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ABSTRACT 

Capacity and Scale-Free Dynamics of Evolving Wireless Networks. 
 

(December 2003) 
 

Bharat Vishwanathan Iyer, B.E., Maharaja Sayajirao University, Baroda, India 
 

Co-Chairs of Advisory Committee: Dr. Dmitri Loguinov 
          Dr. A. L. Narasimha Reddy 
 
 

Many large-scale random graphs (e.g., the Internet) exhibit complex topology, non-

homogeneous spatial node distribution, and preferential attachment of new nodes. Current 

topology models for ad-hoc networks mostly consider a uniform spatial distribution of 

nodes and do not capture the dynamics of evolving, real-world graphs, in which nodes 

“gravitate” toward popular locations and self-organize into non-uniform clusters. In this 

thesis, we first investigate two constraints on scalability of ad-hoc networks – network 

reliability and node capacity. Unlike other studies, we analyze network resilience to node 

and link failure with an emphasis on the growth (i.e., evolution) dynamics of the entire 

system. Along the way, we also study important graph-theoretic properties of ad-hoc 

networks (including the clustering coefficient and the expected path length) and strengthen 

our generic understanding of these systems. Finally, recognizing that under existing 

uniform models future ad-hoc networks cannot scale beyond trivial sizes, we argue that ad-

hoc networks should be modeled from an evolution standpoint, which takes into account 

the well-known “clustering” phenomena observed in all real-world graphs. This model is 

likely to describe how future ad-hoc networks will self-organize since it is well documented 
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that information content distribution among end-users (as well as among spatial locations) 

is non-uniform (often heavy-tailed). Results show that node capacity in the proposed 

evolution model scales to larger network sizes than in traditional approaches, which suggest 

that non-uniformly clustered, self-organizing, very large-scale ad-hoc networks may 

become feasible in the future. 
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I. INTRODUCTION  

Recent modeling efforts to understand the capacity of wireless networks have 

painted a rather bleak future for ad-hoc networks. As the size of these networks increases, 

the throughput available to each node asymptotically decays to zero under all practical 

conditions (several exceptions exist [16]; however, their mobility models and delay 

constraints are hardly practical). It appears that research in this area has reached a point of 

finally examining a fundamental question of whether future ad-hoc networks will be 

deployed with millions of nodes in a single, very large-scale system, or will always be 

limited to trivial sizes (e.g., wireless LANs)?  

We find that the answer to this question heavily depends on the underlying 

modeling assumptions and characteristics of user traffic in these networks. It appears that if 

user traffic patterns are completely random and perfectly uniform, then large-scale ad-hoc 

networks are impractical; however, the good news is that very few real-world networks 

exhibit completely uniform all-to-all communication patterns. This observation leads us to 

developing a new paradigm for future ad-hoc networks in which wireless nodes self-

organize around important sources of “information.” The term “information” is rather 

abstract and can represent a variety of concepts including interesting speakers at a 

conference, large cities in a given country, several users in peer-to-peer networks that share 

the majority of files, popular websites such as CNN or Google, etc.  

In the first half of the thesis, we examine the properties of existing uniform models 
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of wireless ad-hoc networks. Besides the available node capacity often studied in this area, 

another important metric related to scalability of a wireless network is its reliability (i.e., 

resilience to node/edge failure). Wireless connectivity is often compromised due to varying 

channel conditions, finite node lifetime, and node mobility, all of which can result in 

partitioning of the network into small disjoint clusters. Unfortunately, network resilience 

often comes at the expense of throughput since an increased transmission range not only 

leads to more neighbors and higher resilience to node/edge failure, but also reduces spatial 

concurrency and available node throughput.  

In the second half of the thesis, we model the growth process of ad-hoc networks in 

an attempt to understand topology characteristics of very large-scale self-organizing 

networks. We realize that real networks of humans [39] and smart devices generally exhibit 

a non-homogenous spatial distribution of nodes and non-uniform traffic patterns. Humans 

in social gatherings, public places (e.g. shopping malls, conference halls, entertainment 

centers) exhibit preferential connectivity and clustering. The nodes in such gatherings tend 

to cluster around “popular” nodes or important information sources. Furthermore, it is well 

documented [37] that shared (i.e., publicly-available) information is not uniformly 

distributed and is typically concentrated in a small number of users/locations. Another 

study [27] on mobile users suggested that there is spatial locality in information querying, 

i.e., users with similar interests are physically close to each other. These observations 

motivate us to study an information-centric model where ad-hoc nodes form clusters and 

exhibit preferential traffic exchange only with the nodes that belong to the same cluster. We 

show that this model scales to an arbitrarily large number of nodes and provides an accurate 
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reflection of typical scenarios of human interaction, as well as smart-device deployment 

(e.g., in certain sensor networks). We study the formation of clusters by developing a scale-

free network evolution model, analyze cluster size distribution, and understand the 

scalability issues of two types of node-attachment functions. In the end, we discuss a new 

paradigm of “bringing services to the user” that allows ad-hoc traffic to be localized within 

each cluster. 

The rest of the thesis is organized as follows. In section II, we present some 

background and previous work on ad-hoc topology modeling and network scalability. In 

section III, we explain the topology models and assumptions considered in this thesis. 

Sections IV and V discuss important topology characteristics of traditional wireless ad-hoc 

networks. In section VI, we explain our information-centric paradigm for large-scale 

wireless ad-hoc networks. Finally, in section VII we conclude the thesis. 
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II. BACKGROUND 

Applications of ad-hoc networks are just beginning to be realized. Ad-hoc networks 

provide a valuable alternative in situations where cost and time constraints do not allow for 

deployment of fixed network infrastructure (e.g., battlefields and catastrophe-control 

situations). Another possible application of ad-hoc node formations is a collection of “smart 

homes” where computers, home appliances, door locks, water sprinklers, and other “smart 

devices” are interconnected by a wireless network. 

Wireless ad-hoc networks as shown in Figure 1 consist of a number of nodes that 

communicate in a decentralized and self-organizing manner. Such networks do not rely on 

a fixed infrastructure and hence, can be deployed quickly and with minimal cost. In 

addition to low-overhead deployment, ad-hoc topologies exhibit increased spatial 

concurrency, frequency reuse, and total network capacity compared to regular cellular 

networks. These advantages make ad-hoc topologies a cost-effective option for large 

wireless networks. 

Several other options also exist as topology models for large-scale wireless data 

networks. In a wireless cellular network or wireless LAN, nodes communicate with each 

other through base stations (often called access points). These base stations are assumed to 

be connected by a high-bandwidth wired network and act as relays for the wireless nodes.  

An access point is reachable in a single hop by any node in the cell.  

In contrast with traditional cellular models, hybrid networks allow multi-hop cells, 

in which data is forwarded in a multi-hop fashion over wireless nodes in the same cell and 

through the base-station infrastructure to nodes belonging to different cells. A disadvantage 
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of the infrastructure-based model is the cost and deployment time of base-stations. 

Additional problems with cellular wireless networks arise when mobile radio propagation is 

hampered by localized co-channel interference or signal shadowing from certain natural 

and/or man-made obstacles resulting in deterioration of network connectivity. As shown in 

Figure 2, node x does not have a direct link to the base-station due to an obstacle in the 

signal path. In such situations, spatial diversity allows the node to connect to the base-

station through one of multiple nodes in the neighborhood.  

 
 

 
Figure 1 An ad-hoc network with N  nodes in an area A . 

 
 
 

x
 

Figure 2 Node x  does not have a direct connection with the base station. 
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Several authors [36], [23], [23] have studied scalability and capacity constraints of 

ad-hoc networks. In [36], the authors showed that none of the current routing protocols 

scale well with node mobility and network size. In [23], Kawadia et al. consider the 

problem of power control and spatial reuse when nodes are non-homogeneously distributed 

in space. In [17], Gupta et al. study throughput capacity of ad-hoc nodes, uniformly 

distributed in a given area, under the assumption that each node continuously sends data to 

a randomly chosen destination. Given channel capacity W and fixed transmission range, the 

throughput capacity per-node is shown to be ( / log )W N NΘ , where N is the number of 

nodes in the network. This result demonstrates that traffic rate per source-destination pair 

does not scale well in large ad-hoc networks and asymptotically decays to zero.  

In contrast to a fixed ad-hoc network, Grossglauser et al. [16] show that by 

restricting the traffic path length, node capacity can be kept constant. In this model, traffic 

is spread to intermediate relay nodes to allow multiple ‘two-hop routes’ between each 

source and destination. The drawback of the approach is that it requires a complete mixing 

of trajectories of wireless nodes in the network and the delay experienced by the packets is 

large (the delay further grows with the size of the network). 

1. Capacity and Scalability 

Recently, as wireless technology has matured and wireless connectivity increased, 

scalability and capacity constraints of ad-hoc networks have come into focus. In [17], [20], 

[19], [23], the authors studied the throughput capacity of ad-hoc nodes uniformly 

distributed in a given area. Under the assumption that each node continuously sends data to 
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a randomly chosen destination, Gupta et al. [17] concluded that the per-node throughput 

scales as (1/ log )N NΘ , where N is the number of nodes in the network. This result 

demonstrates that traffic rate per source-destination pair does not scale well in large ad-hoc 

networks and asymptotically decays to zero.  

In contrast to fixed ad-hoc networks, the authors in [16], [33], [3] have shown that 

by restricting the traffic path length, node capacity could be kept constant. Grossglauser et 

al. [16] presented a model where traffic is spread to intermediate relay nodes to allow 

multiple “two-hop routes” between each source and destination. The drawback of this 

approach is that it requires a complete mixing of trajectories of wireless nodes in the 

network and the delay experienced by the packets is large (the delay further grows with the 

size of the network).  

In [23], [21] the authors analyzed the hybrid model for wireless networks. Liu et al. 

[23] have shown a linear increase in total network capacity with the number of base-

stations in the network. However, they do not focus on per-node capacity and consider 

aggregate network throughput while observing the effect of the number of base-stations on 

capacity. Several other authors [36], [43], [30], [22], [4] have examined physical layer and 

protocol enhancements for capacity optimizations. However, their work does not provide a 

precise model for large, scalable ad-hoc networks.  

In [7], [8], [32] the authors adopt a graph-theoretic approach to understanding 

connectivity and other topology characteristics of wireless ad-hoc model. However, several 

interesting properties such as node/edge expansion and the clustering coefficient have not 

been studied. Another aspect that is missing from current literature on wireless ad-hoc 
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networks is an evolving network model where the network grows continuously due to 

addition of new nodes. We provide such a model and show that under certain traffic 

assumptions, the node capacity in such networks scales with network size. 

2. Large-Scale Networks and Models 

Large-scale, complex systems such as social networks, scientific-collaboration 

networks and computer networks have been analyzed and modeled by a number of authors 

[6], [5], [11], [9]. Faloutsos [15] studied the degree distribution in the Internet and showed 

that its node degree follows a power law with an exponent close to 1.2. In addition, Simon 

[38], [39] examined the segregation of individuals/objects in groups and showed that the 

empirical distribution of city sizes by population approximates a power-law relationship 

with scaling exponent close to 2. In [5], Barabasi suggested that the heavy-tailed nature of 

node degree in networks is due to two generic mechanisms shared by many real networks: 

growth of the network due to addition of new nodes and preferential attachment1 of new 

nodes to existing nodes. We examine the underlying common characteristics of such large-

scale, self-organizing systems with respect to ad-hoc topology in V. 

 

 

 

 

                                                 

1 This observation is a result of the “popularity is attractive” and “rich gets richer” phenomena observed in the real 
world [24].  
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III. MODEL PRELIMINARIES 

In mathematical terms, a network is represented by a graph, G={V, E}, where V is 

the set of nodes and E is the set of edges. 

Ad-hoc Network Model: The model considered in the thesis is based on the 

following assumptions.  

Let N V=  be the number of nodes deployed in some area A. Without loss of 

generality, assume that A is a unit disc of radius 1/ π  and all N nodes are independently 

and uniformly distributed in A. Let /N A Nρ = =  be the average network density. Then, 

the expected (average) number of nodes inside any area A1 ( 1A A⊂ ) is ρA1.  

Assume that all nodes in the network employ a common range r for all their 

transmissions. As the network size increases, the average degree k of the network is 

Θ(logN) and the node transmission radius r is 
log N

Nπ
� �

Θ� �� �
� �

. 

For the interference model, we adopt the protocol model2 as developed in [17]. A 

transmission from node Xi is successfully received by node Xj if the following two 

conditions are satisfied: 

Node Xj is within the transmission range r of node Xi: 

 .i jX X r− ≤  (1) 

where i jX X−  represents the distance between node Xi and node Xj. 

                                                 

2 We choose this interference model over the physical model to clearly realize the results without going into physical 
layer technicalities.  
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For every other node Xk that is simultaneously transmitting over the same channel, 

we require 

 (1 ) .k j i jX X X X− ≥ + ∆ −   (2) 

  This condition guarantees a guard zone around the receiving node and prevents a 

neighboring node from transmitting at the same time. The radius of the guard zone is 

(1 )+ ∆  times the separation between the sender and receiver. The parameter ∆ defines the 

size of the guard zone and governs the number of simultaneous transmissions in the 

network. 

Random Graph Model ( ( , )G N p  model): This model as introduced by Erd�s and 

Renyi [13] consists of a graph on N vertices in which every pair of vertices is connected 

with a fixed probability p. The expected node degree in this model, if self-loops are not 

allowed, is ( 1)p N −  and the expected number of edges in the graph is ( 1) / 2pN N − . 
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IV. TOPOLOGY PROPERTIES 

Wireless ad-hoc networks and other peer-to-peer architectures (e.g., Chord, CAN) 

are characterized by frequent changes in node connectivity. This observation is attributed to 

node mobility or node on/off in wireless networks and finite node lifetime in peer-to-peer 

networks. As the network grows in size, the number of link breakages increase quickly 

which proves to be a deterrent for network scalability. In this section, we analyze the 

resilience of ad-hoc networks and the available per-node capacity in different network 

topologies. The emphasis is on understanding the constraints on scalability of ad-hoc 

networks under current topology assumptions and explaining the need for a better large-

scale network model. 

1. Graph Expansion and Resilience 

Graph expansion determines how fast a graph finds “unknown” nodes. Specifically, 

graph edge expansion gives us useful information about the graph resilience when edges 

are expected to fail (i.e., 4 edges are better than 2 as depicted in Figure 3). In wireless 

networks, path loss fluctuations due to mobility, large-scale and small-scale fading can 

result in frequent edge failure.  

As noted in [27], edge expansion determines the number of edges that link a group 

of vertices to the rest of the graph (or similarly the number of edges inside the group of 

nodes); however it does not tell us the number of nodes on the other side of the cut between 

this group of vertices and the rest of the graph. In Figure 3, there are 4 edges leaving the 

neighborhood of node v, but they only link to 2 unique nodes, thus leading to a good 

amount of overlap. Thus, regardless of the number of edges crossing the cut, the number of 
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 v 

 1 

 4 

 5 

 2 

 3 

 
Figure 3 Edge expansion and path overlap due to high clustering. 

 
 
 
nodes on the other side of the cut determines the strength of the neighborhood. “Node 

failure” due to node mobility or power on/off is also a well-observed fact in ad-hoc 

networks. Hence, we also examine node expansion of the network. 

 First, we formally define graph node/edge expansion and then derive expressions 

for the same in ad-hoc networks. Consider a graph G = (V, E) and a set of vertices S⊂V.  

Define the set of all edges between S and V\S to be ∂eS = {(u, v): u∈S, v∈V\S}. The set ∂eS 

is called the edge boundary of S and further define edge expansion i(S) as the ratio of the 

size of ∂eS to the size of S: 

 ( ) .eS
i S

S

∂
=  (3) 

Definition 1: Graph edge expansion ( )i G  (sometimes called the isoperimetric number of 

the graph) is the minimum of ( )i S  for all sets , / 2S V S V⊂ ≤ .  

Definition 2: Consider graph ( , )G V E= and set S V⊂ . Define the node boundary of S to 

be { : ( , ) , , \ }nS v u v E u V v V S∂ = ∈ ∈ ∈ . Node expansion ( )h G  of the graph is defined as: 
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{ : / 2}

( ) min .n

S S V

S
h G

S≤

∂
=  (4) 

Lemma 1: Node expansion h(G) of wireless ad-hoc networks is upper limited by the 

following:  

 2( ) 2 ( 2 ).h G r rπ π≤ +  (5) 

Proof: Consider S to be the set of nodes that lie within distance x units from a node v (i.e., a 

ball of radius x). Then, the size of S is:  

 2.S N xπ=  (6) 

Hence, the set ∂nS consist of nodes that lie between x and (x+r) units from node v. 

Thus,  

 
2 2( )

(2 ).
nS N x r N x

N r x r

π π
π

∂ ≤ + −

= +
 

From (4), we obtain that node expansion for set S is no more than: 

 
2

(2 )
( ) .

r x r
h S

x

+≤  (7) 

Noting that the nodes lie in a unit area, the minimum of (5) over all sets S 

( / 2 / 2)S V N≤ =  occurs for 1/ 2x π= , which covers half the area and contains N/2 

nodes. 

 2( ) 2 ( 2 ).h G r rπ π≤ +  

As the number of nodes N increases in a given area, radius r decreases as a function 

of log /N Nπ  resulting in a decrease in h(G) for the entire graph as shown in Figure 4. 
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Figure 4 Node expansion for ad-hoc networks with increasing number of nodes N . x -axis is shown 

in log scale. 

 

Lemma 2: Edge expansion of wireless ad-hoc networks is bounded by: 

 ( )3/ 2 3 4( ) 2 .i G N r rπ π≤ +  

Proof: The edge boundary for the set S as defined in (6) is given by: 

 

2

2 3 2

(2 ) ( / 2)

1
(2 ).

2

eS N r x r N r

N r x r

π π

π

∂ ≤ + ×

= +
 

The term 2( / 2)N rπ  gives the expected edges for a single node across the node 

boundary. 

Hence, edge expansion for set S is given by: 

 
3

2
(2 )

( ) .
2

Nr x r
i S

x

π +≤  (8) 

Again taking the minimum over all possible set S ( / 2)S V≤ , we get 

 ( )3/ 2 3 4( ) 2 .i G N r rπ π≤ +  (9) 
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Graph edge expansion is shown in Figure 5 as a function of the number of nodes. 

As observed, edge expansion drops fast with increasing network size. This is attributed to 

the fact that the radius r decreases with increase in the number of nodes in the network as 

log /N Nπ . Graph bisection width bw(G) is a well known graph resilience property and 

can be related to edge expansion as: 

 ( ) ( )
2
N

bw G i G=  (10) 

 
 
 

Edge expansion i(G)
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Figure 5 Graph edge expansion with increasing number of nodes N . x -axis is shown in log scale. 

 

2. Node Capacity 

The capacity of the network depends on many aspects of the network: network 

architecture, power and bandwidth constraints, routing strategy, radio channel 

characteristics, etc. We examine the available node capacity in the uniform ad-hoc model 

and hybrid network model in order to understand the capacity limitations of these 
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topologies. We derive a precise expression of per-node capacity in hybrid networks, which 

is missing from [23]. 

Recall that for N nodes in the network with random traffic patterns, the achieved 

per-node capacity is necessarily smaller than that for the optimal network. An optimal 

network is defined as a network with optimally placed nodes, optimally assigned node 

range and traffic pattern. From [17], we obtain an upper bound on per-node throughput 

capacity λ as: 

 .
W

O
N

λ � �= � �
� �

 (11) 

We know that as the number of nodes in the network increases, the radius decreases 

as ( )log /N NπΘ  resulting in the average path length in hops to increase as ( )NΘ . 

This translates into an increase in the relay load on the nodes of the network and a decrease 

in the useful node capacity given by (11). Thus, one option to improve the node capacity in 

ad-hoc networks involves reducing the average path length of the network as achieved by 

hybrid networks. 

 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 
 

Base Station 
 

Figure 6 Hybrid Wireless Network Model. 
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Suppose that the base-stations (as shown in Figure 6) have the same transmission 

range r as other nodes in the network and that the channel capacity W is allocated to three 

non-interfering sub-channels of capacity W1 – for ad-hoc mode transmissions within a cell 

and W2 (=W3) – for uplink (downlink) transmissions through the base station infrastructure3. 

 1 2 3 2 3, .W W W W W W= + + =  (12)  

For a hybrid network of N nodes uniformly and independently distributed in m cells, 

the probability that the source-destination pair lie in the same cell is 1/m2. Hence, the nodes 

employ ad-hoc mode transmission with probability 21/ m  and infrastructure mode 

transmission with probability 21 1/ m− .  

Effective node capacity λ can be expressed as a sum of two components: ad-hoc 

mode capacity λa and infrastructure mode capacity λi. 

 2 2(1/ ) (1 1/ ) .a im mλ λ λ= + −  (13) 

Now, the expected number of ad-hoc mode transmissions in single cell is N/m2. 

Hence, from (11), we obtain the ad-hoc mode capacity as: 

 1
2

.
/

a
W

O
N m

λ
� �
� �=
� �
� �

 (14) 

Since all infrastructure mode traffic is directed to the base-station, allowing multi-

hop communication with the base-station does not alleviate the bottleneck. Thus, we 

assume that the nodes within a cell can reach the base station in a single hop and that a 

                                                 

3 As noted in [23], every data packet that uses the infrastructure mode transmission goes through an uplink and 
downlink transmission. Hence, we choose W2= W3. For the same reason, capacity estimation includes either uplink or 
downlink transfer. 
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round-robin node schedule gives a total per-cell throughput of W2. With the expected 

number of infrastructure mode transmissions in a single cell given by 2(1 1/ ) /N m m− , the 

per-node infrastructure mode capacity is bounded by: 

 2
2

.
(1 1/ )

i
mW

N m
λ

� �
= Θ� �� �−� �

 (15) 

Hence, from (13), the effective per-node capacity is: 

 1 2 .
/

W W
O

N mm N
λ � � � �= + Θ� �� �

� �� �
 (16) 

The denominators for the two terms in (16) suggest that with increasing values of m, 

the first term goes to 0. Thus, for optimal node capacity, using (12), we require channel 

assignments such that 1 / 0W W → . Note that m=1 transforms the network to an ad-hoc 

topology requiring 2 / 0W W → . From (12), for large m we obtain a per-node capacity of: 

 ( ).
mW
N

λ = Θ  (17) 

Thus, (17) suggests that to maintain a constant per-node capacity with increasing 

network size, we require / constantN m ∼  i.e., the number of nodes in a cell remains fixed. 

This entails a linear increase in m with the number of nodes in the network. The node 

capacity improvement comes at an increased cost of network infrastructure and transforms 

the ad-hoc topology to a cellular structure. In the next section, we examine wireless ad-hoc 

topology properties in context with other large-scale networks. 
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V. WIRELESS AD HOC NETWORKS AND SMALL WORLDS 

We examine the underlying traits of large-scale, self-organizing systems with 

respect to ad-hoc topology in an attempt to identify a topology model for large wireless 

data networks. Many real-world complex systems (such as the chemical-reaction networks 

[1], social networks [2], scientific-collaboration networks [40], and the Internet [10]) build 

topologies that exhibit the “small world” phenomena. Recall that a graph is a small-world 

graph if, for a given number of nodes N, it has a much higher clustering coefficient and 

similar average distance compared to a random graph with the same number of nodes. 
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Figure 7 Ad-hoc networks exhibit high clustering but large diameter and large average path length. 

 
 
 

As shown in Figure 7, small-world networks can be viewed as a superposition of 

regular lattices and purely random graphs [42]. These networks combine high clustering of 

regular lattices and the small-world effect (i.e., low diameter) typical to many random 
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graphs. The main question studied in this thesis is where do ad-hoc networks belong in 

Figure 7 (random, structured, or both)? In fact, current uniform node-distribution models 

belong to the class of random geometric graphs G(N,r) and have many properties very 

similar to those of the ER model.  

Next recall that scale-free networks [6], [1], [5] emerge as the primary model of 

evolving graphs, in which new nodes connect preferentially to the popular (or highly 

connected) nodes in the network. Scale-free networks are also exhibit short node-separation 

distances [5], [10]. In this section, we explore clustering and path length characteristics of 

uniform ad-hoc networks to better understand the typical ad-hoc topology as compared to 

that of other existing complex networks. 

 
 
 

v

 
Figure 8 Illustration for clustering coefficient. For the vertex v  shown, clustering coefficient is 

2/6=1/3. 

 
 
 

1. Clustering Coefficient 

Recall that the clustering coefficient γ characterizes the density of connections in the 

local neighborhood of a vertex. Suppose that the network is undirected and one of its 
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vertices v has z neighbors (this is shown in Figure 8 for 4z = ). The maximal clustering is 

achieved if all ( 1) / 2z z −  possible edges between the neighbors of v exist. The clustering 

coefficient captures the probability that there exists an edge between two neighbors of a 

randomly chosen vertex and relates to the density of 3-cycles in the network. 

 

Definition 3: Given a graph ( , )G V E= , node v V∈ , and its neighborhood 

( ) { : ( , ) }v u u v EΓ = ∈ , the clustering coefficient of node v is defined as the ratio of the 

number of links ( )L Γ  that are entirely contained in ( )vΓ  to the maximum possible number 

of such links. 

 
( ( ))

( )
( ) ( ( ) 1) / 2

L v
v

v v
γ Γ=

Γ Γ −
. (18) 

Graph clustering γ(G) is the average of γ(v) for all vertices with degree at least 2. 

We determine the clustering coefficient for wireless ad-hoc networks as follows. 

 

Lemma 3: The expected clustering coefficient of wireless ad-hoc network is given by: 

 
2

0.69( 1) 2
( ) .

k
G

k r
γ

π
+ −=

−
 (19) 

where k  is the expected node degree. 

Proof: For any pair of neighbors v∈V and u∈Γ(v), let Au be the expected overlap area of 

circles centered at v and u as shown in Figure 9. Thus, 2uAρ −  gives the expected number 

of nodes in the set C = {w: w∈V, w∈Γ(v), w∈Γ(u)}, which contains neighbors common to 
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both u and v. Therefore, the expected number of undirected edges between the neighbors of 

node v is given by:  

 
1 1

1 1
( 2) ,

2 2

k k
v u u

u u
C A A kρ ρ

= =
= − = −� �  (20) 

where the expected node degree is given by: 

 2 1k rρπ= − , (21) 

(the term 2rρπ  in (21) represents the expected number of nodes in a circle of 

radius r). From Figure 9, the shaded overlap region between the two circles is given by 

2( )A B− , where �A acb=  is the sector of the circle swept by angle θ = 2cos–1(x/2r), and B 

is the area of the triangle abc∆ . Now, notice that A = 1/2θr2 and 

2 2cos( / 2)sin( / 2) 1/ 2 sinB r rθ θ θ= = , which gives the area of the overlap as 

2 ( sin )r θ θ− . The assumptions of a uniform spatial distribution of nodes suggests that the 

neighboring nodes are equally likely to lie at distance uniformly distributed between 0 and r 

from node v. Hence, the expected area of the overlap, Au, is obtained as: 

 2 2

0

1
( sin ) 2.16 .

r

uA r dx r
r

θ θ= − =�  (22) 

 Using (20), we get 21
[ (2.16 ) 2 ]

2vC r kρ= −  and the expected clustering coefficient 

of node v is given by: 
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 (23) 

Recalling that node degree | ( ) |vΓ  of wireless ad-hoc networks is a binomial 

random variable B(N, 2rπ ), we get from (23): 

 
2 2

[ ( )] .
1

( )
2

vC
E v

k k r
γ

π
=

� �−� �
� �

 

Thus, the expected clustering coefficient is given as: 

 
2

0.69( 1) 2
( ) [ ( )] .

k
G E v

k r
γ γ

π
+ −= =

−
 (24) 

This completes the proof and leads to (19). 

Recalling that logk N=  and log /r N Nπ= , we obtain from (24),  

 
0.69(log 1) 2

( ) .
log

log

N
G

N
N

N

γ + −=
−

 

For large values of N, the clustering coefficient of wireless ad-hoc networks 

asymptotically tends to: 

 ( ) 0.69.Gγ →  (25) 
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Figure 9 Determination of clustering coefficient by estimation of overlap area of two circles.  
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Figure 10 Clustering coefficient for wireless ad-hoc networks and random graph model ( , )G N p  

with expected node degree k for a network with N  =1000 nodes. 

 
 
 

In comparison, if we consider a node in a random graph G(N,p) with expected node 

degree k , the probability that two of its neighbors are connected is equal to the probability 

that two randomly selected nodes are connected. Consequently, the clustering coefficient of 

a random graph is given by: 

 0.rand
k

p
N

γ = = →  (26) 
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We observe from (26) that randγ  tends to 0 for large values of N. Thus, the 

clustering coefficient of wireless ad-hoc networks is significantly higher than that of 

random graphs based on the G(N,p) model. The variation of the clustering coefficient in 

both models with increasing network size is shown in Figure 10. 

2. Diameter and Average Path Length 

The diameter of a graph is the maximal distance between any pair of its nodes. 

Strictly speaking, the diameter of a disconnected graph (i.e., one made up of several 

isolated clusters) is infinite, but it can be defined as the maximum diameter of its clusters. 

The average path length provides another way to characterize the spread of a network. For a 

uniform spatial distribution of nodes, the maximum and average paths (in hops) among 

nodes in a connected set of N nodes both increase as ( )NΘ  [17]. In particular, it is well 

known that the maximum path length across the entire network and the average path length 

L increase as N1/2: 

 ( ) ( ).L A N= Θ = Θ  (27) 

Unlike ad-hoc networks, random graphs based on the ER model tend to have 

logarithmic ( logk N ) diameters [1], which are substantially smaller than the bound in (27). 

The plot of the expected path length as a function of the number of nodes in the network is 

shown in Figure 11.  
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Figure 11 Average path lengths for wireless ad-hoc networks and random graph model ( , )G N p . 

 
 
 

Hence, unlike real, large-scale networks, the ad-hoc model exhibits high clustering 

and large average distance. The high average path length has implications on the route 

reliability and node capacity. The probability of route breakage increases with the size of 

the route. In addition, more hops on the data path result in increased relay load on the 

intermediate nodes of the route. This leads to a reduction of the useful per-node capacity as 

we have shown in section IV.2. We now develop a large-scale evolving model for ad-hoc 

networks, which gives a constrained average path length over all source-destination pairs. 
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VI. LARGE-SCALE WIRELESS NETWORK TOPOLOGY 

The above discussion on graph resilience and node capacity motivates us to develop 

an alternate model for wireless ad hoc networks. Our model attempts to capture the growth 

dynamics of a network consisting of mobile users. We consider two types of attachment 

functions for newly introduced nodes. In the first model, as new nodes join the network, 

they attempt to associate with large clusters - based on the reasoning that large clusters 

would most likely contain more information. A natural truncation or aging effect may be 

seen due to reduction in per-node capacity for significantly large sized clusters. In the 

second model, we consider a uniform node-attachment function wherein the new node is 

equally likely to attach to any of the existing clusters. 

1. Preferential Attachment Evolving Model 

Linear preferential linking has been suggested as a means to model many real 

networks [6], [10]. Any self-organizing group of nodes (humans with laptops, smart 

devices) exhibits non-uniform spatial distribution and traffic patterns. This is based on the 

observed phenomena that popularity is attractive and information is non-uniformly 

distributed. We base our model on this linear preferential attachment function. This model 

describes three events occurrences pertaining to the growth of the network: a new node 

joining an existing cluster, a new node forming a cluster, and transition of an existing node 

from one cluster to another. We start with 0c  initial clusters (of size 1) in a given region of 

the unit area. At each time step, we perform one of the following two operations. 
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With probability p ( 0 1p≤ < ), we add a new node to the system. With probability 

q, the new node forms a new cluster at a random location. With probability 1 q− , the new 

node joins one of the existing clusters. The new node selects its (x,y) coordinates within the 

transmission range of a random node in the chosen cluster. Let ( ( ))ic t∏  denote the 

probability for choosing cluster i, where ( )ic t  is the size of cluster i at time t. In linear 

preferential attachment, ( ( ))ic t∏  is defined as: 

 
( )

( ( )) .
( )

i
i

jj

c t
c t

c t
∏ =

�
 (28) 

With probability 1 p− , a node moves from one cluster to another, which models 

mobility of wireless nodes. A randomly selected node from a cluster moves from its 

existing cluster to a new cluster based on the preferential attachment model. The node 

selects its (x,y) coordinates within the chosen cluster in a manner identical to that in step 1. 
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Figure 12 Cluster size distribution for preferential attachment of nodes to existing clusters. 
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Exponent=-1.7, p=1, q=0.4
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Figure 13 Complementary cumulative distribution for cluster size - Truncation of power-law cluster 

size due to constraints on acceptable capacity and delay. 

2. Analysis 

Using the continuum theory approach [1], we show that our model results in a graph 

with a power law cluster size distribution as shown in Figure 12 and Figure 13. We extend 

the scale-free model as introduced in [6] to model node clustering and mobility in addition 

to network growth. We also derive a precise relationship between the model parameters and 

the power law exponent. 

 

Theorem 1: The cluster size distribution for the preferential attachment model follows a 

power law distribution with the exponent given by: 

 ( , ) .
1

p
p q

pq
α =

−
 (29) 

 

Proof: Assuming ci changes continuously with time, the probability ( ( ))ic t∏  can be 

interpreted as the rate at which ci changes. The growth of the network from the addition of 

new nodes to existing clusters and node movement between clusters contribute to changes 
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in ci, while formation of new clusters does not affect the existing values of ci. Hence, the 

contribution from formation of new clusters to rate of change of ci is 0. 

• Addition of a new node to an existing cluster with probability (1 )p q−  can be 

modeled as: 

 
( ) ( )

.
( )

i i

jj

c t c t
t c t

∂ =
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 (30) 

• Addition of a new node to form a new cluster with probability pq  has no effect 

on ci: 

 
( )

0.ic t
t

∂ =
∂

 (31) 

• Transition of a node from an existing cluster to another one with probability 

1 p−  results in: 

 
( ) ( )1

.
( ) ( )

i i

jj

c t c t
t C t c t

∂ = − +
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 (32) 

where C(t) is the total number of existing clusters. 

The first term models the rate of decrease in the size of the cluster due to a “node 

leave”, while the second term shows the rate of increase in size of the cluster due to a “node 

join”. 

Since these three processes take place simultaneously, we add their contributions: 

 
( ) ( ) ( ) 1

(1 ) (1 ) (1 )
( ) ( ) ( )

i i i

j jj j
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 The number of clusters C(t) in the graph is simply (pq)t+c0, where c0 represents the 

initial number of clusters in the network. For large t, the constant term c0 can be safely 

omitted from C(t) as compared to (pq)t - ( ) ( )C t pq t= . The total number of nodes in all the 

clusters of the network varies with time and is 0( )jj c t pt c pt= + ≈� . Thus, (33) 

transforms to: 

 
( ) ( )(1 ) (1 ) 1i ic t c tpq p
t p t pq t

∂ − −= −
∂

 (34) 

Using the initial condition that the size of a cluster formed at time ti is ci(ti)=1, the 

solution of (34) for ci(ti) is: 

 
( , )

( , ) ( , )
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 (35) 

where 

 

1
( , ) ,

1
( , ) .

pq
A p q

p
p

B p q
pq

−=

−=
 (36) 

Using (35), the probability that a cluster has size ci(t) smaller than c can be written 

as: 

 [ ( ) ] [ ( , ) ].i iP c t c P t C p q t< = >  (37) 

where 
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 (38) 
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Since ti must satisfy the condition 0 it t≤ ≤ , we have three cases for C(p,q): 

a) If ( , ) 1C p q > , then [ ( ) ] 0iP c t c< = . Thus, 1c >  is the condition for P(c) to 

be non-zero. P(c) is the probability that a cluster has size ci(t) equal to c. 

b) If C(p,q) is not real, then [ ( ) ]iP c t c<  is not well defined. Thus, to be able to 

calculate P(c), we need ( , ) 0C p q > , for all 1c > , 1 ( , ) / ( , ) 0B p q A p q− > . 

This condition translates into 1/(1 )p q> + . 

c) For 0 ( , ) 1C p q< ≤ , we determine the cluster size distribution P(c) below. 

Defining the unit of time in the system as one cluster form/cluster join/node 

transition attempt, the probability density of ti is 0( ) 1/( )i iP t pqt c= + . Thus, 

 
0
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t

P c t c C p q
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< = −
+

 (39) 

As 
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( ) iP c t c
P c

c
∂ <=

∂
, we obtain 
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 (40) 

Thus, the cluster size distribution has a generalized power-law form.  

 (1 ( , ))( ) [ ( , ) ] .p qP c c D p q α− +∝ −  (41) 

where  

 
( , )

( , ) .
( , )

B p q
D p q

A p q
=  (42) 



33 

and scaling exponent is given as 1 ( , )p qα+ , where 

 
1

( , ) .
( , )

p q
A p q

α =  

This leads to (29) and completes the proof. 

 
 
 

 
Figure 14 Homogeneous spatial distribution of nodes. 

 
 
 

 
Figure 15 Preferential attachment model: non-homogeneous spatial distribution of nodes. 
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For values of 1/(1 )p q< +  as 0p → , growth of the network is suppressed and the 

model deviates from the power law distribution to approximate an exponential tail for the 

cluster size distribution. On the other end, 1p =  gives a power-law distribution 

(1 ( ))( ) ( ) qP c q c αα − +=  with exponent ( ) 1/(1 )q qα = − , where q is the probability of forming 

a new cluster. This is equivalent to the static network case where nodes do not transition 

between clusters. A snapshot of the network is shown Figure 14 for uniform distribution of 

nodes while Figure 15 shows the clusters in the preferential attachment model. 

3. Information Storage and Retrieval 

In the model described in the previous subsection, connectivity is guaranteed within 

clusters. In situations where nodes require data objects from nodes in other clusters (or 

services from the Internet such as websites or email access), complete network connectivity 

(or connectivity to wired infrastructure) is needed. In such scenarios, we require the support 

of wireless relay nodes or wired base-stations between clusters, as shown in Figure 16. 

Initial access to data objects stored in nodes belonging to other clusters (or services from 

the Internet) would be achieved through these relay nodes between clusters (or base-

stations). Further access to these objects can be optimized through collaborative caching 

[13] as observed in information sharing networks (peer-to-peer networks). Such requests 

would then be met from nodes within the requesting node’s cluster. 
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Figure 16 Communication between clusters through relay nodes (e.g. wired infrastructure). 

 
 
 

To avoid creating hotspots in communication within the cluster and to distribute the 

load evenly amongst the nodes, we propose use of GHT (Geographic Hash Table) [34] for 

data storage and retrieval. Each data object in the cluster is associated with a unique key 

and GHT hashes the keys into geographic coordinates within the cluster. The nodes that are 

geographically nearest to those coordinates store the key-value pair. This system achieves 

high data availability by replicating stored data locally, thus providing resilience against 

node failure. 

Next, we obtain an estimate for node capacity for the proposed network model. 

4. Node Capacity 

Assume, as before that each node is capable of transmitting at W bits per second. 

Since the information distribution governs the formation and size of clusters, the node that 

preferentially attaches itself to one the existing cluster constricts its traffic to the nodes 

belonging to the same cluster. Hence, each node sends data to a chosen destination within 

its cluster. Under the above assumptions, we obtain an expression for per-node capacity λ 

in the above model. 

 



36 

Lemma 4: The per-node capacity in the preferential attachment model is constant with 

increasing network size and is given by: 

 
2

.
2 1

W αλ
αβ +

�  

Proof: Considering the power law cluster size distribution given by 

 ( ) 1 .F c cα αβ −= −  (43) 

where β  is the minimum cluster size (generally 2), c β≥ , and 1.
1

p
pq

α = >
−

 

 Recall that the expected cluster size for a pareto distribution is given by 

 .
1

c
αβ

α −
�  (44) 

From (11), we obtain that per-node capacity is bounded by ( / )O W Nλ = . Hence, 

the optimal per-node capacity, λi, within a cluster i is a function of the size of the cluster ci 

and can be estimated as: 

 .i
i

W
c

λ �  

Hence, the per-node capacity for any node in the network is given as: 

 ( ) ( ) .i
i

W
E

E c
λ λ= =  

We obtain the cumulative distribution function of 1/ iY c=  as: 

 2( ) .F y yα αβ=  (45) 

From (45), we obtain the expectation of Y as: 
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 Hence, the optimal per-node throughput capacity is: 

 
2

.
2 1

W αλ
αβ +

�  (47) 

Hence, the node capacity in the system remains constant as the number of nodes in 

the system increases. The estimate of node capacity is a function of system characteristics, 

which include the probability of cluster formation and node transition frequency between 

clusters. 

5. Uniform Attachment Evolving Model 

Natural development of power-law degree distribution in large-scale networks 

indicates that growth and preferential attachment are important features of network 

evolution. We briefly consider a network model that does not incorporate preferential 

attachment. We aim to show that such a model also scales to large number of nodes. Hence, 

it can provide for systems that are not self-organizing and where nodes exhibit controlled 

behavior. We show that if the nodes entering the network attach uniformly to existing 

clusters, the system consists of exponentially distributed cluster sizes. The model is defined 

as follows: 

Growth: Starting with a small number of clusters (c0), at every time step a new node 

enters the system and forms a new cluster with probability p and joins an existing cluster 

with probability 1 p− . 
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Uniform Attachment: The new node joins existing clusters with equal probability, 

independent of the cluster size: 

 
0

1
( ) .ic

c pt
Π =

+
 (48) 

 Figure 17 shows that unlike the power-law form for preferential attachment model, 

probability P(c) has an exponential form. Using the continuum theory arguments mentioned 

in 2, we analytically obtain the expression for P(c). The rate of change of the size of cluster 

i in this case is given by: 
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 (49) 

Solving the above equation for ci(t), and taking into account that ( ) 1i ic t = , we 

obtain: 

 ( ) 1 (log log ).i ic t a t t= + −  (50) 

where 

 
1

.
p

a
p
−=  (51) 

indicating that ci has a logarithmic increase with time. 

The probability that cluster i has size ci(t) smaller than c is: 
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 (52) 

Assuming that we add the nodes uniformly to the system, we get 
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As 
[ ( ) ]

( ) iP c t c
P c

c
∂ <=

∂
, we obtain for large values of t: 
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 (54) 

 This indicates that the cluster size has an exponential distribution with 

expected cluster size 1/ aae . The expected node capacity is constant and lower bounded by 

1// aW ae . This suggests that with uniform attachment of nodes to clusters, the maximum 

cluster size is bounded and cannot be infinitely large. A snapshot of the cluster formation 

process for uniform attachment model is shown in Figure 18. 
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Figure 17 Cluster size distribution for uniform attachment model for probability of new cluster 

formation 0.2p = . 
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Figure 18 Uniform attachment model: non-homogeneous distribution of nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

VII. CONCLUSION 

The applications for ad-hoc networks are only beginning to be recognized. As 

applications for large-scale information/file sharing in the wireless domain develop, ad-hoc 

network are expected to provide a cost-effective solution for increasing and complementing 

wired connectivity.  

We have seen that large networks with a uniform spatial distribution of nodes do not 

scale well in terms of reliability of the network and node capacity. One approach to 

improve the scalability of an ad-hoc network involves creating a “small world” effect by 

setting up base stations and dividing the nodes into single-hop cells. This results in a node 

capacity λ=Θ(1/number of nodes per cell). In this case, a cellular topology consisting of a 

collection of small LANs connected together by base stations would be required to 

seamlessly cover a large region.  

Since ad-hoc networks must exist with no or little infrastructure support, a realistic 

topology of large ad-hoc networks is a collection of connected components or clusters.  We 

contend that since information is clustered or concentrated in a small number of users, 

cluster formation is a realistic situation. 

In this thesis, we have studied cluster formation as a result of an evolving model for ad-

hoc networks. The cluster size distribution has been shown to depend on how the nodes 

attach to existing clusters and the formation of new clusters. Preferential attachment of 

nodes to existing clusters results in a truncated power-law cluster size distribution. The 

truncated distribution ensures that an infinitely large cluster does not exist. The per-node 

capacity for the power-law distribution of cluster sizes is shown to scale with network size 
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though ad-hoc connectivity is only maintained within clusters. On the other hand, uniform 

attachment of nodes gives an exponential distribution of cluster sizes. Since per-node 

capacity in both the models scales with network size, we contend that any networks with 

intermediate node attachment behavior would also scale well for large network sizes. 

Communication between clusters still requires support from a collection of relay nodes 

(base-stations) distributed between clusters.  

Thus, this thesis developed a model for growing ad-hoc networks that demonstrates 

that wireless ad-hoc networks are likely to be scalable in practical settings where users’ 

communication patterns are highly clustered. 
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