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ABSTRACT 
 
 
 

Cooperative Self-Localization in a Multi-Robot-No-Landmark Scenario Using Fuzzy 

Logic. (December 2004) 

Dhirendra Kumar Sinha, B.Tech., Indian Institute of Technology, Guwahati 

Chair of Advisory Committee: Dr. Reza Langari 

 In this thesis, we develop a method using fuzzy logic to do cooperative localization. 

In a group of robots, at a given instant, each robot gives crisp pose estimates for all the 

other robots. These crisp pose values are converted to fuzzy membership functions based 

on various physical factors like acceleration of the robot and distance of separation of 

the two robots. For a given robot, all these fuzzy estimates are taken and fused together 

using fuzzy fusion techniques to calculate a possibility distribution function of the pose 

values. Finally, these possibility distributions are defuzzified using fuzzy techniques to 

find a crisp pose value for each robot. A MATLAB code is written to simulate this fuzzy 

logic algorithm. A Kalman filter approach is also implemented and then the results are 

compared qualitatively and quantitatively.  
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CHAPTER I 

 

INTRODUCTION 

 

Introduction 

In the near future, manual work will become more automated as technology 

improves. Robots would be employed extensively in industries, homes, human-unsafe 

environments like nuclear power plants, underwater explorations and space explorations. 

These robots need to be autonomous to really work in an efficient and reliable way. One 

of the very important tasks of an autonomous robot is to navigate in a given 

environment. Automatic navigation requires that a robot should be able to localize itself. 

In other words, it should know what its pose (position and orientation) is. Humans and 

animals determine their approximate positions from visual information and knowledge 

of their previous movements. For humans and animals, generally, it is sufficient to find 

their locations approximately. When needed, humans can always use their sophisticated 

wide variety of sensors to do precise localization. It is difficult to give these skills to 

robots because of the limitations imposed by sensor performance, computational cost 

and environment models. 

 

  

_______________ 

This thesis follows the style of IEEE Transactions on Robotics and Automation. 
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A number of simple techniques of localization have been proposed based on 

local information about the robot itself and its surroundings. A typical technique is dead 

reckoning, using which mobile robots with wheels identify their current position from 

the rotational speed of the wheels [1].  Dead reckoning is simple and therefore easy to 

implement. The position given by dead reckoning is, however, influenced by the wheel-

tire contact with the ground and so there are errors (odometry errors) due to slippages 

between the ground and wheels. These odometry errors render it impossible for any 

robot to follow a given trajectory sufficiently accurately.  

There are many tasks that can be performed in a more efficient and robust 

manner using multiple robots [2]. There are many advantages of using several small 

moderately capable robots instead of using one large highly sophisticated robot [3]. 

Understandably, the reliability of such a multi-robot system is much higher than single-

robot systems, enabling the team to accomplish the intended mission goals even if one 

member of the team fails. Although, the complexity increases in the case of multi-robot 

localization, the presence of multiple robots, actually, gives an advantage towards 

finding the pose of each robot. To this end, there has been much work done in the 

collaborative and cooperative localization [4]−[9]. Each robot can give pose estimates 

for all other robots. For each robot, the pose estimates given by all the other robots can 

be combined together and a final pose estimate can be calculated. Combining the 

information from all the robots will result in a single estimate with increased accuracy 

and reduced uncertainty. The advantages stemming from the exchange of information 

among the members of a group are crucial in the case of heterogeneous robotic colonies. 
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When a team is composed of different robots carrying different sensors and thus having 

different capabilities for self localization, the quality of the localization estimates will 

vary significantly across the individual group.  

As discussed earlier, the pose estimates may contain errors due to wheel 

slippages. The uncertainty or unreliability of these pose estimates given by robots may 

depend upon several physical parameters which can easily be measured. But an 

exhaustive list of parameters and a mathematical formulation of the dependencies of 

pose estimates on these factors is generally not available. Therefore, there is a need to 

develop a model which takes these uncertainties into account. One way to incorporate 

the uncertainty of the pose estimates is to model the pose values as Gaussian 

distributions. Another way to incorporate this uncertainty is to construct fuzzy 

membership functions. In cooperative localization, we combine the pose estimates given 

by all the other robots to find the pose of one robot. If this fusion is not done carefully, it 

may result in degradation of the final pose.  

This work describes a method for localizing the members of a mobile robot team, 

using the robot themselves as landmarks. That is, we describe a method using which 

each robot can determine the relative range, bearing and orientation of every other robot 

in the team, without the use of GPS, external landmarks, or instrumentation of the 

environment. The major factors affecting the uncertainty of the pose estimation are 

identified and studied. Here, the uncertain estimates are represented as “fuzzy sets” and 

combined to compute a final pose value for a robot. 
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Real time practical examples of multi-robot scenario 

Multiple robots are becoming very popular and advantageous in home, industry 

and military areas. Some of real time examples of the use of multiple robots are as 

follows: 

1. Guiding human visitors: Multiple robots are being used to guide humans in a 

large indoor space like offices, exhibition centers and museums. Multiple 

robots communicate with one another and perform assigned tasks 

collaboratively to reduce the over all cost and increase efficiency [10]. 

2. Security and automated inventory assessment: MDARS program, a joint 

Army-Navy effort is developing a robotic security and automated inventory 

assessment capability for use in the Department of Defense warehouses and 

storage sites. The program is managed by the US Army Physical Security 

Equipment Management Office, Ft. Belvoir, VA, with NCCOSC providing 

all technical direction and systems integration functions [11]. 

3. Air, surface and subsurface vehicles for exploration of the planets: At Jet 

Propulsion Laboratory, NASA, researchers are working on the next 

generation of air, surface and subsurface vehicles (lightweight, intelligent and 

can work without an operator at the wheel) for exploration of the planetary 

bodies including Mars, Venus, Jupiter's moon Europa and Saturn's largest 

moon Titan [12].  

4. Search and rescue operations: National Science Foundation is putting $2.6 

million into a five-year effort to turn multiple wireless robots into an 
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emergency search-and-rescue team. The program envisions coordinating 

multiple robots to carry out emergency workers' complex, high-level 

commands such as "search this site for survivors" or "draw a map showing 

which walls are collapsed" [13]. 

5. Battlefield robots: SARGE (Surveillance And Reconnaissance Ground 

Equipment), a battlefield robot that could reduce risk to soldiers by 

performing some of their more dangerous tasks, was developed at Sandia 

National Laboratories, Lockheed Martin Corporation, primarily to engage in 

remote surveillance [14]. 

6. Lawn mower robots: An industrial-grade robotic mower from Carnegie 

Mellon University is trimming golf-course fairways and greens, as well as the 

training field for the Pittsburgh Steelers football team. Golf-course owners 

who use robots to cut grass at night will be able to reduce labor costs and 

accommodate more players on their courses during the day [15].  

7. Collective construction by multiple robots: study of the problem of 

construction by autonomous mobile robots focusing on the coordination 

strategy employed by the robots to solve a simple construction problem 

efficiently [16]. 

 

All the above practical scenarios require cooperation between various robots and 

thus there is a strong need of cooperative localization techniques to be developed. 
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Keywords and their explanations 

There are some basic keywords which would be used extensively in this work as 

discussed below:   

1. Pose: Pose P(k) (xi, yi, θi) represents the position and orientation coordinate 

values of Robot Ri with respect to the global coordinates at instant k as 

shown in Fig. 1. Here, xi and yi are the x and y coordinates of the robot with 

respect to the global coordinate system and θi is the angle of xi with respect to 

the global x coordinate axis. ρ12 is the distance vector from R2 to R1 with 

respect to R2’s coordinate system. 

 

 

 

 

 

 

 

 

Fig. 1. Pose and range vector. The figure shows the top view of the robots R1 and R2 at instant k. Each 

robot has a coordinate system attached to it.  
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2. Proprioceptive sensors: The sensors which are mounted on a robot and are 

used to find changes in its pose are called Proprioceptive sensors, for 

example, see the optical wheel encoder as shown in Fig. 2. 

 

 

 

 

Fig. 2. Proprioceptive sensor. The optical wheel encoder disc is glued to the wheel. The light emitter 

continuously emits light and receiver unit receives high or low inputs based on whether the light falls on 

the white or black strip. 

 

 

3. Exteroceptive sensors: The sensors which are mounted on a robot and are 

used to find the distance vector (magnitude and direction) to another robot 

are called Exteroceptive sensors, for example, omni-directional stereo camera 

as shown in Fig. 3. 

 

Encoder disc 
attached to the 
wheel 

Light emitter and receiver unit 

Wheel of the robot 
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Fig. 3.  Exteroceptive sensor.  An example: the omni-directional stereo camera setup [17]. The two omni-

directional cameras take images and then based on the pixel location for a given point, the range distance 

to that point can be found by simple mathematical formula. 

 

 

4. Localization: The method of finding the pose of a particular robot at a 

particular instant is called localization. This is a very important problem in 

autonomous navigation of robots. If the robot doesn’t know where it is 

relative to the environment, it is difficult to decide what it should do and 

where should it go. The robot will most likely need to have an idea of where 

it is to operate and act successfully. 

 

5. Cooperative localization: The localization method combining the pose 

estimates provided by other robots in the group to find the pose for a 

particular robot is called as cooperative localization. The robots can 

cooperate with each other to help each other find the pose values. 

 

Parabolic 
mirrors 
 
              
Cameras 
 

Omni-directional 
images from top and 
bottom cameras 
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Prior work 

A number of localization techniques have been proposed in the literature. The 

dead reckoning method discussed in [1], [18], [19], [20], [21] identifies robot positions 

by calculating the amount of travel from the starting point. It does this by integrating 

rotations of the right and the left wheels. The dead reckoning method, however, has a 

serious problem. Wheel slippage causes measurement errors, which accumulates as the 

vehicle travels. Kato et. al. propose the localization in multi-robot scenario using omni 

directional vision cameras [22]. Using the omni-directional cameras, the range vectors to 

other robots can be found easily. Another positioning and localization technique is using 

landmarks [23]−[25]. The landmark method uses optical or other sensors installed in the 

robot to detect walls, pillars and other objects in the environment and also some 

artificially placed landmarks. The landmark method can give highly accurate positioning 

when the robot travels long distances, but requires the placing of landmarks. It cannot, 

for example, be used for planetary exploration robots, which work in uncharted 

environments.  

Cooperative localization without any external landmarks or GPS is dealt in [26], 

[4], [27], [28]. Rekleitis et. al. analyze the advantages of cooperative robots versus a 

single one and discuss how, using multiple robots, the odometry errors be minimized [3]. 

The assumption in this work is that at any time only one robot moves and all the other 

are stationary and observe its motion. Concept of “portable landmarks” was introduced 

by Kurazume et. al.[29]. A group of robots is divided into two teams in order to perform 

cooperative positioning. At each time instant, one team is in motion while the other 
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remains stationary and acts as landmark. In the next phase the roles are reversed until 

both teams reach the target.  

Cooperative localization is also studied in the wireless network field [30]. 

Networked sensors can collaborate and aggregate large amount of sensed data to provide 

continuous and spatially dense observations in environmental systems such as a sea. 

Instrumenting the physical world, particularly for such applications, requires that the 

devices we use as sensor nodes be small, light, unobtrusive and un-tethered. This 

imposes substantial restrictions on the amount of hardware that can be placed on these 

devices. In these large sensor network systems, we need nodes to be able to locate 

themselves in various environments, and on different distance scales. Bulusu et. al. 

discuss idealized radio model and localization algorithm for this scenario [30]. Ward et. 

al. discuss a position calculation methodology referred to as multilateration using some 

sensors which give the range distance only [31].  

In a group of robots the information from other robots about the location of a 

robot needs to be combined to find a final location. The problem of cooperative 

localization is the problem of fusing the information provided by different robots. Fusion 

of information can result in degradation of information if it is not done carefully. Some 

approaches use some sort of weighted average, often implemented as Kalman filter. 

Roumeliotis et. al. discuss collective localization of heterogeneous colony of robots 

using a distributed Kalman filter approach [32], [33], [34]. Madhavan et. al. discuss a 

distributed extended Kalman filtering algorithm for localization of a team of robots 

operating on outdoor terrain [7]. Howard et. al. describe a localization approach for 
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mobile robot teams using maximum likelihood estimation(MLE) technique [5]. In MLE 

approach, they determine the set of estimates (H) that maximizes the probability of 

obtaining the set of current observations (O); i.e., they seek to maximize the conditional 

probability P(O|H). However, all these methods do not typically provide a robust 

solution in the presence of outliers. One way to deal with outliers and false positives is to 

implement some form of voting scheme like Markov Localization [35] to filter out 

outliers. However depending on how the Markov filter is tuned, outliers could still be 

allowed to affect the result, or valid observations might be discarded. Gutmann et. al. 

compares different localization methods using Kalman Filtering(KF), grid based Markov 

Localization(ML), Monte Carlo Localization(MCL) and their combinations [27]. 

Fuzzy logic has also been used in solving the localization problem [26], [36], 

[37] [38], [39]. Cooperative object localization using multiple robots using fuzzy logic to 

combine the location information about the object is dealt in [26]. Fuzzy logic allows 

combining the information provided by different robots in order to reach an agreement. 

In [26], two dimensional problem of locating an object by several robots in the RoboCup 

domain is implemented. Here, fuzzy positional information is represented in a position 

grid with a number associated with each cell representing the degree of possibility that 

the object is in the cell.  

In this work, the factors which affect the pose estimation uncertainty and 

unreliability are identified and studied. Fuzzy sets are constructed which incorporate 

these uncertainties. All such fuzzy sets representing the pose estimates given by all other 
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robots are combined using fuzzy combination rules to give a final pose estimate for each 

robot. 

 

Organization of the work 

In Chapter II, we formulate the problem clearly, discussing some of the issues of 

the problem. We also discuss the problem scenario. At the end, some of the major 

localization techniques, which can be used to solve the localization problem, are 

discussed. Chapter III deals with the Kalman filter approach and its applicability to the 

multi-robot localization problem. Chapter IV presents the main matter of the work. Here, 

fuzzy logic basics are discussed and the appropriateness of the approach towards solving 

the multi-robot localization is discussed. Then the main component modules of the robot 

are discussed. Finally, the localization procedure is described in detail. Chapter V 

presents the simulation in MATLAB and the results. After that, we discuss the 

comparison between the fuzzy logic approach and the Kalman filter approach. Chapter 

VI summarizes the work and concludes it. 



     

 

13

CHAPTER II 

 

PROBLEM 

 

Introduction 

As discussed in Chapter I, localization in a multi-robot scenario is a very 

important problem. Researchers have done extensive work towards localizing multiple 

robots in different scenarios and environments. Physical landmarks present in the 

environment can help in localization, but in many cases, they have to be modified or 

instrumented so that the robots can identify them. GPS is a very good tool for 

localization, but it is unavailable in many indoor environments due to signal obstruction. 

Global overhead camera can also be used effectively in indoor environment, but it may 

not be always feasible in complex indoor environments. In this work, we consider an 

environment where there are no landmarks and there is no access to any global 

positioning system (GPS) or global overhead camera. Localizing multiple robots can be 

done by simply locating each one of the robots individually, but there is an inherent 

advantage in this multi-robot scenario. Robots can cooperate with each other by sharing 

information to locate each other. Each robot can give pose estimates for other robots. 

These pose estimates from other robots can be used to compensate for the odometry 

errors. These pose estimates need to be combined to obtain a final pose value in such a 

way that it should be as close to the actual pose value of the robot. 
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Problem statement 

Given a group of robots, each one capable of measuring  

(a) changes in its own pose (position (x, y) and orientation (θ)) using odometers 

and  

(b) the distance vector to other robots from itself using omni-directional stereo 

camera,  

apply fuzzy logic to model the reliability of its pose estimates given by all other 

robots and combine these fuzzy estimates to calculate its final pose without using 

landmarks.  

 

Basic robot components  

The robot, as the problem statement directs, should have some basic components. 

So, we give a description of the basic components of the robot. The robot consists of two 

wheels at the front and one castor wheel at the back. Each front wheel is connected to a 

motor which drives it. The front wheels also have optical wheel encoders (proprioceptive 

sensors) attached to them as explained in Chapter I. These encoders can be used to find 

the number of rotations of the two wheels. The number of rotations can be used to 

calculate the change in the robots pose. The robot also has an omni-directional stereo 

camera (exteroceptive sensor) mounted on it. This camera setup is used to find the range 

vector of the other robots. The robot also has a transmitter and a receiver to 

communicate with other robots.  There is a processing unit for executing the localization 

algorithm.  
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Problem scenario 

A sample case of six robots is considered here in this work. The robots can 

translate and rotate about their body axis. Fig. 4 shows the top view of the robots.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Fig. 4. The problem scenario. There are 6 robots in this example. At this instant, all the robots R2 to R6 

are giving pose estimate for R1.  

 

 

 

At this instant (see Fig. 4.), all the robots R2 to R6 give a pose estimate for robot R1.  

 

R4 
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 R3 
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The robots are represented as circles here. All the robots have a coordinate 

system attached to them, which is represented by two arrows, the double arrow being the 

x-axis and the other single arrow being the y-axis. There is a fixed global reference 

coordinate system. The wheel encoders are used to measure the angular displacements of 

the wheels and the omni-directional stereo camera to measure the range vector to other 

robots.  

Here,  

P(k) (xi, yi, θi) represents the pose of robot Ri at instant k.  

ρij is the range vector of robot Ri, as measured by the omni-directional camera 

(exteroceptive sensor),  with respect to robot Rj’s reference frame. 

 The main problem dealt here is how to combine the range vector ρij for Ri and 

the pose P(k) (xj, yj, θj) by a Rj to obtain a pose estimate for Ri. And, finally how to 

combine all these estimates by all Rj’s to find a final value of pose P(k+1) (xi, yi, θi). 

 

Main issues of the problem 

The data from the odometry sensors of a robot and the range sensors attached to 

all other robots contains errors. These errors need to be properly incorporated in the data 

representation. Also, these data have to be combined together to calculate the pose of 

each robot. The main issue in the problem of cooperative localization is how to fuse or 

combine the information provided by different robots. Fusion of this information can 

improve the perception of each individual robot, but, if not carefully done can result in 

degradation of information. For example, accurate and correct estimate for R1 given by 
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R2 combined (using some sort of weighted average method) with an inaccurate estimate 

for R1 given by R3 will always be worse than estimate of R2 by R1 alone. This problem 

of fusion is typically very significant in the presence of outlier robots. So, fusion of 

information should be done very carefully.  For fusing the various pose estimates, they 

have to be first, represented or modeled, taking care of the uncertainty and unreliability 

associated with it.   

 

Conventional localization approaches 

There are various conventional approaches which deal with localization in a 

multi-robot scenario. Some of the basic approaches proposed in the literature are as 

follows: 

1. Global Positioning System (GPS): GPS communicates with satellites to 

determine latitude, longitude and elevation. Every robot would have the GPS 

attached to it, so that it can find its current absolute location. GPS is a 

powerful tool for localization but is generally unavailable due to signal 

obstructions in many indoor environments. 

2. Using global overhead camera: Localization can be done using a global 

overhead camera. Using this camera, all the robots can be seen and their 

actual locations can be found out. This is very suitable for a small indoor 

environment. But having a global camera system may not be possible always 

especially when the robot has to move around in large indoor complex 

environment. 
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3. Landmark based localization: If we know the locations of the landmarks, we 

can use this data to locate moving robots. Landmarks are features in the 

environment that a robot can detect. Sensor readings from a robot are 

analyzed for the existence of landmarks in it. Once landmarks are detected, 

they are matched with a-priori known information of the environment to 

determine the position of the robot. Landmarks can be divided into active and 

passive landmarks. Active landmarks, also known as beacons, are landmarks 

that actively send out location information. A robot senses the signals sent 

out by the landmark to determine its position.  If the landmarks do not 

actively transmit signals, the landmarks are called passive landmarks. The 

robot has to actively look for these landmarks to acquire position 

measurements. 

 This approach requires prior models of the environment which is 

generally unavailable, incomplete or inaccurate. Also, this requires the robots 

to identify and recognize the landmarks so in many cases, the landmarks have 

to be instrumented (artificial marks or signs are placed on the landmarks). 

4. Using portable landmarks: The whole group of robots is divided into two 

groups. One group is forced to be stationary for some time and then the 

locations of the other group robots are used to locate the moving robots. After 

some time, the role is reversed.  This approach limits the mobility of the 

group. 
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5. Using maximum likelihood approach: In this approach, we maximize the set 

of pose estimates (H) that will most likely give rise to the current 

observations (O) done by different sensors attached to the robot, i.e., we seek 

to maximize the conditional probability P(O|H). 

6. Kalman filter approach: It optimally combines the pose estimates given by 

all the other robots to calculate the pose of each robot. The pose estimates are 

assumed to be Gaussian. Gaussian density function is fully characterized by 

two parameters, the mean and the variance. The Gaussian assumption might 

not always be practically true, but it allows the Kalman filter to efficiently 

make its calculations. If the estimates are not drastically incorrect and are 

represented as normal distributions, Kalman filter approach produces good 

results.  

 

The above mentioned approaches do not take care of any outlier robot estimate 

very well. An outlier robot is the one which gives a pose estimate which is drastically 

different from the actual estimate. This error may be due to many physical parameters 

but the dependency on these factors can’t easily be determined accurately. The 

approaches mentioned above, rather combine the outlier reading to find a final estimate 

by some kind of weighted averaging.  

The fuzzy logic approach towards solving this localization problem developed in 

this work is quite robust in the presence of outliers. In the next chapter, we describe a 

basic version of Kalman filter approach for localization. In Chapter V, we compare the 
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performance of the Kalman filter approach and the fuzzy logic approach developed in 

this work. 
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CHAPTER III 

 

KALMAN FILTER APPROACH 

 

Introduction 

 The Kalman filter (KF) is a mathematical tool to estimate the state of a noisy 

dynamic system using noisy measurements related to the state. In the context of the 

problem discussed, the KF can be described as a technique from estimation theory that 

combines the information of different uncertain sources to obtain the values of variables 

of interest together with the uncertainty in them. The fact that the variables of the state 

might be noisy and not directly observable makes the estimation difficult. To estimate 

the state a KF has access to measurements of the system. These measurements are 

linearly related to the state and corrupted by noise. If these noise sources are Gaussian 

distributed, then the KF estimator is statistically optimal with respect to nay reasonable 

measure for optimality. The KF processes all available measurements to estimate the 

state, both accurate and inaccurate ones. KF has been successfully applied in many 

applications, like missions to Mars, and automated missile guidance systems. In this 

chapter we consider the approach and discuss the localization algorithm implemented. 

 

Background and basics 

The Kalman filter can be represented as a set of mathematical equations that 

provides an efficient computational means to estimate the state of a process. The discrete 
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time Kalman filter [40], addresses the general problem of trying to estimate the state x є 

Rn of a discrete-time controlled process that is governed by the linear stochastic 

difference equation 

   

 xk = A x k-1 + B u k-1 + w k-1  

 

with a measurement z  є Rn  that is  

 

            z k = H x k + v k 

 

The random variables wk and vk represent the process and measurement noise 

respectively. They are assumed to be independent (of each other) and with normal 

probability distributions, 

  P(w) = N (0, Q)    zero mean and variance Q 

 P(v) = N (0, R)     zero mean and variance R 

 

The Kalman filter can be described as a prediction-correction approach [40] as 

explained below. There are two phases, first one is the prediction phase in which the 

states are predicted based on the state values at previous iteration. The second one is the 

correction phase, in which the states are corrected by incorporating the measured value 

of state. Note that the states are not crisp values but instead, represented as normal 

distributions with a mean value and some variance. 
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  Assuming, no control input, 

Prediction phase:  

  x k-  = A x k-1 

  P k- = A P k-1 A T + Q 

 

Correction Phase: 

  z k = H x k + v k  

  x k =  x k- + K (z k – H x k-) 

  P k = (I – K H) P 

 Where,  

  K = P k- H T (H P k- H T + R) -1 

 

Kalman filter applied to the localization problem 

The Kalman filter approach can be applied to the localization problem discussed 

here [7], [32], [33], [41]. Negenborn describes the Kalman filter approach applied to 

localization [41]. A simplistic version of the Kalman filter approach is described in this 

chapter. Here we assume that at every instant of localization, all the robots are stationary 

momentarily and the robots give pose estimates for all the other robots. The accuracy of 

the estimates given by a robot for other robots depends upon its pose value, which is 

calculated based on the odometry sensors. These pose estimates are represented as 

Gaussian distributions as shown in Fig 5. For a robot, all such estimates given by other 
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robots are fused together and then a final pose value is calculated. Fusion of Gaussian 

distributions is dealt in [42].  

So, if  

  xki = N( µx , σx
2) 

  zkj = N( µz , σz
2) 

 

 

 

 

 

 

 

 

   µx           µz 

Fig. 5.  Pose estimates represented as Gaussian distributions.  

 

 

 

 where,  

xki is the current x-coordinate of the pose value for robot Ri at instant k,  

 zkj is the x-coordinate of the pose estimate given by one of the robot Rj 

for robot Ri.  
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xki and  zki are Gaussian distribution with µx and µz as mean values and  σx
2 

and σz
2 as respective variances. 

then, 

  xkfi  = xki + K ( zkj – xki ) 

  σf 
2  = ( 1 – K ) σx 

2 

  

where, K is the Kalman gain given by, 

  K = σx 
2 (σx 

2 + σz 
2) -1 

 

The above equation can be used to recursively combine the measurements (zkj) 

provided by all the robots (Rj’s) and thus obtain an optimal final value for robot Ri. This 

procedure is repeated for all the other pose parameters like y-coordinate and θ-

coordinate values.  

 

 

 

 

 

 

 

(a) 

 
(a)  Pose estimates given by all the other robots for one robot. 

Fig. 6. Pose estimates in Kalman filter approach 

x
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      (b) 

 
 
 
 
 
 
 
 

(b) 
   

 
(b) The pose estimates are fused together using Kalman filter approach. 

Fig. 6. continued. 

 

 

A sample case considered in this work demonstrates this approach very well. Fig. 

6 shows the pose estimates for a robot by other five robots in a six robot example.  

 We can incorporate the motion model to see if it improves the accuracy of the 

pose calculation. The motion model, under certain assumptions mentioned in the next 

section makes it clear that it doesn’t really improve the accuracy of the pose calculations. 

 

Incorporating robot motion model 

We can take the robot motion model into account. There is an assumption made 

here that every time localization is done, the variance is assumed to be zero after a final 

pose value is calculated. The robot motion model really doesn’t affect the results by 

x
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Kalman filter under this assumption. Each robot calculates its pose estimate by 

integrating the velocity and acceleration as shown below. 

 

x(k+1) = x(k) +v(k)*T 

v(k+1) = v(k) + α(k)*T 

αl(k+1) = α * r + noise 

where,  

x is the x coordinate of the robot 

v is the x-component of the velocity of the robot 

αl is the x-component of the linear acceleration of the robot 

α  is the mean angular acceleration of the two wheels of the robot and  

r is the radius of the wheels 

 

The noise in the linear acceleration comes because of the odometry errors.   

 

Let’s consider the problem scenario as shown in Fig. 7: 
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(a) Configuration at instant k. 

 

 

 

(b) Configuration at instant k+1. 

Fig. 7. Configurations of the robot scenario. 
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Here, all the robots from R2 to R6 are estimating pose values for robot R1. All 

the robots R1 to R6 have moved from locations at kth instant to different locations at 

instant k+1. At instant k+1, the pose values of all the robots have some mean values and 

variances associated with them. Now, when the robots R2 to R6 give pose estimates for 

robot R1.  

Now, here if the state is taken as: 
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i.e.,  Noise  B    X(k)A 1)X(k ++=+  

 

Now, P(k+1) is given by: 

 

P(k+1) = A P(k) AT + Q 
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Where, P(k) is the variance associated with x(k) and Q is the noise which 

depends upon the wheel slippage. 

Now taking,  

P(k) = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000
000
000

 since the variance is assumed to be zero after every step of 

localization and updating of the pose values for all the robots. 

Therefore, 

P(k+1) =  Q, the uncertainty which depends upon the wheel slippage. 

 

Therefore the motion model does play a role in getting the value of x at instant 

k+1 but it doesn’t affect the variance associated with x. The formulation of the simple 

Kalman filter is useful in comparing with the fuzzy logic approach.  

 

The Kalman filter is implemented in MATLAB and the results are compared in 

Chapter V with the fuzzy logic approach developed here in this work. In the next 

chapter, the fuzzy logic approach towards solving this localization problem is discussed. 
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CHAPTER IV 

 

FUZZY LOGIC APPROACH 

 

Introduction 

The concept of fuzzy set and fuzzy logic were introduced by Zadeh [43]. 

Ordinarily, a set is defined by its members. An object may be either a member or a non-

member: the characteristic of traditional (crisp) set. The connected logical proposition 

may also be true or false. This concept of crisp set may be extended to fuzzy set with the 

introduction of the idea of partial membership. Any object may be a member of a set 'to 

some degree'; and a logical proposition may hold true 'to some degree'. 

Fuzzy set theory offers a precise mathematical form to describe such fuzzy terms 

in the form of fuzzy sets of a linguistic variable. To represent the shades of meaning of 

such linguistic terms, the concept of grades of membership or the concept of possibility 

values of membership has been introduced. We write µ(x) to represent the membership 

of some object in the set X. Membership of an object will vary from full membership to 

non-membership. 

Any fuzzy term may be described by a continuous mathematical function or 

discretely by a set of numerical values. Having obtained the numerical representation of 

these linguistic terms, one has to define the set theoretic operations of union, intersection 

and complementation along with their logical counterparts of conjunction, disjunction 

and complementation as follows:  
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• Union (logical OR): the membership of an element in the union of two fuzzy 

sets is the larger of the memberships in these sets.  

(A OR B) = max ((A), (B)) 

e.g., (tall OR small) = max((tall), (small)) 

• Intersection (logical AND):  the membership of an element in the intersection 

of two fuzzy sets is the smaller of the memberships in these sets.  

 (A AND B) = min ((A), (B)) 

e.g., (tall AND small) = min((tall), (small)) 

• Complement (logical NOT): the degree of truth of the membership to the 

complement of the set is defined as (1 - membership).  

(NOT A) = 1 - (A)  

e.g., (NOT tall) = (1 - (tall))  

 

Fuzzy logic approach to solve the problem 

A stationary robot is free from odometery errors and therefore can provide the 

best estimate for another robot [29]. If the estimator robot is accelerating and moving 

fast and taking frequent turns, the odometer errors are expected to pile up and therefore, 

the estimate given by it is not so reliable. In a group of many robots, the robots which 

are moving with less velocity and less acceleration and taking fewer turns are expected 

to provide more reliable and accurate estimates than other ones. This reliability is 
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modeled and is used to convert crisp pose estimates provided by other robots into fuzzy 

pose estimates and then combined together using fuzzy logic.  

We see each robot as an expert which provides pose estimation with varying 

degree of reliability about other robots. This reliability being a function of the following 

various physical quantities: 

1. Angular acceleration of the wheels of the robot (α): If the wheel angular 

acceleration is large, the wheels are more likely to slip as explained in the 

next section.   

2. Distance between the two robots (d): The larger the distance of separation 

between the two robots the more unreliable is the pose estimate from one to 

another. This is due to the resolution of the omni-directional stereo camera as 

explained in the next section.  

3. Distance traveled by the robot since the last localization: The larger the 

distance traveled by the robot since last localization, the more unreliable is 

the pose estimate. This is because of the fact that the uncertainty and errors 

keep on piling up. 

4. Number of turns taken by the robot: When the robot takes turns especially at 

high speeds, it is more likely to slip.  

 

In this work, for simplicity, we consider only the first two factors. We model the 

reliability of the pose estimate by converting the crisp pose value to a trapezoidal fuzzy 
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 ω 

v 
             

Wheel 
encoder 

Wheel 

Ground 

membership function. We combine all such fuzzy membership functions using fuzzy 

logic techniques. 

 

Modeling the reliability of information 

The reliability of pose estimates depend upon the physical factors mentioned 

above. Here, we discuss in detail about the dependability of reliability of pose estimates 

upon the two factors namely the mean angular acceleration of the wheel of the robot and 

the distance of separation between the two robots. 

 

Reliability of pose estimate and angular acceleration (α) 

The velocity v and thus the displacement can be calculated by measuring ω and 

using (1), provided the wheel doesn’t slip on the ground as shown in Fig. 8.  

 

v = ω R              (1) 

 

 

 

 

 

 

 

Fig. 8.  Optical encoder attached to the robot wheel. 

 



     

 

35

Base Line 

Object  
Surface 

f 

(x, y, z) 

b 
(x’L, y’L) 

Left 
Camera 

Right 
Camera

d 

O

(x’R, y’R) 

When the angular acceleration is high, the probability of wheel slippage 

increases. This wheel slippage makes the robot’s linear displacement, which is 

calculated using (1), unreliable. This decreases the reliability of pose estimates for other 

robots by this robot. 

 

Reliability of pose estimate and distance from the current robot (d) 

The resolution of the stereo imaging camera setup decreases as the distance of 

the object increases [44].    

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  Stereo camera range measurement system. 
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Thus, the reliability of the range vector calculated using the images from the 

cameras of this sensor decreases as the distance between the estimator robot and the 

current robot increases as shown in Fig. 9. 

  

Component modules of the fuzzy logic approach 

The detailed robot components schematic is shown in Fig. 10. These modules 

have different roles which are mentioned below. The odometry sensors are used to sense 

the pose value of a robot which is taken as the first basic crude pose estimate. Then 

range vector measurements are taken for all other robots. These range vectors are 

combined with the basic odometry based pose estimates, and pose estimates are given by 

each robot for all other robots. These estimates are crisp but inaccurate. So they are 

converted into fuzzy membership functions. The estimates given by all the robots are 

then finally combined to find a crisp and more accurate pose value for each robot.  
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Fig. 10.  Detailed robot components and procedure schematic. 

 

 

 

The various components mentioned in Fig. 10 are:  

1. Odometry sensor unit: senses the robot’s linear distance moved from the last 

iteration by integrating the wheel encoder readings. 

2. Range vector sensor unit: perceives the range vector of the other robot. 
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3. Pose transformation calculation unit: transforms the local pose estimates to the 

global pose estimate, that is, to the pose values with respect to global coordinate 

system. 

4. Fuzzifying unit: converts the crisp values of pose estimates to fuzzy membership 

functions based on the output of odometry sensor unit and the range vector 

sensor unit.  

5. Data transmission unit: transmits the pose values and the fuzzy membership 

function parameters a, b and c for each pose parameters x, y and θ. 

6. Data receiving unit: receives the data transmitted by all the robots. 

7. Fusing and defuzzifying unit: combines the fuzzy pose estimates given by other 

robots and its own pose estimate based on odometeric correction to calculate the 

possibility distribution for the pose and then defuzzifies to calculate a crisp pose 

estimate. 

8. Updating unit: updates the pose value by the above final crisp estimate. 

 

Procedure 

The various components, as shown in Fig. 10, play different roles towards the 

localization process. The pose values taken here are with respect to the global axes. For 

figure clarity only four robots are shown in Fig. 11, which shows the problem scenario, 

but there are six robots in the simulation. A procedure is presented in sequential manner 

by describing the roles of the component modules. 
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(a) at instant k = m 

 

 

 

 

 

 

 

 

 

 

(b) at instant k = m+1 

Fig. 11. Problem scenarios at two instances. 
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Here, just note that, R2 is nearest to R1 and has moved very less, whereas R3 has moved 

a large distance and is far away from R1, so pose estimate of R1 by R2 would be more 

reliable than that by R3. 

 

Odometry sensor unit 

This component is used to sense the robot’s angular velocity and angular 

acceleration and thus the distance moved from the last iteration. For wheeled robots, 

generally, the linear displacements and the linear velocities are calculated using the 

rotation of the wheels. Using the optical encoders on both the wheels to measure their 

angular displacements, the displacement, velocity and the acceleration of the robot can 

be calculated. 

The calculation of linear displacement and velocity of the robot is correct if the 

wheels do not slip. 

 

Range vector sensor unit 

Using this, the robots determine the range vectors (ρij) of the other robots. One 

of the sensors which provide this data is omni-directional stereo camera [8]. This camera 

setup takes two images (as shown in Fig. 3), one by each camera, which is complete 

360o view around the robot. So, all the robots which are visible by this robot would be 

present in these two images. Comparing the position shifts in these two images, the 

actual range distances to the robots can be found out. 
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Pose transformation unit 

The range data is with respect to the estimator robot’s coordinate system, so it 

needs to be transformed to the global coordinate system. 

The coordinates of Ri as seen from Rj are: 

 

 

 

 

 

 

 

 

 

Where, 

xi, yi, θi are the global pose values for robot Ri 

xj, yj, θj are the global pose values for robot Rj 

xij, yij is the range vector’s (Rij) x and y components of Ri from Rj with respect 

to Rj reference coordinate system 

xji, yji is the range vector’s (Rji) x and y components of Rj from Ri with respect 

to Ri reference coordinate system 
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Fuzzifying unit 

The final global estimated values of the pose parameters depend upon the 

acceleration of the estimating robot and the distance of separation of the estimating and 

the current robot. This dependency is represented as a trapezoidal fuzzy membership 

function as shown in Fig. 12. The lower the value of a, the lower would be the value of b 

and c. Low values of a, b and c represent a reliable crisp value of x1. Large values of a, b 

and c means that the value of x1 is more unreliable. 

Assuming, 
 

b = a/k1  and  c = a*k2           (2) 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Trapezoidal fuzzy membership function. Converting a crisp value x1 to a trapezoidal fuzzy 

membership function 
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Determination of the values of trapezoindal fuzzy set characteristic parameters 

The assumption of the dependency stated at (2), makes it sufficient to determine 

the value of a, which can be calculated using fuzzy rules. Fig. 13 shows the fuzzy rules 

in a matrix form. 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Fuzzy rule matrix. α is the mean angular acceleration of the wheels of the robot and d is the 

distance of separation between two robots 

 

 

 

Fusing and defuzzifying unit 

The various fuzzy pose estimates are then combined (fused together), using fuzzy 

membership combination techniques, to calculate the possibility distribution (p. d.) of 

the pose of the robot. 
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The fuzzy pose estimates are combined using two operators: 

1. min as a combination operator 

2. product as a combination operator 

 

Finally, crisp values are calculated by defuzzifying the p. d. by the following approaches 

as shown in Fig 14. 

1. MOM: mean of maximum 

2. COA: center of area 

3. Cutoff COA: applying a threshold to the p.d. and then applying COA.  

 

 

 

 

Fig. 14. Defuzzification of the possibility distribution function. Various approaches like COA, MOM and 

cutoff COA is shown here. 

µ 
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The fuzzy logic approach towards localization problem has many advantages 

[45]. There are two main features of fuzzy logic that are interesting in this application (i) 

the flexibility of fuzzy sets to represent different types of uncertain information and (ii) 

the availability of different combination operators to perform the data fusion step. 

The fuzzy logic approach provides a more robust solution to multi-robot 

localization problem in the presence of outliers.  This would become clearer in Chapter 

V.  
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CHAPTER V 

 

SIMULATIONS, RESULTS AND COMPARISONS 

 

Simulation 

An example of six robots, as shown in Fig. 15, is taken and their pose values are 

defined initially. Coding of the algorithm and simulation is done in MATLAB. A sample 

work space of 10 by 10 units is taken for simulation.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: Top view of the robot configuration. 
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Based on the various factors discussed in Chapter IV, the fuzzy pose values are 

calculated and then each robot predicts pose estimate for every other robot. These 

estimates are combined together to obtain a final crisp value for each robot. 

As shown in Fig. 16, all the robots R2, R3, R4, R5 and R6 give pose estimates 

for robot R1. These fuzzy pose estimates are constructed on the basis of the acceleration 

of the estimator robot and the distance of separation between the two robots. Here, the 

pose estimate give by robot R4 is the most accurate which is evident by the smallest 

width of the peak of the function (value of ‘a’ is least in this case). On the contrary, the 

pose estimate give by robot R3 is the least accurate which is evident by the largest width 

of the peak of the function (value of ‘a’ is largest in this case). All other estimates fall in 

between these two extreme cases. 

    

 

 

 

  

 

 

 

 

 

Fig. 16. The fuzzy membership functions for pose estimates. The fuzzy membership functions for x-

coordinate estimate by robots R2, R3, R4, R5 and R6 for R1. 
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The pose estimates are fused together using fuzzy logic using ‘min’ and 

‘product’ as combination operators. The results are shown in Fig. 17. The results which 

are seen in Fig 17 (a) and (b) are obtained by taking the minimum and product 

respectively of all the values at every value of x.  

 

 

 

 

 

 

 
x 

(a) 
 

 

 

 

 

 

 x   
(b) 
 

Fig. 17. Fusion of fuzzy estimates. The estimates are fused together using (a) min and (b) product 

approach 
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In Kalman filter approach also, the pose estimates are fused together as shown in 

Fig. 18. The fusion here is based on the method discussed in Chapter III. 

 

 

 

 

 

 

(a) 

 
(a) 

 
 
 
 
 
      (b) 

 
 
 
 
 
 
 
 

(b) 
   

(b) 
 

Fig. 18. (a) Pose estimates given by all the other robots for R1. (b) The pose estimates are fused together 

using Kalman filter approach. 

 

 

The fuzzy logic approach and the Kalman filter approach both are implemented 

and the robot scenarios are simulated on MATLAB.  

x

x
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As can be seen in Fig. 18, the resultant distributions of the pose estimate fusion is 

always a Gaussian distribution in the case of Kalman filter approach. But in the fuzzy 

logic approach, the resultant distribution need not be in the trapezoidal form. 

 

Results and comparisons 

The simulation results are analyzed in this section. Both the fuzzy logic and the 

Kalman filter approaches are compared qualitatively as well as quantitatively. 

Qualitative comparison demonstrates the limitations and advantages of the two 

approaches based on the general outline of the methodology of the approaches. 

Quantitative comparison is done with the simulation data. The most commonly used 

Kalman's filter techniques make the assumption of having a linear model of the robot 

and of the sensors. The fuzzy logic technique does not need these assumptions. An 

Extended Kalman Filter (EKF) technique, enriched by specialized routines to deal with 

the case of total uncertainty, can give good solutions to the problem. However, this 

solution would be much more complex than the fuzzy logic one [45]. 

 

Qualitative comparison 

The following qualitative differences are there in the two approaches, because of 

the inherent differences in modeling and fusion of the pose estimates: 

1. There is a consensus between the different sources of information in fuzzy 

logic approach rather than a tradeoff in standard probabilistic combination 

techniques (as can be seen from Fig 19) [26]. The final possibility 
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distribution very much agrees with both the distributions µ1 and µ2. In Fig 

19 (b), the final distribution is not fully agreed upon by the two distributions 

µ1 and µ2, rather it is their weighted average.     

 

 

 

 

 

 

(a)      (b) 

Fig. 19. Consensus versus tradeoff. (a) fuzzy logic approach of fusion (b) Kalman filter approach of 

fusion. 

 

 

2. The fuzzy logic approach of fusion discounts unreliable information as seen 

in Fig 20. Information µ1 is unreliable, as indicated by the high bias, and 

therefore has only a small impact on the result [26].  

 

 

 

 

 

 

Fig. 20. Discounting unreliable information. 
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Quantitative comparison  

The fuzzy logic approach is compared with the Kalman filter approach 

quantitatively. Fig. 21 (a), (b) and (c) show the fused x-coordinate estimates for all the 

six robots graphically using the min operator fuzzy logic approach, product operator 

fuzzy logic approach and Kalman filter approach respectively.  

 

 

 

 

 

 

 

 

 

 

 

(a) 

Fig. 21. Graphical representation of the possibility distribution function. 
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      (c) 

Fig. 21. continued 
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Pose estimate comparison 

 The x-coordinates estimated by all the robots are fused together and 

represented as possibility distributions as shown in Fig. 21. These possibility 

distributions are then defuzzified to find the final crisp values which are shown in 

TABLE 1 (a), (b), (c), (d), (e) and (f) for various accelerations of robot R3. As the 

acceleration of robot R3 increases, it is expected to provide more inaccurate pose 

estimates for all the other robots.  

 

 

 
TABLE 1.  Pose estimation comparison 

 

Robot 

No. 

Actual 

values 

 Fuzzy Approach 

(using cutoff COA) 

Kalman Filter 

Approach 

Error in F.L 

estimate 

Error in K.F 

estimate 

1 2.0     1.9492     1.7851 -0.0508  -0.2149 

2 2.5     2.5016     2.7776 0.0016 0.2776  

3 6.5     6.5685     6.6761 0.0685  0.1761 

4 3.5     3.6037     3.4883 0.1037  -0.0117 

5 1.0     0.9606     1.0079 -0.0394  0.0079 

6 6.0     6.0402     5.9352 0.0402  0.0648 

Root Mean Square error     0.1456   0.3983 

 

(a) R3’s acceleration =1 
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TABLE 1 [continued] 

 

 

Robot 

No. 

Actual 

values 

Fuzzy Approach 

(using cutoff COA) 

Kalman Filter 

Approach 

Error in F.L 

estimate 

Error in K.F 

estimate 

1 2.0     1.9492     1.8764 -0.0508  -0.1236 

2 2.5     2.5016     2.9157 0.0016 0.4157  

3 6.5     6.5685     6.6761 0.0685  0.1761 

4 3.5     3.6037     3.5969 0.1037  0.0969 

5 1.0     0.9606     1.0876 -0.0394  0.0876 

6 6.0     6.0402     6.0492 0.0402  0.0492 

Root Mean Square error     0.1456   0.4884 

 

(b) R3’s acceleration = 2 
 

 

 

 

Robot 

No. 

Actual 

values 

Fuzzy Approach 

(using cutoff COA) 

Kalman Filter 

Approach 

Error in F.L 

estimate 

Error in K.F 

estimate 

1 2.0     1.9492     1.8936 -0.0508  -0.2149 

2 2.5     2.5016     3.0136 0.0016 0.2776  

3 6.5     6.5685     6.6761 0.0685  0.1761 

4 3.5     3.6037     3.6086 0.1037  -0.0117 

5 1.0     0.9606     1.1384 -0.0394  0.0079 

6 6.0     6.0402     6.0492 0.0402  0.0648 

Root Mean Square error     0.1456   0.5826 

 

(c) R3’s acceleration =3 
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TABLE 1 [continued] 

 

 

Robot 

No. 

Actual 

values 

Fuzzy Approach 

(using cutoff COA) 

Kalman Filter 

Approach 

Error in F.L 

estimate 

Error in K.F 

estimate 

1 2.0     1.9492     1.8198 -0.0508  -0.1802 

2 2.5     2.5016     2.8418 0.0016 0.3418  

3 6.5     6.5685     6.6761 0.0685  0.1761 

4 3.5     3.6037     3.5177 0.1037  0.0177 

5 1.0     0.9606     1.0479 -0.0394  0.0479 

6 6.0     6.0402     5.9677 0.0402  -0.0323 

Root Mean Square error     0.1456   0.4289 

     
(d) R3’s acceleration =4 

 

 

 

 

Robot 

No. 

Actual 

values 

Fuzzy Approach 

(using cutoff COA) 

Kalman Filter 

Approach 

Error in F.L 

estimate 

Error in K.F 

estimate 

1 2.0     1.9492     1.8185 -0.0508  -0.1815 

2 2.5     2.4950     2.8271 -0.0050  0.3271  

3 6.5     6.5685     6.6761 0.0685  0.1761 

4 3.5     3.6037     3.5177 0.1037  0.0177 

5 1.0     0.9606     1.0469 -0.0394  0.0469 

6 6.0     6.0402     5.9716 0.0402  -0.0284 

Root Mean Square error     0.1457   0.4174 

 

(e) R3’s acceleration =5 
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TABLE 1 [continued] 

 

 

Robot 

No. 

Actual 

values 

Fuzzy Approach 

(using cutoff COA) 

Kalman Filter 

Approach 

Error in F.L 

estimate 

Error in K.F 

estimate 

1 2.0     1.9492     1.8229 -0.0508  -0.1771 

2 2.5     2.5016     2.8354 -0.0016 0.3354 

3 6.5     6.5685     6.6761 0.0685  0.1761 

4 3.5     3.6037     3.5237 0.1037  0.0237 

5 1.0     0.9606     1.0527 -0.0394  0.0527 

6 6.0     6.0402     5.9815 0.0402  -0.0185 

Root Mean Square error     0.1456   0.42.26 

 

(f) R3’s acceleration =6 

   

 

 

Result interpretations and discussions 

 If the data in TABLE 1 is closely observed, we see that the RMS error is 

always smaller in case of fuzzy logic approach. In most cases individually also, the error 

is less in case of fuzzy logic approach than in Kalman filter approach. But, in some cases 

the Kalman filter approach gives more accurate pose estimates for some robots. The 

reason for this anomaly is basically that the Kalman filter calculates weighted average 

estimate value as shown in Fig. 22. 
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(a) 

 

 

 

 

 

 

 

 

 

     

      
(b) 

 

Fig. 22. Accuracy of Kalman filter approach. The ellipses represent the uncertainties associated with the 

pose value. The small solid grey circle represents the final pose value for the robot R1 

 

 

 

 So in case there are two robots R2 and R3 as shown in Fig. 22, giving pose 

estimate for robot R1, the spatial configuration arrangement contributes significantly 

R2 

R1 

R3 

R1 

R2 

R3 
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towards the accuracy of the approach. In case (a), the pose estimate is nearer to the 

actual value rather than in (b).  

 The Kalman filter and the fuzzy logic approach results are compared in 

tabular form in TABLE 2.  

 

 

TABLE 2. RMS error tabular comparison. 

 

 

 

 

 

 

  

 

 

 A graphical representation of the results is shown in Fig. 23. The fuzzy logic 

approach performs better than a Kalman filter in the presence of the outlier robot R3. 

RMS error in the Kalman filter approach increases as the acceleration of R3 increases 

but later on flattens as can be seen in Fig 22. It is due to the fact that when R3’s 

acceleration is not that large, the Kalman gain is affected by this outlier robot (R3) and 

thus the final estimate is also affected by it. But as R3’s acceleration becomes very large, 

RMS K.F 
 error 

RMS F.L 
 error 

Acceleration 
of R3 

0.42260.14566
0.41740.14575
0.42890.14564

0.58260.14563
0.48840.14562

0.39830.14561
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the Kalman filter is really effective in filtering out the effect of the pose estimate given 

by R3 because of the large value of the variance of the pose estimate. 

 

 

 

 

 

 

 

 

 

Fig. 23. The RMS error graphical comparison. The dependency of the RMS errors on R3’s acceleration is 

compared and plotted. 
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CHAPTER VI 

 

SUMMARY AND CONCLUSION 

 

Summary 

An approach of localization of multiple robots using fuzzy logic in a no-

landmark scenario is developed. All the robots give pose estimates for all the other 

robots. The pose estimate by the one robot for another is based on its own pose value 

calculated using odometry sensor. The odometry sensors generally provide inaccurate 

estimates due to wheel slippages. The wheel slippage depends upon various physical 

factors like acceleration of the robot, the surface, the weight of the robot etc. But, given 

the surface and the weight of the robot to be constant, the prime influencing factor for 

the wheel slippage is the robot acceleration. A precise mathematical model of this 

dependency is almost practically impossible, so it is generally modeled as Gaussian 

distribution. Here, this uncertainty is modeled as a fuzzy membership trapezoidal 

function based on the acceleration of the robot. Also the estimate by one robot done by 

another robot also depends upon the distance of separation between the two robots, 

which can be measured by an omni-directional stereo camera setup. There is inherent 

uncertainty in this sensor because of the limited resolution. Therefore, if the distance of 

separation is large enough then the pose estimate is expected to be more inaccurate. This 

inaccuracy is also modeled as a similar fuzzy membership function. These two factors 

are combined together using fuzzy combination rule matrix to find the characteristic 
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parameters to finally construct a combined fuzzy membership function. The fuzzy 

membership functions constructed in this way are collected from all the robots and are 

fused together to give a possibility distribution function for a pose parameter for each 

robot.  

To fuse all the pose estimates, generally, a weighted average method is used 

often implemented in some form of Kalman filter technique. In the fuzzy logic approach, 

it is done using fuzzy combination operators to generate possibility distribution 

functions. These possibility distribution functions are then defuzzified using various 

defuzzification techniques like mean of max, centroid of area and cutoff centroid of area 

to give crisp values of pose parameters. 

In addition to the fuzzy logic approach discussed above, a Kalman filter approach 

is also developed and then compared with it. 

 

Conclusion 

The fuzzy logic approach developed here presents some advantages over the 

Kalman filter techniques. The fuzzy logic approach is more robust than a Kalman filter 

to outlier robots, which provide way inaccurate pose estimates. Kalman filter gives less 

weight to an outlier pose estimate, whereas, a fuzzy logic approach eliminates it 

altogether. The basic Kalman filter approach is less computationally intensive compared 

to the fuzzy logic approach developed here.  
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