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ABSTRACT 

 
 
 

Transcript Profiling of Differentiating Xylem of Loblolly Pine (Pinus taeda L.). 
 

(December 2004) 
 

Suk Hwan Yang, B.S., Korea University; 
 

M.S., Iowa State University 
 

Chair of Advisory Committee: Dr. Carol A. Loopstra 
 
 
 

Wood formation (xylogenesis) is a critical developmental process for all woody 

land plants. As an initial step to understand the molecular basis for temporal and spatial  

regulation of  xylogenesis and the effect of the expression of individual genes on 

physical and chemical properties of wood, microarray and real-time RT-PCR analyses 

were performed to monitor gene expression during xylogenesis under various 

developmental and environmental conditions. The specific objectives established for this 

study were: Objective 1. Microarray analysis of genes preferentially expressed in 

differentiating xylem compared to other tissues of loblolly pine (see Chapter II); 

Objective 2. Microarray analysis of seasonal variation in gene expression for loblolly 

pines (Pinus taeda L.) from different geographical sources (see Chapter III); Objective 3. 

Real-time RT-PCR analysis of loblolly pine AGP and AGP-like genes (see Chapter IV). 

Based on the results from this study, candidate genes may be further studied for 

association with significant traits, used for genetic modification of wood properties, or 

included in future studies to further examine the molecular mechanisms of wood 
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CHAPTER I 

 

INTRODUCTION FOR THE TRANSCRIPT PROFILING OF 

DIFFERENTIATING XYLEM OF LOBLOLLY PINE (Pinus taeda L.) 

 

Wood is one of the nation’s most valuable industrial materials accounting for 

about 25% of the value of all major industrial materials (National Research Council, 

1990). The value of delivered timber in the United States each year rivals or exceeds that 

of any other crop species including maize (McKeever and Howard, 1996). Loblolly pine 

is the most important tree species in the U.S. It is most widely planted each year and is a 

major source material for wood and pulp production in the U.S. (Moulton and 

Hernandez, 2000).  

Wood is a model system to study plant cell wall biosynthesis. The cell wall is 

one of the significant differences between plant and animal cells and is thought to play 

important roles in the growth, development, adaptation and evolution of higher plants 

(Jones and Dangle, 1996). Pine wood is mostly composed of xylem tracheid cell walls 

and differentiating xylem is a rich source of RNAs and proteins involved in cell wall 

biosynthesis (Sederoff et al., 1994). Loblolly pine has become a model system to study 

wood formation (xylogenesis) in a gymnosperm. During the active growing season, the 

bark and the phloem layer of pine can be easily removed leaving the non-lignified  

_______________ 

This dissertation follows the style of Plant Physiology. 
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differentiating xylem attached to the mature wood. Differentiating xylem can be 

separated by scraping the surface, while tracheids undergoing lignification and 

programmed cell death, as well as some mature tracheids and fully differentiated ray 

cells can be collected by deeper planing.   

Wood is derived from the differentiation of two vascular cambial initials, 

fusiform initials and ray initials, which give rise to secondary phloem and xylem for 

translocation of nutrients and mechanical support. During xylogenesis, fusiform initials 

undergo several different steps including cell division, cell enlargement, cell wall 

thickening, lignification, and programmed cell death to become mature tracheids 

(Bailey, 1952). The primary wall is formed during cell enlargement. The thickness and 

composition of the wall in the subsequent stages is dependent on both the environmental 

and developmental factors. In other words, the properties of wood are determined by the 

activity of the genes and proteins expressed during xylogenesis and the variation in 

wood properties is caused by the regulation of these genes in response to developmental 

and environmental cues. The genes affecting wood properties such as wood specific 

gravity, microfibril angle, cell wall thickness, lumen diameter, fiber length, and chemical 

compositions of major cell wall components such as cellulose, lignin, and hemicellulose 

are of particular interest. These genes are the targets for genetic engineering of wood 

properties. 

Trees are not an optimum experimental system due to their large size and long 

generation times. Pines have an additional disadvantage because of their large genome 

size, about 22 pg DNA per haploid genome (Wakamiya et al., 1996 ) which is about 200 
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times that of Arabidopsis thaliana (Somerville and Somerville, 1999). The pine genome 

is also redundant in repetitive DNA such as retrotransposons (Kriebel, 1985; Kamm et 

al., 1996; Kossack and Kinlaw, 1999). However, genomic approaches provide a new 

opportunity to overcome the disadvantages of pine as an experimental system because of 

the capability to work with large numbers of genes simultaneously. Now it is possible to 

analyze thousands of genes simultaneously using high throughput technologies such as 

microarray analysis to ask interesting biological questions that were previously 

impossible. The regulation, interactions, and roles in important biochemical pathways of 

those genes expressed during xylogenesis can be studied now.  

Microarray analysis has already become a powerful tool for transcript profiling 

of conifers and poplars. Hertzberg et al. (2001) performed microarray analysis for 

different developmental stages of xylogenesis using a hybrid aspen unigene set 

consisting of about 3000 ESTs. Whetten et al. (2001) used the first-generation pine 

microarrays to study gene expression for juvenile vs. mature wood and compression vs. 

normal wood. Loblolly pine microarrays were used to study gene expression in different 

pine species (Pinus sylvestris) and Norway spruce (Picea abies) as well (van Zyl et al., 

2002). Stress responses in pine were studied using microarrays containing 384 cDNAs 

(Heath et al., 2002) and the effects of PEG (polyethylene glycol) on gene expression 

during white spruce somatic embryogenesis was investigated using loblolly pine 

microarrays containing 2178 cDNAs (Stasolla et al., 2003). The effect of PEG on the 

transcript level of 512 stress-related genes during white spruce somatic embryogenesis 

was analyzed using loblolly pine cDNA microarrays as well (Stasolla et al., 2003). 
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One of the problems of cDNA microarraies is the cross-hybridization among 

different members of the multigene family. Complex gene families are relatively 

common in pine (Kinlaw and Neale, 1997) and each member of a multigene family 

could show a different pattern of gene expression in different environments and function 

differently. However, gene specific primers can be designed and real-time RT-PCR can 

be performed to examine the expression pattern of each member of a multigene family. 

Real-time RT-PCR analysis is a valuable tool to verify the overall validity of the 

microarray data as well.  

There have been numerous studies to understand the mechanisms underlying 

xylogenesis (reviewed by Roberts and McCann, 2000; Chaffey, 2002). However, our 

understanding of wood formation at the molecular level is still elementary. Thus, the 

ultimate goal of this study is to understand how genes involved in wood formation 

eventually influence the final phenotype of wood. To achieve this goal, it is important to 

understand how genes are regulated and how they interact with each other during 

xylogenesis. As an initial step to understand the molecular basis for temporal and spatial 

regulation of  xylogenesis and the effect of the expression of individual genes on 

physical and chemical properties of wood, microarray and real-time RT-PCR analyses 

were performed to monitor gene expression during xylogenesis for various 

developmental and environmental conditions. The specific objectives established for this 

study were: Objective 1. Microarray analysis of genes preferentially expressed in 

differentiating xylem compared to other tissues of loblolly pine (see Chapter II); 

Objective 2. Microarray analysis of seasonal variation in gene expression for loblolly 
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pines (Pinus taeda L.) from different geographical sources (see Chapter III); Objective 3. 

Real-time RT-PCR analysis of loblolly pine AGP and AGP-like genes (see Chapter IV). 
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CHAPTER II 

 

MICROARRAY ANALYSIS OF GENES PREFERENTIALLY EXPRESSED 

IN DIFFERENTIATING XYLEM OF LOBLOLLY PINE (Pinus taeda L. ) 

 

INTRODUCTION 

 

 Wood formation (xylogenesis) is a critical developmental process for all woody 

land plants for mechanical support and transport of water and minerals. A significant 

portion of the solar energy absorbed by the earth is stored in the form of cellulose in 

wood, making it the most abundant raw material in the world. Wood is economically 

important as well because it is a major building material and a source material for pulp 

production. In addition, wood is a specialized model to study plant cell wall biosynthesis 

(Jones and Dangle, 1996) and differentiating xylem is a rich source for DNA, RNA and 

proteins involved in cell wall biosynthesis (Sederoff et al., 1994). 

 Wood formation begins at a highly specialized tissue called the vascular 

cambium and includes five steps: cell division, cell enlargement, cell wall thickening, 

lignification and programmed cell death (Bailey, 1952). In each step, the expression of 

specific sets of genes is tightly controlled by environmental and developmental cues 

(Roberts and McCann, 2000; Hertzberg et al., 2001; Mellorowicz et al., 2001; Whetten 

et al., 2001)  influencing the  composition and morphology of the xylem cell wall which 

is the most important factor for determining wood properties (Megraw, 1985). 
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    There have been numerous studies to understand the mechanisms underlying 

xylogenesis. However, our understanding of wood formation at the molecular level is 

still elementary. Our ultimate goal is to understand how genes involved in wood 

formation eventually influence the final phenotype of wood. To achieve this goal, it is 

important to understand how genes are regulated by developmental and environmental 

factors during xylogenesis.  In addition, understanding the molecular basis of wood 

formation will accelerate the improvement of wood properties by specifically targeting 

genes affecting useful traits such as specific gravity, microfibril angle or content of cell 

wall components by genetic modification. It will also be useful for traditional breeding 

by using a candidate gene approach for marker-assisted selection.          

    Thanks to recently emerging high-throughput techniques such as large scale EST 

sequencing (Allona et al., 1998; Sterky et al., 1998; Whetten et al., 2001), microarray 

analysis (Hertzberg et al., 2001; Whetten et al., 2001; Heath et al., 2002; van Zyl et al., 

2002), 2-D PAGE (Costa et al., 1999; Mijnsbrugge et al., 2000), and SAGE (Lorenz and 

Dean, 2002), it is now possible to better understand the molecular basis of wood 

formation on a genome wide scale. As an initial step to understand the molecular basis 

for temporal and spatial regulation of xylogenesis and the effect of the expression of 

individual genes on physical and chemical properties of wood, we compared transcript 

profiles of differentiating loblolly pine xylem with those of needles, megagametophytes, 

and embryos. A microarray containing approximately 1500 ESTs with putative functions 

of interest, selected from several loblolly pine xylem partial cDNA libraries was made. 

Genes preferentially expressed in xylem were identified and real-time RT-PCR was used  
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to test the overall validity of the microarray data. 

 

MATERIALS AND METHODS 

 

Plant materials  

 Loblolly pine (Pinus taeda L., Texas source S6PT7) seeds were surface sterilized 

using a 20% bleach solution for 30 minutes followed by three washes with ddH2O. After 

being nicked at the end, pine seeds were stratified in 1% H2O2 for 3 weeks. The 1% 

H2O2 was replaced everyday during the stratification. After embryo radicles reached 

several millimeters, the embryo radical and megagametophyte were separated and frozen 

in liquid nitrogen. Newly differentiating xylem was isolated from fast growing loblolly 

pines approximately 12 to 15 years old.  First, the bark and phloem layers were peeled 

off and differentiating xylem tissue was collected and frozen immediately in liquid 

nitrogen. Needles were collected from 5 month-old loblolly pine seedlings growing in 

the greenhouse. 

 

Microarray preparation 

 1500 ESTs with putative functions of interest were selected from normal wood, 

compression wood, late wood and planings (deeper cell layers) xylem cDNA libraries 

made from loblolly pine (Whetten et al., 2001; Kirst et al., 2003). Putative classifications 

(cell wall-related, stress-related, etc) were made based on blast searches. Clones were 

inoculated into 96-well blocks containing 1.3 ml magnificent broth (MB) and 100 µg/ml 
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ampicillin and were incubated for 16 hrs at 37°C in a shaker incubator (220 rpm). 

Plasmids were isolated using a R.E.A.L. Prep 96 Plasmid Kit (QIAGEN, Maryland) or a 

Qiaprep 96 Turbo Miniprep Kit. After the isolation, plasmids stocks in 96-well plates 

were dried and redissolved in 10 µl molecular grade water. A dilution containing 1 µl of 

plasmid stock and 99 µl ddH2O was vortexed briefly and stored at –20 °C until needed. 

The cDNA inserts were PCR amplified using M13 forward and M13 reverse universal 

primers. PCR was performed in a 50 µl reaction containing 39.1 µl ddH2O, 5 µl 10x 

PCR buffer, 1 µl dNTPs (10mM each), 1 µl M13 forward primer (10 µM), 1 µl M13 

reverse primer (10 µM), 0.4 µl TAQ polymerase (5U/µl), and 2.5 µl of dilute plasmid. 

The PCR conditions were 1 minute of pre-denaturation at 94 °C, 35 cycles of 30 seconds 

at 94 °C, 1 min at 57 °C, and 4 minutes at 72°C, followed by a 10 minutes final 

extension at 72 °C. The quantity and the quality of the amplified PCR products were 

checked on a 1% agarose gel. PCR products were purified with 96-well multiscreen 

filter plates (Millipore Corp. MA) following the manufacturer’s recommendation. 

Purified cDNA fragments (40 µl final volume) were transferred to a 96-well plate and an 

equal volume of DMSO was added to each well, vortexed for 30 seconds and spun 

down. Twenty µl of each spotting solution was transferred to 384-well plates and sealed 

and stored at -20 °C until needed. The cDNA fragments were spotted onto Corning 

CMT-GAPS
TM coated slides (Corning, NY) using a GMS 417 Arrayer (Genetic 

MicroSystems, MA), with a center to center spacing of 285 µm, following the 

manufacturer’s recommendations. The resulting arrays contained 6144 spots. After the 
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printing, DNA fragments were UV cross-linked at 250mJ, baked at 75°C for 2 hrs and 

stored in slide racks in the dark until needed.      

 

Probe synthesis and hybridization 

 Total RNAs were extracted from differentiating xylem, developing embryos, 

megagametophytes and needles using the method of Chang et al. (1993). Each RNA was 

treated with DNaseI after the extraction to make sure no residual DNA remained. For the 

first strand cDNA synthesis, 2 µl of oligo dT (500ng/µl) and dNTPs at 10mM were 

added to 40 µg of total RNA from each tissue. ddH2O was added bringing the total 

volume of each reaction up to 24 µl. After an incubation at 65°C for 5 minutes, chilling 

on ice for 1 min and a brief centrifugation, 8 µl of first strand buffer, 4 µl 0.1 M DTT 

and 2 µl of RNase Out (40U/µl, Ambion) were added. Following a gentle mixing, a brief 

spin, and incubation at 42°C for 2 min, Superscript II reverse transcriptase (1µl  of 

200U/µl, Invitrogen) was added, the reaction was mixed again gently with a pipette, and 

incubated at 42°C for 50 minutes. After heat inactivation of the Superscript II at 70°C 

for 15 min, the reaction was collected at the bottom of the tube by a quick spin and put 

on ice. The first strand cDNAs were precipitated by adding an equal volume of 2-

propanol. After washing with 70% ethanol, the pellets were dried in a speed vac and 

dissolved in 53 µl ddH2O. The cDNAs were denatured at 95°C for 5 min and placed on 

ice. The rest of the procedure was performed in minimal light due to the light sensitivity 

of Cy3 and Cy5. Twenty µl of nucleotide labeling mix (1200 µM dATP, dGTP and 

dCTP each; 150 µM dTTP, 150 µM Cy3-dUTP or Cy5-dUTP), 10 µl of reaction 2 buffer 
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(Invitrogen) and 2 µl of Klenow (5U/µl) were added, mixed well and placed on ice. The 

reaction was then incubated in the dark at 37°C for 1 hr. The Cy3 and Cy5 labeled 

probes were combined and cleaned up using a QIAquick PCR Purification Kit (Qiagen) 

following the manufacturer’s recommendations. After the final elution, probes were 

dried in a speed vac for 60 min in the dark. Each dried probe was redissolved in 30 µl of 

hybridization buffer containing 0.5% SDS, 5x SSC, 5x Denhardt’s, 50% formamide, 

500ng poly A RNA, and 500ng calf thymus DNA. After a denaturation at 95°C for 2 

min and a brief centrifugation, hybridization solution was added to the microarray slides 

and a cover slip was placed on the top. Slides were then placed in a Corning incubation 

chamber (Corning, NY) and 20 µl water was added to reduce any evaporation during the 

hybridization. The hybridization was performed in a 42°C water bath for 20 hrs in the 

dark. After hybridization, the slides were transferred to a disposable tube containing 50 

ml of pre-heated (42°C) wash 1 solution (1x SSC, 0.2% SDS). The slides were washed 

twice in wash 2 solution (0.1x SSC, 0.2% SDS), and three times in wash 3 solution (0.1 

% SDS) all in a shaking 42°C incubator for 4 min. The slides were transferred to a slide 

rack and dried by centrifuging at 500 rpm for 5 min. All the slides were scanned within 

one hour. 

 

Image analysis, quantification and data analysis 

 After the washing steps, the slides were scanned with both channels using a 

ScanArray 3000 (GSI Lumonics, Watertown, MA) at a 10 µm resolution. The laser 

power and photo-multiplier tube setting were adjusted to approximately balance both 
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channels while scanning. The intensities of each spot for both channels were quantified 

using QuantArray (GSI Lumonics, Watertown, MA). For the microarray data analysis, 

we adopted the fixed effect ANOVA model of Kerr and Churchill (2001a) using MA-

ANOVA, a software package for the analysis of spotted cDNA microarray experiments 

by Wu, Kerr, Cui and Churchill (http:\\www.jax.org\research\Churchill). Measured spot 

intensities for each of the channels for each of the tissue comparisons were pre-

normalized following the method of Yang et al. (2001) using the “malowess” function in 

MA-ANOVA. An ANOVA analysis using the “fitmaanova” function and a permutation 

F-test for the null hypothesis assuming zero VG effect were performed for each gene 

using the “make_Ftest” function in MA-ANOVA (2001b). The permutation F-test was 

performed twice using both a less conservative p-value (p=0.01) and a more 

conservative p-value (p=0.001) to reduce the number of false positives. Further data 

analysis was also performed using GeneSpring (Silicon Genetics, CA). 

 

Real-time quantitative RT-PCR 

 To test the overall validity of our microarray data, clones with values ranging 

from the top to the bottom xylem vs megagametophyte log ratio were selected and 

analyzed by real-time quantitative RT-PCR (Heid et al., 1996). Gene specific primers for 

the selected clones were designed based on cDNA sequences from the NSF Pine EST 

Database (http://web.ahc.umn.edu/biodata/nsfpine/) using Primer Express (Applied 

Biosystems, CA). Real-time RT-PCR was repeated three times for each of the selected 

clones with SYBR-Green PCR Master Mix (Applied Biosystems, CA) on a GeneAmp 
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7900 Sequence Detection System (Applied Biosystems, CA) following the 

manufacturer’s recommendations. A dissociation curve was used to identify a 

temperature where only amplicon, and not primer dimers, accounted for SYBR-bound 

fluorescence. All data were normalized to internal loblolly pine 18S rRNA quantities (∆-

CT) and the ∆-CT value for the xylem sample was used as the calibrator to the ∆-CT 

values for other tissue samples (∆∆-CT analysis, see User Bulletin #2" ABI PRISM 7900 

Sequence Detection System, pp11-15 for details). 

 

RESULTS AND DISCUSSION 

 

A microarray from differentiating xylem 

 To identify genes preferentially expressed in differentiating xylem tissue, a 

microarray containing an approximately 1500-clone unigene set (list is available under 

Supplementary Data - 2004 Plant Science at http://forestry.tamu.edu/newweb/people/ 

faculty&staff/c-loopstra) was constructed. As part of a NSF pine genomics project, 

several partial cDNA libraries were made at North Carolina State University using 

differentiating xylem tissues from loblolly pine including normal wood, compression 

wood, latewood and planings (deeper cell layer) (Whetten et al., 2001; Kirst et al., 

2003). These cDNAs were partially sequenced from the 5’ ends and overlapping 

sequences were assembled into contigs representing unigene sequences. After Blastx 

analysis of sequences of each contig, approximately 1500 EST contigs with putative 

functions of interest were selected to be included on the array. The selected contigs  
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Table 1. Functional classification of genes preferentially expressed in xylem (p-
value=0.01) compared to the functional classification of total genes on the array.  
 

Functional Class Xylem Preferential Genes  Total Genes On the 
Array 

*Percent preferentially 
expressed 

cell wall-related 66 (20%) 153 (10%) 43 

no hit 52 (15%) 212 (15%) 24 

intermediate metabolism 48 (14%) 250 (17%) 19 

translation 22 (7%) 154 (7%) 14 

other 22 (7%) 148 (7%) 15 

DNA/RNA-binding 19 (6%) 106 (6%) 18 

stress-related 18 (5%) 43 (5%) 42 

cytoskeleton 16 (5%) 32 (2%) 50 

signal transduction 14 (4%) 56 (4%) 25 

transport 12 (4%) 68 (5%) 18 

inducible 12 (4%) 37 (3%) 32 

methionine biosynthesis 11 (3%) 37 (3%) 30 

turn over 7 (2%) 62 (4%) 30 

lipid metabolism 5 (1%) 30 (2%) 17 

disease-related 5 (1%) 23 (2%) 22 

e-transfer 4 (1%) 53 (4%) 7 

surface proteins 4 (1%) 13 (1%) 30 

 
* Percentage of genes on the array that are preferentially expressed in xylem (last 
column). 
 

 

 

represented cell wall proteins, proteins for intermediate metabolism, stress-related 

proteins, DNA-RNA binding proteins, hormone responsive proteins, disease responsive 

proteins, transporters, and proteins for lipid metabolism (Table 1). In addition to contigs 

with putative functions of interest, contigs without any putative function assigned (“no 

hits” after a Blastx search using an E-value cutoff of 10-5) were included on the array as 

well. To reduce nonspecific hybridization, EST clones located near the 3’ end of each 

contig and larger than 200 bp were selected to be amplified by PCR. For the negative 

controls, no templates were added during the PCR reaction included on the array as well. 
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Figure 1. Double dye-flip reference design 

 

 

 

To reduce nonspecific hybridization, EST clones located near the 3’ end of each contig 

and larger than 200 bp were selected to be amplified by PCR. For the negative controls, 

no templates were added during the PCR reaction making blank spots on the array. Each 

clone was spotted four times on each slide producing an array containing 6144 spots. 
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Identification of genes preferentially expressed in xylem 

Lee et al. (2000) pointed out that there is inherent variability in most microarray 

data even after removing systematic sources of variation. Thus, it is critical to have an 

experimental design with sufficient replications to control this inherent noise and to 

produce consistent and reliable results (Lee et al., 2000; Kerr and Churchill 2001a,b). In 

this study, each of the ESTs was spotted four times on the array and a double dye-flip 

reference experimental design (Figure 1) was adopted providing 32 data points for each 

of the ESTs for each of the tissue comparisons. The fixed effect ANOVA model by Kerr 

and Churchill (2001a) was used for microarray data analysis. One of the advantages of 

using this ANOVA approach is that normalization of the data for various factors such as 

array, dye, variety, gene effects, and their interaction effects on the signal is an integral 

part of the data analysis. However, often more elaborate pre-transformation of the data is 

necessary before ANOVA analysis to meet a fundamental assumption of ANOVA, an 

existence of a scale on which various effects are additive (Kerr and Churchill, 2001a). 

Thus, we adopted the lowess adjustment method of Yang et al. (2001) to smooth the data 

before ANOVA analysis. Figure 2 shows one example of pre-normalization. For each of 

the spots on the array, the log2(R/G) (red/green) value is plotted against the log2(R*G) 

value. If there is no bias between the two different dyes and no differential gene 

expression in each of the tissues, the spots should reside on a zero horizontal line. 

However, a curvature at the low end in the upper plot (below 22 on the X-axis) is 

evident. This curvature is straightened by using the method of Yang et al. (2001) using 

the “malowess” function in MA-ANOVA (lower plot). After pre-normalization, the 
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majority of the genes reside close to the zero horizontal line indicating that most of the 

genes expressed in the differentiating xylem are not tissue-specific (Figure 2). However, 

we could identify outliers that are far from the zero horizontal line indicating that these 

genes are differentially expressed in one of the tissues. We also checked the normality in 

residual distribution for the model adopted in each of the tissue comparisons and found 

no significant evidence against homoscedasticity in each of the residual plots (data not 

shown).  

Differentially expressed genes were identified by hypothesis testing using two 

different models, an alternative model and a null model. During the permutation F-test, 

both the less conservative p-value (0.01) and more conservative p-value (0.001) were 

used. Using a p-value=0.01, 440 genes in the xylem vs. megagametophyte, 401 genes in 

the xylem vs. embryo and 191 genes in the xylem vs. needle tissue comparisons were 

identified as differentially expressed genes (gene lists are available under Supplementary 

Data - 2004 Plant Science at http://forestry.tamu.edu/newweb/people/faculty&staff/c-

loopstra). However, using a p-value=0.001, these numbers were reduced to 104 genes in 

the xylem vs. megagametophyte, 57 genes in the xylem vs. embryo and 30 genes in the 

xylem vs. needle tissue comparisons. Because we are interested in identifying genes with 

preferential expression in xylem, a Venn diagram was generated to show the number of 

genes preferentially expressed in xylem among differentially expressed genes identified 

in each of the tissue comparisons (Figure 3). Using a p-value=0.01, 204 genes in the 

xylem vs. megagametophyte, 178 genes in the xylem vs. embryo and 85 genes in the 

xylem vs. needle tissue comparisons were identified as genes preferentially expressed in 
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Figure 2. For each spot on the array, the log2(R/G) value is plotted against the log2(R*G) 
value. If there is no bias in labeling of the two dyes and no differential gene expression 
in each tissue, most spots should reside in a zero horizontal line. However, the curvature 
at the low end in the upper plot (below 22 on the X-axis) is evident. This curvature is 
straightened by using the method of Yang et al. (2001) using the “malowess” function in 
MA-ANOVA (lower plot). 
 

 

 

xylem. Xylem is the most extensively vascularized tissue examined, whereas 

megagametophyte was the only non-vascularized tissue examined.  Thus, it was 

expected that xylem and megagametophyte would be the most distinct of all the pairwise 

comparisons. Many genes preferentially expressed in xylem compared to one tissue also 
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showed the same preferential expression pattern when compared to the other tissues 

(overlapping regions) and 30 genes (highlighted in red in the supplementary data) were 

preferentially expressed in xylem in all three comparisons (Figure 3 A). Using a p- 

value=0.001, 56 genes in the xylem vs. megagametophyte, 36 genes in the xylem vs. 

embryo and 16 genes in the xylem vs. needle tissue comparison were identified as genes 

preferentially expressed in xylem (http://forestry.tamu.edu/newweb/people/faculty&staff 

/c-loopstra). There was only one gene (NXNV_149_F10) preferentially expressed in 

xylem in all three comparisons (Figure 3 B) and there was no putative function assigned 

for it (“no hits” after a Blastx search using an E-value cutoff of 10-5). A tblastX search of 

the NR database revealed it is similar to a gene down-regulated by drought stress in 

Pinus pinaster (E-value=2e-08). The genes that consistently showed preferential 

expression in xylem in all comparisons are strong candidates for having important roles 

in xylogenesis. 

 

Functional classification and characterization of xylem preferential genes 

 Genes identified as preferentially expressed in xylem in this study were classified 

by functional groups and compared to the functional class of the total ESTs on the array 

(Table 1). In general, percentages of classes of xylem preferential genes reflected the 

percentages of the array. However, there was a significant increase in the percentage of 

genes that are preferentially expressed in xylem that are cell wall-related (20%) 

compared to the percentage on the array (10%). Approximately 43% of the cell wall 

genes represented on the array are preferentially expressed in xylem (Table 1). The high 



 

 

20 

 

Figure 3. Venn diagrams of the numbers of overlapping and non-overlapping genes 
preferentially expressed in xylem compared to other tissues. Genes were identified using 
a p-value=0.01 (A) and a p-value=0.001 (B) after ANOVA analysis and permutation F-
tests from each of the tissue comparisons. * Numbers out side of the Venn diagrams 
indicate the number of genes that are not included on any of the categories.  
 

 

 

number of cell wall-related genes in our selected gene list confirms the overall reliability 

of the current microarray data because we expect some cell wall proteins to be highly 

expressed in xylem. Other functional classes of which the percentage of the xylem 

preferential genes was increased were “cytoskeleton” and “inducible” (Table 1).  

    Genes for the cellulose synthase complex were expected to be preferentially 

expressed in xylem. According to the current model (Delmer and Amor, 1995), cellulose 

microfibrils are synthesized on the plasma membrane by a cellulose synthase complex, 

which is composed of multiple cellulose synthase subunits (particle rosettes) and sucrose 

synthase. Previous studies showed that transcripts for these genes are highly abundant in 

wood forming tissues of both gymnosperms and angiosperms (Allona et al., 1998; 
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Sterky et al., 1998; Whetten et al., 2001) and their expression was coordinated with late 

cell expansion and secondary wall formation (Hertzberg et al., 2001). There are multiple 

members of  the cellulose synthase gene family and they are differentially regulated 

(Allona et al., 1998; Sterky et al., 1998; Wu et al., 2000). The xylem loblolly pine EST 

database contains nine different contigs for cellulose synthase (contigs 747, 2303, 3052, 

4859, 5673, 6822, 7800, 7822 and 7904 in http://web.ahc.umn.edu/biodata/nsfpine/ 

contig_dir16/). According to Whetten et al. (2001), EST clones with more than 98% 

sequence similarity are sometimes placed into different contigs when PHRAP 

(http://www.phrap.org) paramers used for contig assembly are a minimum mismatch of 

40 and a minimum score of 80. PHRAP parameters used for contig assembly for the 

xylem loblolly pine EST database (http://web.ahc.umn.edu/biodata/nsfpine/contig_dir16 

/) were a minimum match of 50, a minimum score of 100 and a minimum length of 100. 

Kinlaw and Neale (1997) suggested that complex gene families are relatively common in 

pine. Thus, these different contigs for cellulose synthase could represent allelic variation 

or different members of the loblolly pine cellulose synthase gene family. Our array 

contained clones that represent six cellulose synthase contigs (contigs 4859, 5673, 6822, 

7800, 7822 and 7904). Among these, only contig 7822 was preferentially expressed in 

xylem for all three comparisons (p=0.01). Contig 7800 was preferentially expressed in 

xylem compared to megagametophytes but not in other two comparisons. Contig 7904 

was preferentially expressed in xylem compared to needles but not in other two 

comparisons. This result indicates that different members of the loblolly pine cellulose 

synthase gene family are also differentially regulated. Sucrose synthase is responsible 
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for channeling UDP-glucose into the growing cellulose chain (Delmer and Amor, 1995). 

This array contained clones that represent three sucrose synthase contigs (contigs 7783, 

3756 and 3167). Contig 7783 was preferentially expressed in xylem compared to 

embryos but not in the other two comparisons (p=0.01). Contig 3756 was preferentially 

expressed in xylem compared to megagametophytes but not in the other two 

comparisons.  

    Previous studies (Allona et al., 1998; Sterky et al., 1998; Whetten et al., 2001) 

indicate that among the most abundant transcripts in wood forming tissues are the genes 

for cell wall re-structuring and expansion such as expansins, XETs (xyloglucan endo-

transglycosylases) and endo-glucanases. Expansins cause wall creep by loosening  

hydrogen bonding between cellulose microfibrils and glycan cross-linkers (Cosgrove, 

1997). The loblolly pine xylem EST database contains 11 different contigs for expansin 

(contigs 838, 2753, 4335, 4844, 6512, 6603, 6774, 7754, 7859, 7879 and 7897 in 

http://web.ahc.umn.edu/biodata/nsfpine/contig_dir16/). Our array contained clones that 

represent three expansin contigs (contigs 4844, 6512 and 7754). Among these, only 

contig 7754 was preferentially expressed in xylem for all three comparisons (p=0.01). 

XETs cut and stitch xyloglucan polymers into new configurations (Smith and Fry, 

1991). Four different members of the loblolly pine XET family were identified 

previously and their expression was differentially regulated (Allona et al., 1998).  We 

identified 32 different contigs for XET in  the loblolly pine xylem EST database and our 

array contained clones that represent seven XET contigs (contigs 2807, 4609, 5809, 

7263, 7313, 7209 and 8012). Among these, only contig 7709 was preferentially 
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expressed in xylem for all three comparisons (p=0.01). Contigs 7313 and 5809 were 

preferentially expressed in xylem compared to embryos but not in the other two 

comparisons. Contig 7263 was preferentially expressed in xylem compared to 

megagametophytes and embryos but not compared to needles. We also identified 59 

different contigs for glucanases in the loblolly pine xylem EST database and our array 

contained clones that represent four glucanase contigs (contigs 5350, 5383, 7176 and 

7518). Among these, only contig 7518 was preferentially expressed in xylem compared 

to embryos but not in the other two comparisons (p=0.01).  

    Previous studies also showed that transcripts for genes involved in the lignin 

biosynthetic pathway are among the most abundant transcripts in wood forming tissues 

(Allona et al., 1998; Sterky et al., 1998; Whetten et al., 2001; Lorenz and Dean, 2002). 

In some cases, expression is up-regulated in compression wood compared to normal 

wood (Whetten et al., 2001) and different members of gene families are differentially 

regulated during wood formation (Hertzberg et al., 2001). Many genes involved in lignin 

biosynthesis were also identified as preferentially expressed in xylem compared to other 

tissues in this study.  Laccase is a diphenol oxidase involved in monolignol 

polymerization (Bao et al., 1993). Our array contained clones that represent 12 contigs 

for laccase (contigs 305, 4929, 4944, 5681, 5931, 6071, 6127, 6980, 7139, 7467, 7582 

and 8024 in  http://web.ahc.umn.edu/biodata/nsfpine/contig_dir16/).  Among these, only 

contig 6071 was preferentially expressed in xylem in all three comparisons (p=0.01). 

Contig 305 was preferentially expressed in xylem compared to megagametophytes but 

not in the other two comparisons. Contigs4944, 5681 and 8024 were preferentially 
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expressed in xylem compared to megagametophytes and embryos but not compared to 

needles. Contigs5931 and 6980 were preferentially expressed in xylem compared to 

megagametophytes and needles but not compared to embryos. This result also indicates 

that members of the loblolly pine laccase gene family are differentially regulated during 

wood formation. 

    Transcripts for cell wall structural proteins such as arabinogalactan-proteins 

(AGPs), glycine-rich proteins and proline-rich proteins are among the most abundant 

transcripts in wood forming tissues and are expected to be preferentially expressed in 

differentiating xylem tissue compared to other tissues (Loopstra and Sederoff, 1995; 

Allona et al., 1998; Sterky et al., 1998; Loopstra et al., 2000; Zhang et al., 2000; 

Whetten et al., 2001; Lorenz and Dean, 2002). AGPs are highly glycosylated 

proteoglycans or glycoproteins (2-10% protein by weight) which contain highly 

repetitive sequences and are frequently rich in proline/hydroxyproline, serine, threonine, 

alanine, and glycine. General features of AGPs include a signal peptide for targeting to 

the endoplasmic reticulum, a hydroxyproline-rich domain and a GPI anchor site for 

plasma membrane attachment. Six different loblolly pine AGP genes encoding AGP-like 

proteins have been identified (Loopstra et al., 2000; Zhang et al., 2000) and they are 

among the most abundant transcripts in differentiating xylem tissue (Allona et al., 1998; 

Whetten et al., 2001; Lorenz and Dean, 2002). The loblolly pine xylem EST database 

(http://web.ahc.umn.edu/biodata/nsfpine/contig_dir16/) contains numerous contigs for 

different AGPs (contigs 7942, 8039 and 8025 for AGP6; contigs 459, 1204, 6663, 6586, 

7600, 7711, 6466 and 7834 for AGP5; contigs 7422, 7945 and 7948 for AGP4; contigs 
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16, 269, 300, 7679, 7869 and 7984 for 3H6, contigs 7693, 8006 and 8022 for 14A9; 

contigs 6333, 7444, 7704, 7934 and 8019 for AGP3). Our array contained one clone for 

AGP6 (contig 8025), four clones for AGP5 (contigs 1204, 6663, 7711 and 7834), one 

clone for 3H6 (contig 7869), two clones for 14A9 (contigs7693 and 8022) and three 

clones for AGP3 (contigs 6333, 7444 and 8019). Among these, only contig 8025 for 

AGP6 and contig 8019 for AGP3 showed preferential expression for all three 

comparisons (p=0.01) but most of the other contigs for different AGPs were also 

preferentially expressed in xylem compared to other tissues (see supplementary data for 

details).   

    Other cell wall related genes that were very strongly preferentially expressed in 

xylem include a basic blue protein, UDP-glucuronosyl transferase, and lp6 from loblolly 

pine. Interestingly, some of the genes with unknown function (“no hits” after a Blastx 

search using an E-value cutoff of 10-5) showed very strong xylem preferential expression 

(Table 2). These “no hits”, especially contigs with sufficient sequence size, could be 

genes unique to conifers, gymnosperms or wood forming tissue. However, according to 

Kirst et al. (2003), the number of pine wood ESTs showing “no hits” decreased when 

longer contigs were used. Thus, some “no hits”, especially contigs with a short sequence 

such as singletons, could be unrecognized contaminants from various sources (Kirst et 

al., 2003).  

Lorenz and Dean (2002) used SAGE, serial analysis of gene expression, to 

profile secondary xylem gene expression and to identify genes that are differentially 

expressed along the axial developmental gradient in loblolly pine xylem. Genes 
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 Table 2. Examples of genes expressed preferentially in xylem.  

 
        p-value 

Putative Function Clone ID Contig #  Accession # X/M X/E X/N 

Cell wall-related proteins       

     cellulose synthase NXNV_181_B11 Contig7822 BE431357 p<0.001 p<0.01 p<0.01 

     xyloglucan endotransglycosylase NXNV_164_H08 Contig7709 BE209174 p<0.001 p<0.001 p<0.01 

     AGP3 (5n2d) NXNV_156_G02 Contig8019 BE123812 p<0.01 p<0.01 p<0.001 

     laccase NXCI_094_C09 Contig6071 BF010890 p<0.001 p<0.01 p<0.01 

     UDP-glucuronosyltransferase  NXNV_079_G02 Contig7928 AW698020 p<0.01 p<0.001 p<0.001 

     lp6 protein - loblolly pine  NXSI_129_F11 Contig8048 BQ702534 p<0.01 p<0.01 p<0.01 

     AGP6 NXSI_040_D02 Contig8039 BF609096 p<0.01 p<0.01 p<0.001 

     expansin 9 NXCI_132_F04 Contig7754 BF186094 p<0.01 p<0.01 p<0.01 

     cellulase NXNV_120_C02 Contig7361 AW869945 p<0.001 p<0.001 

Intermediate metabolism        

     UDP-glucosyltransferase NXCI_083_A06 Contig7463 BE762178 p<0.01 p<0.01 p<0.01 

     myo-inositol-1-phosphate synthase NXSI_103_A10 Contig7995 BG039701 p<0.001 p<0.001 

DNA/RNA binding proteins       

     transcription factor Hap5a NXSI_054_E11 Contig6389 BF610085 p<0.001 p<0.01 p<0.01 

Translation        

     translation initiation factor eIF-4A NXSI_057_C07 Contig7311 BF610274 p<0.01 p<0.01 p<0.01 

     ribosomal protein L2 NXSI_045_A04 Contig6890 BF609324 p<0.001 p<0.001 

Inducible       

    ABA induced  protein NXSI_130_B01 Contig4478 BQ702570 p<0.001 p<0.001 

Stress-related       

     heat shock protein 82 NXSI_116_B04 Contig7801 BG040868 p<0.001 p<0.001 

     18.2 KDA class I  heat shock protein NXSI_139_G02 Contig3759 BG275507 p<0.001 p<0.01  

Disease-related       

     disease resistance responsive gene NXNV_106_E03 Contig7742 AW984958 p<0.001 p<0.01 p<0.01 

     metallothionein-like protein   NXSI_001_E11 Contig7169 BF516649 p<0.01 p<0.001 p<0.01 

Transport       

     hexose transporter NXCI_114_B08 Contig7821 BF185986 p<0.001 p<0.001 

Signal transduction       

     putative calmodulin NXNV_015_H07 Contig5843 CD026887 p<0.001  

Lipid biosynthesis       

     Beta-ketoacyl-ACP synthetase I-2 NXSI_116_H07 Contig2178 BG040941 p<0.001 p<0.001 

Cytoskeleton       

     tubulin beta -2 chain  NXSI_125_H09 Contig7992 BQ702187 p<0.001 p<0.01 p<0.01 

     actin  NXSI_067_G03  BF777317 p<0.001 p<0.001 

     actin  NXNV_072_D07 Contig7905 AW697948 p<0.001 p<0.01  

No Hits       

 NXCI_133_E11 Contig7624 CD017749 p<0.001 p<0.001 p<0.01 

 NXSI_063_E04 Contig6824 BQ701379 p<0.01 p<0.01 p<0.001 

 NXSI_086_D12 Contig7554 BF778735 p<0.001 p<0.01 p<0.01 

 NXNV_149_F10 Contig2323 BE123558 p<0.001 p<0.001 p<0.001 

  NXSI_054_A09 Contig5671 BF610040 p<0.001 p<0.001 p<0.01 

 
Clone IDs and contig numbers are from the loblolly pine xylem EST database 
(http://web.ahc.umn.edu/biodata/nsfpine/contig_dir16/). 
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identified as preferentially expressed in xylem compared to other tissues (p=0.01) in this 

study were compared with the 40 most abundant transcripts in loblolly pine xylem 

identified by SAGE.  We found that 17 of the 21 most abundant transcripts identified by 

SAGE with known putative functions were on our list of preferentially expressed genes 

(p=0.01). We also compared our gene list (p=0.01) with the 100 contigs that have the 

highest number of clones aligned in the loblolly pine xylem EST database 

(http://web.ahc.umn.edu/biodata/nsfpine/contig_dir16/). We found that 23 of these 

contigs were included on our list. This number is significant because not all of the 100 

most abundant contigs are included on our current array and not all of them are expected 

to be xylem-specific. Table 3 indicates examples of genes that are preferentially 

expressed in xylem (this study) and are among the most abundant transcripts based on 

SAGE (Lorenz and Dean, 2002) or the pine EST database.  

 

Real-time quantitative RT-PCR 

 To test the overall validity of our microarray data, 11 clones ranging from the top 

to the bottom X/M ratio were selected and analyzed by real-time quantitative RT-PCR 

(Heid et al., 1996). For each of the selected clones, real-time RT-PCR was repeated three 

times. To produce a ratio relative to xylem, the ∆∆-CT analysis method (see materials 

and methods for the details) was used.  After the analysis, the Log2 X/M ratio from real- 

time RT-PCR analysis was plotted correlation coefficient of 0.93 confirms the overall 

validity of the microarray data produced by this study (Figure 4). against the Log2 X/M 

ratio from the microarray analysis. The calculated correlation coefficient of 0.93 
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Table 3. Genes preferentially expressed in xylem (this study) that are highly expressed 
based on EST sequencing (http://web.ahc.umn.edu/biodata/nsfpine/contig_dir16/) and 
SAGE data (Lorenz and Dean, 2002). 
 

Contig # Accession # EST rank SAGE rank  Putative function 

Contig8067 BQ701188 4  Unknown 

Contig8063 BE431364 8  Allergen-like protein BRSN20 

Contig8057 AW984986 14 9 Aquaporin 

Contig8054 CD026621 17  SAM synthetase 

Contig8051 BF169951 20  Adenosylhomocysteinase 

Contig8048 BQ702534 23  Lp6 protein  

Contig8046 AW698113 25 15 Phenylcoumaran benzylic ether reductase 

Contig8045 BG040930 26  Photoassimilate-responsive protein PAR-1c precursor 

Contig8042 BE761849 29  H+-PYROPHOSPHATASE (EC 3.6.1.1) 

Contig8039 BF609096 32  AGP (AGP 6)  

Contig8037 BF777810 34  dTDPglucose 4,6-dehydratase (EC 4.2.1.46)  

Contig8035 BF010655 36  Trans-cinnamate 4-hydroxylase (EC 1.14.13.11) 

Contig8030 BQ701804 41  Phytocyanin  

Contig8029 CD021087 42  Tubulin alpha chain 

Contig8024 BQ702308 47  Laccase  

Contig8022 BE644038 49 7 AGP (14A9)  

Contig8019 BE123812 52 4 AGP (AGP3) 

Contig8016 AW784086 55  Polyubiquitin 

Contig8010 BF610091 61  Glycine-rich protein  

Contig8007 AW985236 64  UDP-glucose dehydrogenase 

Contig7999 BF777966 72 23 Actin-depolymerizing factor 

Contig7995 BG039701 76  Myo-inositol-1-phosphate synthase  

Contig7993 BF186313 78  Water-stress-inducible protein LP3  

Contig7992 BQ702187 79  Tubulin beta-2 chain  

Contig7991 BQ702339 80  ABC transporter  

Contig7317 AW758919 754 13 Alpha-galactosidase 

Contig7169 BF516649 902 20 Metallothionein-like protein 
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confirms the overall validity of the microarray data produced by this study (Figure 4).  

 Previous northern blot analyses of two AGPs (Ptx3H6 and Ptx14A9) usingxylem, 

needles, megagametophytes, and embryos showed that they are preferentially expressed 

in xylem.  Almost no expression in the megagametophyte and only trace amounts in 

embryos and needles could be detected (Loopstra and Sederoff, 1995). A similar 

northern blot analysis for another AGP showed that PtaAGP3 was xylem-specific 

compared to other tissues as well (Loopstra et al., 2000). Allona et al. (1998) also 

performed northern blot analyses of cell wall-related cDNAs including xyloglucan 

endotransglycosylase, glycine-rich proteins and proline-rich proteins in various tissues 

and confirmed their high xylem preferential expression. The relative expression ratios 

(log2 ratio) for genes identified as preferentially expressed in xylem in our microarray 

data were much smaller than expected (see supplementary data for log2 ratio) from these 

studies. The comparison between microarray and real-time RT-PCR data (Figure 4) also 

indicates that there was an apparent compression or underestimation of differential 

expression in the microarray data.   

There could be several possible reasons for compression of the microarray data. 

Yue et al. (2001) and Li et al. (2002) pointed out that the concentration of the spotted 

DNA on the slide could have a significant impact on the signal intensity and 

reproducibility, and insufficient DNA concentration on the spot (less than 0.2 µg/µl) 

could cause compression in differential expression. During the microarray fabrication, 

cDNAs were PCR amplified and PCR products were checked on a 1% agarose gel. 

However, the amount of the PCR products in the spotting solution was not measured.   
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Figure 4. A scatter plot representing the correlation (r=0.93) between the microarray data 
and real-time RT-PCR data. The Log2 X/M ratio from microarray analysis (Y axis) was 
plotted against the Log2 X/M ratio from real-time RT-PCR (X axis).  
 

 

 

Also, several factors such as probe concentration, ionic strength, and temperature during 

the hybridization may need to be further optimized to get a higher stringency with 

maximum signal and minimum background. Kinlaw and Neale (1997) suggested that 

complex gene families are relatively common in pine and investigation of the current 

loblolly pine xylem EST database also suggests existence of multiple members of many 

gene families. Cross-hybridization among different members of the same gene family 

could also be responsible for compression of the microarray data especially when using 

cDNA microarrays. Finally, a combination of pre-normalization and ANOVA is a 
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powerful tool to remove systematic variation associated with microarray data and to find 

differentially expressed genes with statistical confidence. However, elaborate smoothing 

techniques such as the lowess adjustment method (Yang et al., 2001) used in this study 

could have over-fit the data causing a compression of the signal and the underestimation 

of differential expression. The lowess adjustment method is a global normalization 

procedure assuming the majority of genes are expressed constantly regardless of the 

treatment and only a small portion of the genes on the array are regulated by the 

treatment. Our array does not represent all genes expressed in xylem and may have been 

enriched for xylem-preferred transcripts. Thus, a global adjustment such as the lowess 

adjustment would be expected to diminish the magnitude of differential expression for 

authentically regulated genes. However, dye effects seem inevitable in most microarray 

data and normalization to remove the unbalance between the two dyes is critical (Kerr 

and Churchill, 2001b; Yang et al., 2001). Currently there are several normalization 

methods available and many other normalization strategies are being developed (Li et 

al., 2002). It may always be a compromise between being conservative using a powerful 

normalization tool and perhaps over-fitting the data and being less conservative using a 

somewhat less elaborate method and having a less desired effect allowing crude fitting. 

However, due to the existence of inherent noise and inevitable dye effects associated 

with microarray data, a more conservative approach would be preferable. A combination 

of elaborate pre-normalization such as the lowess adjustment method of Yang et al. 

(2001) to smooth data and the ANOVA method (Kerr and Churchill, 2001a) seems very 

powerful to remove systematic variation associated with microarray data and to produce  
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a reliable and reproducible result with statistical confidence. 



 

 

33 

CHAPTER III 

 

SEASONAL VARIATION IN GENE EXPRESSION FOR LOBLOLLY PINES 

(Pinus taeda L.) FROM DIFFERENT GEOGRAPHICAL SOURCES 

 

INTRODUCTION 

 

Commercially important characteristics such as wood specific gravity are known 

to differ with seed source. For example, when grown on a common site, the specific 

gravity of Arkansas trees is greater than that of Louisiana trees and Texas trees have a 

greater specific gravity than Atlantic coast sources (Byram and Lowe, 1988). 

Differences in wood specific gravity among trees from different seed sources are likely 

due to the amount of earlywood vs. latewood. The more latewood, the greater the wood 

specific gravity (Byram and Lowe, 1988). Specific gravity is the single most important 

physical property of wood. Most mechanical properties of wood such as the strength, 

stiffness, yield of pulp per unit, heat transmission, and heat per unit volume produced in 

combustion are closely correlated to specific gravity (Haygreen and Bowyer, 1996).  

Tracheid cells formed early in the growing season (earlywood) differ from those 

formed later in the year (latewood) in their chemical composition and physical 

characteristics. Latewood cells have greater density, smaller lumen, a smaller radial 

diameter and thicker cell walls than earlywood cells (Zimmermann and Brown, 1971 

p.96). Previous studies suggested that several factors are responsible for differences 
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between earlywood and latewood. The formation of cells with large diameter 

(earlywood) is highly dependent on the availability of soil moisture (Kozlowski et al., 

1991). On the other hand, the latewood transition is positively correlated to the cessation 

of height growth (Jayawickrama et al., 1997) suggesting that development of latewood 

cells with thicker cell walls is dependent on the availability of photosynthate later in the 

year (Zimmermann and Brown, 1971 p.96). Early in the growing season, most of the 

available sugars are used for the shoot and needle growth leaving only a little for cell 

wall thickening during xylogenesis. However, later in the growing season, the apical 

growth at the shoot tips and needles has mostly ceased and most of the photosynthates 

produced by the now full-grown needles are available for cell wall thickening, producing 

tracheid cells with a small diameter and a thicker cell wall (Zimmermann and Brown, 

1971 p.96). Latewood cells can  also be induced by several environmental stimuli such 

as drought, photoperiod and temperature (Larson, 1969). Plant hormones, especially 

auxin, have been suggested as important factors involved as well  (Larson, 1962; 

Whitmore and Zahner, 1996; Dodd and Fox, 1990; Uggla et al., 2001; Mellorowicz et 

al., 2001). We are interested in genes preferentially expressed in latewood because 

latewood has more desirable wood properties than earlywood. Pulp yield and 

cohesiveness are positively correlated to alpha-cellulose and hemicellulose content and 

pulping cost is negatively correlated to lignin content (Smook and Kocurek, 1988). 

Significantly higher holocellulose and lower lignin contents were observed for latewood 

compared to that of earlywood of loblolly pine (Sewell et al., 2002). In addition, 

microfibril angle has a significant effect on lumber strength, stiffness and dimensional 
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stability and latewood cells typically have a smaller microfibril angle that is more 

desirable (Megraw, 1985).  Thus, increasing latewood percent would have a more 

positive effect on wood properties such as wood density and wood specific gravity than 

earlywood (van Buijtenen, 1964; Gilmore et al., 1966; Byram and Lowe, 1988; Zobel 

and Jett, 1995; Jayawickrama et al., 1997; Sewell et al., 2002).  

To examine variation in gene expression among trees from different geographical 

sources when grown on a common site and seasonal variation in gene expression within 

each seed source, transcript profiles of differentiating xylem from two different loblolly 

pine seed sources, South Arkansas and South Louisiana, and from earlywood and 

latewood within each seed source, were compared. Microarrays containing 2171 ESTs 

with putative functions of interest, selected from several loblolly pine xylem partial 

cDNA libraries and a shoot tip library were used. Many genes preferentially expressed in 

latewood compared to earlywood were for proteins involved in cell wall biosynthesis. 

Variation in gene expression among trees from the two seed sources within each 

growing season suggests that there may be more differences between South Arkansas 

trees and South Louisiana trees within latewood than within earlywood. Finally, 

variation in gene expression among trees from different regions may reflect  adaptation 

to different environments. 
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MATERIALS AND METHODS 

 

Plant materials 

The Western Gulf geographic seed source study was established in the 1970s to 

have insight into loblolly pine seed movement within the states of Arkansas, Louisiana, 

Mississippi, Oklahoma, and Texas. Each seed source consisted of five open-pollinated 

families that came from parent trees selected for superior properties such as growth, 

form, and specific gravity from each of the Western Gulf provenances (Byram and 

Lowe, 1988). For this study, differentiating xylem samples collected from trees in one of 

the 28 plantings of the Western Gulf seed source study, a planting near Hudson, TX, 

were used for analysis. Newly differentiating xylem was isolated from loblolly pines 

from South Arkansas and South Louisiana, the two seed sources that showed the biggest 

difference in wood specific gravity when grown on a common site (Byram and Lowe, 

1988). Three families per seed source were selected and samples were collected from 

five trees per family. Differentiating xylem was collected separately in early July and 

October for earlywood and latewood comparisons. The same trees were sampled each 

time. A hole saw was used to remove the bark and phloem. The differentiating xylem 

was scraped from the stem and frozen in liquid nitrogen. Five millimeter increment cores 

were taken from bark to bark and examined under a light microscope to check the status 

of earlywood latewood development.       
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Microarray preparation 

The microarrays used in this study were made by the Forest Biotechnology 

Group at North Carolina State University and kindly provided to us. A total of 1936 

contigs with putative functions of interest were selected as well as 236 contigs without 

any putative function assigned (“no hits” after a Blastx search using an E-value cutoff of 

10-5). The contigs contain EST sequences from normal wood, side wood, compression 

wood, latewood, planings (deeper cell layers), root wood xylem and shoot tip cDNA 

libraries made from loblolly pine (Whetten et al., 2001; Kirst et al., 2003). To reduce 

nonspecific hybridization, EST clones located near the 3’ end of each contig and larger 

than 200 bp were selected to be amplified by PCR. The microarray preparation 

procedures used in this study were described in Chapter II. 

 

Probe synthesis and hybridization 

Total RNAs were extracted from differentiating xylem using the method of 

Chang et al. (1993). Residual DNA was removed using DNA-freeTM (Ambion Inc. 

Austin, TX) and RNA was further purified using MEGAclearTM  (Ambion Inc. Austin, 

TX ). Due to the limited number of microarray slides available, an equal amount of RNA 

was pooled from each sample and combined to synthesize probes following the 

experimental design in Figure 5A. Briefly, about 300 milligrams of ground 

differentiating xylem tissue from five trees from each family and growing season were 

combined and RNAs were purified. The RNA purifications were repeated with separate  
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Figure 5. Loop experimental design used for probe labeling and hybridization (A). 
Double dye-flip method used for each comparison (B). EW, earlywood; LW, latewood 
 

 

 

samples to produce biological replications (Figure 5B). An equal amount of RNA was 

pooled from each family and combined into four samples as shown in Figure 1A. For the 

first strand cDNA synthesis and labeling, the FluoroScriptTM cDNA Labeling System 

(Invitrogen Corp. CA) was used following the manufacturer’s instructions. The 

hybridization and washing procedures used were described in Chapter II.  
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Image analysis, quantification and data analysis 

After the washing steps, the slides were scanned with both channels using a 

ScanArray 3000 (GSI Lumonics, Watertown, MA) at a 10 µm resolution. While 

scanning, the laser power and photo-multiplier tube setting were adjusted to 

approximately balance both channels. The intensities of each spot for both channels were 

quantified using QuantArray (GSI Lumonics, Watertown, MA). For the microarray data 

analyses, we adopted the fixed effect ANOVA model of Kerr and Churchill (2001a,b) 

using MA-ANOVA, a software package for the analysis of spotted cDNA microarray 

experiments by Wu, Kerr, Cui and Churchill (http:\\www.jax.org\research\Churchill). 

Measured spot intensities for each of the channels were pre-normalized following the 

method of Yang et al. (2001) using the “malowess” function in MA-ANOVA. Separate 

statistical tests were performed for seasonal variation within each seed source and 

variation between the two seed sources within each growing season. An ANOVA was 

carried out using the “fitmaanova” function to estimate effects of various factors on each 

spot intensity. A permutation F-test for the null hypothesis assuming zero VG effect was 

performed for each spot using the “make_Ftest” function in MA-ANOVA. The multiple 

testing-adjustment method (Westfall and Young 1993, Oleksiak et al., 2002) was applied 

to provide tighter control of type I errors.  

 

Real-time quantitative RT-PCR 

Real-time quantitative RT-PCR (Heid et al., 1996) was used to test the overall 

validity of our microarray data. Gene specific primers for the selected clones were 
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designed based on sequences from the NSF Pine EST Database (http://web.ahc.umn.edu/ 

biodata/nsfpine/) using Primer Express (Applied Biosystems, CA). Real-time RT-PCR 

was repeated three times for each of the selected clones with SYBR-Green PCR Master 

Mix (Applied Biosystems, CA) on a GeneAmp 7900 Sequence Detection System 

(Applied Biosystems, CA) following the manufacturer’s recommendations. A 

dissociation curve for each amplicon was examined to confirm the specificity of the 

primer pair used. The CT (threshold cycle) value obtained after each reaction was 

normalized to the CT value of 18S rRNA (see User Bulletin #2" ABI PRISM 7900 

Sequence Detection System, pp 11-15 for details). A paired t-test was used on 

normalized CT values (∆CT) to test seasonal variation in gene expression within each 

source and an ANOVA (nested factorial model) was used on ∆CT values to test variation 

between the two seed sources and among families within each seed source.  

 

RESULTS AND DISCUSSION 

 

A microarray analysis was performed to examine variation in gene expression 

among trees from different geographical sources when grown on a common site and 

seasonal variation in gene expression within each seed source. The gene list for the 

microarray used in this study is  available under Supplementary Data – Tree Physiology 

2004 at http://forestry.tamu.edu/newweb/people/faculty&staff/c-loopstra). A total of 

1936 genes with putative functions of interest were included on the array. In addition, 

236 genes without any putative function assigned (“no hits” after a Blastx search using 
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an E-value cutoff of 10-5) were included on the array.  

According to Lee et al. (2000), there is inherent variability in most microarray 

data even after removing systematic sources of variation. Thus, it is important to have an 

experimental design with a sufficient number of replications to control inherent noise 

and to produce consistent and reliable results (Kerr and Churchill, 2001a,b; Lee et al., 

2000). In this study, each of the ESTs was spotted four times on the array and a loop 

design (Figure 5A) with a double dye-flip method (Figure 5B) was adopted providing 32 

data points for each of the ESTs for each of the comparisons. The fixed effect ANOVA 

model (Kerr and Churchill, 2001a,b) was adopted to estimate effects of various factors 

on each spot intensity. The normality in residual distribution for the model adopted was 

also examined and no significant evidence against homoscedasticity was found (data not 

shown). Genes with significant variation in expression were identified using a 

permutation F-test (p-value=0.01) and multiple testing-adjustment was applied to 

provide tighter control of type I errors (Westfall and Young, 1993; Oleksiak et al, 2002). 

 

Genes with seasonal variation in expression within each source 

The expression of 110 genes was significantly different between earlywood and 

latewood within trees from South Arkansas. Within trees from South Louisiana, the 

expression of 87 genes was significantly different between earlywood and latewood. 

Among these, the expression of 53 genes was significantly different for both seed 

sources (gene lists are available under Supplementary Data - Tree Physiology 2004 at 

http://forestry.tamu.edu/newweb/people/faculty&staff/c-loopstra). Many genes  
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Table 4. Examples of genes expressed preferentially in latewood compared to earlywood 
within each seed source. 
 

        p-value 

Putative Function Clone ID Contig # Accession # SAR SLA 

Putative dehydrine 14 D07  AW010819 p<0.01(2.5)* p<0.01(1.7) 

AGP5 NXSI_079_E12 Contig2860 BF777983 p<0.01(1.8) p<0.01(1.1) 

Glycine-rich protein NXSI_054_F05 Contig7987 BF610091 p<0.01(1.8) p<0.01(0.1) 

Adenylate kinase NXCI_156_C12 Contig7286 BF221235 p<0.01(1.8) p<0.01(1.0) 

no hit NXSI_074_B07 Contig6989 CD025671 p<0.01(1.7) p<0.01(1.6) 

Cellulose Synthase-1 NXSI_024_H01 Contig7766 BG039035 p<0.01(1.7) p<0.01(1.3) 

Fructose-bisphosphate aldolase 07 E05  AW010498 p<0.01(1.5) p<0.01(1.0) 

Tubulin alpha-1 chain 22 F09  AW011596 p<0.01(1.4) p<0.01(1.0) 

Lp6 protein - loblolly pine NXSI_129_F11 Contig8028 BQ702534 p<0.01(1.4) p<0.01(0.9) 

AGP5 NXSI_103_C04 Contig7819 BG039717 p<0.01(1.2) p<0.01(1.7) 

Expansin9 precursor 21 H02  AW011524 p<0.01(1.1) p<0.01(0.7) 

Putative importin NXNV_145_F12 Contig5507 BE123594 p<0.01(1.1) p<0.01(0.6) 

Transcription factor Hap5a NXSI_054_E11 Contig6314 BF610085 p<0.01(1.1) p<0.01(0.4) 

Tubulin beta-2 chain  NXSI_125_H09 Contig7966 BQ702187 p<0.01(1.0) p<0.01(0.7) 

Cellulose synthase  NXSI_087_D09 Contig7766 BF778814 p<0.01(1.0) p<0.01(0.5) 

Putative SF16 protein NXCI_095_D10 Contig6082 BF010830 p<0.01(1.0) p<0.01(1.0) 

1,4-benzoquinone reductase NXSI_031_E03 Contig5720 BF517905 p<0.01(1.0) p<0.01(0.7) 

SAM Synthetase 2 40 D10  AW065163 p<0.01(0.9) p<0.01(0.6) 

Isoflavone reductase homolog NXNV_127_E04 Contig5231 AW887964 p<0.01(0.9) p<0.01(0.6) 

MADS box protein AGL2 ST06D02  AW010398 p<0.01(0.8) p<0.01(0.9) 

Pinoresinol-lariciresinol reductase NXSI_013_B10 Contig7578 BF517330 p<0.01(0.7) p<0.01(0.3) 

Phenylcoumaran benzylic ether reductase NXNV_066_E09 Contig7621 AW698113 p<0.01(0.6) p<0.01(0.4) 

Aluminum-induced protein  NXSI_134_D02 Contig7817 BQ702940 p<0.01(0.6) p<0.01(0.2) 

no hit 17 A10  AW011130 p<0.01(2.2)  

Sucrose Synthase NXSI_007_H12 Contig1276 BF517003 p<0.01(1.7)  

Polyubiquitin NXSI_081_D01 Contig8038 BF778050 p<0.01(1.7)  

Beta tubulin NXCI_001_A06 Contig7830 CD015920 p<0.01(1.4)  

no hit 15 F10  AW011016 p<0.01(1.4)  

Cinnamyl-alchohol-dehydrogenase NXNV_162_F07 Contig7123 BE187332 p<0.01(1.2)  

SAM Synthetase NXNV008F05 Contig8032 AW289947 p<0.01(1.2)  

Putative SAM Synthetase NXSI_012_H05 Contig7945 BF517311 p<0.01(1.1)  

no hit NXSI_089_E04 Contig6991 BF778882 p<0.01(1.1)  

14A9 NXCI_053_H01 Contig8004 BE644038 p<0.01(1.0)  

Cellulose synthase NXSI_108_H05 Contig7881 BG040499 p<0.01(0.9)  

Trans-cinnamate 4-hydroxylase NXCI_087_F07 Contig8013 BF010655 p<0.01(0.4)  

Laccase  NXCI_094_C09 Contig6075 BF010890   p<0.01(0.9) 

 
Clone IDs and contig numbers are from the loblolly pine xylem EST database 
(http://web.ahc.umn.edu/biodata/nsfpine/contig_dir20/) and a shoot tip library. SAR, 
South Arkansas; SLA, South Louisiana. * Figures in the parentheses are log ratios from 
the microarray analyses. 
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preferentially expressed in latewood were for proteins involved in cell wall biosynthesis 

(Table 4). These genes are of particular interest because latewood has more desirable 

wood properties than earlywood for many purposes and increasing latewood percent in a 

wood would have a desirable effect (Megraw, 1985; Sewell et al., 2002). We identified 

two genes (NXSI_054_E11 and ST06D02) for transcription factors that could be 

involved in the preferential expression of genes in latewood. Both of them are expressed 

preferentially in latewood compared to earlywood within both seed sources. A previous 

study in our lab also showed that one of them (NXSI_054_E11) is preferentially 

expressed in xylem compared to megagametophytes, needles and embryos (Yang et al., 

2004). The discovery of trans-acting factors for cis-elements shared by genes 

preferentially expressed in latewood could be very important because most of the 

economically important quantitative traits in pines are thought to be controlled by the 

collective action of multiple genes (Sewell and Neale, 2000). Trans-acting factors 

regulate many genes sharing the matching cis-elements simultaneously (pleiotropism). 

Targeting upstream components in the signal transduction pathway rather than final 

responsive genes for genetic modification could have a more significant effect on the 

final phenotype. Thus, these two genes could be key regulators of the genes that play 

important roles during latewood formation and could be candidate genes for important 

quantitative traits.  

Our array contained clones that represent six cellulose synthase contigs (contigs 

7881, 7803, 7766, 6864, 5828 and 5607). Among these, only contig 7766 was 

preferentially expressed in latewood for both of the seed sources (p=0.01). Contig 7881 
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was preferentially expressed in latewood only within trees from South Arkansas. 

Cellulose microfibrils are synthesized on the plasma membrane by a cellulose synthase 

complex, which is composed of multiple cellulose synthase subunits (particle rosettes) 

and sucrose synthase (Delmer and Amor, 1995). Previous studies showed that transcripts 

for these genes are highly abundant in wood forming tissues of both gymnosperms and 

angiosperms (Allona et al., 1998; Sterky et al., 1998; Whetten et al., 2001) and their 

expression was coordinated with late cell expansion and secondary wall formation 

(Hertzberg et al., 2001). There are multiple members of  the cellulose synthase gene 

family expressed in differentiating xylem and they are differentially regulated (Allona et 

al., 1998; Sterky et al., 1998; Wu et al., 2000; Yang et al., 2004). Many of them are 

preferentially expressed in differentiating xylem compared to other tissues (Yang et al., 

2004). So far, we have identified 12 different sequences for cellulose synthase in loblolly 

pine public databases, 11 from loblolly pine xylem EST libraries (contigs 7881, 7803, 

7766, 6864, 5828, 5607, 5258, 3670, 2633, 1343 and 993 in http://web.ahc.umn.edu/ 

biodata/nsfpine/contig_dir20/) and one from a shoot tip library (Gene Bank Acc# 

AW056552). According to Whetten et al. (2001), EST clones with more than 98% 

sequence similarity are sometimes placed into different contigs when PHRAP 

(http://www.phrap.org) parameters used for contig assembly are a minimum mismatch 

of 40 and a minimum score of 80. PHRAP parameters used for contig assembly for the 

xylem loblolly pine EST database (http://web.ahc.umn.edu/biodata/nsfpine/contig_dir20 

/) were a minimum match of 50, a minimum score of 100 and a minimum length of 100. 

Thus, these different contigs for cellulose synthase could represent allelic variation or 
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different members of the loblolly pine cellulose synthase gene family. The level of 

sequence similarity among these contigs and a previous study in our lab (Yang et al., 

2004) strongly suggest that these are sequences for different members of the cellulose 

synthase gene family. Our array also contained clones that represent three sucrose 

synthase contigs (contigs 7744, 3656 and 1276). Contig 1276 was preferentially 

expressed in latewood compared to earlywood within trees from South Arkansas 

(p=0.01). Sucrose synthase is responsible for channeling UDP-glucose into the growing 

cellulose in a cellulose synthase complex (Delmer and Amor, 1995).   

    Our array contained a total of 12 clones representing the loblolly pine tubulin 

multigene family. Seven clones represented the beta-tubulin gene family (contigs 7995, 

7966, 7830, 7162, 6405, 4803 and 4624) and 5 clones represented the alpha-tubulin gene 

family (contigs 8045 and 8008 from xylem cDNA libraries and Gene Bank Acc# 

AW011596, AW042942 and AW010543 from a shoot tip library). Among the 12 tubulin 

genes represented, contig 7966 and clone AW011596 were expressed preferentially in 

latewood within trees from both seed sources. Contig 7830 and clone AW010543 were 

expressed preferentially in latewood only within trees from South Arkansas. 

Microtubules are heterodimeric polymers of the alpha- and beta-tubulins that are 

encoded by multigene families in plants (Ludwig et al., 1987, Hussey et al., 1990, 

Snustad et al., 1992). The orientation of newly deposited cellulose microfibrils is 

determined by cortical microtubules that are cross-linked to the cytoplasmic face of the 

plasma membrane creating channels within the membrane for the directional movement 

of cellulose synthase complexes along the membrane during cellulose microfibril 
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synthesis (Giddings and Staehelin, 1988; Baskin et al., 1994; Nick, 2000). Thus, these 

tubulin genes could be candidate genes for S2 layer microfibril angle in the secondary 

cell wall of tracheid cells. 

 Most of the known genes involved in lignin biosynthesis were represented on the 

microarray. In this study, several genes involved in lignin biosynthesis including trans-

cinnamate 4-hydroxylase (contig 8013), cinnanmyl-alcohol dehydrogenase (contig 7123) 

and laccase (contig 6075) were preferentially expressed in latewood. Several SAM 

synthase genes that are thought to be involved in methyl transfer during cross-linking of 

the monolignols were preferentially expressed in latewood as well (Table 4). Lignin is a 

phenolic polymer derived from irregular cross-linking of aromatic alcohol subunits 

(monolignols) such as p-coumaryl alcohol, coniferyl alcohol and synapyl alcohol. These 

monolignols are synthesized from phenylalanine by the phenylpropanoid pathway and 

secreted  into the apoplast where they are cross-linked and become a major reinforcing 

matrix of the secondary cell wall where cellulose microfibrils are embedded (reviewed 

by MacKay et al., 1997). Previous studies showed that transcripts for genes involved in 

the lignin biosynthetic pathway are among the most abundant transcripts in wood 

forming tissues (Allona et al., 1998; Sterky et al., 1998; Whetten et al., 2001; Lorenz and 

Dean, 2002). In some cases, expression is up-regulated in compression wood compared 

to normal wood (Whetten et al., 2001) and different members of gene families are 

differentially regulated during wood formation (Hertzberg et al., 2001). Many genes 

involved in lignin biosynthesis are preferentially expressed in differentiating xylem 

compared to other tissues as well (Yang et al., 2004). The preferential expression of 
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genes involved in lignin biosynthesis in latewood compared to earlywood in this study is 

puzzling because previous studies showed lower lignin content in latewood than 

earlywood (Saka and Goring, 1985; Sewell et al., 2002). Differences could be due to 

properties of the samples used in this study (differentiating xylem) and samples used in 

previous studies (inner rings of 5-mm radial wood core).  Alternatively, even if lignin 

content is lower in latewood relative to other cell wall components, the total amount of 

lignin needed may be greater due to thicker cell walls. 

     Several genes encoding putative cell wall proteins were represented on the 

arrays. Transcripts for cell wall structural proteins such as arabinogalactan-proteins 

(AGPs), glycine-rich proteins and proline-rich proteins are among the most abundant 

transcripts in wood forming tissues and are preferentially expressed in differentiating 

xylem tissue compared to other tissues (Loopstra and Sederoff, 1995; Allona et al., 

1998; Sterky et al., 1998; Loopstra et al., 2000; Zhang et al., 2000; Whetten et al., 2001; 

Lorenz and Dean, 2002; Yang et al., 2004). AGPs are highly glycosylated proteoglycans 

or glycoproteins (2-10% protein by weight) which contain highly repetitive sequences 

and are frequently rich in proline/hydroxyproline, serine, threonine, alanine, and glycine. 

General features of classical AGPs include a signal peptide for targeting to the 

endoplasmic reticulum, a hydroxyproline-rich domain and a GPI anchor site for plasma 

membrane attachment. Six different loblolly pine AGP-like genes or gene families have 

been identified (Loopstra et al., 2000; Zhang et al., 2000) and they are among the most 

abundant transcripts in differentiating xylem tissue (Sterky et al., 1998;  Whetten et al., 

2001; Lorenz and Dean, 2002). The loblolly pine xylem EST database (http://web.ahc. 
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umn.edu/biodata/nsfpine/contig_dir20/) contains numerous contigs for different AGP-

like genes (contigs 8005, 8026 and 7885 for ptaAGP6; contigs 7819, 7620, 7601, 6582, 

6524, 6283, 2860 and 221 for ptaAGP5; contigs 7932, 7916 and 7402 for ptaAGP4; 

contigs 7842, 7704, 5448, 80 and 16 for ptx3H6, contigs 8004, 7979 and 7689 for 

ptx14A9; contigs 7990, 7873, 7675, 7646 and 6417 for ptaAGP3). Careful examination 

of DNA and protein sequence similarity among contigs for each AGP-like gene suggest 

that there are at least seven different members of the ptaAGP5 gene family. Our array 

contained one clone for ptaAGP6 (contig 8026), four clones for ptaAGP5 (contigs 7819, 

7601, 6582 and 2860), one clone for ptx3H6 (contig 7842), two clones for ptx14A9 

(contigs 8004 and 7689) and three clones for ptaAGP3 (contigs 7990, 7675 and 6417). 

Among these, contigs for two different ptaAGP5 genes (contigs 7829 and 2860) were 

preferentially expressed in latewood compared to earlywood within trees from both seed 

sources. One contig for ptx14A9 (contig 8004) was preferentially expressed in latewood 

within trees from South Arkansas.  Two contigs for glycine-rich proteins were 

preferentially expressed in latewood compared to earlywood as well. Contig 7987 was 

preferentially expressed  in latewood within trees from both seed sources and contig 

8038 was preferentially expressed in latewood within trees from South Arkansas.  

 Some of the genes with no putative functions assigned (“no hits” after a Blastx 

search using an E-value cutoff of 10-5) also showed preferential expression in latewood. 

These “no hits”, especially contigs with sufficient sequence size, could be genes unique 

to conifers, gymnosperms or wood forming tissue. However, according to Kirst et al. 

(2003), the number of pine wood ESTs showing “no hits” decreased when longer contigs 
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were used. Thus, some “no hits”, especially contigs with a short sequence and 

singletons, could be unrecognized contaminants from various sources (Kirst et al., 2003).  

 Interestingly, many stress-related genes, especially genes considered to be 

induced by drought stress, were preferentially expressed in earlywood compared to 

latewood within each seed source (Table 5). This made data analysis difficult because 

up-regulation of these genes in earlywood could be due to drought stress received during 

the early growing season not representing typical differences between earlywood and 

latewood. Maximum temperatures in the week preceding the earlywood harvest ranged 

from 30 °C to 34.4 °C with 23 mm of rain in the preceding two weeks. Maximum 

temperatures in the week preceding the latewood harvest ranged from 25 °C to 30.6 °C 

with 56 mm of rain in the preceding two weeks. However, a dehydrine, belonging to a 

group of well-known drought stress-induced genes, was strongly preferentially 

expressed in latewood among trees within both seed sources. Thus, preferential 

expression of these stress-related genes in earlywood might not be simply due to drought 

stress and more complicated unknown stress-related regulation might be involved. These 

stress-related genes could play a significant role during earlywood formation as well.  

 

Genes with variation in expression among trees from different geographical sources 

within each growing season 

 Within latewood, 131 genes with significant variation in gene expression 

between South Arkansas and South Louisiana trees were identified. However, within 

earlywood, only 51 genes with variation in gene expression between the two seed
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Table 5. Examples of stress-related genes with variation in expression between earlywood and latewood within each seed 
source and among trees from the two seed sources within each growing season. 
 

        p-value (LW vs EW) p-value (SAR vs SLA) 

Putative Function Clone ID Contig # Accession # SAR SLA LW EW 

Low molecular weight heat shock protein 40 F04  AW065178 p<0.01(-0.8)* p<0.01(-0.8) p<0.01(0.8) p<0.01(0.8) 

Class 1 heat shock protein 14 B10  AW010802 p<0.01(-0.8) p<0.01(-0.9) p<0.01(0.7) p<0.01(0.6) 

Heat shock protein 82 NXSI_011_G01 Contig7776 BF517211 p<0.01(-0.7) p<0.01(-0.6)  p<0.01(0.7) 

Heat shock protein 70 NXSI_126_A05 Contig5612 BQ702194 p<0.01(-0.7) p<0.01(-0.6)  p<0.01(0.8) 

18.2 KDA class 1 heat shock protein NXSI_139_G02 Contig3618 BG275507 p<0.01(-0.6)    

Heat shock protein 20 NXSI_100_C03 Contig6525 BG039545 p<0.01(0.9)   p<0.01(0.4) 

Water-stress-inducible protein LP3  NXCI_132_H04 Contig7971 BF186115 p<0.01(-0.4) p<0.01(-0.3) p<0.01(0.4)   

Water stress inducable protein LP3 34 H09  AW064717 p<0.01(-0.1) p<0.01(-0.3)    

Water stress inducable protein Lp3 23 A08  AW042659 p<0.01(-0.8) p<0.01(-0.3)  p<0.01(0.4) 

Putative dehydrine 14 D07  AW010819 p<0.01(2.5) p<0.01(1.7) p<0.01(1.3)   

Putative dehydrine NXSI_058_G02 Contig7918 BF610459 p<0.01(1.5) p<0.01(0.7) p<0.01(1.0)   

Putative dehydrine NXSI_071_D09 Contig7967 BF777423   p<0.01(0.9)   

Putative dehydrine NXCI_002_C10 Contig6080 BE451794   p<0.01(0.6)   

Probable aquaporin NXSI_048_C09 Contig7765 BF609696 p<0.01(-0.6) p<0.01(-0.4) p<0.01(-0.3)  

Aquaporin 07 A03   AW010453 p<0.01(-0.2) p<0.01(-0.4)   

Drought-induced protein NXNV  123  E11   AW870057 p<0.01(-0.8)       

 
Clone IDs and contig numbers are from the loblolly pine xylem EST database 
(http://web.ahc.umn.edu/biodata/nsfpine/contig_dir20/) and a shoot tip library. * Figures in the parentheses are log ratios from 
the microarray analyses. Positive log ratio values (>0) represent preferential expression in latewood and South Arkansas trees 
compared to earlywood and South Louisiana trees. SAR, South Arkansas; SLA, South Louisiana; EW, earlywood; LW, 
latewood.
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sources were identified. Table 6 shows examples of genes differentially expressed 

between the two seed sources within each growing season. Among these, the expression 

of 29 genes was significantly different for both earlywood and latewood (gene lists are 

available under Supplementary Data - Tree Physiology 2004 at http://forestry.tamu. 

edu/newweb/people/faculty&staff/c-loopstra). The difference in the number of genes 

identified between earlywood and latewood implies that there might be a greater 

difference in latewood than earlywood between trees from South Arkansas and South 

Louisiana. These are the two seed sources that showed the largest difference in wood 

specific gravity when grown on a common site in a previous study (Byram and Lowe, 

1988). Previous studies suggested that latewood would have more significant effects on 

wood properties such as wood density and wood specific gravity than earlywood (van 

Buijtenen, 1964; Gilmore et al., 1966; Byram and Lowe, 1988; Zobel and Jett, 1995; 

Jayawickrama et al., 1997).  

The native range of loblolly pine is widely distributed, spanning 15 states from 

New Jersey to central Florida and westward to Texas (Baker and Landon, 1990). 

Following the withdrawal of glaciers after the climax of the Wisconsin glaciation 13,000 

years ago, loblolly pines migrated northward following optimum environments (Watts, 

1983). Thus, the current population structure of loblolly pine in its natural range has 

been established for a long period of time evolving adaptations to the new environments. 

Loblolly pines are out-crossing (wind-pollinated) in nature. Gene flow by pollen 

dispersal is highly extensive (DiGiovanni et al., 1996) and selfed progenies are inferior 

to out-crossed ones for competition in nature (Kraus and Squillace, 1964). Breeding  
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Table 6. Examples of genes differentially expressed between the two seed sources within 
each growing season. 
 

        p-value 

Putative Function Clone ID Contig # Accession # LW EW 

No hit NXSI_021_D01 Contig7400 BF517419 p<0.01(2.2)* p<0.01(1.0) 

No hit 17 A10  AW011130 p<0.01(2.1) p<0.01(1.2) 

Glycine-rich protein homolog NXSI_054_F05 Contig7987 BF610091 p<0.01(1.5) p<0.01(0.7) 

Hypothetical protein 16 C05  AW011062 p<0.01(1.4) p<0.01(1.2) 

Metallothionine-like protein EMB 30 38 A10  AW064970 p<0.01(1.4) p<0.01(0.8) 

Metallothionine like protein 35 A01  AW064720 p<0.01(1.4) p<0.01(1.1) 

Hypothetical protein NXSI_021_B12 Contig7600 BF517412 p<0.01(1.3) p<0.01(0.9) 

Putative dehydrine 14 D07  AW010819 p<0.01(1.3)   

Alluminum induced prot 37 A06  AW064886 p<0.01(1.3) p<0.01(0.8) 

Putative importin NXNV_145_F12 Contig5507 BE123594 p<0.01(1.2)   

Dormancy associated protein 40 D05  AW065158 p<0.01(1.2)   

Pathogenesis-related protein PR-1  NXNV_082_C11 Contig7141 CD020656 p<0.01(1.1)   

Putative casein kinase  NXCI_048_E07 Contig2796 BE643881 p<0.01(1.1)   

Hypothetical ORF-6 protein 17 C04  AW011146 p<0.01(1.1)   

TCTP-like protein 08 A07  AW010558 p<0.01(1.1)   

Putative dehydrin NXSI_058_G02 Contig7918 BF610459 p<0.01(1.0)   

Actin 06  G12  AW010441 p<0.01(1.0)   

Polyubiquitin NXNV_123_D06 Contig6253 CD020985 p<0.01(1.0)   

No hit NXSI_054_A09 Contig6104 BF610040 p<0.01(0.9) p<0.01(1.1) 

SAM synthase NXSI_023_F01 Contig8042 BQ701188 p<0.01(0.9)  

Hydroxyproline enriched glycoprotein 15 B09  AW010974 p<0.01(0.9)  

Adenosyl methionine syhthetase 08 F07  AW010600 p<0.01(0.9)  

Laccase (diphenol oxidase) NXNV_066_B07 Contig5714 AW698095 p<0.01(-0.2) p<0.01(-0.2) 

probable UDP-glucuronosyltransferase NXNV_079_G02 Contig7913 AW698020 p<0.01(-0.4) p<0.01(-0.5) 

Proline-rich protein NXCI_021_D03 Contig7921 BE496599 p<0.01(-0.4) p<0.01(-0.2) 

 
Clone IDs and contig numbers are from the loblolly pine xylem EST database 
(http://web.ahc.umn.edu/biodata/nsfpine/contig_dir20/) and a shoot tip library. * Figures 
in the parentheses are log ratios from the microarray analyses. Positive log ratio values 
(>0) represent preferential expression in South Arkansas trees compared to South 
Louisiana trees. LW, latewood; EW, earlywood. 
 

 

 

efforts have recently accelerated the rate of genetic change (Wells 1985, Lambeth 1984, 

Li et al., 1999). However, the natural population of loblolly pine is highly heterozygous 

and still maintains much of its original variation. Several previous studies have 
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suggested climate-related selection pressure in the evolution of many traits of loblolly 

pine. Variation of such traits generally shows a north to south pattern implying latitude-

related climatic variables. In general, compared to northern populations, southern 

populations have smaller seed, worse first year planting survival, faster growth at the 

nursery and later in the out plantings, and more resistance to fusiform rust (Wells and 

Wakeley, 1966; Goggans et al., 1972; Slunder, 1980; Wells et al., 1991). Among various 

latitude-related climatic variables, variation in precipitation is of particular interest. 

Latitude-related variation in several traits shows a significant correlation to the cline of 

decreasing precipitation with increasing latitude (Wells et al., 1991). Byram and Lowe 

(1988) showed that the average specific gravity of trees from the provenance with lower 

precipitation (South Arkansas) is greater than that of trees from provenances with higher 

precipitation (South Louisiana) when grown on a common site. The results from this 

study support the results from the previous studies. Many stress-related genes, especially 

drought-stress induced genes, with variation in expression between the two seed sources 

were identified in this study and most of them are expressed more highly in South 

Arkansas trees than South Louisiana trees during both growing seasons (Table 5). These 

differences in gene expression level should be due to genetics because these pines were 

exposed to the same environment on the same site regardless of the seasonal change. 

South Arkansas has a lower average precipitation (1170mm-1420mm) than South 

Louisiana (1420mm-1725mm). Pines native to these regions may have evolved 

adaptations to the different environments and some differences in gene expression may 

be due to adaptation to drought stress.   
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The cis-elements in regulatory sequences are highly polymorphic (Stephens et 

al., 2001) and these naturally occurring polymorphisms (SNPs) can change in vivo 

transcription rates causing substantial variation in gene expression between individuals 

within and among natural populations (Koivisto et al., 1994; Beaty et al., 1995; 

Crawford et al., 1999; Segal et al., 1999; Oleksiak et al., 2002). Oleksiak et al. (2002) 

suggested that variation in gene expression among individuals within and among natural 

populations could be an important mechanism for evolution by natural selection, 

especially directional selection. The results from this study also support adaptation to the 

different environments through variation in gene expression.  

 

Real-time quantitative RT-PCR 

To test the overall validity of our microarray data, selected genes were further 

examined by real-time quantitative RT-PCR (Heid et al., 1996). Unlike the microarray 

analyses, samples for different families within each seed source and within different 

growing seasons were analyzed separately using real-time RT-PCR. A paired t-test was 

used on ∆CT values to test seasonal variation in gene expression within each source. In 

general, real-time RT-PCR results agree well with our microarray data (Table 7). The 

log ratio for each gene from the microarray analysis in Table 7 represents the degree of 

differential expression between earlywood and latewood within each seed source. 

Positive log ratio values (>0) represent preferential expression in latewood compared to 

earlywood. The differences in ∆CT values between earlywood and latewood (EW∆CT - 

LW∆CT) from the real-time PCR analysis also represent the degree of differential 
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expression between earlywood and latewood within each seed source. Positive values 

(>0) represent preferential expression in latewood compared to earlywood. Log ratio 

values from the microarray data agree relatively well with real-time RT-PCR ∆CT mean 

difference values (Table 7). 

 An ANOVA was used on ∆CT values for each gene selected to test variation in 

expression between the two seed sources and among families within each seed source 

within each growing season. In general, real-time RT-PCR results agree well with our 

microarray data for variation between the two seed sources within each growing season 

even though an additional factor, different families within each seed source, were 

included during real-time RT-PCR result analyses (Table 8). Significant variation in 

expression among families within each seed source was observed for several genes 

tested. The adjusted R2 values in Table 8 represent the fitness of the nested-factorial 

model used for the ANOVA explaining how much of the variation in expression for each 

gene tested was explained by the family structure for each seed source within each 

growing season. Byram and Lowe (1988) showed that there is a consistent pattern of 

variation in specific gravity among families within each seed source and little GxE effect 

on family-within-seed source. The variation in expression of the genes between the two 

seed sources and among families within each seed source observed in this study also 

supports the findings from the previous study. 



 

                                                                                                                                                                                                       

Table 7. Comparison of microarray and real-time RT-PCR results for selected genes identified in the earlywood vs. latewood 
study.  
 

    SAR SLA 

    Microarray Real-Time RT-PCR Microarray Real-Time RT-PCR 

Clone ID Putative Function Pr > F log ratio Pr > |t| ∆Ct (EW-LW) Pr > F log ratio Pr > |t| ∆Ct (EW-LW) 

14 D07 Putative dehydrine <0.01 2.5 <.0001 2.3 <0.01 1.7 <.0001 2.37 

17 A10 No hit <0.01 2.2 <.0001 2.61     0.001 1.25 

NXSI_079_E12 AGP 5  <0.01 1.8 <.0001 2.5 <0.01 1.1 <.0001 2.34 

NXCI_156_C12 Adenylate kinase <0.01 1.8 <.0001 1.05 <0.01 1.0 <.0001 1.19 

NXSI_054_F05 Glycine-rich protein homolog <0.01 1.8 <.0001 3.18 <0.01 0.1 <.0001 2.17 

NXSI_074_B07 No hit <0.01 1.7 <.0001 2.1 <0.01 1.6 <.0001 2.56 

NXCI_062_B10 Probable gamma-thionin precursor SPI1  <0.01 1.4 <.0001 2.85     0.018 1.64 

NXNV_127_E04 Isoflavone reductase homolog  <0.01 0.9 <.0001 3.17 <0.01 0.6 <.0001 2.7 

NXSI_134_F04 Cellulase (EC 3.2.1.4) 1 precursor <0.01 -0.5 <.0001 -1.24     0.848 0 

NXSI_116_B04 Heat shock protein 82  <0.01 -0.8 <.0001 -3.32 <0.01 -0.4 <.0001 -2.3 

40 F04 Low molecular weight heat shock protein <0.01 -0.8 <.0001 -0.76 <0.01 -0.8 0.012 -0.52 

14 B10 Class 1 heat shock protein <0.01 -0.8 <.0001 -1.64 <0.01 -0.9 <.0001 -0.95 

NXSI_036_F01 Ethylene-responsive transcriptional coactivator <0.01 -1.1 <.0001 -4.61 <0.01 -0.9 <.0001 -3.55 

NXNV_156_G02 AGP3     0.003 -0.65 <0.01 0.3 0.008 0.68 

 
Positive log ratio values (>0) represent preferential expression in latewood compared to earlywood within each seed source. 
Positive ∆Ct (EW-LW) values (>0) also represent preferential expression in latewood compared to earlywood within each seed 
source. SAR, South Arkansas; SLA, South Louisiana; ∆Ct (EW-LW), mean difference between earlywood and latewood ∆Ct 
values (=EW∆Ct – LW∆Ct). 
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Table 8. Comparison of microarray and real-time RT-PCR results for selected genes identified in the South Arkansas vs. South 
Louisiana study. 
 

    SAR vs SLA Among families within each seed source 

   EW (Pr > F) LW (Pr > F) SAR (Pr > F) SLA (Pr > F) adjusted  R2 

Clone ID Putative Function Microarray RT Microarray RT EW LW EW LW EW LW 

NXSI_054_F05 Glycine-rich protein homolog <0.01 <.0001 <0.01 <0.0001 <.0001 0.107 <.0001 <0.0001 0.95 0.94 

35 A01 Metallothionine like protein <0.01 <.0001 <0.01 <0.0001 0.001 <0.0001 <.0001 0.003 0.91 0.96 

17 A10 No hit <0.01 <.0001 <0.01 <0.0001 <.0001 0.195 0.612 0.001 0.88 0.95 

NXNV_079_G02 
Probable UDP-
glucuronosyltransferase <0.01 <.0001 <0.01 <0.0001 0.394 0.001 <.0001 0.073 0.89 0.84 

NXCI_062_B10 
Probable gamma-thionin precursor 
SPI1  <0.01 0.009 <0.01 <0.0001 0.688 0.095 0.018 0.404 0.39 0.89 

40 F04 
Low molecular weight heat shock 
protein <0.01 0.005 <0.01 <0.0001 0.483 0.052 0.058 0.001 0.37 0.66 

NXCI_021_D03 Proline-rich protein.  <0.01 0.035 <0.01 <0.0001 0.654 <0.0001 0.018 <0.0001 0.33 0.98 

14 D07 Putative dehydrine   0.104 <0.01 0.05 0.005 <0.0001 0.005 <0.0001 0.53 0.71 

 
SAR, South Arkansas; SLA, South Louisiana; EW, earlywood; LW, latewood; RT, real-time RT-PCR.  
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CHAPTER IV 

 

REAL-TIME RT-PCR ANALYSIS OF LOBLOLLY PINE (Pinus taeda L.) 

ARABINOGALACTAN-PROTEIN-LIKE GENES 

 

INTRODUCTION 

 

 Arabinogalactan-proteins (AGPs) are a class of a large hydroxyproline-rich 

glycoproteins (HGRPs) found in almost all plant species including angiosperms, 

gymnosperms, and lower plants such as bryophytes (reviewed by Fincher et al., 1983; 

Showalter, 1993; Nothnagel, 1997; Majewska-Sawka and Nothnagel, 2000). Protein 

cores of AGPs, which comprise only two to 10% of the total mass, are abundant in 

hydroxyproline (Hyp), alanine (Ala), serine (Ser), and threonine (Thr) and are 

intensively glycosylated mostly by galactose and arabinose (Fincher et al., 1983; 

Showalter and Varner, 1989; Du et al., 1996). AGPs share common characteristic 

domains rather than having sequence identify. In general, classical AGP protein cores 

contain a signal peptide for the secretion pathway, a Hyp-rich domain predicted to be O-

glycosylated, and a GPI anchor signal sequence for plasma membrane attachment (Youl 

et al., 1998; Schultz et al., 1998). Some classical AGPs contain a short domain rich in 

basic amino acids within a Hyp-rich domain (Gao et al., 1999; Zhang et al., 2003). There 

are also non-classical AGPs that contain extra Cys-rich or Asn-rich domains in addition 

to Hyp-rich domains. Non-classical AGPs do not contain a GPI anchor signal sequence 
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(Majewska-Sawka and Nothnagel, 2000). There are also short AG-peptides (Schultz, 

2002). AGPs have been implicated in various plant growth and developmental processes 

such as somatic embryogenesis (Kreuger and van Holst, 1993, 1995; Thomson and 

Knox, 1998; Champman et al., 2000), pollen tube growth (Cheung et al., 1995; Roy et 

al., 1998; Wu et al., 2000), cell proliferation (Serpe and Nothnegel, 1994; Thompson and 

Knox, 1998), cell expansion (Willats and Knox, 1996; Ding and Zhu, 1997), and cell 

differentiation (Pennell and Roberts, 1990; Knox et al., 1991). However, specific roles of 

AGPs in these processes remain to be elucidated. 

AGPs are particularly interesting with respect to pine xylem development. A 

total of six AGP-like genes or gene families have been cloned from differentiating pine 

xylem. Among them, only AGP3 (Loopstra et al., 2000) and AGP6 (Zhang et al., 2003) 

have been verified experimentally to be AGPs. Others are classified as AGP-like 

because they share general characteristics of known AGPs. Two AGP-like genes, 

ptx3H6 and ptx14A9, were cloned by differential screening of a xylem cDNA library 

(Loopstra and Sederoff, 1995). They are preferentially expressed in xylem compared to 

other tissues (Loopstra and Sederoff, 1995) and might be regulated by plant hormones 

during seedling development (No and Loopstra, 2000). There is some experimental 

evidence using the genes tagged with the c-myc epitope to transform tobacco that 

ptx3H6 and ptx14A9 are AGPs (No and Loopstra, unpublished data). PtaAGP3 was 

cloned as part of an EST project and identified as an AGP following protein purification 

and N-terminal sequencing. It is preferentially expressed in xylem compared to other 

tissues as well (Loopstra et al., 2000). PtaAGP4, ptaAGP5, and ptaAGP6, were cloned 
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from loblolly pine xylem as part of EST on sequencing project (Allona et al., 1998; 

Zhang et al., 2000). PtaAGP6 was highly expressed in immature xylem from vertical or 

bent wood. PtaAGP4 was expressed more in xylem from compression wood and side 

wood than in xylem from vertical wood. PtaAGP5 was expressed more in side wood, 

less in vertical wood and least in compression wood (Zhang et al., 2000). An immuno-

localization study showed that ptaAGP6 expression is restricted to a file of cells that just 

precede secondary cell wall thickening (Zhang et al., 2003). Most of these pine AGPs or 

AGP-like genes are among the most abundant transcripts in differentiating xylem tissue 

(Loopstra et al., 1995; Allona et al., 1998; Whetten et al., 2001; Lorenz and Dean, 2002).  

Numerous potential roles of AGPs during xylogenesis have been proposed. For 

example, AGPs may act as carrier or shuttle molecules that bind newly synthesized wall 

polymers, keeping them soluble during transport to the cell wall (Gilbeaut and Carpita, 

1991). AGPs may also have roles in secondary cell wall initiation and lignification, 

acting as matrices for orderly addition of nascent wall precursors to the growing wall 

matrix (Kieliszewski and Lamport, 1994). AGPs are thought to be involved in cell 

expansion as well (Zhu et al., 1993; Kielizewski and Lamport, 1994; Jauh and Lord, 

1996; Willats and Knox, 1996). They may also play a role in programmed cell death 

(Schindler et al., 1995; Greenberg, 1996; Buckner et al., 1998), cell adhesion (Johnson et 

al., 2003), and signaling pathways through GPI anchors (Schultz et al., 1998) during 

xylogenesis. However, the specific role of each AGP during pine xylogenesis remains to 

be elucidated. It is possible that different AGPs have similar roles but at different times 

or in different locations. Alternatively, they may have very different functions during 
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xylogenesis. To better understand the roles of pine AGPs during xylogenesis, gene-

specific primers were designed and relative transcript levels of 11 loblolly pine AGP-

like genes (ptx3H6, ptx14A9, ptaAGP3, ptaAGP4, ptaAGP6 and six members of the 

ptaAGP5 multigene family) were examined using real-time RT-PCR analysis in this 

study. Expression was examined in different tissues, earlywood and latewood, 

compression, opposite, and vertical woods, drought stressed roots, and in vitro cultured 

cells induced for lignification. The different loblolly pine AGP-like genes had varying 

expression patterns under the different conditions suggesting different functions for each 

loblolly pine AGP.  

 

MATERIALS AND METHODS 

 

Plant materials 

 

1. Tissue specificity 

See materials and methods in Chapter II. 

 

2. Season and origin 

See materials and methods in Chapter III. 
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3. Drought stress 

Within the natural range of loblolly pine, two populations, The Lost Pines 

representing pines from a dry area and a South Louisiana population representing pines 

from a relatively wet area, were selected. The Lost Pines are from Bastrop, TX which 

has the lowest precipitation (865mm-965mm annual precipitation) within the range of 

loblolly pine. On the other hand, the South Louisiana pines are from the wettest part of 

the range (1500mm-1700mm annual precipitation). Six-month-old pine seedlings, six 

trees per family and three families per each seed source, were drought stressed in the 

green house. Control pines were watered daily. Pines with three different levels of 

drought stress, control (0.1-0.5 MPa), moderate (1-1.5 MPa) and highly stressed (2.0-2.5 

MPa), were attained over the treatment period. Roots from each pine were harvested 

after measuring pre-dawn water potential using a Scholander’s pressure bomb chamber 

and frozen immediately in liquid nitrogen and stored at –80 °C until further use.  

 

4. Compression wood 

Two-year-old pine seedlings were bent for three weeks to produce compression 

wood. The bark and phloem layers were peeled off and differentiating xylem tissues 

from compression wood (red-colored) and opposite wood (white-colored) were collected 

and frozen immediately in liquid nitrogen and stored at –80 °C until further use. 
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5. Cell culture 

Dr. Stasolla (U. of Manitoba, Canada) kindly performed the cell cultures and 

provided the RNAs to us. Suspension cultured cells of Pinus taeda L. (CAD/cad) were 

initiated from shoot tips (2 cm in length) using methods described by Brown and 

Lawrence (1968). Maintenance of cells and induction of secondary cell wall formation 

and lignin deposition were carried out following Eberhardt et al. (1993). Briefly, cells 

were maintained in a proliferation medium containing 2,4-dichlorophenoxyacetic acid 

(11 µM) as a sole source of growth regulators and were subcultured into fresh medium at 

7 d intervals. Lignification was initiated by transferring the cells (2.5 ml packed cell 

volume) into 50 ml of NAA (11 µM)-containing medium (lignification medium). Cells 

were harvested at day 0, 7, 14, 21, 35 and frozen immediately in liquid nitrogen and 

stored at –80 °C until further use.  

 

Identification and analysis of AGP sequences 

“BLASTN reports in nsfpine” were searched  with “arabinogalactan” as the 

query. The contigs for the resulting EST hits were identified in the loblolly pine xyem 

EST database (http://web.ahc.umn.edu/biodata/nsfpine/contig_dir20/). DNA and protein 

sequence similarity were analyzed with the ClustralW alignment program 

(http://www.ebi.ac.uk/clustalw/). N-terminal signal peptide sequences for each AGP 

were predicted with SignalP (http://www.cbs.dtu.dk/services/SignalP/; Nielsen et al., 

1997). The C-terminal trans-membrane domain and GPI anchor attachment for each 

AGP were predicted with PSORT (http://psort.nibb.ac.jp/form.html; Nakai and Horton  
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Table 9. Gene specific primers designed for 11 loblolly pine AGP and AGP-like genes 
for real-time RT-PCR. 

 

Gene ID Forward primer Reverse primer 

pta3h6 5'-CAGGTGGTGAAACAATGGCTC-3' 5'-AGAGGCTGAAGGAGACTGCG-3' 

pta14a9 5'-CCTGTTCGTTCCTGCTTCGT-3' 5'-CTGTCTGCAACGGAATTCGA-3' 

ptaAGP3 5'-TCCATTGCTGTTTGGCAGATC-3' 5'-GGCCAAAATGTAGCTCCAGG-3' 

ptaAGP4 5'-AAAGTTGATGATGGCCCCAC-3' 5'-GATTCCACCTGGGCTGATTCT-3' 

ptaAGP5A 5'-GCAGACAAGATGGGCCGAT-3' 5'-TTCGGCAAAAGTGAGGGTG-3' 

ptaAGP5B 5'-GGTTGTGAGTGCTACCCCTAATCT-3' 5'-GAACGACCCATTATACCAATTAAAGG-3' 

ptaAGP5C 5'-AAACTCCGGCATCTGGTCC-3' 5'-AGAGCCATCTTCTCCATGCTG-3' 

ptaAGP5D 5'-CTGCCTCGAAAAACCTCTTCA-3' 5'-GCTGTGATCAAAAGATACTAGTGGAAA-3' 

ptaAGP5E 5'-TTATTCTTCCTGGGCAACGTG-3' 5'-CTGGTTGTTGCTGACAAATGATAAT-3' 

ptaAGP5F 5'-TTTCTCTTGGGCAGATTTGCTT-3' 5'-TGTCTGCTGCTTGCTGGC-3' 

ptaAGP6 5'-TGGCTCTGCATTGCAAGTTT-3' 5'-GCAGTTGTGGGTGGCTTAGC-3' 

18s rRNA 5'-AAGACGGACCACTGCGAAAG-3' 5'-ATCCCTGGTCGGCATCGT-3' 

 

 

 

1999). Additional analyses for GPI anchor sites were performed with big-PI plant 

predictor (http://mendel.imp.univie.ac.at/sat/gpi/plant_server.html; Eisenhaber et al., 

2003).   

 

Real-time quantitative RT-PCR  

Total RNAs were extracted from each sample using the method of Chang et al. 

(1993). Residual DNA was removed using DNA-freeTM (Ambion Inc. Austin, TX) and 

RNA was further purified using MEGAclearTM  (Ambion Inc. Austin, TX ). The first 

strand cDNAs for each sample were made using random hexamers and Taqman Reverse 

Transcription Reagents (Applied Biosystems, CA) following the manufacturer’s 

recommendations.  Gene-specific primers for each AGP were designed based on 
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sequences from the NSF pine xylem EST Database using Primer Express (Applied 

Biosystems, CA) (Table 9). Samples and standards were run in duplicate on each plate 

and repeated on at least two plates using SYBR-Green PCR Master Mix (Applied 

Biosystems, CA) on a GeneAmp 7900 Sequence Detection System (Applied 

Biosystems, CA) following the manufacturer’s recommendations. Real-time RT-PCR 

was performed in a 10 µl reaction containing 3.5 µl ddH2O, 5 µl 2x PCR mix, 0.5 µl 

forward primer (1 µM), 0.5 µl reverse primer (1 µM), and 0.5 µl of template cDNA 

(10ng/µl). The PCR conditions were two minutes of pre-incubation at 50°C, 10 minute 

of pre-denaturation at 94 °C, 40 cycles of 15 seconds at 95 °C and one min at 60 °C, 

followed by steps for dissociation curve generation (30 seconds at 95 °C, 60 seconds at 

60 °C and 30 seconds at 95 °C). For data collection, SDS 2.1 (Applied Biosystems, CA) 

was used. Dissociation curves for each amplicon were carefully examined and each 

amplicon producing a single dissociation peak was sequenced to confirm the specificity 

of the primer pair used. Relative transcript levels for each sample were obtained using 

the “relative standard curve method” (see User Bulletin #2" ABI PRISM 7900 Sequence 

Detection System for details) and were normalized to the transcript level of 18s RNA of 

each sample. A paired t-test and an ANOVA were used on normalized transcript levels 

to test for variation in gene expression among samples for each experiment.  
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Table 10. Sequence similarity among different members of the ptaAGP5 gene family at 
the amino acid level. 
 

% Identity ptaAGP5A ptaAGP5B ptaAGP5C ptaAGP5D ptaAGP5E ptaAGP5F ptaAGP5G 

ptaAGP5A  66 63 61 62 72 57 

ptaAGP5B     64 60 76 72 64 

ptaAGP5C     68 66 71 64 

ptaAGP5D         60 64 54 

ptaAGP5E        73 62 

ptaAGP5F             70 

ptaAGP5G               

 
Protein sequence similarity was analyzed with the ClustralW alignment program 
(http://www.ebi.ac.uk/clustalw/). 
 

 

 

RESULTS 

 

Loblolly pine AGP-like proteins  

The loblolly pine xylem EST sequencing project deposited 59,447 ESTs in the 

database as of November 2003 (http://pinetree.ccgb.umn.edu/). ESTs for AGP-like genes 

were sought querying “arabinogalactan” in the “BLASTN reports in nsfpine”. The 

contigs for the resulting EST hits were identified in the loblolly pine xyem EST database 

(http://web.ahc.umn.edu/biodata/nsfpine/contig_dir20/). Numerous contigs for different 

AGPs were identified (contigs 8005, 8026 and 7885 for ptaAGP6; contigs 7819, 7620, 

7601, 6582, 6524, 6283, 2860 and 221 for ptaAGP5; contigs 7932, 7916 and 7402 for 

ptaAGP4; contigs 7842, 7704, 5448, 80 and 16 for ptx3H6, contigs 8004, 7979 and 7689 

for ptx14A9; contigs 7990, 7873, 7675, 7646 and 6417 for ptaAGP3). Careful 
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examination of DNA and protein sequence similarity among the contigs for each AGP 

suggests that there are at least seven different members of the AGP5 gene family with 

between  54% and 73% similarity at the amino acid level (Table 10). The AGP5 gene 

family members share several features in common in addition to overall sequence 

similarities (Figure 6). All of them are predicted to contain putative N-terminal signal 

peptides. Some of them are predicted to be GPI anchored and contain a hydrophobic C- 

terminal transmembrane domain, typical of GPI anchored proteins. In addition, Pro 

residues, which are thought to be post-translationally modified to Hyp and become O-

glycosylated in vivo, are well conserved among the different members of ptaAGP5 

indicating common patterns of glycosylation (Figure 6). The predicted structures of each 

loblolly pine AGP or AGP-like protein core including those previously described 

(Loopstra and Sederoff, 1995; Loopstra et al., 2000; Zhang et al., 2000) are summarized 

in Table 11. Overall, our results are consistent with the previous studies. However, 

ptaAGP4 was predicted to have a signal peptide and C-terminal transmembrane domain 

by Zhang et al. (2000). Both the SignalP (http://www.cbs.dtu.dk/ services/SignalP/; 

Nielsen et al., 1997) and PSORT (http://psort.nibb.ac.jp/form.html; Nakai and Horton 

1999) programs used in this study did not predict a signal peptide or a C-terminal 

transmembrane domain for ptaAGP4. The numbers of ESTs for each putative loblolly 

pine AGP and AGP-like gene in six different xylem EST libraries are summarized in 

Table 12.   
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Figure 6. Alignment of predicted amino acid sequences of the ptaAGP5 gene family. 
The ClustralW alignment program (http://www.ebi.ac.uk/clustalw/) was used for 
sequence alignment. The C-terminal end sequences for two ptaAGP5 family members, 
ptaAGP5E and ptaAGP5G, were incomplete. Predicted cleavage sites by signal 
peptidase for each gene is marked by a colon. Predicted GPI anchored residues are 
boxed. Predicted C-terminal transmembrane domains are bold and italicized. N-terminal 
signal peptide sequences for each AGP were predicted with SignalP. The C-terminal 
trans-membrane domain and GPI anchor attachment for each AGP were predicted with 
PSORT (http://psort.nibb.ac.jp/form.html; Nakai and Horton 1999).Gray boxes, known 
glycosylation sequence (A/S P A/S P); bold Ps, Pro residues thought to be post-
translationally modified to Hyp and become O-glycosylated in vivo.
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Table 11. Summary of predicted protein structure of each pine AGP. 

Gene ID Length (aa) N-SP C-TMS GPI anchored 

ptx3h6 168 Yes (1-23) Yes (152-168) Yes (145) 

ptx14a9 264 Yes (1-21) Yes (247-263) Yes (235) 

ptaAGP3 140 Yes (1-25) No Yes (118) 

ptaAGP4 184 No No No 

ptaAGP5A 118 Yes (1-22) Yes (102-118) Yes (92) 

ptaAGP5B 125 Yes (1-22) Yes (109-125) No 

ptaAGP5C 129 Yes (1-22) Yes (113-129) Yes (103) 

ptaAGP5D 129 Yes (1-19) Yes (113-129) Yes (103) 

ptaAGP5E 108* Yes (1-22)    

ptaAGP5F 128 Yes (1-22) No Yes (104) 

ptaAGP5G 117* Yes (1-22)    

ptaAGP6 235 Yes (1-22) Yes (215-231) Yes (208) 

  
N-terminal signal peptide sequences for each AGP were predicted with SignalP 
(http://www.cbs.dtu.dk/services/SignalP/; Nielsen et al., 1997). The C-terminal trans-
membrane domain and GPI anchor attachment for each AGP were predicted with 
PSORT (http://psort.nibb.ac.jp/form.html; Nakai and Horton 1999). Additional analyses 
for GPI anchor sites were performed with big-PI plant predictor (http://mendel.imp. 
univie.ac.at/sat/gpi/plant_server.html; Eisenhaber et al., 2003). * The C-terminal 
sequences of ptaAGP5E and ptaAGP5G in the EST database were incomplete. N-SP; N-
terminal signal peptide. C-TMS; C-terminal transmembrane sequence. 
 

 

 

 
 



 

                                                                                                                                                                                                       

Table 12. Contigs for each loblolly pine AGP and AGP-like gene identified in the xylem EST database 
(http://web.ahc.umn.edu/biodata/nsfpine/contig_dir20/) and the number of EST hits for each gene in six different xylem partial 
cDNA libraries. 
 

EST libraries 

Gene ID Contig# NXCI(9333)* NXLV(10244) NXNV(8490) NXPV(9642) NXRV(10184) NXSI(11904) 

ptx3h6 7704, 7842, 5448, 8016 7(12.7)** 3(5.4) 15(27.2) 12(21.8) 6(10.9) 12(21.8) 

ptx14a9 8004, 7979 69(56.5) 0.0 11(9.0) 1(0.8) 13(10.6) 28(22.9) 

ptaAGP3 
7990, 7873, 7675, 6417, 
7646 13(9.4) 28(20.4) 29(21.1) 1(0.7) 39(28.5) 27(19.7) 

ptaAGP4 7932, 7916, 7402 14(36.8) 1(2.6) 7(18.4) (0) 7(18.4) 9(23.6) 

ptaAGP5A 7819 5(18.5) 0 4(14.8) (0) 10(37.0) 8(29.6) 

ptaAGP5B 7620 2(11.7) (0) 1(5.8) (0) 10(58.8) 4(23.5) 

ptaAGP5C 7601 4(23.5) 1(5.8) 2(11.7) (0) 8(47.6) 2(11.7) 

ptaAGP5D 6582 1(14.3) (0) 3(42.8) 1(14.3) (0) 2(28.6) 

ptaAGP5E 6524 1(14.3) (0) 1(14.3) (0) 5(71.4) (0) 

ptaAGP5F 6283, 221 2(28.6) (0) 3(42.8) 1(14.3) (0) 1(14.3) 

ptaAGP5G 2860 1(50) (0) (0) (0) (0) 1(50) 

ptaAGP6 8026, 8005, 7885 102(49.5) 1(0.5) 16(7.7) 4(1.9) 22(10.6) 61(29.6) 

  total 221(34.4) 34(5.2) 92(14.3) 20(3.1) 120(18.7) 155(24.1) 

 
* Figures in the parentheses are the total number of ESTs in each library. **Figures in the parentheses are the percent from 
each library. NXCI: juvenile compression wood; NXLV: transitional/mature latewood; NXNV: mature normal wood; NXPV: 
transitional planings wood; NXRV: root wood; NXSI: juvenile side wood. 
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Figure 7. Real-time RT-PCR analysis of loblolly pine AGP and AGP-like genes in 
different tissues. Emb: embryo; Mega: megagametophyte.  
 

 

 

Real-time RT-PCR analysis of loblolly pine AGPs 

 

1. Tissue specificity 

Tissue specific cell wall proteins could play important roles in development of 

specific cell types or formation of specific structural features of the cell (Keller, 1993; 

Showalter, 1993; Kieliszewski and Lamport, 1994; Cassab, 1998; Sommer-Knudsen et 

al., 1998). AGP-like genes are among the most abundant transcripts in wood forming 
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tissues of loblolly pine and are expected to be preferentially expressed in differentiating 

xylem tissue compared to other tissues (Loopstra and Sederoff, 1995; Allona et al., 

1998; Loopstra et al., 2000; Zhang et al., 2000;Whetten et al., 2001; Lorenz and Dean, 

2002; Yang et al., 2004). Transcript levels of 11 different loblolly pine AGP or AGP-like 

genes from differentiating xylem were compared in xylem, needles, megagametophytes, 

and embryos using real-time RT-PCR (Figure 7). An ANOVA was used on normalized 

transcript levels to test the statistical significance of variation in expression among 

different tissues for each gene. As expected, all of the AGP- like genes were 

preferentially expressed in differentiating xylem compared to other tissues implying 

their significant roles during xylogenesis (P<0.001). 

 

2. Season and origin 

Earlywood tracheid cells differ from latewood cells in their chemical 

composition and physical characteristics. Latewood cells have greater density, smaller 

lumen, smaller radial diameters and thicker cell walls than earlywood cells 

(Zimmermann and Brown, 1971, p.96). Commercially important characteristics such as 

wood specific gravity are known to differ with seed source. For example, when grown 

on a common site, the specific gravity of Arkansas trees is greater than that of Louisiana 

trees (Byram and Lowe, 1988). Transcript levels of 11 AGP and AGP-like genes in 

differentiating xylem from earlywood and latewood within two loblolly pine seed 

sources, South Arkansas and South Louisiana, were examined using real-time RT-PCR 

(Figure 8). A paired t-test and an ANOVA were used on normalized transcript levels to 
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Figure 8. Real-time RT-PCR analysis of loblolly pine AGP-like genes in differentiating 
xylem during different growing seasons and from different seed sources grown on a 
common site. EWSAR: earlywood, South Arkansas; EWSLA: earlywood, South 
Louisiana; LWSAR: latewood, South Arkansas; LWSLA: latewood, South Louisiana. 
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Figure 9. Real-time RT-PCR analysis of loblolly pine AGP and AGP-like genes in 
drought stressed roots from different seed sources. CLP: control, Lost Pines; CSLA: 
control, South Louisiana; SLP: stressed, Lost Pines; SSLA: stressed, South Louisiana. 
 

 

 

test the statistical significance of variation in expression among the different samples for 

each gene. A total of nine AGP-like genes within South Arkansas trees  (ptx14A9, 

ptaAGP3, ptaAGP4, ptaAGP5A, ptaAGP5B, ptaAGP5D, ptaAGP5E, ptaAGP5F,  and 

ptaAGP6) and eight genes within South Louisiana trees (ptx3H6, ptx14A9, ptaAGP4, 

ptaAGP5A, ptaAGP5B, ptaAGP5C, ptaAGP5E, and ptaAGP6) showed significant 

seasonal variation in expression (P<0.001). Most were preferentially expressed in 

latewood compared to earlywood implying their significant roles during latewood 
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development (Figure 8). On the other hand, three AGP-like genes within earlywood 

(ptx3H6, ptaAGP5C, and ptaAGP5F) and eight genes within latewood (ptx3H6, 

ptaAGP3, ptaAGP4, ptaAGP5B, ptaAGP5C, ptaAGP5D, ptaAGP5F, and ptaAGP6) 

showed significant variation in expression between the two seed sources (P<0.001). In  

most cases, expression is higher in South Louisiana trees.  

 

3. Drought stress 

Drought stress can cause serious problems to the forest industry. For example, 

seedlings are very susceptible to drought stress and significant numbers (up to 65%) of 

loblolly pine seedlings planted in Texas are lost due to drought during bad years 

(Phillips, 1998). The growth rate during droughts is far less than normal and repeated 

droughts can cause severe reductions in yield. Transcript levels of 11 AGPs and AGP-

like genes in well-watered seedling roots were compared with drought-stressed seedling 

roots from two loblolly pine populations, The Lost Pines and South Louisiana, using 

real-time RT-PCR (Figure 9). The Lost Pines are from Bastrop, TX which has the lowest 

precipitation (865mm-965mm annual precipitation) within the range of loblolly pine. On 

the other hand, South Louisiana pines are from wettest part of the range (1520mm-

1720mm annual precipitation). An ANOVA was used on normalized transcript levels to 

test the statistical significance of variation in expression among different samples for 

each gene. The transcript levels of all the genes except ptaAGP5C were significantly 

decreased in drought stressed roots compared to control roots within both populations  

(P<0.001). The transcript levels of seven AGP-like genes  (ptaAGP3, ptaAGP4, 
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Figure 10. Real-time RT-PCR analysis of loblolly pine AGP and AGP-like genes in 
differentiating xylem under mechanical and gravitational stress.  
 

 

 

ptaAGP5A, ptaAGP5B, ptaAGP5D, ptaAGP5F, and ptaAGP6) were significantly 

different between the two populations within control roots. Expression was greatest in 

South Louisiana trees for all of these genes except ptaAGP4. On the other hand, the 

transcript levels of none of the genes were significantly different between the two 

populations within stressed seedling roots (P<0.001).      
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4. Compression wood 

Compression wood produced by mechanical and gravitational stress differs from 

normal wood in cell shape, wall thickness, morphology of intercellular spaces, lignin 

composition and lignin content (Timell, 1986). Previous studies showed that transcript 

levels of several loblolly pine AGP-like proteins were modified in response to 

mechanical and gravitational stimuli (Zhang et al., 2000; Whetten et al., 2001). In this 

study, transcript levels of 11 AGP and AGP-like genes in differentiating xylem from 

control seedlings (vertical wood) were compared with compression wood and opposite 

wood using real-time RT-PCR (Figure 10). An ANOVA was used on normalized 

transcript levels to test the statistical significance of variation in expression among 

different samples. Transcript levels of three genes (ptaAGP3, ptaAGP5B, and ptaAGP6) 

were significantly different between control and compression wood (P<0.001). Among 

them, only ptaAGP6 was up-regulated in compression wood compared to the control. On 

the other hand, transcript levels of five genes (ptx3H6, ptaAGP3, ptaAGP5A, ptaAGP5E 

and ptaAGP6) were significantly different between control and opposite wood (P<0.001) 

with expression higher in the opposite wood. Between compression and opposite woods, 

transcript levels of five genes (ptx3H6, ptaAGP3, ptaAGP5A, ptaAGP5B and 

ptaAGP5E) were significantly different (P<0.001). Overall, these AGP and AGP-like 

genes were up-regulated in opposite wood compared to compression wood and control 

wood (Figure 10).     
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Figure 11. Real-time RT-PCR analysis of loblolly pine AGP and AGP-like genes in cell 
culture system after the induction for lignification. 
 

 

 

5. Cell culture 

A previous study (Eberhardt et al., 1993) showed that secondary cell wall 

formation and lignin deposition can be induced in a loblolly pine cell culture system 

through manipulation of the culture medium (see materials and methods for details). 

Cells in the liquid culture contain only a thin primary cell wall before the induction (day 

0). However, cells begin to accumulate phenolic compounds in the cell wall after the 

induction (Day 14) and increase in thickness of cell wall and lignification occur between 

days 21 and 35 (Stasolla et al., 2003). In this study, changes in transcript levels of 
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loblolly pine AGP and AGP-like genes in cultured cells after the induction of 

lignification were monitored using real-time RT-PCR (Figure 11). An ANOVA was 

used on normalized transcript levels to test the statistical significance of variation in 

expression among different samples harvested on different days following induction. 

Interestingly, five genes (ptx14A9, ptaAGP5A, ptaAGP5B, ptaAGP5E, and ptaAGP6) 

were not expressed at all in the cultured cells, even after the induction. Transcripts of 

some of these AGP-like genes are expected to be among the most abundant transcripts in 

wood forming tissues. Two genes (ptaAGP3 and ptaAGP5F) were expressed in the 

maintaining media (day 0) but were rapidly shut down after the induction (day 3).  On 

the other hand, three genes (ptx3H6, ptaAGP4, and ptaAGP5C) were expressed in the 

maintaining media (day 0) but were more gradually shut down after the induction. 

PtaAGP5D was the only one whose expression was increased after the induction. The 

transcript level of ptaAGP5D increased gradually after the induction until day 7 and 

decreased gradually afterwards (Figure 11). 

 

Ptx14A9 orthologs in other species 

To find proteins with significant sequence similarity to pine AGPs and AGP-like 

proteins from other species, the predicted amino acid sequences of each loblolly pine 

AGP-like protein were blasted against the public databases using BLASTP  

(http://www4.ncbi.nlm.nih.gov/BLAST/). The “Filtering low complexity regions” option 

was not used due to the highly repetitive nature of AGP-like protein sequences. Many 

putative orthogs of ptx14A9 with significant sequence similarities (using an E-value 
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cutoff of 10-20) from other species were identified. However, only a few proteins with 

significant sequence similarities were identified for the other AGP-like proteins using 

the same restrictions or with even less stringent conditions. The BLASTP search results 

also identified a known conserved domain, FAS1 (Four repeated domains in the 

Fasciclin I family of proteins) within a pta14A9 protein core (Figure 12A). The fasciclin 

1 (Fas1) from fruit fly is thought to be involved in homophilic adhesion (Elkins et al., 

1990). The ClustralW alignment program (http://www.ebi.ac.uk/clustalw/) was used 

with manual adjustment for multiple sequence alignment of ptx14A9 with putative 

orthologs from other species. Figure 12B shows a multiple sequence alignment of 

fasciclin domains of ptx14A9 and putative ptx14A9 orthologs from cotton, poplar, 

arabidopsis and rice. FAS1 domain sequences from these species were highly conserved 

and previously identified conserved regions common to all fasciclin domains, H1 and H2 

(Johnson et al., 2003), could also be identified. Northern blot analysis previously 

performed in our lab showed that a putative ptx14A9 ortholog in poplar (Pop 14A9, 

GeneBank Acc# AF183809) is highly preferentially expressed in differentiating xylem 

compared to phloem or leaves. A putative ptx14A9 ortholog in Arabidopsis (AtFLA12, 

GeneBank Acc# NM_125442) was expressed in stems but not in leaves (data not 

shown). This results suggest that ptx14A9 orthologs from other plant species may play 

similar role as ptx14A9 especially during xylogenesis.     



 

                                                                                                                                                                                                       

 

Figure 12. Multiple sequence alignment of fasciclin domains of ptx14A9 and putative ptx14A9 orthologs from several other 
plant species. Amino acids identical in all 5 proteins are shaded in black and conserved amino acids are shaded in dark gray. 
H1 and H2: previously identified conserved regions common to all fasciclin domains (Johnson et al., 2003). Cotton = AGP 
(Accession # AAO92753),  Poplar = Pop14A9 (Accession # AF183809), Arabidopsis = FLA12 (Accession # NM_125442), 
Pine = ptx14A9 (Accession # U09556), Rice = AGP-like protein (Accession # NM_191933).  
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 DISCUSSION 

 

Complex gene families are relatively common in pine (Kinlaw and Neale, 1997) 

and different members of a multigene family may be regulated differently in different 

tissues and at different developmental stages. We identified multiple contigs for each 

loblolly pine AGP or AGP-like gene (Table 12). These contigs could represent different 

alleles of the gene or different members of a multigene family (Whetten et al., 2001). 

There could be as many as 12 different alleles for each gene within the loblolly pine 

xylem EST project if each of the six libraries was made from one heterozygous 

individual. Allelic variation within pine is very high making it difficult to distinguish 

allelic variation from different members of a multigene family without genetic 

segregation data (Whetten et al., 2001). After careful examination of DNA and protein 

sequence similarities among the contigs for each gene, we concluded that there are at 

least seven different members of the ptaAGP5 gene family with between 54% and 73% 

identity at the amino acid level (Table 10). The putative ptaAGP5 multigene family 

members share several features in common in addition to overall sequence similarities 

(Figure 6). Gene specific primers were designed for six different members of ptaAGP5. 

Real-time RT PCR analysis suggests different temporal and spatial regulation for the 

members of the ptaAGP5 multigene family. Duplicated ptaAGP5 genes might have 

evolved new regulatory sequences for new patterns of gene expression in different 

tissues at different developmental stages or in response to different environmental 

signals. Multigene families are believed to provide tighter and more sophisticated  
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control in response to the environment (Pickett and Meeks-Wagner, 1995; McAdams 

and Arkin, 1999; Meagher et al., 1999). It was also suggested that functional gene 

duplications could strongly influence the direction of evolution and adaptation (Kinlaw 

and Neale, 1997). 

AGPs are a class of proteins that share common characteristic domains instead of 

having sequence identity. Thus, different AGPs could have similar roles but at different 

times or in different locations. Alternatively, they could have very different functions. 

The different expression patterns of the loblolly pine AGPs observed in this study 

suggest different functions for each loblolly pine AGP. An examination of publicly 

available Arabidopsis microarray data also suggested that different AGPs could have 

different functions (Schultz et al., 2002). Previous studies showed that loblolly pine 

AGPs are differentially regulated in response to various stimuli such as gravitational 

stress, hormone inhibitors and seasonal change (Loopstra and Sederoff, 1995; Whetten et 

al., 1998; No and Loopstra, 2000; Loopstra et al., 2000; Zhang et al., 2000; Whetten et 

al., 2001; Zhang et al., 2003; Yang et al., 2004). Some expression studies performed 

previously were reconfirmed in this study. PtaAGP5 gene family members are newly 

identified and were examined for the first time in this study.  

Numerous potential roles of AGPs during xylogenesis have been proposed. For 

example, AGPs may act as carrier or shuttle molecules that bind newly synthesized wall 

polymers, keeping them soluble during transport to the cell wall (Gilbeaut and Carpita 

1991). Latewood cells have greater density, smaller lumen, smaller radial diameter and 

thicker cell wall than earlywood cells (Zimmermann and Brown, 1971, p.96). Thus, 
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AGPs expressed preferentially in latewood compared to earlywood (Figure 8) could be 

involved in these differences.  

Kieliszewski and Lamport (1994) proposed that AGPs may play a role in 

secondary cell wall initiation by intercalating phenolics for subsequent orderly 

polymerization. Compression wood cells are different from normal wood cells in that 

they have a round shaped cross-section compared to the rectangular shape of normal 

wood cells, a higher ratio of secondary wall thickness to cell diameter, decreased cell 

length, increased microfibril angle, increased p-hydroxy phenyl subunit content in lignin, 

and increased lignin content (Timell, 1986). Thus, AGPs expressed preferentially in 

compression wood compared to normal wood (Figure 10) may play a role in 

lignification. However, an immuno-localization study showed that ptaAGP6 is not 

tightly linked to lignification (Zhang et al., 2003) even though it was preferentially 

expressed in both compression wood and opposite wood compared to normal wood 

(Figure 10). Thus, the genes preferentially expressed in compression wood compared to 

normal wood could play a role in stress responses as well (Zhang et al., 2003). A 

previous study showed that the composition of lignin produced by in vitro loblolly pine 

cell culture is very similar to the lignin composition in vivo (Stasolla et al., 2003). Thus, 

AGPs with a change in transcript levels in cultured cells near the induction of 

lignification could play a role in lignification. The transcript level of ptaAGP5D 

increased gradually after the induction until day 7 and decreased gradually afterward 

(Figure 11). However, five AGP-like genes (ptx14A9, ptaAGP5A, ptaAGP5B, 

ptaAGP5E, and ptaAGP6) were not expressed at all in the cultured cells even after the 
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induction (Figure 11). Transcripts of some of these AGP or AGP-like genes are expected 

to be among the most abundant transcripts in wood forming tissues. Thus, the  cell 

culture system used in this study could be an excellent system to study lignin 

biosynthesis in vitro (Stasolla et al., 2003) but the cells might not have been 

transdifferentiated into true xylem tracheids after the induction and might not represent 

the true nature of tracheid cells during xylogenesis. In addition, differentiating xylem 

and developing cotton fibers are very similar in that both developmental processes 

involve cell elongation, deposition of a secondary cell wall and programmed cell death 

except that cotton fibers are not lignified. Thus, AGPs expressed during cotton fiber 

development play other roles besides lignification. A putative ptx14A9 ortholog exists in 

cotton and is expressed in fibers.  

The transcript levels of most of the loblolly pine AGP and AGP-like genes were 

significantly decreased in drought stressed roots compared to control roots within both 

populations examined in this study. Plant hormones, especially auxin, have been 

suggested as important factors involved during xylogenesis (Uggla et al., 2001; 

Mellerowicz et al., 2001). In addition, a previous study in our lab showed that two AGP-

like genes, ptx3H6 and ptx14A9, are differentially regulated during seedling 

development and these differences may be mediated by different hormonal signaling (No 

and Loopstra, 2000). Abscisic acid (ABA) is an important mediator of responses to 

drought stress throughout the tree (Roberts and Dumbroff, 1986) and drought inhibits 

tracheid production and reduces tracheid radial width in Pinus radiata (Jenkins, 1974). 

ABA is a well known antagonist against auxin and giberellin as well. Previous studies 
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also showed that some arabidopsis AGPs are differentially regulated by ABA (Schultz et 

al., 2002; Johnson et al., 2003). Thus, decreases in transcript levels of these AGP-like 

genes in drought stressed roots could be mediated by ABA. However, a previous study 

also showed no ABA mediated reduction in expression of ptx3H6 and ptx14A9 (No and 

Loopstra, 2000). Thus, the decrease in transcript levels of some AGPs in response to 

drought stress could be mediated by ABA but could also be a general response to 

environmental stress.         

General features of protein cores of AGPs include a signal peptide for entering 

into the secretion pathway, a Hyp-rich domain for glycosylation, and a GPI anchor site 

for plasma membrane attachment. All the loblolly pine proteins in this study except 

ptaAGP4 were predicted to contain N-terminus signal peptides (Table 11). However, 

ptaAGP4 was predicted to have signal peptide and C-terminal transmembrane domain by 

Zhang et al. (2000). All the known AGPs contain N-terminus signal peptides. Thus, 

further verification of the identity of ptaAGP4 might be necessary. Most of the pine 

AGP and AGP-like proteins analyzed in this study were predicted to contain C-terminus 

transmembrane domains and GPI anchor sites except ptaAGP4, ptaAGP5B, ptaAGP5E, 

and ptaAGP5G (Table 11). However, C-terminus sequences in the current database for 

ptaAGP5E and ptaAGP5G are incomplete. Therefore, they may also contain GPI anchor 

sites. The C-terminus hydrophobic transmembrane domains of GPI-anchored proteins 

are thought to function as a recognition site for a transamidase, which cuts the 

hydrophobic domain and transfers the protein to a prefabricated GPI anchor (Kinoshita 

and Inoue, 2000). The GPI anchor sites of these AGPs form a covalent bondage via 
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phosphoethanolamine and a conserved glycan to phosphatidylinositol or ceramide 

(Kinoshita and Inoue, 2000). The GPI anchor can be cleaved by a specific phospholipase 

releasing the protein into the extra-cellular matrix (ECM) as well (Griffith and Ryan, 

1999).  Thus, these GPI anchored AGPs are attached to the plasma membrane or at least 

transiently located on the plasma membrane (Schultz et al., 1998). Several possible roles 

of GPI anchoring of proteins were reviewed by Borner et al. (2002) including targeting 

and signal transduction.  The pattern of glycosylation, especially O-linked AG 

glycosylation, has been implicated to play a critical role in AGP function because many 

putative AGP functions have been proposed using monoclonal antibodies against AGP 

carbohydrate epitopes or Yariv reagents (Yariv et al., 1967; Knox et al., 1991; Pennell 

1992). AG glycomodules in AGPs contain large, heterogeneous, and highly branched 

glycan chains. The precise structure and biosynthetic mechanism of these carbohydrate 

chains has not yet been elucidated (Cassab, 1998; Majewska-Sawka and Nothnagel 

2000). According to the contiguity hypothesis (Kieliszewski and Lamport, 1994), 

clustered noncontiguous Hyps in the AG glycomodules provide sites for complex AG-

type chain attachment and clustered contiguous Hyps provide sites for arabinosylated 

glycomodules. This hypothesis was proven by Shpak et al. (1999; 2001) using synthetic 

oligopeptides. Several possible functions of AG glycosylation were reviewed by Borner 

et al. (2002). It could function as a physical link between the protein and ECM (Kohorn 

2000) or could provide sites for substrates and ligand binding. AG glycosylation could 

function as a protective shield from other proteins such as proteases (Kielizewski, 2001) 

as well. In addition, the carbohydrate chain could provide a signal for correct targeting 
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of proteins through the secretion pathway to a final destination such as a specific part of 

the cell surface (Benting et al. 1999; Hauri et al. 2000).  

 One of the disadvantages of using conifers as a model system is that it is almost 

impossible to confirm the function of a gene of interest using reverse genetics although 

transient assays, such as GUS assays for promoter studies, are plausible. However, there 

is significant homology of expressed genes from wood-forming tissues of loblolly pine 

with arabidopsis genes (Kirst et al., 2003). Functional analyses using other model 

systems such as Arabidopsis or poplar could be useful if there are orthologs for pine 

candidate genes in these species. However, conifer-specific or gymnosperms-specific 

genes should be analyzed in pine. Schultz et al. (2002) identified 13 classical AGPs, 10 

AG-peptides, three basic AGPs that contain a short lysine-rich domain, and 21 fasciclin-

like AGPs (FLAs) in the arabidopsis genome. Mutants for these genes may play 

important roles in determining the role of AGPs. Nam et al. (1999) identified one AGP 

mutant, rat1 (resistant to Agrobacterium transformation), with T-DNA tagging. There 

are also two Arabidopsis mutants with decreased AGP content, dim (dimmuto) 

(Takahashi et al., 1995) and reb1-1 (root epidermal bulger) (Ding and Zhu 1997). A 

recently identified mutation in FLA4, sos5 (salt overly sensitive), showed root swelling 

and root growth arrest when grown on a high-salt medium (Shi et al., 2003). To find 

proteins from other species with significant sequence similarity to the pine AGP-like 

proteins, predicted amino acid sequences of each loblolly pine AGP-like protein were 

blasted against the public database using BLASTP (http://www4.ncbi.nlm.nih.gov/ 

BLAST/). Many putative orthologs of ptx14A9 with significant sequence similarities 
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(using an E-value cutoff of 10-20) from other species were identified. Since AGP 

sequences are very diverse and gymnosperms and angiosperms are thought to have last 

shared a common ancestor over 300 million years ago (Bousquet et al., 1992), it is 

somewhat surprising to find the high levels of similarity. Putative ptx14A9 orthologs in 

other species could be found in different cell types. One arabidopsis ortholog encodes a 

putative pollen surface protein, a maize ortholog was endosperm-specific, and a tomato 

ortholog was expressed in the ovary. A previous study in our lab showed that, like 

ptx14A9, a putative ptx14A9 ortholog in poplar (Pop 14A9, GeneBank Acc# AF183809) 

was preferentially expressed in differentiating xylem. In arabidopsis, there are multiple 

putative ptx14A9 orthologs (21 FLAs) with varying degrees of sequence similarity to 

ptx14A9. AtFLA12 (GeneBank Acc# NM_125442) was preferentially expressed in 

stems indicating primary expression in vascular tissues like ptx14A9 and pop14A9. 

These observations suggest that some ptx14A9 orthologs from other plant species may 

have a similar role as ptx14A9, especially during xylogenesis. The ptx14A9 protein core 

contains a putative cell adhesion domain, FAS1 (four repeated domains in the Fasciclin I 

family of proteins), in addition to a Hyp-rich glycosylation region (Figure 12A). The 

FAS1 domain consists of two long repeats and contains two highly conserved regions 

(H1 and H2) of approximately 10 amino acids each (Kawamoto et al., 1998; Schultz et 

al., 2000; Johnson et al., 2003). Figure 12B shows a multiple sequence alignment of 

fasciclin domains of ptx14A9 and putative ptx14A9 orthologs from several other plant 

species. FAS1 domain sequences from these species were highly conserved among these 

species suggesting the conservation of cell adhesion function (Figure 12B).  
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CHAPTER V 

 

CONCLUSIONS 

 

Xylogenesis is a complicated process where tight temporal and spatial regulation 

of the expression of specific sets of genes by various factors are involved. Our 

knowledge about this important biological process, especially the molecular basis of it, 

has been limited. This study is an effort to understand the molecular basis for wood 

formation on a genome-wide scale. In this study, the effects of various developmental 

and environmental factors on gene expression during xylogenesis were examined using 

microarray and real-time RT-PCR analyses.  

In Chapter II, many genes preferentially expressed in differentiating xylem 

compared to other tissues such as megagametophyte, needle, and embryo were 

identified. There was a significant increase in the percentage of cell wall-related genes 

that are preferentially expressed in xylem (20%) compared to the percentage on the array 

(10%). In Chapter III,  the effects of two important factors, different growing seasons 

and geographical sources, on gene expression during xylogenesis were examined. Many 

genes preferentially expressed in latewood compared to earlywood were for proteins 

involved in cell wall biosynthesis. Variation in gene expression among trees from the 

two seed sources within each growing season suggests that there may be more 

differences between South Arkansas trees and South Louisiana trees within latewood 

than within earlywood. Finally, variation in gene expression among trees from different 
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regions may reflect adaptation to different environments. In Chapter IV, seven different 

members of the ptaAGP5 gene family with between 54% and 73% identity at the amino 

acid level were newly identified. Gene specific primers were designed and relative 

transcript levels of 11 loblolly pine AGP and AGP-like genes were examined in various 

conditions using real-time RT-PCR analysis. Varying expression patterns for different 

AGPs and AGP-like genes under the different conditions observed in this study suggest 

different functions for each loblolly pine AGP. In addition, significant sequence 

similarities among putative ptx14A9 orthologs from other plant species and an 

expression study for ptx14A9 orthologs from poplar and Arabidopsis suggest that other 

systems suitable for reverse genetics such as arabidopsis and poplar could be useful for 

functional verification of pine AGPs in the future.  

The expression of most of the genes examined in this study was not previously 

studied for tissue specificity, different growing seasons, geographical source, and other 

conditions examined. Based on the results from this study, candidate genes may be 

further studied for association with significant traits, used for genetic modification of 

wood properties, or included in future studies to further examine the molecular 

mechanisms of wood formation.  
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