each value of gamma, later on in this chapter, a case with a 

higher constant gas rate is also discussed.  
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Now, the discussion is moved to the permeability calculations. Permeability is calculated 

from the slope of each curve in Fig. 4.2 using the analytical solution equation. The initial 

reservoir permeability used in the GASSIM simulator was 0.0025 md. Fig. 4.3 shows the 

results of calculations. 

 

Fig. 4.3 – Permeability ratio vs. gamma, radial case, constant qg = 10 Mscf/D. 

 

Fig. 4.3 is a plot of permeability reduction versus gamma. Permeability ratio is the 

permeability calculated in each run divided by the initial permeability (k=0.0025 md). 

From that plot we can notice that the higher the value of gamma the higher is the 

permeability reduction in the reservoir, a 24% permeability reduction occur for γ=0.001. 

In addition, as a conclusion for this particular case, where qg=10 Mscf/D, a linear 

relation is obtained between permeability ratio and gamma. 

 

The same analysis can be drawn for skin factor calculations. It is used the definition of 

skin factor to investigate the magnitude of permeability reduction in the reservoir in 
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terms of pore pressure. That means, the additional pressure drop necessary in the 

reservoir to maintain a gas rate constant meanwhile the permeability is reduced due to 

reservoir depletion. Skin factor is calculated from Fig. 4.2 at intersect of each curve with 

‘y’ axe. Fig. 4.4 shows the results. 

 

Fig. 4.4 – Skin factor vs. gamma, radial case, constant qg = 10 Mscf/D. 

 

Fig. 4.4 corresponds with a plot of skin factor versus gamma. The analytical solution 

imply a non-skin case, s=0. For the range of gamma considered in this case, skin vary 

between -0.079 and -0.876. The fact that from numerical simulation we do not get a skin 

s=0 for gamma γ=0, is explained as numerical error in the simulation runs. In addition, 

for this particular run, is obtained a straight-line relation between skin factor and gamma. 

 

Analyzing the results for this particular scenario, is concluded that a linear response is 

obtained for [m(pi)-m(pwf)]/qg vs. time for all gamma. Now, it is important to investigate 

the range of pressure drop originated by the production at constant gas rate of 10 

Mscf/D. Comparison is made in terms of m(p) and )(' pm . The term m(p) correspond to 
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the pseudo pressure defined originally by Al-Hussany1. The term )(' pm  is the pseudo 

pressure including the stress-dependent permeability function. Fig. 4.5 shows the results. 

 

Fig. 4.5 – Plot )(' pm vs. m(p), radial case, constant qg = 10 Mscf/D. 

 

In Fig. 4.5 the plot correspond with )(' pm versus m(p). Gas properties were calculated 

using a reservoir temperature of 290 oF, gas specific gravity of 0.717 and initial pressure 

of 8,800 psi. Each curve corresponds with a different value of gamma. The line in the 

top represents a non-stress sensitive scenario, γ = 0, for this case a straight line is 

obtained. As gamma start to increase from 0 to 0.001, the curves start to bend 

downward, and the relation is not longer linear. The maximum pressure drop (pi-pwf) 

occurred for the case with γ = 0.001 and it was 300 psi (pi=8,800 psi; pwf=8,500psi). The 

squared dots localized at the end of each line indicate the range of pressure studied in 

this case (qg=10Mscf/D). It is noticeable that the squared dots are localized in a region 

over the continuous line where still exist a linear relation between m(p) and )(' pm , that 

explain the results analyzed in this case, where a linear response is obtained for [m(pi)-
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m(pwf)]/qg vs. time for all gamma. Further details about pseudo pressure and effect of 

non-linear term tcµφ  on permeability and skin factor calculations for Case 1 are given 

in Appendix G. 

 

4.1.2 Case 2: qg = 40 Mscf/D 

 

In order to compare results with case 1, it is also considered a different scenario with a 

higher gas rate, fluid and reservoir properties are the same, and the only change is the 

constant gas rate that is set up to 40 Mscf/D. Running this case is desirable to validate 

results obtained in case 1 and try to get a correlation between permeability, skin and 

gamma. Similar to case 1, the range of gamma values is from 0 to 0.001. Results of case 

2 are shown in Fig. 4.6. 

 

Fig. 4.6 – Semi-log plot, effect of pressure-dependent permeability for an infinite acting 
radial reservoir producing at constant qg = 40 Mscf/D. 
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Fig. 4.6 is a plot of [m(pi)-m(pwf)]/qg vs. time considering gas rate of 40 Mscf/D. The 

figure shows that for low values of gamma (between 0 and 0.005) there is a straight line 

from the semi log plot. For larger values of gamma the curves start to tilt upward 

indicating that no longer exist a linear relation. That behavior is caused by a significant 

reduction on permeability as the reservoir is depleted at constant rate. All the curves 

correspond with a transient flow period, however, the curves corresponding to γ=0.0008 

and γ=0.001 behave like a response of a smaller reservoir; it means a reservoir with 

smaller dimensions than actual. This analysis lead to the fact that the values of 

permeability and skin factor calculated depend on the value of gamma and the case 

considered (gas rate).  

 

Calculated permeability from the slope of each curve in Fig. 4.6 is compared with the 

initial reservoir permeability and results are shown in Fig. 4.7.  

Fig. 4.7 – Permeability ratio vs. gamma, radial case, constant qg = 40 Mscf/D. 

 

Fig. 4.7 is a plot of permeability ratio vs. gamma. The permeability ratio is obtained as 

the permeability calculated from each curve in Fig. 4.6 divided by the original 
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permeability. For γ=0, the permeability ratio is 1; implying a non-stress sensitive 

formation. As expected, for a higher value of gamma there is a significant reduction on 

the permeability of the reservoir as it is depleted at constant gas rate of 40 Mscf/D. In 

this case, a 95% permeability reduction occur for γ=0.001. 

 

Skin factor are then calculated from intersect of each curve in Fig. 4.6. Results of skin 

calculations are presented in Fig. 4.8. 

Fig. 4.8 – Skin factor vs. gamma, radial case, constant qg = 40 Mscf/D. 

 

The calculated skin factor for this case shows a larger absolute value if compared with 

results of case 1, it is due to the higher constant gas rate used in the simulator. Skin 

varies from -0.113 to –4.758. The curve does not show a linear relation between skin and 

gamma.  
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and )(' pm . The term m(p) correspond to the pseudo pressure defined originally by Al-

Hussany1. The term )(' pm  is the pseudo pressure including the stress-dependent 

permeability function.  Fig. 4.9 shows the results. 

  

Fig. 4.9 - Plot )(' pm vs. m(p), radial case, constant qg = 40 Mscf/D. 

 

In Fig. 4.9 the plot correspond with )(' pm versus m(p). Gas properties were calculated 

using a reservoir temperature of 290oF, gas specific gravity of 0.717 and initial pressure 

of 8,800 psi. Each curve corresponds with a different value of gamma. The line in the 

top represents a non-stress sensitive scenario, γ = 0, for this case a straight line is 

obtained. As gamma start to increase from 0 to 0.001, the curves start to tilt downward, 

and the relation is not longer linear. The maximum pressure drop (pi-pwf) occurred for 

the case with gamma = 0.001 and it was 3029 psi (pi=8,800 psi; pwf=5,771psi). The 

squared dots localized over each continuous line indicate the range of pressure studied in 

this case (qg=40Mscf/D). It is clear that only for gamma between 0 and 0.0005 the 

squared dots are localized in a region over the continuous line where still exist a linear 
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relation between m(p) and )(' pm , that explain the results analyzed in this case, where a 

linear response is obtained for [m(pi)-m(pwf)]/qg vs. time for all gamma. Something 

interesting happen for gamma higher than 0.0005, and it is that the pressure range 

studied cover a significant portion of the curve that is not straight line, that means, there 

is not longer a linear relation between m(p) and )(' pm  that can explain the non linear 

response obtained for [m(pi)-m(pwf)]/qg vs. time for γ > 0.005. 

 

4.2 Infinite Acting, Constant pwf  

4.2.1 Case 3: pwf = 4,000 psi 

 

Case 3 corresponds with a simulation run where the control mode is the bottom hole 

pressure and it is kept constant to 4,000 psi. It is the special interest to investigate the 

reservoir response for a stress dependent permeability in terms of pseudo pressure and 

time, and then calculate permeability and skin factor from transient flow period. First at 

all, a comparison is made between numerical and analytical solution for non-stress 

dependent permeability reservoir; that means gamma is cero (γ=0). Fig. 4.10 shows the 

match between both solutions. 
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Fig. 4.10 - Semi-log plot, analytical and numerical match for infinite acting radial case, 

constant pwf. 
 

It is presented in Fig. 4.10 the numerical and analytical results in terms of pseudo 

pressure, m(p), and time. Semi log plot of this variables indicate a straight line for 

transient flow period in a radial reservoir. From the plot is visible that there is a pretty 

good match between the numerical and analytical solution, however, the first 2 days of 

simulation there is a numerical error, due to time and space dimension specified in the 

simulator. The numerical error can be minimized reducing the grid dimensions and time 

steps in the simulator. This results validate the simulation model for γ = 0. 

 

Then, we will move forward to see the results by incorporating the stress dependent 

permeability by increasing the values of gamma in each simulation run. Results are 

shown in Fig. 4.11. 
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Fig. 4.11 – Semi-log plot, effect of pressure-dependent permeability for an infinite acting 
radial reservoir producing at constant pwf = 4000 psi. 

 

Fig. 4.11 corresponds with the numerical simulation results for a radial reservoir with 

constant bottom hole pressure (4,000 psi). The plot is in the form 1/qg vs. log t. For a 

non-stress dependent permeability formation this plot leads to a straight line and from 

the slope is calculated permeability and skin factor. As it is included stress dependent 

permeability by considering different values of gamma, the result indicate also a straight 

line for the transient flow period with a different slope. The higher the value of gamma 

the higher is the slope of the curve. That results imply a reduction on gas rate production 

with time as the permeability is reduced in the reservoir and the bottom hole pressure is 

kept constant, that obey Darcy’s law. An important point to mention here is that for that 

particular case with a pressure draw down of 4,800 psi all the curves are straight lines. 
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Then, from each curve in Fig. 4.11 it is calculated the slope and consequently, the 

permeability of each simulation run to be compared with the initial permeability 

considered in the reservoir. Results are in Fig. 4.12. 

Fig. 4.12 - Permeability ratio vs. gamma, radial case, constant pwf = 4000 psi. 

 

Fig. 4.12 shows permeability ratio versus gamma. It is perceived that for gamma cero 

there is not reduction on permeability (kcalc / kpi = 1). For higher values of gamma, the 

permeability calculated from each slope in Fig. 4.11 is lower, becoming almost 80% 

reduction on permeability for the case with γ = 0.001. The correlation between 

permeability reduction and gamma has an exponential form. 

 

Skin factor is calculated in a similar way, using the slope of each curve from Fig. 4.11. 

Results are shown in Fig. 4.13. The calculation of skin factor for γ=0 is very close to 

cero (s=-0.017); difference is caused by numerical error introduced in the simulator by 

dimensions in the grid and time steps. As expected, for higher values of gamma, the 

calculated skin factor increase and is all the time positive. That indicates an introduction 

of damage in the reservoir due to the reduction on permeability as the reservoir is 
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depleted. The highest value of skin is 1.17 and correspond with the highest value of 

gamma, γ = 0.001. 

Fig. 4.13 - Skin factor vs. gamma, radial case, constant pwf = 4000 psi. 

 

As it was discussed in the constant gas rate cases, for this constant bottom hole pressure 

case, an investigation on the range of pressure drop imposed in the reservoir is made. 

The important point here is to know the range of pressure where m(p) and )(' pm  have a 

linear relation. Results are discussed in Fig. 4.14. The plot is )(' pm  vs. m(p). Both 

variables are the pseudo pressure defined by Al-Hussainy1, but the first include the effect 

of having a stress sensitive formation. Gas properties are calculated using as initial 

values, a specific gravity of 0.717 and a reservoir temperature of 290oF. Case 3 

correspond with a constant bottom hole pressure of 4,000 psi, which imply that the 

pressure drop in the reservoir is constant to 4,800 psi. Each curve corresponds with a 

different value of gamma. The line in the top represents a non-stress sensitive scenario, γ 

= 0, for this case a straight line is obtained. As gamma start to increase from 0 to 0.001, 

the curves start to tilt downward, and the relation is not longer linear. The squared dots 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0E+00 2.0E-04 4.0E-04 6.0E-04 8.0E-04 1.0E-03

γ, psi-1

Sk
in

 F
ac

to
r, 

s c
al

c 



 38

localized over the continuous lines indicate the range of pressure studied in this case (pwf 

=4,000 psi). From Fig. 4.14 is clear a very important difference between this case and 

the one with constant gas rate (cases 1 and 2). The squared dots are localized in a region 

over the continuous line where there is not a linear relation between m(p) and )(' pm  

That results suggest that lines in Fig. 4.11 (1/qg vs. time) should not be straight lines, 

however, based in simulation results they are straight lines. 

 

Fig. 4.14 - Plot )(' pm vs. m(p), radial case, constant pwf = 4000 psi. 

   

4.2.2 Case 4: pwf = 2,000 psi 
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calculate permeability and skin factor from transient flow period.  Fig. 4.15 shows the 

simulation results. 

 

 
Fig. 4.15 – Semi-log plot, effect of pressure-dependent permeability for an infinite acting 

radial reservoir producing at constant pwf = 2000 psi. 
 

Fig. 4.15 present the numerical solution for constant bottom hole pressure 2,000 psi. The 

plotting variable is 1/qg vs. time, and is observable that for transient flow period a 

straight line is obtained for each value of gamma considered. As the value of gamma 

increase a straight line with a higher slope is obtained, that obeys Darcy’s law and 

implies that gas rate decline meanwhile permeability decrease as the reservoir is 

depleted. An important point to mention here is that for that particular case with a 

significant pressure draw down (6,800 psi) all the curves are straight lines. From that 

figure is calculated the slope of each curve and plugged into the corresponding equation 

to get the values of permeability. Permeability calculations are shown in Fig. 4.16. 

 

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

1.E+00 1.E+01 1.E+02 1.E+03

t, day

1 
/ q

g,
 1

/M
sc

f/D

γ = 0.0000
γ = 0.0001
γ = 0.0003
γ = 0.0005
γ = 0.0008
γ = 0.0010



 40

The permeability calculated from each slope is lower as the values of gamma increase. 

That indicates a higher reduction in permeability in the reservoir as gamma is increased. 

An 86% permeability reduction is obtained for the case with the largest gamma (γ = 

0.001). 

 

Fig. 4.16 - Permeability ratio vs. gamma, radial case, constant pwf = 2000 psi. 

 

Skin factor is also calculated from results presented in Fig. 4.15. Getting the slopes of 

the curves, plugging them into the corresponding equations allow to get the values of 

skin for each gamma considered. Results are shown in Fig. 4.17. For this constant 

bottom hole pressure case calculated skin factors increase and are positive as gamma 

increase. Due to numerical error in the simulator, the value of skin factor obtained for 

γ=0 is not cero (s=-0.063), however it is close to cero and is considered satisfactory in 

this project. This can be improved reducing time and space dimensions in the simulator 

runs.  
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Fig. 4.17 - Skin factor vs. gamma, radial case, constant pwf = 2000 psi. 

 

Fig. 4.18 - Plot )(' pm vs. m(p), radial case, constant pwf = 2000 psi. 
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The range of pressure drop considered in this case is 6,800 psi (pi=8,800 psi; 

pwf=2,000psi), and as it is seen in Fig. 4.18, it covers a significant range of pseudo 

pressures values. The squared dots over the continuous lines indicate that range of 

pressure. For high values of gammas the plot suggest that there is not linear relation 

between m(p) and )(' pm , however, numerical results presented in Fig. 4.15 indicate that 

for all values of gammas a straight line relation is obtained. 

 

4.3 Finite Acting, Constant qg  

In this section is made a discussion of the pseudo steady state results, and particularly to 

calculate the Original Gas in Place (OGIP) in the reservoir. It is desirable to investigate 

how is affected the calculation of OGIP considering the stress dependent permeability 

through the introduction of the gamma function. The methodology is to deplete the 

reservoir at constant rate until it reaches the borders, then estimate the dimensions, pore 

volume and estimate the original volume of hydrocarbon in place.  

 

4.3.1 Case 5: qg = 10 Mscf/D 

 

The discussion starts with the first case that corresponds with a constant gas rate of 10 

Mscf/D in a radial reservoir.  
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Fig. 4.19 – Semi-log plot, analytical and numerical match for finite acting radial case, 
constant qg. 

 

The method uses the analytical solution of pseudo steady state at the inner boundary, 

then estimate the reservoir pore volume from the slope of the cartesian plot [m(pi)-

m(pwf)]/qg vs. time, as described in Appendix D. 

 

Fig. 4.19 shows the results of compare analytical and numerical solutions for a non-

stress sensitive formation. It is clear that there is a satisfactory match for both early time 

and late time. Early time corresponds with transient flow where there the reservoir 

behaves like to be infinite; no limits are found in that portion, and the match is between 

numerical and transient analytical solutions curves. For about 5,000 days start the 

transition time to pseudo steady state period and the match corresponds with the PSS 

analytical solution curve, the match is pretty good. These results confirm and validate 

the numerical model. 
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Fig. 4.20 – Cartesian plot, effect of pressure-dependent permeability for a finite acting 
radial reservoir producing at constant qg = 10 Mscf/D. 

 

In Fig. 4.20 are shown the numerical simulation results considering stress dependent 

permeability, this is, regarding several values of gamma. This is a Cartesian plot of 

pseudo pressure versus time and it reflect the pseudo steady state (PSS) period, the 

portion of the curve go from t=10,000 days to t=300,000 days. From the plot is seen that 

for each gamma a different curve is obtained, in all cases they are straight lines with 

different slopes. Non linearity has no significant effects over results due to a low 

pressure draw down considered in this case (qg = 10 MScf/D), that is way results show 

straight lines for all values of gamma. As the gamma increase results imply that PSS 

period start earlier in the model, that agree with the fact that a larger pressure drop is 

necessary as the permeability decrease in the reservoir due to depletion, and this lead to 

hit the borders of the reservoir in a smaller time. This is represented in Fig. 4.20 by a 

higher slope in the line as the value of gamma increase. 
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Fig. 4.21 – OGIP ratio vs. gamma, radial case, constant qg = 10 Mscf/D. 

 

Now, it is made a discussion about the calculation of OGIP. The pore volume of the 

reservoir is calculated form the slope of each line in Fig. 4.20. Then, using initial gas 

saturation, Sgi, of 53% is calculated the OGIP from the volumetric equation. Results are 

presented in Fig. 4.21. This figure plot the ratio of gas in place versus gamma, it is, the 

OGIP calculated for each value of gamma divided for the OGIP considering a non-stress 

sensitive formation, γ=0. Fig. 4.21 indicates a proportional reduction of calculated gas in 

place in the reservoir as gamma increase. The meaning of that result is that the reservoir 

looks to be of smaller dimensions as gamma increase. This obeys the facts that for 

higher values of gamma, a larger pressure drop occurs and the limits of the reservoir are 

reached in an earlier time. 
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4.3.2 Case 6: qg = 20 Mscf/D 

 

Case 6 correspond with a higher constant gas rate to deplete the reservoir, here is 

considered a gas rate of 20 Mscf/D. 

 

1.0E+07

1.4E+07

1.8E+07

2.2E+07

2.6E+07

3.0E+07

3.4E+07

10,000 70,000 130,000 190,000 250,000 310,000

t, day

[m
(p

i) 
- m

(p
w

f)]
 / 

q g
, p

si
2 /c

p/
M

sc
f/D

γ = 0.0000
γ = 0.0001
γ = 0.0003
γ = 0.0005
γ = 0.0008
γ = 0.0010

 
Fig. 4.22 – Cartesian plot, effect of pressure-dependent permeability for a finite acting 

radial reservoir producing at constant qg = 20 Mscf/D. 
 

The point here is to analyze a case with a higher draw down imposed in the reservoir. 

Fig. 4.22 present results for this case. Similar to previous case 5, Fig. 4.22 is a Cartesian 

plot of pseudo pressure versus time. The portion of the time important to analyze 

correspond with the pseudo steady state period. It is visible that for low values of gamma 

a straight line is obtained; however, for larger values of gamma, as γ = 0.001, the curve 

start to tilt upward and no longer is straight line. This is the direct effect of larger draw 

down and higher level of permeability reduction introduced by high value of gamma. It 

is clear that each curve is affected by non-linearity in the solution. From that plot is 
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obtained a wrong value of OGIP. To overcome the problem, in this project is used the 

concept of normalized pseudo time, introduced by Ibraim22 and described in chapter 2. 

The normalized pseudo time provides a plotting function for smoothing the production 

data by taking the effect of reservoir properties change with average pressure. 

 

Fig. 4.23 shows the result of calculating pseudo time, tn, for the case where γ = 0.0. It is 

visible that the new function linearizes production data by considering reservoir 

properties changes. Consequently, from the slope of the straight line is calculated the 

OGIP with more accuracy. 
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Fig. 4.23 – Time and normalized pseudo time for a finite acting radial reservoir 

producing at constant qg = 20 Mscf/D, Case γ= 0.0. 
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A similar method is applied for each curve in Fig. 4.22; they are linearized in terms of 

reservoir properties variation. Then, calculating the slope of each curve, allow us to get 

the values of pore volume and OGIP. Results are presented in Fig. 4.24. 

 

Fig. 4.24 - OGIP ratio vs. gamma, radial case, constant qg = 20 Mscf/D. 

 

Fig. 4.24 shows the level of reduction in the calculated OGIP considering a stress 

sensitive formation. For γ=0.001 the total reduction in the calculated OGIP is about 58%.  

 

4.4 Finite Acting, Constant pwf  

This section discusses the results of numerical simulation by depleting the radial 

reservoir at constant bottom hole pressure. Two cases are considered, the first one with 

pwf = 4,000 psi and second one with pwf = 2,000 psi. The major interest is to analyze the 

PSS period and estimate pore volume and OGIP in the reservoir. 
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4.4.1 Case 7: pwf = 4,000 psi 

 

Case 7 correspond with a constant pressure drop of 4,800 psi in the reservoir. Numerical 

results are presented in the form [m(pi)-m(pwf)]/qg versus time in Fig. 4.25. 
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Fig. 4.25 – Cartesian plot, effect of pressure-dependent permeability for a finite acting 

radial reservoir producing at constant pwf = 4000 psi. 
 

Fig. 4.25 is a Cartesian plot that shows the reservoir response during PSS period, in this 

particular plot the solution follows a straight-line behavior. The results are presented for 

different level of stress dependent permeability, from the line in the bottom to the line in 

the top, the gamma values increase. For all the range of gamma a straight line is 

obtained, with different slopes. As gamma is higher, the slope form the curve is higher. 

Pore volume and OGIP are calculated from that slope. In Fig. 4.26 it is observable the 

effect of a stress dependent permeability on the OGIP calculated.  The results indicate a 

significant reduction of calculated gas in place in the reservoir as gamma increase. These 
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results are similar to the cases with constant gas rate, the reservoir behave like being of 

smaller dimensions for higher values of gamma.  

 

Fig. 4.26 - OGIP ratio vs. gamma, radial case, constant pwf = 4000 psi. 

 

4.4.2 Case 8: pwf = 2,000 psi 

 

Case 8 correspond with a lower bottom hole pressure to deplete the reservoir, here is 

considered a pwf of 2,000 psi. The main interest is to analyze a case with a higher draw 

down imposed in the reservoir. Fig. 4.27 shows the results for this case. 
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Fig. 4.27 – Cartesian plot, effect of pressure-dependent permeability for a finite acting 
radial reservoir producing at constant pwf = 2000 psi. 

 

Similar to case 7, Fig. 4.27 is a Cartesian plot of [m(pi)-m(pwf)]/qg versus time. Results 

are presented for the PSS period in the reservoir. It is important to mention that for all 

the range of gamma studied and for a 6,800 constant pressure drop in the reservoir, a 

straight line is obtained. Each curve has a higher slope than previous one as gamma 

increase. These results lead to the conclusion that no matter the range of pressure drop in 

the reservoir; the Cartesian plot is always a straight line with different slopes. 

Calculating the slope of each curve, we come out with reservoir pore volume and OGIP.  

Results are shown in Fig. 4.28. 
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Fig. 4.28 - OGIP ratio vs. gamma, radial case, constant pwf = 2000 psi. 

 

Fig. 4.28 shows the level of reduction in the calculated OGIP considering a stress 

sensitive formation. For γ=0.001 the total reduction in the calculated OGIP is about 83%. 
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CHAPTER V 

STRESS-DEPENDENT PERMEABILITY LINEAR CASES  

 

This chapter includes results and discussion of analytical and numerical simulation of 

stress-dependent permeability considering a reservoir with linear geometry. The analysis 

is presented for transient flow and pseudo-steady state flow, as well as constant gas rate 

and constant bottom hole pressure cases. Data files used in simulations are included in 

Appendix D. In addition, derivation of equations used to calculate permeability and skin 

factor as well as reservoir pore volume and OGIP are described in Appendix F. 

 

5.1 Infinite Acting, Constant qg 

 

This section starts presenting the numerical results from GASSIM simulator for the case 

with constant gas rate 10 Mscf/D. The main objective here is analyze the portion of the 

curve that correspond with infinite acting or transient flow, to calculate permeability and 

skin factor from the slope of each curve that correspond with different values of gamma, 

γ. The analysis for linear flow is made in terms of pseudo-pressure m(p); the plot of 

log[m(p)] versus log(t) indicate a straight line with a slope of 1/2 that is related directly 

to the value of permeability. Fig. 5.1 show results of analytical and numerical simulation 

for γ = 0, that means; no stress-dependent permeability is considered. 
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Fig. 5.1 – Log-log plot, analytical and numerical match for infinite acting linear case, 
constant qg. 

 

Fig. 5.1 indicates a satisfactory match between analytical solution and numerical 

simulation regarding a linear model, constant gas rate and non-stress-dependent 

permeability. It is also visible a very small separation for early time, between 1 and 2 

days due to numerical error. The numerical error can be minimized reducing the grid 

dimensions and time steps in the simulator. This results validate the simulation model 

for γ = 0. 

 

To investigate the effect of stress-dependent permeability on the reservoir response, 

scenarios with different values of gamma (γ) are considered. As the value of gamma 

increase, means that exists a stronger dependency of permeability on pressure. Fig. 5.2 

presents results in terms of pseudo pressure for a linear reservoir in transient flow 

condition. 
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Fig. 5.2 – Square root of time plot, effect of pressure-dependent permeability for an 
infinite acting linear reservoir producing at constant qg = 10 Mscf/D. 

 

For this scenario, analysis of linear flow is represented by a plot of variables [m(pi)-

m(pwf)]/qg versus t . For a non-stress sensitive formation, γ=0, the slope of that plot 

correspond with a straight line. Observing Fig. 5.2, it is seen that for values of gamma 

(γ) less than 0.001, the response can be considered as straight line, having each straight 

line a different slope, which is directly related to permeability and skin using the 

analytical solution equations. A very important result is that for values of gamma greater 

than 0.001, the reservoir response is not longer straight line, curves start to bending 

upward, indicating a stronger dependency of permeability on pore pressure. It means that 

at each time, a different tangent is obtained and different results are obtained for 

permeability and skin calculated using analytical solution. 

 

As expected, the permeability (k) and skin factor (s) calculated from the slope of the 

curve gamma cero (γ=0) is the original reservoir permeability and cero skin. In other 
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depleted at constant gas rate. These results make sense and agree with Darcy’s law; 

keeping the gas rate constant, whatever reduction in reservoir permeability during 

depletion time lead to a higher pressure drop, that explain the higher value of each slope 

as gamma increase.  

 

Now, is included some discussion about permeability calculations. Permeability is 

calculated from the slope of each curve in Fig. 5.2 using the analytical solution equation. 

The initial reservoir permeability used in the GASSIM simulator was 0.0025 md. Fig. 

5.3 shows the results of calculations. 

Fig. 5.3 – Permeability ratio vs. gamma, linear case, constant qg = 10 Mscf/D. 

 

Fig. 5.3 is a plot of permeability reduction versus gamma. Permeability ratio is the 

permeability calculated in each run divided by the initial permeability (k=0.0025 md). 

From that plot is clear that the higher the value of gamma the higher is the permeability 

reduction in the reservoir, a 50% permeability reduction occur for γ=0.004. In addition, 

can be concluded that for this particular case, where qg=10 Mscf/D, a linear relation is 

obtained between permeability ratio and gamma. 
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The same analysis can be drawn for skin factor calculations. It is used the definition of 

skin factor to investigate the magnitude of permeability reduction in the reservoir in 

terms of pore pressure. That means, the additional pressure drop necessary in the 

reservoir to maintain a gas rate constant meanwhile the permeability is reduced due to 

reservoir depletion. Skin factor is calculated from Fig. 5.2 and using equations from 

analytical solution of linear flow constant gas rate described in appendix E. Fig. 5.4 

shows the results. 

Fig. 5.4 – Skin factor vs. gamma, linear case, constant qg = 10 MScf/D. 

 

Fig. 5.4 corresponds with a plot of skin factor versus gamma. The analytical solution 

imply a non-skin case, s=0. For the range of gamma considered in this case, skin varies 

between 0.0004 and -0.016. The fact that from numerical simulation we do not get a skin 

s=0 for gamma γ=0, is explained as numerical error in the simulation runs. However, it is 

also understandable that the variation of skin factor for the range of gammas analyzed is 

very small. The greater gamma the more negative is skin factor. 
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correspond to the pseudo pressure defined originally by Al-Hussainy1. The term )(' pm is 

the pseudo pressure including the stress-dependent permeability function. Fig. 5.5 shows 

the results. 

Fig. 5.5 - Plot )(' pm vs. m(p), linear case, constant qg = 10 MScf/D. 

 

In Fig. 5.5 the plot correspond with )(' pm versus m(p). Gas properties were calculated 

using a reservoir temperature of 290 oF, gas specific gravity of 0.717 and initial pressure 

of 8,800 psi. Each curve corresponds with a different value of gamma. For a non-stress 

sensitive scenario, γ = 0, a straight line is obtained (not shown in the plot). As gamma 

start to increase from 0 to 0.004, the curves start to bend downward, and the relation is 

not longer linear. The maximum pressure drop (pi-pwf) occurred for the case with γ = 

0.004 and it was 6,600 psi (pi=8,800 psi; pwf=2,200psi). The squared dots localized at the 

end of each line indicate the range of pressure studied in this case (qg=10Mscf/D). Can 

be seen that for gamma between 0 and 0.001 the squared dots are localized in a region 

over the continuous line where still exist a linear relation between )(' pm and m(p), that 

explain the results analyzed in this case, where a linear response is obtained for [m(pi)-

m(pwf)]/qg vs. time for all gamma. For values of gamma greater than 0.001, dots are 
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localized in the curve section of each line, indicating that there is not a linear relation 

between m(p) and )(' pm . 

 

5.2 Infinite Acting, Constant pwf 

 

This case corresponds with a simulation run where the control mode is the bottom hole 

pressure and it is kept constant to 8,000 psi. An important point is to investigate the 

reservoir response for a stress-dependent permeability in terms of pseudo pressure and 

time, then calculate permeability and skin factor from transient flow period. First at all, it 

is considered a comparison between the numerical and the analytical solution for non-

stress-dependent permeability reservoir; that means gamma is cero (γ=0). Fig. 5.6 shows 

the match between both solutions. 

 

Fig. 5.6 – Log-log plot, analytical and numerical match for infinite acting linear case, 
constant pwf. 

 

In Fig. 5.6 is presented the numerical and analytical results in terms of pseudo pressure, 
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transient flow period in a linear reservoir. Can be observed from the plot that there is a 

pretty good match between the numerical and analytical solution, however, the first 10 

days of simulation there is a numerical error, due to time and space dimension specified 

in the simulator. The numerical error can be minimized reducing the grid dimensions 

and time steps in the simulator. This results validate the simulation model for γ = 0. 

 

Then, we will move forward to see the results by incorporating the stress-dependent 

permeability by increasing the values of gamma in each simulation run. Results are 

shown in Fig. 5.7. 

Fig. 5.7 – Square root of time plot, effect of pressure-dependent permeability for an 
infinite acting linear reservoir producing at constant pwf = 8000 psi. 

 

Fig. 5.7 corresponds with the numerical simulation results for a linear reservoir with 

constant bottom hole pressure (8,000 psi) considering pressure-dependent permeability. 

The plot is in the form [m(pi)-m(pwf)]/qg vs. t . For a non-stress-dependent 

permeability formation this plot leads to a straight line and from the slope we calculate 

permeability and skin factor. As it is included pressure-dependent permeability by 

considering different values of gamma, the result indicate also a straight line for the 
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transient flow period with a different slope. The higher the value of gamma the higher is 

the slope of the curve. That results imply a reduction on gas rate production with time as 

the permeability is reduced in the reservoir and the bottom hole pressure is kept constant, 

that results obey Darcy’s law. An important point to mention here is that for that 

particular case with a pressure draw down of 8,000 psi all the curves are straight lines. 

 

Then, from each curve in Fig. 5.7 it is calculated the slope and consequently, the 

permeability of each simulation run to be compared with the initial permeability 

considered in the reservoir. Results are in Fig. 5.8. 

Fig. 5.8 - Permeability ratio vs. gamma, linear case, constant pwf = 8000 psi. 

Fig. 5.8 shows permeability ratio versus gamma. It is noticed that for gamma cero there 

is not reduction on permeability (kcalc / kpi = 1). For higher values of gamma, the 

permeability calculated from each slope in Fig. 5.7 is lower, becoming almost 82% 

reduction on permeability for the case with γ = 0.004. The correlation between 

permeability reduction and gamma has an exponential form. 
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Skin factor is calculated in a similar way, using the slope of each curve from Fig. 5.7. 

Equations are described in Appendix E. Results are shown in Fig. 5.9. The calculation of 

skin factor for γ=0 is very close to cero (s=0.0003); difference is caused by numerical 

error introduced in the simulator by dimensions in the grid and time steps. The higher 

values of gamma the more negative is calculated skin factor. The lower value of skin is 

about –0.0319 and correspond with gamma, γ = 0.003. 

Fig. 5.9 - Skin factor vs. gamma, linear case, constant pwf = 8000 psi. 
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with a different value of gamma. For a non-stress sensitive scenario, γ = 0, a straight line 

is obtained. As gamma start to increase from 0 to 0.004, the curves start to tilt 

downward, and the relation is not longer linear. The squared dots localized over the 

continuous lines indicate the range of pressure studied in this case (pwf =8,000 psi). From 

Fig. 5.10 we can notice a very important difference between this case and the one with 

constant gas rate (previous case). The squared dots are localized in a region over the 

continuous line where there is not a linear relation between m(p) and )(' pm . That results 

suggest that lines in Fig. 5.7 {[m(pi)-m(pwf)]/qg vs. t } should not be straight lines, 

however, based in simulation results they are straight lines. This is a particular result for 

cases with constant bottom hole pressure; same results were obtained in chapter 4 for 

cases with a radial geometry. 

 

Fig. 5.10 - Plot )(' pm vs. m(p), linear case, constant pwf = 8000 psi. 
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5.3 Finite Acting, Constant qg 

In this section the discussion is focused on the pseudo steady state simulation results, 

and particularly to calculate the Original Gas in Place (OGIP) in the reservoir. It is 

desirable to investigate how is affected the calculation of OGIP considering the stress 

dependent permeability through the introduction of the gamma function. The 

methodology is to deplete the reservoir at constant rate until it reaches the borders, then 

estimate the dimensions, pore volume and estimate the original volume of hydrocarbon 

in place. Data files used in simulations are described in Appendix D. Derivation of 

equations used in this section is described in Appendix E. 

 

Discussion starts with the first case that corresponds with a constant gas rate of 10 

Mscf/D in a linear reservoir.  

 

Fig. 5.11- Log-log plot, analytical and numerical match for finite acting linear case, 
constant qg. 
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It is used the analytical solution of pseudo steady state at the inner boundary, then 

estimate the reservoir pore volume from the slope of the cartesian plot [m(pi)-m(pwf)]/qg 

vs. time.  

 

Fig. 5.11 shows the results of compare analytical and numerical solutions for a non-

stress sensitive formation. From plot is visible a satisfactory match only for early time. 

Early time corresponds with transient flow where the reservoir behaves like to be 

infinite; no limits are found in that portion, and the match is between numerical and 

transient analytical solutions curves. For about 1,000,000 days start the transition time to 

pseudo steady state (PSS) period and the match corresponds with the PSS analytical 

solution curve; we observe from the plot that the match is not satisfactory for that 

condition of flow, simulation results are always below the analytical solution during 

PSS. Differences are due to non-linearity in the diffusivity equation, it means that 

reservoir properties as tcµφ , have a significant change with pore pressure. 

Fig. 5.12 – Cartesian plot, effect of pressure-dependent permeability for a finite acting 
linear reservoir producing at constant qg = 10 Mscf/D. 
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In Fig. 5.12 are shown the numerical simulation results considering stress dependent 

permeability, this is, regarding several values of gamma. This is a Cartesian plot of 

pseudo pressure versus time and it reflects the pseudo steady state (PSS) period, 

analytical solution imply a straight line for a non pressure dependent permeability and 

small change in term tcµφ . Can be noticed that for each gamma a different curve is 

obtained, and each curve is affected by non-linearity in the diffusivity equation. From 

that plot is not good to calculate the OGIP, we would obtain a wrong value. To 

overcome the problem, in this project is used the concept of normalized pseudo time, 

introduced by Ibraim22 and described in detail in chapter 2. The normalized pseudo time 

provides a plotting function for smoothing the production data by taking the effect of 

reservoir properties change with average pressure. 

 

Fig. 5.13 – Normalized pseudo time for γ = 0, linear case, constant qg = 10 Mscf/D. 

 

Fig. 5.13 shows the result of calculating normalized pseudo time, tn for the non pressure 

dependent permeability, case γ=0. It is clear that the new variable linearizes production 
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data by considering reservoir properties changes. Then, from the slope of the straight 

line is calculated the OGIP with more accuracy. 

 

From this analysis can be concluded that the normalized pseudo time gives the correct 

OGIP because it takes into account the effect of properties change with average reservoir 

pressure. 

 

A similar method is applied for each curve in Fig. 5.12; they are linearized in terms of 

reservoir properties variation. As an example of these calculations, result for the case of 

γ=0.0003 is shown in Fig. 5.14. 

Fig. 5.14 - Normalized pseudo time for γ = 0.0003, linear case, constant qg = 10 Mscf/D. 

 

It is important to notice that, as the gamma increase, results imply that PSS period start 

earlier in the model, that agree with the fact that a larger pressure drop is necessary as 

the permeability decrease in the reservoir due to depletion, and this lead to hit the 

borders of the reservoir in a smaller time. This is derived making a comparison between 

Fig. 5.13 and Fig. 5.14; there is a higher slope in the line for a higher gamma. 
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Fig. 5.15 – OGIP ratio vs. gamma, linear case, constant qg = 10 Mscf/D. 

 

Now, will be discussed the calculation of OGIP. The pore volume of the reservoir is 

calculated from the slope of each straight line in Fig. 5.13 and 5.14, see Appendix E for 

detailed description of equations. Then, using initial gas saturation Sgi, of 53% is 

calculated the OGIP from the volumetric equation. Results are presented in Fig. 5.15. 

This figure plot the ratio of gas in place versus gamma, it is, the OGIP calculated for 

each value of gamma divided for the OGIP considering a non-stress sensitive formation, 

γ=0. Fig. 5.15 indicates a proportional reduction of calculated gas in place in the 

reservoir as gamma increase. The meaning of that result is that the reservoir looks to be 

of smaller dimensions as gamma increase. This obeys the facts that for higher values of 

gamma, a larger pressure drop occurs and the limits of the reservoir are reached in an 

earlier time. 
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5.4 Finite Acting, Constant pwf 

 

This section discusses the results of numerical simulation by depleting the linear 

reservoir at constant bottom hole pressure. The case considered correspond with a pwf = 

8,000 psi, data file is described in Appendix D. The major interest is to analyze the PSS 

period and estimate pore volume and OGIP in the reservoir. 

 

This case corresponds with a constant pressure drop of 800 psi in the reservoir. To check 

the validity of the simulation, numerical results are compared with analytical solution for 

γ=0, this is presented in Fig. 5.16. 

Fig. 5.16 – Log-log plot, analytical and numerical match for finite acting linear case, 
constant pwf. 
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term tcµφ , it means that reservoir properties have a significant change with reservoir 

pressure. 

Fig. 5.17 – Cartesian plot, effect of pressure-dependent permeability for a finite acting 
linear reservoir producing at constant pwf = 8000 psi. 

 

Fig. 5.17 is a Cartesian plot that shows the reservoir response during PSS period, the 

results are presented for different level of stress dependent permeability, from the line in 

the top to the line in the bottom, the gamma values increase. For all the range of gamma 

a different curve is obtained. The analytical solution described in Appendix E imply that 

a plot of log{[m(pi)-m(pwf)]/qg} versus t, lead to a straight line behavior. These results 

are presented in Fig. 5.18. In that figure is made linear the PSS portion of the production 

data. 
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Fig. 5.18 – Semilog plot, pressure-dependent permeability, linear case, constant pwf = 
8000 psi. 

 

As gamma is higher, the slope form the curve is higher. Each curve in Fig. 5.18 look 

straight line, but a closer view reflects that they are not, and are affected by non-linearity 

in the term tcµφ . From that plot we would obtain a wrong value for OGIP. To solve the 

problem, is used again the concept of normalized pseudo time in a similar way was done 

in previous case with constant gas rate, it is described in chapter 2 and taken from 

Ibrahim22. Fig. 5.19 shows the result of calculating normalized pseudo time, tn for the 

non pressure dependent permeability, case γ = 0. From the plot is observable that the 

new variable linearizes production data by considering reservoir properties changes. 

Then, from the slope of the straight line is calculated the OGIP with more accuracy. The 

same method is applied for each curve in Fig. 5.18. 
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Fig. 5.19 - Normalized pseudo time for γ = 0.0, linear case, constant pwf = 8000 psi. 

 

Then, pore volume and OGIP are calculated from the slope in Fig. 5.19 using the 

normalized pseudo time. Results are shown in Fig. 5.20, and can be seen the effect of a 

stress dependent permeability on the OGIP calculated. The results indicate a significant 

increment of calculated gas in place in the reservoir as gamma increase. These results are 

opposite to the cases with constant gas rate, the reservoir behave like being of larger 

dimensions for higher values of gamma.  

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

0.E+00 2.E+06 4.E+06 6.E+06 8.E+06 1.E+07

t & tn, day

[m
(p

i) 
- m

(p
w

f)]
 / 

q g
, p

si
2 /c

p/
M

sc
f/D

t

tn



 73

Fig. 5.20 – OGIP ratio vs. gamma, linear case, constant pwf = 8000 psi. 
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CHAPTER VI 

ANALYSIS OF RESULTS 

 

This section concerns with the results obtained in chapters IV and V. As it was presented 

previously, chapter IV refers to a reservoir with a radial geometry and chapter V a linear 

reservoir. Discussion is based on the results of analytical solution and numerical 

simulation considering stress dependent permeability. 

 

The analysis is oriented toward solving the problem originally defined at the beginning 

of this project in chapter I. In that section, was mentioned the necessity to investigate the 

errors introduced estimating some reservoir parameters by using conventional well 

testing analysis of a tight gas reservoir. Tight gas reservoirs exhibit stress sensitive 

permeability, and for such reservoirs, pressure transient analysis and forecast 

performance based on constant rock properties, especially permeability, can lead to 

significant errors in parameters estimation. 

 

Now, following is a discussion of some important results from this project: 

 

1) For all cases analyzed, radial and linear models, a satisfactory match was reached 

between the analytical solution and numerical simulation. Both, infinite acting and finite 

acting period time have been matched with the corresponding analytical solution 

considering constant qg and pwf cases. This validates the performance of simulator 

GASSIM. 

 

2) For radial and linear model cases with low constant qg, a straight line is obtained 

in the plot of pseudo pressure versus time during infinite acting period. That means, for 

low draw down cases a straight line with different slope is obtained when considering 

pressure dependent permeability. Permeability calculated from that slope is lower than 

the correct value of the reservoir. Skin factor is also miscalculated. 
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3) When considering a larger draw down for radial and linear model, constant qg, 

infinite acting results indicate that curves in the plot pseudo pressure versus time are 

straight lines for low values of gammas and start to bending upward for large values of 

gammas. These cases introduce significantly larger errors when calculating permeability 

and skin factor. 

 

4) In all cases with constant pwf, radial and linear geometry, an important conclusion 

is derived. For low and large draw down, results indicate a straight line for infinite acting 

period in all range of gamma. That means a straight line with different slope is obtained 

for each value of gamma. These results differ from that obtained with constant qg cases. 

A significant error is introduced when estimating permeability and skin factor. That 

results lead to the conclusion that is not possible to identify a stress dependent 

permeability from the constant bottom hole pressure draw down scenario. 

 

5) From results of reservoir infinite acting period we can conclude that permeability 

reduction depends on gamma and reservoir draw down, qg or pwf, and that no correlation 

can be made. 

 

6) For finite acting period analysis, in all cases considered with constant qg and pwf, 

the OGIP is miscalculated. The level of error on calculations depends on the draw down 

in the reservoir. The use of normalized pseudo time was necessary to correct for changes 

in reservoir properties. 

 

7) From results of reservoir finite acting period we can say that no correlation can 

be made for calculation of OGIP; results depend on reservoir draw down, qg or pwf and 

gamma. 
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In this project have been demonstrated the level of errors in the determination of 

permeability, skin factor and OGIP using conventional well test analysis instead of a 

pressure dependent permeability model. All of these results have a great impact in 

business decisions and profitability for the oil company. 

 

Miscalculation in the permeability and skin factor can lead to take wrong decisions 

regarding well stimulation. That means to invest additional money to make well 

stimulation jobs when there are not necessary, and it reduces the well profitability. 

 

In the case of OGIP calculation, in most of the cases it is sub estimated, calculated 

values are lower than the correct value. It can be taken as an advantage; if we consider 

that additional gas wells and reserves would be incorporated in the exploitation plan. 
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CHAPTER VII 

CONCLUSIONS 

 

During the development of this project, the following conclusions were obtained: 

 

• If pressure-dependence of permeability k(p) is ignored, erroneous values of 

permeability, skin factor and OGIP will be calculated from well test analysis of 

tight gas reservoirs. 

 

• In constant gas rate cases, for both radial and linear reservoir geometry, the plot 

of pseudo pressure versus time give a straight line with different slopes for cases 

with small draw down during infinite acting flow. For large draw down (larger 

pressure range) curves start to bending up and straight line not longer exist. Then, 

calculated k and s are wrong and depend on the case (qg considered). 

 

• In constant bottom hole pressure cases, radial and linear reservoir geometry, the 

plot of pseudo pressure versus time give a straight line during infinite acting flow 

for all range of pwf considered, small and large draw down. A straight line with 

different slope is obtained for each value of gamma. Results imply that is not 

possible to identify a stress dependent permeability from a constant bottom hole 

pressure draw down scenario. Calculated k and s are wrong and depend on the 

case (pwf considered).  

 

• From results of reservoir infinite acting period we can conclude that permeability 

reduction depends on gamma and reservoir draw down, qg or pwf, and that no 

correlation can be made. 

 

• For finite acting period analysis, in all cases considered with constant qg and pwf, 

the OGIP is miscalculated. The level of error on calculations depends on the 
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draw down in the reservoir. The use of normalized pseudo time was necessary to 

correct for changes in reservoir properties. 

 

• From results of reservoir finite acting period we can say that no correlation can 

be made for calculation of OGIP; results depend on reservoir draw down, qg or 

pwf and gamma. 

 

• In this project I have demonstrated the level of errors in the determination of 

permeability, skin factor and OGIP using conventional well test analysis instead 

of a pressure dependent permeability model 

 

• The great impact of permeability, skin factor and OGIP calculations are traduced 

in business decisions and profitability for the oil company. Miscalculation in the 

permeability and skin factor can lead to take wrong decisions regarding well 

stimulation. That means to invest additional money to make well stimulation jobs 

when there are not necessary, and it reduces the well profitability. 

 

• In the case of OGIP calculation, in most of the cases it is sub estimated, 

calculated values are lower than the correct value. It can be taken as an 

advantage; if we consider that additional gas wells and reserves would be 

incorporated in the exploitation plan. 

 

• In the absence of lab data, this project proves that permeability modulus concept 

is a good mathematical approximation to define a relationship for permeability 

and pore pressure in the tight gas reservoir. 
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NOMENCLATURE 

 

 

B = formation volume factor, rcf/scf 

c = fluid compressibility, 1/psi 

cf = rock compressibility, 1/psi 

ct = total system compressibility, 1/psi 

Jg = gas productivity index, Mscf.cp/D/psi2  

k = permeability, md 

m(p) = real gas pseudo pressure, psi2/cp 

m(p_bar) = m(p) at average reservoir pressure, psi2/cp 

m(pi) = m(p) at initial reservoir pressure, psi2/cp 

m(pwf) = m(p) at flowing wellbore pressure, psi2/cp 

OGIP = Original Gas in Place, m3, scf 

p = pore pressure, psia 

p_bar = average reservoir pressure, psi 

pD = dimensionless pressure 

pi = initial pore pressure, psia 

PSS = pseudo-steady state condition 

pwf = bottom-hole pressure, psi 

qg = gas flow rate, Mscf/D 

r = radial distance from center of well, ft 

rd = drainage boundary radius, ft 

rw = wellbore radius, ft 

T = temperature, °R 

tD = dimensionless time 

z = gas deviation factor 

φ = porosity 

µ =  viscosity, cp 
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ρ = fluid density, lbm/ft3 

∇ = gradient 

γ = “gamma” permeability modulus 

µ(p) =  viscosity as function of pressure, cp 

PSSm~ = Cartesian slope of  m(pi)-m(pwf)/qg versus pseudo time, psi2/cp/Mscf 

m⎟(p) = modified gas pseudo pressure considering k(p), md*psia2/cp 

 

 

Subscripts 

 

Ac = cross sectional area 

calc = calculated 

D = dimensionless 

g = gas 

i = initial 

r = radial 

z = vertical 
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APPENDIX A 

REAL GAS DIFFUSIVITY EQUATION 
 

Following is the derivation of the diffusivity equation considering real gas fluid. It 
begins with definition of continuity equation, Darcy’s Law and equation of state for real 
gas as: 
 
Continuity Equation: 
 

∇ •
∂

∂
ρ

φρru =  -  ( )
t

 ………………………………………………….(A.1) 

Darcy’s Law: 

pku ∇−=
µ

r
 ………………………………………….(A.2) 

 
Equation of State: 

ρ =  pM
zRT

    ……………………………………………...(A.3) 

 
Substituting Eq. (A.2) and (A.3) in Eq. (A.1) yield: 
 

∇ • ∇
⎛
⎝
⎜

⎞
⎠
⎟

∂
∂

⎛
⎝⎜

⎞
⎠⎟

pM
zRT

-
k

p  =  -  
t

pM
zRTµ

φ  ……………………….(A.4) 

 
Simplifying eq. (A.4): 

 

∇ • ∇
∂
∂

⎛
⎝⎜

⎞
⎠⎟

k p
z

p =  
t

p
zµ

φ ……………………………………………..(A.5) 

 
Defining a pseudo pressure variable as: 
 

m(p) =  2
p

z
dp

p

p

o

∫ µ  ……………………………………………….(A.6)      

                                          
And we can write a derivative of Eq. (A.6) as follow: 
 

dm
d

 =  
2p
z

dp
d

and m
p

z
p

ξ µ ξ µ
∇ = ∇

2
……………………….(A.7) & (A.8) 
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Rearranging Eq. (A.5) yield: 
 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∇•∇
z
p

tk
 = p

z
p φ
µ

22 …………………………………(A.9) 

 
Substituting Eq. (A.8) into Eq. (A.9) yield: 
 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∇•∇
z
p

tk
 = m φ2 ……………………………………(A.10) 

 
Expanding and using chain rule in Eq. (A.10) yield: 
 

t
p

dp
d

z
p + 

z
p

dp
d 

k
=m

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛∇

φφ22 …………………………..(A.11) 

 
Multiplying and dividing by the same factor in Eq. (A.11): 
 

t
p

z
2p

dp
d

z
p + 

z
p

dp
d

2p
z 

k
=m

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛∇

µ
φφµ22  …………………….(A.12) 

 
Substituting Eq. (A.7) into Eq. (A.12) yield: 
 

t
m

dp
d1 + 

z
p

dp
d

p
z

2
 =m

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛∇

φ
φ

φµ2 ………………………….(A.13) 

 
Using definition of real gas compressibility: 
 

c =  
1 d

dp
    =  

zRT
pM

d
dp

pM
zRT

    =  
z
p

d
dp

p
zρ

ρ ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 …………..(A.14) 

 
Eq. (A.13) is simplified by: 

( )
t
m

c+c
k

 =m f
∂
∂

∇
φµ2

 …………………….(A.15) 

 
Finally, real gas diffusivity equation is: 
 

t
m

k
cm t

∂
∂

=∇
φµ2

 …………………….(A.16) 



 87

APPENDIX B 

REAL GAS DIFFUSIVITY EQUATION CONSIDERING PRESSURE DEPENDENT 

PERMEABILITY 

 
Following is the derivation of the diffusivity equation considering real gas fluid and 
pressure-dependent permeability. It begins with definition of continuity equation, 
Darcy’s Law and equation of state for real gas as: 
 
Continuity Equation: 

∇ •
∂

∂
ρ

φρru =  -  ( )
t

 ………………………………….(B.1) 

Darcy’s Law: 

pku ∇−=
µ

r
 …………………………….(B.2) 

Equation of State: 

ρ =  pM
zRT

    ……………………………………...(B.3) 

 
Substituting Eq. (B.2) and (B.3) into Eq. (B.1) yield: 
 

∇ • ∇
⎛
⎝
⎜

⎞
⎠
⎟

∂
∂

⎛
⎝⎜

⎞
⎠⎟

pM
zRT

-
k

p  =  -  
t

pM
zRTµ

φ  ………………………(B.4) 

 

Simplifying Eq. (B.4) yield:         ∇ • ∇
∂
∂

⎛
⎝⎜

⎞
⎠⎟

k p
z

p =  
t

p
zµ

φ  ……………………….(B.5) 

 
Defining pseudo pressure as follow: 

  dp
z
kp2 = pm

p

0
µ∫)('  ……………………………………..(B.6)      

 
Derivative of pseudo pressure is defined as:                                       
 

ξµξ d
dp

z
kp

d
pdm 2)('

= ……………………………….(B.7) 
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Eq. (B.7) can expressed as: 

p
z
kppm ∇=∇
µ

2)(' ……………………………..(B.8) 

 
Substituting Eq. (B.8) in Eq. (B.5) yield: 
 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=∇•∇
z
p

t
pm φ2)(' ………………………….(B.9) 

 
Expanding Eq. (B.9) and using chain rule: 
 

dt
dp

dp
d

z
p

z
p

dp
dpm ⎥

⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛=∇

φφ2)('2  …………….(B.10) 

 
Multiplying and dividing by the same factor in Eq. (B.10): 
 

t
p

z
2kp

dp
d

z
p + 

z
p

dp
d

2kp
z =pm

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛∇

µ
φφµ2)('2  ………..(B.11) 

 
Rearranging Eq. (B.11) yield: 
 

t
pm

dp
d

z
p

dp
d

p
z

k
pm

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
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φ
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 ……………….(B.12) 

 
Using definition of real gas compressibility: 
 

c =  
1 d

dp
    =  

zRT
pM

d
dp

pM
zRT

    =  
z
p

d
dp

p
zρ

ρ ⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟

 …………..(B.13) 

 
Eq. (B.13) is simplified by: 

( )
t

pm
c+c

k
 =pm f ∂

∂
∇

)(')('2 φµ
 ………………..(B.14) 

 
Finally, real gas diffusivity equation is: 
 

t
pm

k
c

pm t
∂

∂
=∇

)(')('2 φµ
 ……………(B.15) 
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APPENDIX C 

RADIAL AND LINEAR MODELS 

 

Following is a brief description of the radial and linear models used in the current 

project. It is included the dimensions of each models as well as some initial reservoir 

parameters. 

 

1) Radial Model  

 

 

 

 

 

 

 

 

 

 

 

 

Property Value 
re, ft 3,000 
rw, ft 0.25 
h, ft 362 
T, oR 750 
Bgi, rcf/scf 0.0031371 
Swi, fraction 0.47 
φ, fraction 0.15 
k, md 0.0025 
Pore Volume, PV, Brcf 1.53 
OGIP, Bscf 259.37 

 

h

re 

Producer

rw
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2) Linear Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Property Value 
L, ft 15,994 
Ac, ft2  640,000 
h, ft 800 
∆y, ft 800 
T, oR 750 
Bgi, rcf/scf 0.0031371 
Swi, fraction 0.47 
φ, fraction 0.15 
k, md 0.0025 
Pore Volume, PV, Brcf 1.53 
OGIP, Bscf 259.37 

 

 

 

 

 

 

L 

h 

∆y 

Producer Well 

Ac 
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APPENDIX D 

GASSIM DATA FILES 

1) Radial Case, Constant qg 

 

 

 

CM NT Radial Case, Pressure-Dependent Perm eability, Constant Rate for G as well
CM NT
CM NT Single Value Data
CM NT
IM AX 53
JM AX 1
CM NT (cf)m odel = (cf + Swi*cw)/(1-Correction for water
RW EL 0.25
CRO C 4.08E-06
G RAV 0.717
PREF 8800
TSC 520
PSC 14.65
T 750
NEW T 4
BETA 0
TABL 0
IM AP 1
SW AT 0.47
CW AT 4.1E-06
G AM M A 0
END
CM NT
CM NT G rid Data
CM NT
KX 0.0025
KY 0.0025
PHI 0.15
PO I 8800
CM NT
RR -1

0.3 0.36 0.43 0.51 0.61 0.72 0.86 1.03 1.23 1.47
1.76 2.1 2.5 2.99 3.57 4.26 5.09 6.07 7.25 8.65

10.33 12.34 14.73 17.58 20.99 25.06 29.92 35.73 42.65 50.92
60.8 72.58 86.66 103.46 123.52 147.47 176.06 210.2 250.96 299.62

357.71 427.07 509.88 608.74 726.77 867.68 1035.92 1236.78 1474.59 1762.89
2104.7 2512.79 3000

CM NT
DELY 361.99
END
CM NT
CM NT Schedule Data
CM NT
PM AP 2
PLO T 2
CM NT
NAM E 1 1 1 0 0
ALPH 1.2
DELT 1
DTM X 20
Q G 1 10000
PM IN 1 100
TIM E 1000
END
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2) Radial Case, Constant pwf 

 

 

CMNT Radial Case, Pressure-Dependent Permeability, Constant Pwf for Gas well
CMNT
CMNT Single Value Data
CMNT
IMAX 53
JMAX 1
CMNT (cf)model = (cf + Swi*cw)/(1-Correction for water
RWEL 0.25
CROC 4.08E-06
GRAV 0.717
PREF 8800
TSC 520
PSC 14.65
T 750
NEWT 4
BETA 0
TABL 0
IMAP 1
SWAT 0.47
CWAT 4.1E-06
GAMMA 0
END
CMNT
CMNT Grid Data
CMNT
KX 0.0025
KY 0.0025
PHI 0.15
POI 8800
CMNT
RR -1

0.3 0.36 0.43 0.51 0.61 0.72 0.86 1.03 1.23 1.47
1.76 2.1 2.5 2.99 3.57 4.26 5.09 6.07 7.25 8.65

10.33 12.34 14.73 17.58 20.99 25.06 29.92 35.73 42.65 50.92
60.8 72.58 86.66 103.46 123.52 147.47 176.06 210.2 250.96 299.62

357.71 427.07 509.88 608.74 726.77 867.68 1035.92 1236.78 1474.59 1762.89
2104.7 2512.79 3000

CMNT
DELY 361.99
END
CMNT
CMNT Schedule Data
CMNT
PMAP 2
PLOT 2
CMNT
NAME 1 1 1 0 0
ALPH 1.2
DELT 1
DTMX 20
QG 1 10000
PWF 1 4000
TIME 1000
END
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3) Linear Case, Constant qg 

 
CMNT Linear Case, Pressure-Dependent Permeability, Constant Rate for Gas well
CMNT
CMNT Single Value Data
CMNT
IMAX 105
JMAX 1
CMNT (cf)model = (cf + Swi*cw)/(1-Correction for water
CMNT 0.25
CROC 4.08E-06
GRAV 0.717
PREF 8800
TSC 520
PSC 14.65
T 750
NEWT 4
BETA 0
TABL 0
IMAP 1
SWAT 0.47
CWAT 0.0000041
GAMMA 0
END
CMNT
CMNT Grid Data
CMNT
KX 0.0025
KY 0.0025
PHI 0.15
POI 8800
CMNT
DELX -1

0.5 0.6 0.7 1 2 4 8 10 15 20
25 30 35 40 50 70 100 100 100 100

100 100 100 100 100 150 150 150 150 150
150 150 150 150 150 150 150 150 150 150
150 150 150 150 150 150 150 150 150 150
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 232

CMNT
DELY 800
H 800
WIND 1 1 1 1
PHI 0.075
KX 0.0025
KY 0.0025
END
CMNT
CMNT Schedule Data
CMNT
PMAP 2
PLOT 2
CMNT
NAME 1 1 1 0 0
ALPH 1.2
DELT 1
DTMX 100000
QG 1 10000
PMIN 1 100
TIME 10000000
END
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4) Linear Case, Constant pwf 

CMNT Linear Case, Pressure-Dependent Permeability, Constant Pwf for Gas well
CMNT
CMNT Single Value Data
CMNT
IMAX 105
JMAX 1
CMNT (cf)model = (cf + Swi*cw)/(1-Correction for water
CMNT 0.25
CROC 4.08E-06
GRAV 0.717
PREF 8800
TSC 520
PSC 14.65
T 750
NEWT 4
BETA 0
TABL 0
IMAP 1
SWAT 0.47
CWAT 0.0000041
GAMMA 0
END
CMNT
CMNT Grid Data
CMNT
KX 0.0025
KY 0.0025
PHI 0.15
POI 8800
CMNT
DELX -1

0.5 0.6 0.7 1 2 4 8 10 15 20
25 30 35 40 50 70 100 100 100 100

100 100 100 100 100 150 150 150 150 150
150 150 150 150 150 150 150 150 150 150
150 150 150 150 150 150 150 150 150 150
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200 200 200
200 200 200 200 232

CMNT
DELY 800
H 800
WIND 1 1 1 1
PHI 0.075
KX 0.0025
KY 0.0025
END
CMNT
CMNT Schedule Data
CMNT
PMAP 2
PLOT 2
CMNT
NAME 1 1 1 0 0
ALPH 1.2
DELT 1
DTMX 100000
QG 1 10000
PWF 1 8000
TIME 10000000
END
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APPENDIX E 

ANALYTICAL SOLUTION FOR RADIAL DIFFUSIVITY EQUATION 
 

Analytical Solution: Infinite Acting Radial Case 
 

1) Constant qg 
 
The solution of diffusivity equation is: 

 

stm DD ++= 4045.0)ln(
2
1 ………………….…..(E.1) 

 
Dimensionless variables are defined as: 

 
( ) ( )[ ]

gg

wfi
D Tq

pmkh
Tq

pmpmkh
m

1422
)(

1422
∆

=
−

= ……………………..(E.2) 

 

2

00633.0

wt
D rc

ktt
φµ

= ……………………………………(E.3) 

 
Substituting and reordering; 

 

s
rc

kt
Tq

pmkh

wtg

++⎥
⎦

⎤
⎢
⎣

⎡
=

∆ 4045.000633.0ln
2
1

1422
)(

2φµ
…………………(E.4) 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

∆ s
rc

kt
kh

T
q

pm

wtg

4045.000633.0log
2
303.21422)(

2φµ
……………(E.5) 

 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

∆
1515.11515.1

4045.0log00633.0log4.1637)(
2

st
rc

k
kh

T
q

pm

wtq φµ
……….(E.6) 

 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

∆
1515.11515.1

4045.000633.0log4.1637log4.1637)(
2

s
rc

k
kh

Tt
kh

T
q

pm

wtg φµ
……(E.7) 
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Plotting, ( )tvs
q

pm

g

log)(∆  the slope correspond to: 
kh

Tm 4.1637
=  

 
 
Solving for Skin, s: 
 

( )
1515.11515.1

4045.0log00633.0log1)(
2

st
rc

k
mq

pm

wtg

+++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∆
φµ

…….(E.8) 

 

( ) ( )
1515.1
4045.000633.0logloglog

/)(
1515.1 2 −−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

∆
= t

rc
k

m
qpms

wt

q

φµ
……(E.9) 

 
For t = 1 day imply that log(t) = 0 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

∆
= 8473.1log

/)(
1515.1 2

wt

q

rc
k

m
qpm

s
φµ

…………….(E.10) 

 
 
2) Constant pwf 
 
The solution of diffusivity equation is: 

st
q

m D
D

D ++== 4045.0)ln(
2
11 ……………………(E.11) 

 
Dimensionless variables are defined as: 

 
( ) ( )[ ]

gg

wfi

D
D Tq

pmkh
Tq

pmpmkh
q

m
1422

)(
1422

1 ∆
=

−
== ………………(E.12) 

 

2

00633.0

wt
D rc

ktt
φµ

= ………………………………..(E.13) 

 
Substituting and reordering; 

 

s
rc

kt
Tq

pmkh

wtg

++⎥
⎦

⎤
⎢
⎣

⎡
=

∆ 4045.000633.0ln
2
1

1422
)(

2φµ
………………(E.14) 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

∆ s
rc

kt
kh

T
q

pm

wtg

4045.000633.0log
2
303.21422)(

2φµ
……………(E.15) 

 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆

=
1515.11515.1

4045.0log00633.0log
)(

4.16371
2

st
rc

k
pmkh
T

q wtq φµ
………..(E.16) 

 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆

+
∆

=
1515.11515.1

4045.000633.0log
)(

4.1637log
)(

4.16371
2

s
rc

k
pmkh
Tt

pmkh
T

q wtg φµ
…..(E.17) 

 
 

Plotting, ( )tvs
qg

log1  the slope correspond to: 
)(

4.1637
pmkh
Tm

∆
=  

 
 
Solving for Skin, s: 
 

( )
1515.11515.1

4045.0log00633.0log
/1

2

st
rc

k
m
q

wt

g +++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

φµ
………..(E.18) 

 

( ) ( )
1515.1
4045.000633.0logloglog

/1
1515.1 2 −−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= t

rc
k

m
qs

wt

q

φµ
………….(E.19) 

 
 
For t = 1 day imply that log(t) = 0 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 8473.1log

/1
1515.1 2

wt

q

rc
k

m
q

s
φµ

……………….(E.20) 
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Analytical Solution: Finite Acting Radial Case 
 
1) Constant qg 
 
The analytical solution of the diffusivity equation for radial flow during pseudo steady 
state (PSS) condition in dimensionless terms is: 
 

( )
4
3ln2

2
−+= eDD

eD
D rt

r
m …………………………………(E.21) 

 
Dimensionless variables are defined as: 
 

( ) ( )[ ]
g

wfi
D Tq

pmpmkh
m

1422
−

= ………………………………..…(E.22) 

 

2
00633.0

wt
D

rc
ktt

φµ
= ………………………………………….(E.23) 

 
Substituting Eqs. 2 and 3 in Eq. 1: 
 

( ) ( )[ ]
( )

4
3ln00633.02

1422 22
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−
De

wtDeg

wfi r
rc

kt
rTq

pmpmkh

φµ
…………..(E.24) 

 
 
Reordering; 
 

( ) ( )[ ]
( ) ⎥⎦

⎤
⎢⎣
⎡ −+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−

4
3ln142200633.021422

22 De
wtDeg

wfi r
kh

T
rc

kt
rkh

T
q

pmpm

φµ
…….(E.25) 

 
( ) ( )[ ]

( ) ⎥⎦
⎤

⎢⎣
⎡ −+=

−

4
3ln142218

2 De
etg

wfi r
kh

Tt
rch

T
q

pmpm

φµ
…………(E.26) 

 
Pore volume, Vp, is calculated as: 

 
φπ hrV ep

2= ………………………………………(E.27) 
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Substituting pore volume in equation: 

( ) ( )[ ]
( ) ⎥⎦

⎤
⎢⎣
⎡ −+=

−

4
3ln142218

De
tpg

wfi r
kh

Tt
cV
T

q
pmpm

µ
π …………………….(E.28) 

 
 
 

Then, plotting 
( ) ( )[ ]

g

wfi

q
pmpm −

  vs t, we get the slope, m, as: 

 
 

tp cV
Tm

µ
π18

= ………………………………………(E.29) 

 
OGIP is calculated as: 
 

gi

gip

B
SV

OGIP = ……………………………….(E.30) 

 

i

i
gi p

Tz
B 0282.0= ………………………….…(E.31) 

 
 

gi
i

i

PSSt
S

Tz
p

mc
TOGIP ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0282.0~
118

µ
π ……………………(E.32) 

 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

PSSti

gii

mcz
Sp

OGIP ~
12

µ
…………………………….(E.33) 

 
2) Constant pwf 
 
The analytical solution of the diffusivity equation for radial flow during pseudo steady 
state (PSS) condition in dimensionless terms is: 
 

( )
4
3ln21

2
−+== eDD

eDD
D rt

rq
m …………………………………(E.34)  
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Dimensionless variables are defined as: 
 

( ) ( )[ ]
g

wfi

D
D Tq

pmpmkh
q

m
1422

1 −
== ………………………………..…(E.35) 

 

2
00633.0

wt
D

rc
ktt

φµ
= ………………………………………….(E.36) 

 
Substituting Eqs. 2 and 3 in Eq. 1: 
 

( ) ( )[ ]
( )

4
3ln00633.02

1422 22
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−
De

wtDeg

wfi r
rc

kt
rTq

pmpmkh

φµ
……………..(E.37) 

 
 
Reordering; 
 

( ) ( )[ ]
( ) ⎥⎦

⎤
⎢⎣
⎡ −+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−

4
3ln142200633.021422

22 De
wtDeg

wfi r
kh

T
rc

kt
rkh

T
q

pmpm

φµ
…..(E.38) 

 
( ) ( )[ ]

( ) ⎥⎦
⎤

⎢⎣
⎡ −+=

−

4
3ln142218

2 De
etg

wfi r
kh

Tt
rch

T
q

pmpm

φµ
………..(E.39) 

 
Pore volume, Vp, is calculated as: 

 
φπ hrV ep

2= ……………………………………..(E.40) 
 
 

Substituting pore volume in equation: 

 

( ) ( )[ ]
( ) ⎥⎦

⎤
⎢⎣
⎡ −+=

−

4
3ln142218

De
tpg

wfi r
kh

Tt
cV
T

q
pmpm

µ
π …………………(E.41) 
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Then, plotting 
( ) ( )[ ]

g

wfi

q
pmpm −

  vs t, we get the slope, m, as: 

 
 

tp cV
Tm

µ
π18

= …………………………………….(E.42) 

 
OGIP is calculated as: 
 

gi

gip

B
SV

OGIP = ……………………………………….(E.43) 

 

i

i
gi p

Tz
B 0282.0= ……………………………………..(E.44) 

 
 

gi
i

i

PSSt
S

Tz
p

mc
TOGIP ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0282.0~
118

µ
π ………………………(E.45) 

 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

PSSti

gii

mcz
Sp

OGIP ~
12

µ
…………………………………….(E.46) 
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APPENDIX F 

ANALYTICAL SOLUTION FOR LINEAR DIFFUSIVITY EQUATION 
 

Analytical Solution: Infinite Acting Linear Case 
 
1) Constant qg 

 

The solution of diffusivity equation is: 

 
stm

AcDD += *4 π ………………………………(F.1) 

 
Dimensionless variables are defined as: 

 
( ) ( )[ ]

g

cwfi
D qT

Akpmpm
m

422,1
−

= …………………..……(F.2) 

 

ct
D Ac

tk
t

Ac φµ
00633.0

= ………………………………(F.3) 

 
Substituting and reordering; 

 
( ) ( )[ ]

s
Ac

tk
qT

Akpmpm

ctg

cwfi +=
−

φµ
π00633.0

4
422,1

…………………(F.4) 

 
( ) ( )[ ]

s
Ak

T
Ac

tk
Ak

T
q

pmpm

cctcg

wfi 422,100633.0422,1*4
+=

−

φµ
π

………………(F.5) 

 
( ) ( )[ ]

s
Ak

T
t

cAk
T

q
pmpm

ctcq

wfi 422,1
*1*00633.0*422,1*4 +=

−

φµ
π ………(F.6) 

 
( ) ( )[ ]

s
Ak

T
t

cAk
T

q
pmpm

ctcq

wfi 422,1
*1*11.802 +=

−

φµ
………………(F.7) 
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Plotting, 
( ) ( )[ ]

tvs
q

pmpm

g

wfi −
 the slope corresponds to: 

tc cAk
T

m
φµ
111.802

=  

 
 
Solving for permeability, k: 
 

tc cAk
T

m
φµ
111.802

= …………………….………(F.8) 

 

tc cAm
T

k
φµ
111.802

= ……………………….………(F.9) 

 

tc cAm
T

k
φµ

111.802
2

⎥
⎦

⎤
⎢
⎣

⎡
= ………………………..……(F.10) 

 
 
Solving for Skin, s: 
 

 
( ) ( )[ ]

s
Ak

T
t

cAk
T

q
pmpm

ctcq

wfi 422,1
*1*11.802 +=

−

φµ
………………(F.11) 

 
( ) ( )[ ]

t
cAk

T
q

pmpm
s

Ak
T

tcq

wfi

c
*1*11.802

422,1
φµ

−
−

= ………………(F.12) 

 
 

( ) ( )[ ]
t

cAk

Ak
q

pmpm
T

Ak
s

tc

c

q

wfic *1*
422,1

11.802
422,1 φµ

−
−

= ………………(F.13) 

 
 

( ) ( )[ ]
t

Ac
k

q
pmpm

T
Ak

s
ctq

wfic **564075.0
422,1 φµ

−
−

= ………………(F.14) 
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2) Constant pwf 
 
The solution of diffusivity equation is: 

 

st
q AcD

D
+= *21 ππ …………….………(F.15) 

 
Dimensionless variables are defined as: 

 
( ) ( )[ ]

g

cwfi

D qT
Akpmpm

q 422,1
1 −

= ……………..……(F.16) 

 

ct
D Ac

tk
t

Ac φµ
00633.0

= ……………………………(F.17) 

 
Substituting and reordering; 

 
( ) ( )[ ]

s
Ac

tk
qT

Akpmpm

ctg

cwfi +=
−

φµ
π

π
00633.02

422,1
………………(F.18) 

 
( ) ( )[ ]

s
Ak

T
Ac

tk
Ak

T
q

pmpm

cctcg

wfi 422,100633.0422,1*2
+=

−

φµ
ππ

………………(F.19) 

 
( ) ( )[ ]

s
Ak

T
t

cAk
T

q
pmpm

ctcq

wfi 422,1
*1*00633.0*422,1*2 +=

−

φµ
ππ ……(F.20) 

 
( ) ( )[ ]

s
Ak

T
t

cAk
T

q
pmpm

ctcq

wfi 422,1
*1*96.259,1 +=

−

φµ
………………(F.21) 

 
 
 

Plotting, 
( ) ( )[ ]

tvs
q

pmpm

g

wfi −
 the slope corresponds to: 

tc cAk
T

m
φµ
196.259,1

=  
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Solving for permeability, k: 
 

tc cAk
T

m
φµ
196.259,1

= ………………………….…(F.22) 

 

tc cAm
T

k
φµ
196.259,1

= …………….………(F.23) 

 

tc cAm
T

k
φµ

196.259,1
2

⎥
⎦

⎤
⎢
⎣

⎡
= ……………………(F.24) 

 
 
 
Solving for Skin, s: 
 

 
( ) ( )[ ]

s
Ak

T
t

cAk
T

q
pmpm

ctcq

wfi 422,1
*1*96.259,1 +=

−

φµ
………………(F.25) 

 
( ) ( )[ ]

t
cAk

T
q

pmpm
s

Ak
T

tcq

wfi

c
*1*96.259,1

422,1
φµ

−
−

= ………………(F.26) 

 
 

( ) ( )[ ]
t

cAk

Ak
q

pmpm
T

Ak
s

tc

c

q

wfic *1*
422,1

96.259,1
422,1 φµ

−
−

= ………………(F.27) 

 
 

( ) ( )[ ]
t

Ac
k

q
pmpm

T
Ak

s
ctq

wfic **886047.0
422,1 φµ

−
−

= ………………(F.28) 
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Analytical Solution: Finite Acting Linear Case 
 
1) Constant qg 

 

The analytical solution of the diffusivity equation for linear flow during pseudo steady 
state (PSS) condition in dimensionless terms is: 
 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= AcD

c

c
D t

L
A

A
Lm

2

3
12π ………………………F.29) 

 
Dimensionless variables are defined as: 
 

( ) ( )[ ]
g

wfic
D qT

pmpmAk
m

1422
−

= ………………………………(F.30) 

 

ct
D Ac

ktt
φµ
00633.0

= ……………………………………(F.31) 

 
Substituting Eqs. 2 and 3 in Eq. 1: 
 

( ) ( )[ ]
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

−

ct

c

ccg

wfic

Ac
kt

L
A

A
L

A
L

Tq
pmpmAk

φµ
ππ 00633.02

3
2

1422

2

………………(F.32) 

 
 
Reordering; 
 

( ) ( )[ ] ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

−

tcccg

wfi

c
kt

ALA
L

Ak
T

q
pmpm

φµ
ππ 100633.0*2

3
21422 ………………(F.33) 

 
 

( ) ( )[ ] ( ) t
cLA

T
kA
LT

q
pmpm

tccg

wfi

φµ
ππ 12*1422*00633.0

3
21422 +=

−
………………(F.34) 

 
 

Pore volume, Vp, is calculated as: 

 
φcp ALV = …………………………..……(F.35) 
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Substituting pore volume in equation: 

 

( ) ( )[ ]
t

cV
T

kA
LT

q
pmpm

tpcg

wfi

µ
π 156.56
3

21422 +=
−

………………(F.36) 

 
 

 

Then, plotting 
( ) ( )[ ]

g

wfi

q
pmpm −

  vs t, we get the slope, m, as: 

 
 

tp cV
Tm
µ

56.56= ………………………………(F.37) 

 
OGIP is calculated as: 
 

gi

gip

B
SV

OGIP = ……………………………….……(F.38) 

 

i

i
gi p

Tz
B 0282.0= ………………………….……(F.39) 

 
 

gi
i

i

PSSt
S

Tz
p

mc
TOGIP ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0282.0~
156.56

µ
……………………………(F.40) 

 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

PSSti

gii

mcz
Sp

OGIP ~
12

µ
…………………….……(F.41) 

 
2) Constant pwf 
 
The analytical solution of the diffusivity equation for linear flow during pseudo steady 

state (PSS) and constant bottom hole pressure condition in dimensionless terms is: 
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∑
∞

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=

odd

Ac
n

D
c

c

D
t

L
An

A
L

q 222

4
exp

1

π

π

………………………(F.42) 

 
Dimensionless variables are defined as: 
 

( ) ( )[ ]
g

wfic

D qT
pmpmAk

q 422,1
1 −

= …………..…………………(F.43) 

 

ct
D Ac

ktt
φµ
00633.0

= …………………….………………(F.44) 

 
Substituting Eqs. 2 and 3 in Eq. 1: 
 

( ) ( )[ ]

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡−
=

−

ct

c

c

g

wfic

Ac
tk

L
A

A
L

Tq
pmpmAk

φµ
π

π

00633.0
4

exp
422,1

2

2
………………(F.45) 

 
 
Reordering; 

( ) ( )[ ]

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡−
=

−

ct

c

c

g

wfi

Ac
tk

L
A

Ak
LT

q
pmpm

φµ
π

π

00633.0
4

exp

422,1

2

2
………………(F.46) 

 
 

 
( ) ( )

ct

c

g

wfi

AcL
ktA

kAc
LT

q
pmpm

φµ
π

π
2

2

4
00633.0

422,1lnln ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
………………(F.47) 

 
Pore volume, Vp, is calculated as: 

 
φcp ALV = ……………………………….……(F.48) 
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Substituting pore volume in equation: 

 
( ) ( )

pt

c

g

wfi

VcL
ktA

kAc
LT

q
pmpm

µ
π

π ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

4
00633.0

422,1lnln
2

…………(F.49) 

 
 

Then, plotting 
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OGIP is calculated as: 
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APPENDIX G 

MISCELLANEOUS 

 

This section includes some discussion regarding pseudo properties in terms of pressure-

dependent and non pressure-dependent permeability. Also show the change of non-linear 

term tcµφ  for the pressure range analyzed in case 1: radial flow, constant qg = 10 

Mscf/D. 

 

 

Figure G.1 – Cartesian plot )(' pm vs m(p) for a gas of gravity 0.717 and temperature 

290oF. Comparison of pseudo pressure for a formation with and without stress-sensitive 

permeability is made.  As gamma increase, the rock is more stress-dependent and 

permeability has a larger reduction, the relation between )(' pm vs m(p) is not longer 

linear. 
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Fig. G.2 – Cartesian plot of pseudo pressure draw down. Comparison for a formation 

with [ )(')(' wfi pmpm − ] and without [ )()( wfi pmpm − ] stress-dependent permeability 

is made. Continues lines are analytical solutions for several values of gamma. Darkness 

lines represent the pressure range considered in the Case 1: radial flow, infinite acting 

period, constant qg = 10 Mscf/D. Case 1 consider a small pressure draw down range and 

still exist a linear relation between )(' pm vs m(p). 
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Fig. G.3 – Cartesian plot of pseudo pressure draw down. Comparison for a formation 

with [ )(')(' wfi pmpm − ] and without [ )()( wfi pmpm − ] stress-dependent permeability 

is made. Continues lines are analytical solutions for several values of gamma. Darkness 

lines represent the pressure range considered in the Case 2: radial flow, infinite acting 

period, constant qg = 40 Mscf/D. Case 2 consider a larger pressure draw down range and 

cover a long portion where there is not linear relation between )(' pm vs m(p). 
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Fig. G.4 - Semi-log plot of dimensionless pseudo pressure vs. time. Values of gamma 

indicate a stress-dependent permeability. Numerical results are for Case 1: radial flow, 

infinite acting, constant qg = 10 Mscf/D. Analytical solution for γ = 0 has the form: 

stm DD ++= 4045.0)log(1515.1 . As gamma increase results are straight line with a 

different slopes. 
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Radial Flow, Constant qg (10 Mscf/D) 
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Fig. G.5 – Semi-log plot of dimensionless pseudo pressure prime vs. time. The value of 

)(' pm  has been calculated analytically by the integral function including the 

permeability modulus as: ∫=
i

wf

p

p
i

dp
z

p
k
kpm

µ
2)(' . Values of gamma indicate a stress-

dependent permeability. Numerical results are for Case 1: radial flow, infinite acting, 

constant qg = 10 Mscf/D. Analytical solution for γ = 0 has the form: 

stm DD ++= 4045.0)log(1515.1 . As gamma increase results are straight line with same 

slopes and different intercept. 
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Fig. G.6 - Comparison of non-linear term tcµφ / k regarding a non-stress formation (k = 

constant) and a stress formation (k = function of pressure) as a function of pore pressure. 

Values of gamma indicate a larger dependency on stress. For low pressure and large 

gamma the non-linear term has a significant variation. 
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Radial Flow, Constant qg (10 Mscf/D)
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Fig. G.7 - Comparison of calculated skin factor from conventional real gas pseudo 

pressure numerical results, m(p), and also using analytical real gas pseudo pressure 

prime, )(' pm .Integral function used is: ∫=
i

wf

p

p
i

dp
z

p
k
kpm

µ
2)(' . 

The case considered correspond with radial flow, infinite acting and constant qg = 10 

Mscf/D. 
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