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ABSTRACT 
 

 

Vision Based Navigation System for Autonomous Proximity Operations:  

An Experimental and Analytical Study. (December 2004) 

Ju-Young Du, B.S., Yonsei University;  

M.S., Yonsei University 

Chair of Advisory Committee: Dr. John L. Junkins 

 

 

This dissertation presents an experimental and analytical study of the Vision Based 

Navigation system (VisNav). VisNav is a novel intelligent optical sensor system 

invented by Texas A&M University recently for autonomous proximity operations. This 

dissertation is focused on system calibration techniques and navigation algorithms. This 

dissertation is composed of four parts. First, the fundamental hardware and software 

design configuration of the VisNav system is introduced. Second, system calibration 

techniques are discussed that should enable an accurate VisNav system application, as 

well as characterization of errors. Third, a new six degree-of-freedom navigation 

algorithm based on the Gaussian Least Squares Differential Correction is presented that 

provides a geometrical best  position and attitude estimates through batch iterations. 

Finally, a dynamic state estimation algorithm utilizing the Extended Kalman Filter 

(EKF) is developed that recursively estimates position, attitude, linear velocities, and 

angular rates. Moreover, an approach for integration of VisNav measurements with 

those made by an Inertial Measuring Unit (IMU) is derived. This novel VisNav/IMU 

integration technique is shown to significantly improve the navigation accuracy and 

guarantee the robustness of the navigation system in the event of occasional dropout of 

VisNav data. 
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CHAPTER I 

INTRODUCTION 

NASA is pursuing autonomous proximity navigation technologies to make access 

to space safer, more reliable, and less expensive for many customers. Likewise many 

other commercial and military scenarios include autonomous proximity operations, 

inspection, self-assembly. The Vision Based Navigation (VisNav) system developed at 

Texas A&M University is a low-cost, flexible, and robust navigation system. VisNav 

applies an adaptive approach in which cooperative active beacons and commanded via 

real-time feedback, to optimize navigation accuracy. Owing to the many attractive 

features of the VisNav system as discussed herein, VisNav has widespread possibility 

for applications, such as spacecraft rendezvous and docking, aerial refueling, formation 

flying, and space robotic manipulation in aerospace industry, as well as motion capture, 

and intelligent robotic applications in many other fields. The purpose of this dissertation 

is to present fundamental calibration techniques and navigation algorithms for the 

VisNav system application, and validation using analytical studies and by application to 

experimental data. 

1.1  Background 

Precise six degree-of-freedom relative position and attitude determination 

represents an important and challenging problem for proximity operations. For a 

number of years, position sensing systems used for autonomous navigation have been 

accomplished by a variety of means including dead reckoning sensors and external 

sensors  [1]. 

 
This dissertation follows the style and format of IEEE Transactions on Automatic 

Control. 
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Dead reckoning sensors measure a subset of dynamic quantities such as velocity, 

acceleration, and angular velocity. This information is then used with a kinematic 

model of the vehicle in order to predict future motion. Most dead reckoning sensors are 

inertial sensors. For example, the Inertial Measurement Unit (IMU) provides densely 

measured linear acceleration and angular rate by 3 axial accelerometers and 3 axial 

gyroscopes  [2],  [3]. The IMU can capture the fast dynamics of a maneuverable vehicle 

such as an aircraft due to its high bandwidth and high sampling rate. In addition, 

prediction using an IMU typically does not rely on any external aids and does not 

necessary to emit or receive any detectable radiation. However, IMU measurements are 

usually corrupted by initial condition errors, noise, bias and drift variation, so that the 

navigation errors may be accumulated and lead to significant errors in the position, 

velocity, and attitude output. 

External sensors provide position information through the direct observation of 

landmarks or beacons, either natural or artificial. Radars, laser ranging systems, 

ultrasonic sensors, image-based sensors, and Global Positioning System (GPS) sensors 

belong to the category of external sensors. However, there are always limitations on 

accuracy, bandwidth, and flexibility for applications of these existing external sensor 

systems. Radars, laser ranging systems, and ultrasonic sensors provide accurate range 

information, however there is a significant difference between measuring the range and 

solving the full six degree-of-freedom navigation problem  [4]. 

GPS is the most common navigation system in use today [5]. GPS provides real 

time absolute or relative position data, but the accuracy and bandwidth are limited 

compared to the typical requirements of relative proximity operation. A number of 

difficulties associated with geometric dilution of precision, integer ambiguity resolution, 

multipath must be resolved for each application. For example, when a spacecraft 

approaches the ISS to perform rendezvous and docking, the signals from the GPS 

satellites may be blocked and degraded by multipath signals reflected by the ISS. 

Differential GPS (DGPS) can partially address these problems and under ideal 

circumstances can lead to high accuracy, especially if coupled with an IMU. 
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The Video Guidance Sensor (VGS) is considered as a candidate proximity 

navigation sensor by NASA [6], [7]. The VGS is an optical sensor that measure the 

range and attitude of the chase vehicle relative to the target vehicle in the terminal phase 

of automated rendezvous and capture, out to about 100 meters [7]. It employs a Charge 

Coupled Device (CCD) camera mounted on the chaser to image a set of passive 

reflective targets located on the target vehicle. The target reflectors are illuminated using 

an array of laser diodes collocated with the camera and the resulting 2D camera image is 

processed to produce an estimate of the relative six degree-of-freedom. The relative 

range accuracy of VGS is a few centimeters in each axis and the accuracy of the relative 

attitude is less than 0.3 degrees in each axis [7], [8], [9]. However, VGS has a narrow 

field-of-view (30 degrees) and the relative range and relative attitude are computed with 

a slow rate of about 2Hz. This slow update rate is adequate for slow spacecraft relative 

motions but not for many other applications. All kinds of image-based navigation 

systems that use CCD cameras require a substantial burden for image processing or 

pattern recognition or target identification. So these systems usually have slow data 

update rates and may suffer from occasional failures of the pattern recognition or target 

identification. 

Texas A&M University researchers have developed an analog vision sensor 

system (VisNav) and associated software algorithms in order to overcome above 

weaknesses of the existing image based navigation. VisNav makes use of Position 

Sensing Diode (PSD) technology which has a ast rise time of a few microseconds and 

provides a direct sensor reading that indicates the centroid location of the incident light, 

and thereby permits the very fast measurements for estimating position and attitude of 

moving object. The fast rise time allows the beacon energy to be structured in the 

frequency domain to ensure reliable discrimination and rejection of ambient energy. The 

fast rise time also allows time sequential imaging of many beacons, as well as many 

other additional desirable features as discussed below.  
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1.2  New Features of the VisNav System 

The VisNav system comprises a new type of analog electro-optical sensor 

combined with specific structured light sources called beacons in order to achieve a 

selective or “intelligent” vision [10]. The VisNav sensor is made up of a PSD placed in 

the focal plane of a wide-angle lens. When the active area of the PSD is illuminated by 

energy from a beacon focused by the lens, it generates electrical currents in four 

terminals on each side of the PSD. These currents can be processed with appropriate 

electronic and digital processing equipment to accurately measure the line-of-sight 

vector directions of the incident energy. The Digital Signal Processor (DSP) embedded 

in the VisNav sensor calculates the six degree-of-freedom position and attitude estimates 

using these line-of-sight vector measurements. The VisNav technology has many 

attractive features including: 

 

 Smart vision sensor with embedded DSP. 

 Wide field-of-view by unique optical design. 

 Small size, light weight, and low cost. 

 All solid state, no moving parts, and simple electronics. 

 No reliance on external systems. 

 Maximum signal to noise ratio by beacon orchestration via active feedback. 

 Depth-of-field can vary from a few centimeters to infinity, due to fisheye 

optics. 

 Zero image processing or pattern recognition by the PSD technology. 

 Excellent rejection of light disturbance under various operating conditions. 

 High accuracy: fraction of a centimeter relative position error and a small 

fraction of a degree relative attitude error 

 High bandwidth: navigation data updated at 100 Hz or faster, to enable general 

feedback control of proximity operations without any other motion sensor. 
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Figure 1. Spacecraft docking using VisNav system 

 

Due to these advantages, the VisNav system can be an effective starting point to 

realize precise and versatile proximity navigations. Furthermore, the VisNav system can 

be used for a variety of applications due to its flexible configurations [11], [12], [13]. 

Figure 1 illustrates the autonomous rendezvous and docking using the VisNav system. 

The Vision sensor fixed on the chase spacecraft is designed to measure the line-of-sight 

vectors from the sensor to beacons attached on the reference target spacecraft or space 

station. 

1.3  Objective and Outlines 

The objective of this research is to develop calibration and navigation algorithms 

and software for the VisNav system and to use these to evaluate that the new VisNav 

system performance for proximity navigation through laboratory experiments and 

numerical simulation studies. 

Laboratory experiments have been conducted to collect the vision sensor data and 

develop the calibration methodology to improve the VisNav system accuracy. In order to 

perform the calibration, the global calibration models have been developed based on 

optimal approximation using bivariate Chebyshev polynomials. In addition, local 
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calibration functions using a weighted averaging method have been investigated to 

achieve a required accuracy. 

Navigation algorithms to estimate the six degrees-of-freedom relative motion of 

two vehicles using the VisNav system have been developed. A Gaussian Least Square 

Differential Correction (GLSDC) method using Modified Rodrigues Parameters (MRPs) 

has been developed to determine the best geometric position and attitude estimates from 

each set of four or more measurements through batch iterations. An Extended Kalman 

Filter (EKF) then improves the navigation accuracy and estimates an optimal linear 

velocity and angular rate trajectory consistent with these geometric solutions. 

The applicability of the EKF depends upon the availability of an adequate 

dynamical model or direct measurement of velocity or acceleration. However, dynamical 

modeling for aircraft and spacecraft includes many difficulties in applying valid torque 

and force models. Moreover, the VisNav system has a risk of intermittent data dropout 

due to occasional situations where too few beacons are within the field-of-view (FOV). 

Therefore, the integration of VisNav and IMU using the complementary EKF provides a 

more precise and robust proximity navigation solution. The above navigation algorithms 

have been fully developed and their feasibilities are demonstrated through numerical 

simulations. 

In Chapter II, the fundamental hardware and software design configuration of the 

VisNav system is described. In Chapter III, system calibration techniques designed to 

enable more accurate VisNav system application are investigated. In Chapter IV, six 

degree-of-freedom navigation algorithms based on the GLSDC are presented. In Chapter 

V, an EKF algorithm is established, using a piecewise nominal zero acceleration model 

and also a second EKF approach using integration of VisNav measurements with 

acceleration and rate measurements from an Inertial Measuring Unit (IMU). Finally, all 

algorithms will be demonstrated by numerical simulations. 
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CHAPTER II 

VISNAV SYSTEM CONFIGURATION 

The VisNav system consists of a set of active optical targets (Beacons) each 

radiating bursts of light modulated at a carrier frequency, a small electro-optical VisNav 

sensor that senses the image plane centroid locations of these light packets from the 

beacons, and controlling electronics such as signal controller and beacon controller for 

both the VisNav sensor and the beacons. 

2.1  VisNav System Geometry 

The basic geometry of the class of optical sensor systems under consideration is 

based on the perspective projection in which all object space points are projected onto 

the image plane through one point called the perspective center, C  in Figure 2. Point o  

is the principal point which is optical center defined mathematically as the foot of the 

perpendicular dropped from the perspective center to the image plane and iP  is the 

image point. This geometrical camera model approach is usually known as the pin-hole 

camera model and represents an idealization of any actual sensor. The x-axis of the 

Image Space Coordinate frame (ISC) is defined to be directed outward along the bore-

sight and the image plane placed at the focal plane of the lens. Then their coordinates in 

the ISC are: for (0, , )o oC y z ; for ( , , )o oo f y z− ; for ( , , )i i iP f y z− . Where f  is the 

effective focal length of lens. The line-of-sight vector B  defined by the line from image 

point iP  to the camera exposure position C  in ISC is represented by 

 ( )
( )

i i o i

i o i

f f
y y y
z z z

   
   − − ≡ −   
   − − −   

=B  (2.1)
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Figure 2. VisNav system geometry 

 

where iy  and iz  are the displacements of image coordinates along the y and z axis from 

the optical center ( , )o oy z . The coordinates of the perspective center in the Object Space 

Coordinate frame (OSC) are ( , , )c c cX Y Z  and the coordinates of the thi  beacon in the 

OSC is ( , , )i i iX Y Z . So, the line-of-sight vector R  defined by the line from camera 

exposure position C  to thi  beacon location is represented in the OSC frame by 

 
i c

i i c

i c

X X
Y Y
Z Z

− 
 − 
 − 

=R  (2.2)

The attitude describes the angular spatial relationship between the OSC and ISC 

frames. There are several attitude parameters such as Euler angles, Quaternion, classical 

Rodrigues parameters, and modified Rodrigures parameters. The relationship between 

the OSC and ISC is expressed by a 3×3 orthogonal matrix named by direction cosine 

matrix, A . The nine elements of A  are functions of the chosen attitude parameters and 

is taken by convention to transformation from the OSC to ISC. Geometrically, the line-
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of-sight vector, B  and R  are collinear for the ideal pin-hole camera [14]. Thereby, the 

following relationship can be derived. 

 i ikA=B R  (2.3)

Note that k  is an unknown scale factor. The Eq. (2.3) is the ideal pin-hole 

camera model that represents the relationship between the object space vector and the 

corresponding ideal image space vector. Eq. (2.3) can be written by 

 
11 12 13

21 22 23

31 32 33

i c

i i c

i i c

f A A A X X
y k A A A Y Y
z A A A Z Z

−     
    − = −    
    − −     

 (2.4)

Rearranging Eq. (2.3) and eliminating the proportional constant k   

 21 22 23
,

11 12 13

( ) ( ) ( )( , , , , , , )
( ) ( ) ( )

i c i c i c
i y i i i i c c c

i c i c i c

A X X A Y Y A Z Zy g X Y Z X Y Z A f
A X X A Y Y A Z Z

− + − + −
= =−

− + − + −  (2.5)

 31 32 33
,

11 12 13

( ) ( ) ( )( , , , , , , )
( ) ( ) ( )

i c i c i c
i z i i i i c c c

i c i c i c

A X X A Y Y A Z Zz g X Y Z X Y Z A f
A X X A Y Y A Z Z

− + − + −
= =−

− + − + −  (2.6)

Eq. (2.5) and Eq. (2.6) are called the co-linearity equations. From the knowledge that the 

line-of-sight unit vector of thi  beacon can be written in unit vector form in ISC 

 
2 2 2

1
i i

i i
i

f
y

f y z z

 
 = − 

+ +  − 

b  (2.7)

and in OSC 

 
2 2 2

( )
1 ( )

( ) ( ) ( ) ( )

i c

i i c
i c i c i c

i c

X X
Y Y

X X Y Y Z Z Z Z

− 
 = − 

− + − + −  − 

r  (2.8)

Then, the collinear relationship in Eq. (2.3) can also be reconstructed in unit vector 

form: 
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 i iA=b r  (2.9)

Also, it is evident from Eq. (2.4) that the geometric interpretation of scale factor k  is 

 
2 2 2

2 2 2( ) ( ) ( )
i i

i c i c i c

f y z
k

X X Y Y Z Z

+ +
=

− + − + −
 (2.10)

2.2  VisNav Sensor 

The VisNav sensor is made up of a Duo-Lateral Position Sensing Diode (PSD) 

[15] placed in the focal plane of a wide angle fisheye lens. The PSD is sensitive across a 

broad color spectrum, peaking near 900nm; this allows one to select the beacon’s color 

(wavelength) with great freedom, but one should emphasize the near infrared region 

(800 to 1000 nm) where the PSD sensitivity is near maximum. Figure 3 shows the PSD 

Sensitivity and LED Emission characteristic. 

The PSD consists of a silicon substrate and a resistive layer. When the active 

silicon area of the PSD is illuminated by incident energy, it will generate a photo-current, 

which flows from the point of incident through the resistive layer to the terminal. The 

resistivity of the resistive layer is nominally uniform so the photo-current at each 

terminal is approximately inversely proportional to the distance between the incident 

spot location of light and terminals. For example, if the input light spot is exactly at the 

PSD center then equal current signals would be expected through each of the four 

terminals. Thereby, the imbalance of the currents of left and right terminal show the light 

centroid location of horizontal direction and the imbalance of the currents of up and 

down terminal show the light cectroid location of the vertical direction. 

Each pair of horizontal and vertical current imbalances generated is almost linearly 

proportional to the horizontal and vertical location, respectively, of the centroid of the 

light beam onto the PSD active area. While the individual currents depend on the 

intensity of the light, their non-dimensionalized current imbalances are nominally not 

dependent on the intensity. 
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Figure 3  PSD sensitivity and LED emission characteristics 

 

These ideal proportionalities and de-coupling only approximate the actual PSD 

behavior; the coupling and lens distortion must be determined by calibration.  

A second order dependence arises due to signal-to-noise consideration, therefore 

we prefer to keep the sum of the currents is an ideal range around 70% of the saturation 

intensity. Therefore, active feedback is used to command each individual beacon to 

maintain received energy in the optimal range for maximum signal to noise. 

 The PSD has very fast rising time, about 5 micro seconds, so it is capable of 

“seeing” targets at thousands of “frames” per second. Moreover, The PSD offers 

outstanding position linearity, high analog resolution, and simple operating circuits. The 

position non-linearity is defined as the geometric position error divided by the detector 
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dimension. Position non-linearity of currently used duo-lateral PSD is less than 0.3% 

[15], [16], and systematic errors can be corrected via calibration.  

Figure 4 and Figure 5 show that the VisNav sensor structure. The 18mm diameter 

fisheye lens that has a focal length of 10f mm=  collects the light from a cone of angle 

±45 degrees field-of-view and focus the incident energy onto the PSD active area. A 

narrow bandpass passive color filter is placed in front of the lens in order to reject most 

ambient light noise and therefore reduce shot noise which is known to be proportional to 

the square root of the total energy incident on the detector.  

2.3  Beacon Assembly 

Figure 6 shows these sizes of beacon prototypes. These are laboratory prototypes, 

future beacons are expected to be much smaller. Figure 7 shows the beacon structure. 

The command to one of beacons is shown; time multi-plexing is used to activate the 

beacon sequentially for 0.001 second each. The beacons used in the VisNav system are 

composed of omni-directional light emitting diodes (LEDs) that radiate energy over a 

near hemispherical shape. Each of those shown in Figure 7  is actually an array of LEDs, 

and has a diffuser element in order to make light have reduced intensity variations. This 

design was adopted because low power LEDs are very inexpensive and reliable. The 

wavelength of the LEDs used in the beacons is 880nm (Near Infra Red region), which is 

invisible to the human eye. This wavelength was chosen to be close to the optimal 

response wavelength of the PSD. The advantages of using LEDs are compact size, high 

bandwidth, low cost, long life, and good power efficiency. The number of LEDs used to 

form a beacon depends on the cost, type of LED, required signal-to-noise ratio, and the 

maximum operating distance. It is expected that the optimal design will be “dime-size” 

beacons. The beacons of Figure 7 have the advantage of being eye-safe and this 

consideration is to avoid the optimal higher energy density design in these laboratory 

studies. 
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Figure 5  VisNav sensor structure 
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Figure 6  Beacons boxes 
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Figure 7  Beacon structure 
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Figure 8. VisNav electronic schematic 

 

2.4  Electronics 

Figure 8 shows that the electronic schematic of the VisNav system. The VisNav 

system’s main subsystems are the signal controller and the beacon controller. The signal 

controller includes the Analog Signal Processing system (ASP), Digital Signal Processor 

(DSP), and Beacon Control Processor (BCP).  
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The ASP receives output current signals, , , , left right up downI I I I  generated by PSD in 

response to receiving an optical signal from a beacon. The ASP is comprised of current-

to-voltage amplifiers, a bandpass filter, a rectifier, and a lowpass filter. Amplifiers 

receive output current signals, , , , left right up downI I I I  from VisNav sensor and converts to 

scaled electrical voltages. Then the bandpass filter removes unwanted frequency noise 

and disturbance signals, and outputs bipolar voltages. Rectifiers convert bipolar voltages 

to unipolar voltages. A lowpass filter smoothes voltages to final outputs, 

, , ,left right up downV V V V . These voltages , , ,left right up downV V V V  are digitized by an Analog-to-

Digital (A/D) converter operable to run as a DSP input device. 

2.4.1  Digital Signal Processor 

The DSP receives the digitized voltage signals , , ,left right up downV V V V  from the ASP 

and determines the non-dimensionalized horizontal and vertical normalized voltages 

signals, ,y zV V  by comparing voltage signals to each other using the following definition: 

 

right reft
y

right left

up down
z

up down

V V
V

V V

V V
V

V V

−
=

+

−
=

+

 (2.11)

Notice that these normalized voltages measure the location of the light centroid on PSD 

of an optical signal and thus, the direction of the corresponding beacon relative to axis of 

ISC. Then normalized voltages can be mapped into corresponding ideal pin-hole camera 

model image coordinates using the nonlinear calibration functions. In Chapter III, the 

calibration process will be discussed in detail. 

Also, the DSP commands which beacon is to be turned on next, and at what 

intensity power in order to optimize the signal to noise level of the received signal 

considering, the maximum PSD current level induced the last time, and also sends a two 

byte package of these data to the beacon controller via an infrared or radio data link. 
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Specifically, the DSP commands a small percentage increase or decrease (1% in the 

current prototype) in each beacon’s emitted power 100 times per second. Finally, the 

DSP executes the six degree-of-freedom navigation algorithms which estimate the 

position and attitude of sensor fixed frame based on Gaussian Least Square Differential 

Correction and the Extended Kalman Filter. In Chapter IV and Chapter V, the six 

degree-of-freedom navigation algorithms will be discussed in detail. The overall data 

update rate is 100Hz for the current VisNav system prototype. This is sufficient for 

controlling most proximity operations anticipated and is much better than competing 

approaches. The choice of DSP depends on several factors including sampling frequency, 

computational requirements, amounts of parallelism in the algorithm, programmability, 

power consumption, design time, and non-recurring costs. We chose a 16-bit fixed-point 

DSP TMS320C55 manufactured by Texas Instruments due to the system flexibility. We 

do not claim this is the optimal processor, but it has proven satisfactory. 

The Beacon Control Processor (BCP) comprises a frequency modulator, a voltage-

to-current amplifier, and control signal generator. In operation, the frequency modulator 

receives the information regarding the next beacon to be activated from the DSP and 

encodes the information as a frequency shift keyed voltage signal. After encoding, the 

voltage-to-current amplifier and converts the frequency shift keyed voltage signal to 

frequency shift keyed current signal. The frequency shift keyed current signal is then 

transmitted to control signal generator to generate control signal transmitted to beacon 

controller. 

2.4.2  Beacon Controller 

The beacon controller comprises a signal receiver, a frequency demodulator, and 

micro processor. The signal receiver is operable to receive the control signal generated 

by control signal generator. The demodulator demodulates control signal and transmits 

digital information to the processor regarding the next beacon to be activated. The 

beacon controller is comprised by a waveform generator, an amplitude modulator, and 

an analog switch. A waveform generator generates a time varying voltage wave form for 
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the optical signals generated by the beacons. The amplitude modulator determines and 

sets a peak voltage level for the time varying voltage waveform. Then the time varying 

voltage waveform is transmitted to an analog switch which is controlled by the micro 

processor for the activation and deactivation of the beacons. Thus, the optical signals 

generated by the beacons are separated from background or ambient light using an 

analog signal processing system, essentially a matched filter that takes advantage of the 

fact that the beacon waveform is known. For example, in operation, unwanted 

background light from extraneous sources such as the sun, computer monitors or light 

fixtures would also be focused on PSD, thereby generating electrical currents associated 

with these extraneous light sources. However, the light strength of beacon required to 

sufficiently dominate the extraneous electrical currents would be undesirably large and 

could constitute a safety hazard. Thus, small optical signals generated by beacons are 

varied at a unique waveform, and at sufficiently high frequencies that a matched filter 

can be used to distinguish optical signals from lower frequency variations of extraneous 

light sources. As a consequence, only the beacon energy not rejected by the matched 

filter is centroided and thus we achieve a high degree of robustness to ambient energy 

results. 

For example, a simple sine or square wave on/off modulation at 40,000 switches 

per second, and left on for an interval of 0.001 seconds may be used. During intervals 

where all of beacons are not activated, the frequency of the extraneous light source 

currents generated by PSD may be monitored to check the ambient noise and to ensure 

appropriate modulation frequency selection. (i.e., there is near negligible ambient energy 

that comes through the matched filter)  Currently, a 38.4 KHz sinusoidal carrier signal is 

applied to each beacon control current so the resulting beacon energy incident on the 

PSD and the output signal currents then varies sinusoidally at the same frequency. This 

frequency was chosen as a compromise between good rejection of low frequency 

background light, and to minimize the VisNav sensor noise that was found to occur at 

higher frequencies. Additionally, the amount of optical energy received from each 

beacon by the VisNav sensor depends upon many factors, including, but not limited to, 
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the radiation pattern of a particular beacon, the position and attitude of the VisNav 

sensor system relative to a beacon, and the conditions of the intervening medium such as 

water content. Since some of these factors may vary widely in operation, the strength of 

optical signals for particular applications may saturate the amplifier, especially if the 

light path length between a beacon and VisNav sensor is relatively small. At other times, 

the strength of optical signals broadcast by the beacons may be too weak, resulting in an 

unsatisfactorily small output signal to noise ratio of the VisNav sensor. However, we 

know a distance squared relationship exists between the transmitted and received energy. 

Thus, for example, a tenfold change in the distance between a beacon and VisNav sensor 

requires on the order of the hundred fold change in the emitted energy of beacon to 

maintain optimal signal to noise ratio of the measurements of VisNav sensor.  

In accordance with the VisNav invention, the system rapidly and automatically 

adapts to the varying distance and environmental conditions by controlling the amplitude 

of the time varying optical signal energy broadcast by each beacon. Thus system adapts 

to maintain the maximum of the output current signals generated by VisNav sensor at 

some fixed percentage about 25% less than 100% of the saturation level of amplifier. 

Experiments indicate variation of ±5% about the ideal received energy has negligible 

impact on the signal to noise ratio, so this is a first order sensitivity to beacon energy 

that indicates an ideal situation as regards system robustness. The ideal output current 

signal level may be identified as xI  and may be determined to optimize the signal to 

noise ratio of VisNav sensor, for each individual measurement. The specification each of 

the VisNav prototype system is summarized in Table 1 - Table 3. 
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Table 1 Vision sensor specifications 

Mass < 1 Kg 

Dimensions < 10 x10 x15 cm 

Electrical Power < 1.4 A at +5 V (7 W) 

< 0.4 A at +12 V (4.8 W) 

< -0.4 A at -12 V (4.8 W) 

Sensor Data Position Format X, Y and Z cartesian coord. wrt. the 
SmartLight coordinate frame. 

Sensor Data Angular Format Modified Rodrigues Parameter wrt. the 
SmartLight coordinate frame. 

Data Byte Format 4 bytes per DEGREE-OF-FREEDOM 

4 framing/control bytes 

Ouput Data Electrical Format RS-485 transmit and receive channels 

Output Data Bit Rate 115.2 Kbaud 

6DOF Data Update Rate 100 HZ 

Data Latency Between 7 and 30 msec 

Optical Link Peak Wavelength Between 880 and 940nm. 

Optical Link Radiated Power < 0.5 W 

Optical Link Radiation Cone Angle >= +/-45 deg 

Optical Link Maximum Light Intensity 0.1 mW/cm^2 at 1 m radius 

Optical Link Carrier Frequencies Between 400 KHz and 3 MHz 
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Table 2 Beacon controller specifications 

Mass < 1.5 Kg 

Dimensions < 10 x15 x15 cm 

Electrical Power < 0.4 A at +5 V (2 W) 

< 0.3 A at +12 V (3.6 W) 

< -0.3 A at -12 V (3.6 W) 

Total wattage <= 9.2W. 

 

 

Table 3 Beacon specifications 

Mass < 0.75 Kg 

Dimensions < 8 x8 x4 cm 

Electrical Power < 0.8 A at +12 V (9.6 W) 

Radiation Peak Wavelength Between 880 and 940nm. 

Radiated Power < 0.9 W 

Radiation Cone Angle >= +/-50 

Radiation Carrier Frequency Between 30 KHz and 100 KHz 

Maximum Light Intensity 1 mW/cm^2 at 1 m radius 

Maximum Light Radiant Intensity 10 W/sr 
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CHAPTER III 

VISNAV SENSOR CALIBRATION 

The ideal object to image space mapping of the optical sensor system is based on 

the perspective projection (the ideal pin-hole camera model), called the co-linearity 

equations in Eq. (2.5) and (2.6). The co-linearity equations represent the transformation 

between the object space coordinates and the corresponding ideal image coordinates. 

The VisNav camera’s main optical properties are the intrinsic parameters describing the 

characteristics of the sensor assembly such as the lens’ effective focal length and the 

optical center location. In addition, the extrinsic parameters, the relative position and 

attitude [17], [18] obviously affect the object to image space projection. However, all 

optical sensor systems have significant image distortion due to lens distortion, 

misalignment of sensor assembly, and related effects which induces departures from the 

ideal perspective projection [19]. Furthermore, the PSD used in the VisNav sensor 

system shows an unexpected non-linearity, especially near the edge of the field of view, 

that causes a serious deviation from the ideal pin-hole camera model. The VisNav 

system laboratory experimental data show that the measured sensor output voltages 

include significant amount of systematic distortion and shifting; these are a combination 

of optical and electronic non-linearity. Therefore, the VisNav sensor calibration process 

should correct all these deviations of the measured sensor output from the ideal pin-hole 

camera model before applying the navigation algorithm.  

Traditionally, optical sensor calibration can be classified roughly into two 

categories: photogrammetric calibration and self-calibration [20]. Photogrammetric 

calibration is performed by observing a calibration object whose geometry in 3D space 

is known with very good precision and finding the distortion coefficients for the lens 

distortion model. On the other hand, self-calibration does not use any calibration object. 

Instead, by moving a camera in a static scene, the rigidity of the scene provides in 
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general two constraints on the cameras’ intrinsic parameters from one camera 

displacement by using image information alone [21]. While the self-calibration is very 

flexible conceptually, it is very difficult to implement because there are too many 

parameters to estimate. So, practical self-calibration can consider only a simple low-

dimensional distortion model. Tasi developed a self-calibration technique, determining 

the internal optical camera characteristics and 3D position and orientation of the camera 

frame relative to a reference coordinate system, considering also radial distortion [22]. 

However, for the VisNav system, it is necessary to capture the fine features of 

distortion to obtain the required high accuracy. Thus, more general and complicated 

nonlinear calibration models are needed instead of simple radial and decentering lens 

distortion model. VisNav calibration can be achieved based on optimal mapping 

techniques in the photogrametric calibration sense. The VisNav sensor calibration is 

performed by observing calibration objects whose geometry in 3D space is known with 

very good precision. One way is to make many measurements and use direct 

interpolation of the calibration correction using a look-up table constructed from the 

experiment data set. Another way is to determine a best fitting calibration model which 

minimizes the re-projection errors of these calibration objects. The model based 

calibration is preferred to the interpolation because it can be determined consistent with 

a optimum least squares criterion, statistically consistent with measured precision and 

has proved more accurate and sufficiently fast to compute in real-time evaluation and 

has a smaller memory requirement. 

3.1  Experimental Configuration 

For VisNav sensor calibration, we first collect the extensive experimental data set 

using our laboratory calibration facility which consists of a high precision two axes 

Contraves air bearing table, capable of 1 arc second pointing with 360 degrees of yaw 

motion and 5 arc second pointing with +/- 50 degrees of pitch motion and mechanical 

positioning system.  
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Figure 9 Experimental setup 

 

The VisNav sensor is mounted on the two axes Contraves air bearing table and an 

beacon is mounted on the mechanical positioning system that gives the position 

information accurately. Figure 9 shows the experimental setup. As the sensor is rotated 

by known, commanded incremental angle about yaw and pitch axes, measurements with 

known relative position and attitude of the sensor can be obtained with an active beacon 

swept over the whole field-of-view of the sensor. These variations can be controlled by 

the calibration computer automatically, and over several hours, an extensive measured 

data set with corresponding known line-of-sight vectors from the VisNav sensor to the 

beacon can be collected. Unfortunately, we must accept the realistic uncertainty in the 

sensor position, attitude, and optical target location since we can only achieve certain 

levels of precision in the laboratory experiment. 

First, the relative pitch angle is fixed at 0 degree and we sweep the yaw angle from 

-50 degree to +50 degree for a one dimensional test. This one dimensional test results 

shows the nonlinearity of the output voltages (Figure 10). Ideally, the only horizontal 

output voltage yV  should depend on the yaw angle and zV  should be zero. From the one 
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dimensional test with zero relative pitch angle, the optical center (offset) in voltage 

space can be determined as ( 0.0004, 0.0517)yo zoV V= = . The standard deviation of output 

voltages are shown in Figure 11. These were obtained by repeating each measurement 

200 times and computing the statistics experimentally. It is clear that the standard 

deviations of output voltages near the optical center are smaller than those of far from 

the optical center. The degradation is approximately a factor of 3. The resulting position 

accuracy near the center of field of view is about one part in 2000, where it is about one 

part in 700 near the edge. 

Figure 12 illustrates the relative target locations within the 90 degree field-of-view 

for the two dimensional calibration test. We consider the 6635 test points for our 

calibration process with 200 samples and averaged for each test point. Figure 13 

represents the ideal locations according to the co-linearity equations of the light centroid 

corresponding to each calibration test point. The corresponding VisNav sensor voltage 

imbalance output in Figure 14 shows that the significant systematic distortion and offset 

in voltage space. In essence, the calibration process seeks the “map projection” functions 

that map from voltage space ( , )y zV V  into the corresponding ideal image coordinates 

( , )y z  consistent with the co-linearity equations. Figure 15 and Figure 16 show that the 

standard deviation of samples for each test point. The standard deviation of output 

voltage signals indicates the signal to noise ratio. In addition, the standard deviation of  

yV  shows that the central area along the y-axis has smaller deviation, so more stable 

measurements can be given. Similarly, the central area along the z-axis of the standard 

deviation of  zV   has smaller deviation.  

The Root Mean Square (RMS) of standard deviation of yV  is 1.3916E-3 and 

RMS of standard deviation of zV  is 1.4842E-3. It is corresponding to signal to noise 

ratio of 1 part in 1000 for statistics over the active field of view, where the voltage signal 

range is -0.7 to 0.7. Therefore, the calibration process is expected to achieve the same 

level of accuracy. 
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Figure 10 Nonlinearity of output voltages for the one dimensional test with fixed 

pitch angle = 0o 
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Figure 11 Standard deviation of output voltages for the one dimensional test with 

fixed pitch angle = 0o 
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Figure 12 Relative target locations for calibration test 
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Figure 13 Ideal image coordinates, ( , )y z  
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Figure 14 Actual VisNav sensor outputs, ( , )y zV V  
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Figure 15 Standard deviation of yV  

 

Figure 16 Standard deviation of zV  
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3.2  Global Calibration 

The main goal of the model based calibration is the optimal selection of a proper 

calibration model and determination of the best values of the unknown parameters to 

map the horizontal and vertical normalized voltage, ( , )y zV V , which is the VisNav sensor 

output into the corresponding expected ideal image coordinates, ( , )y z  based on optimal 

estimation techniques. 

3.2.1  Traditional Distortion Model 

Traditionally, the simple radial, and decentering, and thin prism distortion models 

have been adopted for optical camera distortion model by the photogrammetric 

community [19]. Radial distortion is point-symmetric at the optical center of the lens and 

causes an inward or outward shift of image points from their initial perspective 

projection. The decentering distortion is induced by the misalignment of the optical 

centers of various lens elements in the sensor. It has both a radial and a tangential 

component. Thin prism distortion is introduced by manufacturing imperfections of lens 

elements and misalignment of sensor assembly from their ideal, perpendicular to the 

optical axis. Therefore, the traditional model can be parameterized with a complete set 

of basis functions to approximate lens distortion as: 

 2 4 2 2 2
1 2 1 2 1(3 ) 2y k yr k yr p y z p yz q rδ = + + + + +  (3.1)

 2 4 2 2 2
1 2 1 2 22 ( 3 )z k zr k zr p yz p y z q rδ = + + + + +  (3.2)

where, 2 2 2r y z= +  is the radial distance of image coordinates from the optical 

center, 1 2,k k  are radial distortion coefficients, 1 2,P P  are decentering distortion 

coefficients, and 1 2,q q  are the thin prism distortion coefficients. By the way, the 

calibration model should map the horizontal and vertical voltage into the ideal image 

coordinates. Thus  and y z  were replaced by ' 'and y z  as following: 

 ' ' 'ˆ ( , )y y y y zδ= +  (3.3)
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 ' ' 'ˆ ( , )z z z y zδ= +  (3.4)

where ' ' and y z  defined as linearly related to normalized voltages with scaling factor 

 and y zf f  as following:  

 '
y yy f V=  (3.5)

 '
z zz f V=  (3.6)

Intuitively, this linear relationship is expected for ideal VisNav sensor which free from 

the distortion. 

However, these traditional radial, decentering, and thin prism distortion models 

have been found to be inadequate to account for the deviations induced by the VisNav 

sensor which introduce significant amounts of image distortion which is combined the 

effect of lens distortion with the effect of PSD non-linearity. Overall calibration 

accuracy is corresponding to one part in 100 of the VisNav sensor field-of-view. It 

doesn’t satisfy the expected VisNav system accuracy from experimental results. 

3.2.2  Bivariate Polynomial Model 

The VisNav system requires more general and complex nonlinear calibration 

model structure which can capture the fine features of distortion to obtain the required 

high accuracy and then determine the optimal set of calibration coefficients based on the 

least square criterion. First we define a nonlinear calibration model as bivariate vector 

functions which are combination of adequate basis: 

 
0 0

ˆ ( , )
n i

ij ij y z
i j

y a V V
= =

= Φ∑∑  (3.7)

 
0 0

ˆ ( , )
n i

ij ij y z
i j

z b V V
= =

= Φ∑∑  (3.8)

where n  is the order of the polynomial basis, ( , )ij y zV VΦ  are the bivariate polynomial 

basis of calibration function, and ŷ  and ẑ  are calibrated image coordinates which is 
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already compensated optical center ( , )o oy z . There are many choices for the basis 

function such as regular polynomial, Fourier series and radial basis function, etc. The 

Chebyshev polynomial is an excellent choice for the calibration functions due to 

recursive properties and broad acceptance in approximation.  

The first type chebyshev polynomial is defined as following: 

 ( ) cos , cosnT x n xθ θ= =  (3.9)

Note that the input variable of the Chebyshev polynomials should be in the interval 

]11[−  by the definition. Then the univariate first type Chebyshev polynomial is defined 

by following recursion by applying the trigonometric identity [23] 

 1 1( ) 2 ( ) ( )n n nT x xT x T x+ −= −  (3.10)

where 0( ) 1T x =  and 1( )T x x= . Thus, the bivariate polynomial basis is defined by the 

following combination of Chebyshev polynomial (Figure 17) 

 ( , ) ( ) ( )ij y z i j y j zV V T V T V−Φ =  (3.11)

Finally, the nonlinear bivariate calibration function model is defined by 
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Figure 17 Bivariate basis functions 

 

The total number of coefficients for each thn  order calibration function is ( 1)( 2) / 2n n+ + . 

Then, our goal is to determine the two set of optimal calibration coefficient vector a  and 

b . Various optimization methods may be applied to determine the optimal coefficients. 

For our purpose, we adopt a least squares approach to find the optimal coefficients such 

that minimize the sum square of the residual errors given by: 
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where ,y zg g  are column vector form of the ideal image coordinates of the given set of 

calibration points, 0TW W= >  is the weight matrix, m  is the total number of calibration 

points, and least-squares matrix H  is expressed as: 
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 (3.15)

The coefficients a  and b  are should minimize the quadratic function yJ  and zJ . Thus 

Jacobian of yJ  and zJ  with respect to a  and b  should be zero. 
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 (3.16)

Consequently, the best calibration coefficients are given by: 
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−
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=

a g

b g
 (3.17)

We use Singular Value Decomposition (SVD) to avoid the matrix inversion. SVD 

decomposes a matrix into a diagonal matrix and two orthogonal matrices: 

 ( )T TH WH USV=  (3.18)

where U  is the ( 1)( 2) / 2m n n× + +  matrix with orthogonal columns such that satisfies 
TU U I= , S  is an ( 1)( 2) / 2 ( 1)( 2) / 2n n n n+ + × + +  diagonal matrix, and V  is an orthogonal 

matrix such that satisfies TV V I= . Then 

 1 1( )T TH WH VS U− −=  (3.19)

Another computationally efficient way to determine the coefficients a  and b  can be 

erived from rearranging the matrices as following: 

 
1/ 2 1/ 2 1/ 2

1/ 2 1/ 2

,
,y y z z

W W W H W H
W W

= ≡

≡ ≡g g g g
 (3.20)

then the best calibration coefficients are given by: 
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1
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y

T
z

H H H

H H H

−

−

=

=

a g

b g
 (3.21)

It is also true that the SVD of H  not TH H  gives a more numerically well behaved 

solution for a  and b .  

In the case of the polynomials model based calibration, an optimization was run 

to determine which order is adequate for the mapping. The order of polynomial basis 

varying from 5 to 30 was tested for global calibration function, and each time the 

Standard deviation of calibration errors of the validation points within the 90 degree 

field-of-view was evaluated. Figure 18 and Figure 19 show that the calibration accuracy 

of global calibration functions as the order of Chebysehv polynomial basis. 

Consequently, 25n =  was found to be an adequate order of Chebyshev polynomial where 

the required number of coefficient for each axis is 702. Therefore 1404 coefficients are 

required for 25th  Chebyshev polynomial based calibration functions. 

Overall calibration accuracy of 25th  Chebyshev polynomial based calibrations is 

corresponding to one part in 900 of the VisNav sensor field-of-view. Figure 20 and 

Figure 21 show that the calibration errors of global mapping using 25th  Chebyshev 

polynomial. However, the calibration errors of the 25th  global mapping using Chebyshev 

polynomial basis (Figure 20 Figure 21) are still show that the remaining significant 

systematic errors in the central region of PSD which is expected to very precise 

measurement. These systematic calibration errors can not be corrected using the global 

calibration function even though the order of polynomial basis becomes larger. The high 

order of polynomial basis leads high oscillations of the approximated surface so that it 

causes systematic errors. The qualitative criterion for truncation is to determine the 

lowest degree of polynomial that has residual statistics with a standard deviation equal to 

the measurement error. 
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Figure 18 Order of polynomial basis vs y calibration accuracy 

 

5 10 15 20 25 30

10-4

10-3

Order of chebyshev polynomial basis

S
td

. o
f c

al
ib

ra
tio

n 
er

ro
r o

f z
 a

xi
s 

<m
>

 

Figure 19 Order of polynomial basis vs. z calibration accuracy 
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Figure 20  y axis calibration errors of 25th order Chebyshev polynomial calibration 

function 

 

Figure 21  z axis calibration errors of 25th order Chebyshev polynomial calibration 

function 
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Figure 22  Local surface averaging 

3.3  Weighted Averaging Method 

The irregular surface modeling technique [24] based on the weighted averaging of 

locally approximated surfaces is a promising solution for fine-structure surface modeling 

with large observation data sets. For this purpose, consider the determination of a local 

preliminary surface functions and then determine the final local surface function by 

combining the four overlapping preliminary surface using appropriate weighting 

function. Figure 22 shows the local surface averaging concept.  

The input variables are segmented by a number of grids and arranged to unit 

square cells, ( , )y zv v  by linear scaling. Four preliminary surfaces to approximate 

( , )y zx v v  are determined for 2 by 2 cell unit using low degree polynomial of two 

variables; 1( , )y zx v v , 2 ( , )y zx v v , 3( , )y zx v v , and 4 ( , )y zx v v  are assumed to be some 

arbitrary approximation functions. For several computational advantages, bivariate 

Chebyshev polynomials can be chosen. Then each preliminary surface functions can be 

determined by the Gaussian least squares sense with low degree basis functions. 

The centroid of each preliminary surface is a 'mesh point', a mutual corner of four 

final surface functions. Thus the final surface function, valid above the central shared 

square is determined as the weighted average of four preliminary surfaces in Figure 23. 
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Figure 23  Four preliminary surfaces 

 

 

 

Figure 24 Weighting functions 
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( , ) ( , ) ( , )y z i y z i y z

i
x v v w v v x v v

=

= ∑  (3.22)

where ( , )i y zw v v  are weighing function which can be determined in such a fashion that 

the continuity is ensured everywhere along mutual boundaries of adjacent final surface 

functions. In other word, the final surface functions osculate with the respective 

preliminary surfaces centered at its four corners. Also, along a typical boundary the final 

surface and its partial derivatives are taken to be a weighted average of only the two 

preliminary surfaces centered at the end points of that boundary. This constraint leads to 

global piecewise continuity. We must choose the adequate weighting function that 

satisfies the boundary condition and the normality constraint of the weighting function: 

 
4

1

( , ) 1i y z
i

w v v
=

=∑  (3.23)

The result weight functions have been found to be: 
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 (3.24)

Each of these weight functions looks like a quadrant of a bell-shaped function having a 

square base (Figure 24). Finally, the method sequentially operates on a moderate to 

small subset of the measured data. It is therefore applicable to an arbitrarily large set of 

observed data. However, the final surface functions of the form of Eq. (3.22) cannot be 

determined above a border of the observed data set owing to the required overlap pattern. 

3.4  Two Step Calibration Process 

The global calibration function performs the transformation the actual VisNav 

sensor output voltages to the expected ideal image coordinates. The global mapping can 

not capture the systematic distortion errors even though sufficiently high order of 
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polynomial basis in the central region of PSD especially. On the other hand, weighted 

averaging method of locally valid calibration model can capture the fine structure of the 

object surface except the border of the observed data set. Thus, two step calibration 

method has been developed. For two step calibration, 25th  Chebyshev polynomial based 

calibration functions are determined at first and calculate the residual errors y∆  and 

z∆ of the 25th  Chebyshev polynomial based calibration. And then determined the locally 

valid compensation functions which are fitting the remaining residuals surfaces of 25th  

Chebyshev polynomial based calibration. The locally valid compensation functions are 

defined by weighted averaging method in Eq. (3.22): 

 
4

1

ˆ ( , ) ( , ) ( , )y z i y z i y z
i

y v v w v v y v v
=

∆ = ∆∑  (3.25)

 
4

1

ˆ ( , ) ( , ) ( , )y z i y z i y z
i

z v v w v v z v v
=

∆ = ∆∑  (3.26)

where yv  and zv are the re-scaled value into unit square cell of input variable yV  and  zV . 

We segmented the input variables into 144 grid cells and chose the 3rd  order of 

bivariate Chebyshev polynomials as preliminary surface functions. Then 1728 number 

of coefficients is required for locally valied compensation functions. Figure 25 and 

Figure 26 show that the calibration accuracy of two step calibration. They clearly show 

that the systematic distortion is corrected.  
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Figure 25  y axis calibration errors of two step calibration function 

 

Figure 26  z axis calibration errors of two step calibration function 
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Figure 27 Radial distance of calibrated images vs standard deviation of calibration 

errors 

3.5  Calibration Summary  

The VisNav system is based on photogrammetric triangulation. More specifically, 

the process is known as “resection” whereby the question is answered “from what 

position and attitude was this photograph taken?” The non-ideal departures from the pin-

hole camera model degrade the accuracy of the navigation solution. Therefore, the 

proposed calibration process is crucial task to determine the navigation solution. Figure 

27 shows the 25th order global calibration accuracy and two step calibration accuracy. 

Notice, comparing Figure 11 and Figure 27, the accuracy of the two step process is 

consistent with the PSD centroidiry accuracy. The two step calibration achieved a better 

accuracy and successfully captured the systematic errors shown at the central region of 
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global calibration. However, note that the two step calibration requires huge memory 

space to store the global and local calibration coefficients. The total number of 

coefficients of 25th global calibration function of y and z axis is 702 and the total number 

of coefficients of local calibration functions 1728. Therefore, the total number of 

coefficients of two 2 calibration is 2430. The current experiment and calibration process 

shows that calibration results show high dependence upon the radial distance of 

calibrated images from the optical center. Therefore, it is required to approximate the 

expected standard deviation according to the radial distance of calibrated images in 

order to determine the weight of each measurement from the VisNav sensor 

measurements. The 2nd order approximation gives the following relationships 

 6 3 2 2( ) 3.0 10 8.8 10 8.0 10r r rσ − − −= × + × + ×  (3.27)

where r  is the radial distance of calibrated image from the optical center. The 

approximated standard deviations of 25th global calibration and two step calibration 

methods are shown in Figure 27. At the boundary of 90 degrees field-of-view, the 

calibration accuracy can be determined with an accuracy of about 52.0 10−×  meters. It is 

corresponding to one part in 1000 of the VisNav sensor field of view angle. 

However, the lens barrel distortion is expected to vary with the range between the 

VisNav sensor and optical target [25]. Especially, when the lens diameter is not 

negligible compared to the range i.e. largest variations from the pin-hole model near the 

sensor, receding to some asymptotic behavior for large distance. For the attainment of 

the high accuracy, it is necessary to account for the variation of lens distortion according 

to the range. However, it is not convenient and judged to be too complicated to 

determine the calibration function including the range dependence. One practical way 

suggested is to interpolate the evaluated values from reference sets of calibration 

functions determined at fixed ranges and thus indirectly capture the range dependence. 
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CHAPTER IV 

RELATIVE POSITION AND ATTITUDE ESTIMATION 

The VisNav sensor provides line-of-sight vector measurements with about one part 

in 1000 accuracy, after applying the calibration process discussed in Chapter III. These 

line-of-sight measurements should be used to estimate the six degree-of-freedom relative 

position and attitude the image space coordinate frame with respect to the object space 

coordinate frame fixed on the target vehicle. 

The approach used for six degree of freedom navigation using line-of-sight vector 

measurements is the optimal inversion of the object to image projective transformation, 

modeled by the co-linearity equations in Eq. (2.5) and (2.6) [10]. 

Attitude determination from line of sight vector measurements commonly finds a 

proper orthogonal matrix that minimizes the cost function 

 
2

1

1 ˆ ˆ
2

( )
N

k k k
k

a AL A
=

−= ∑ W V  (4.1)

where ˆ
kW , 1, ,k N=  are a set of unit vector observations in the body frame, and ˆ

kV , 

1, ,k n= , are the representations of the same unit vectors with respect to the reference 

frame. This minimization problem is frequently referred as the Wahba’s problem [26]. 

The ka  are a set of positive weights. Provided that at least two of the line-of-sight vector 

measurements are not parallel, a unique minimizing attitude matrix can always be 

determined. The TRIAD and QUEST algorithms to determine the three axis attitude 

from the line-of-sight vector measurements have been studied and shown to be very 

efficient [27]. 

Position determination can also be accomplished from the line-of-sight vector 

measurements based on triangulation from known reference base points. If the attitude is 
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known, then at least two non-colinear line of sight vector measurements are required to 

establish a three-dimensional position.  

However, determining both attitude and position is more complex because the co-

linearity equation is highly nonlinear and there are six unknowns. At least four non-

collinear line of sight vector measurements are required to uniquely solve the six degree 

of freedom navigation problems [28]. The determination of the position and attitude 

using line-of-sight vector measurements is a non-linear multi-variable optimization 

problem. To solve the problem, Junkins, Hughes et al, have developed the Gaussian 

Least Squares Differential Correction (GLSDC) using the Euler angle attitude 

parameters [10]. 

4.1  Attitude Parameterization 

Attitude parameters are sets of coordinates that completely describe the orientation 

of a rigid body relative to some reference frame. There are an infinite number of attitude 

parameters to choose from. A good choice for attitude coordinates can greatly simplify 

the mathematics and avoid such pitfalls as mathematical and geometrical singularities or 

highly nonlinear kinematic differential equations [29], [30]. 

The direction cosine matrix written in terms of )(1)(2)(3 φθψ −−  sequence Euler 

angle is given by 

 

cos cos cos sin sin
sin sin cos cos sin sin sin sin cos cos sin cos
cos sin cos sin sin cos sin sin sin cos cos cos
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θ ψ θ ψ θ

φ θ ψ φ ψ φ θ ψ θ ψ φ θ
φ θ ψ φ ψ φ θ ψ θ ψ φ θ

− 
 = − + 
 + − 

 (4.2)

and the corresponding kinematic differential equation is 
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The Euler angle attitude parameterization is not a good choice for large angle 

displacements even though it gives an intuitive understanding of the attitude, since it has 

a singularity at 90θ = ±  degrees and behaves in a nonlinear fashion in kinematics.  

Quaternion representation is the most commonly used attitude parameters owing to 

nonsingular attitude description. The Quaternion, 1 2 3 4{ , , , }q q q q  used to represent finite 

rotations are defined by [29] 

 
13

4q
 

=  
 

q
q  (4.4)

with the vector part of the Quaternion is related to the principal rotation direction 

1 2 3ˆ [ , , ]Te e e=e   

 
1

13 2

3

ˆ sin( / 2)
q
q
q

 
 = = Φ 
  

q e  (4.5)

and the scalar part of the Quaternion is defined by principal rotation angle Φ  

 4 cos( / 2)q = Φ  (4.6)

The direction cosine matrix can be written in terms of the quaternion as 

 

2 2 2 2
4 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 4 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 4 1 2 3

2( ) 2( )
2( ) 2( )
2( ) 2( )

q q q q q q q q q q q q
A q q q q q q q q q q q q

q q q q q q q q q q q q

 + − − + −
 = − − + − + 
 + − − − + 

 (4.7)

The quaternion kinematic differential equations can be written compactly using the 

angular velocity vector ω , 

 
1 [ ( )]
2

B=q q ω  (4.8)

where 
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4 3 3 13

13

[ ]
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T

q I
B

× + × 
 =  
 − 

q
q

q
 (4.9)

where 3 3I ×  is 3 dimensional identity matrix, [ ]13 ×q  is referred to as the cross product 

matrix, since [ ]× = ×a b a b , with 

 [ ]
3 2

3 1

2 1

0
0

0

a a
a a
a a

− 
 × = − 
 − 

a  (4.10)

However, the four elements of quaternion are not independent because quaternion 

represents the three degree-of-freedom attitude system by a four dimensional vector. 

From Eqs (4.5) and (4.6), we see that q  satisfies the following normalization constraint 

 1T =q q  (4.11) 

The Modified Rodrigues Parameters (MRPs) are a minimal attitude 

parameterization defined as: 

 13
1 2 3

4

ˆ tan( ) , [ , , ]
4 1

T

q
σ σ σΦ

= = =
+
qσ e σ  (4.12)

where 1 2 3( , , )σ σ σ  are the three MRPs. The MRP vector has a geometric singularity at 

360Φ = ±  degree. Thus any rotation can be described except a complete revolution back 

to the original orientation. Furthermore, for small rotation, the MRPs are linearized as 

 ˆ
4
Φ

≈σ e  (4.13)

The direction cosine matrix in terms of the MRPs is expressed in compact vector form: 

 [ ] [ ]2

2

8 4(1 )
( )

(1 )

T

TA I
× − − ×

= +
+

σ σ σ σ
σ

σ σ
 (4.14)

The kinematic differential equation in terms of the MRPs is 
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 [ ]1 ( )
4

B=σ σ ω  (4.15)

where 

 [ ]( ) (1 ) 2[ ] 2T TB I= − + × +σ σ σ σ σσ  (4.16)

4.2  Measurement Model 

Recall the co-linearity equations in unit vector form in Eq.(2.9). The inherent 

sensor properties produce the measurement noise. When measurement noise is present, 

the measurements are assumed to be modeled by 

 ( )i i i= +b h x υ  (4.17)

where 

 ( ) ( ) ( )i i iA=h x σ r p  (4.18)

where ib  denotes the measurements from the thi  beacon and [ ]=x p σ  is the state vector 

of six degree-of-freedom navigation including relative position vector [ , , ]T
c c cX Y Z=p  

and the MRPs attitude parameters, 1 2 3[ , , ]Tσ σ σ=σ . The sensor noise iυ  is modeled as 

zero mean white Gaussian process with covariance matrix of measurement errors iR  

 { } 0iE =υ  (4.19)

 { }T
i j i ijE Rδ=υ υ  (4.20)

4.3  Measurement Sensitivity Matrix 

From the measurement model in Eq.(4.18), the Jacobian matrix for 
thi  beacon, iH  

is obtained by partial differentiating the measurement model with respect to the state 
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 i i i
iH

 ∂ ∂ ∂
= =  ∂ ∂ ∂ 

h h h
x p σ  

(4.21)

where, partial derivative of measurement model with respect to the position vector can 

be written as 

 2 2 2
3 3{ }/ ( ) ( ) ( )Ti

i c i c i cA I X X Y Y Z Z×

∂
= − − − + − + −

∂
h rr
p

 (4.22)

The partial derivative of measurement model with respect to the MRPs is derived 

by the brute force differentiation of Eq. (4.18). However, brute force differentiation of 

three elements of vector in Eq. (4.18) with respect to three elements of MRPs is 

complicated for implementation. The composite rotation property [29] can be applied for 

deriving the compact form of partial derivative of measurement model with respect to 

the MRPs. Assumes that the true parameters are given by  

 ˆδ= ⊗σ σ σ  (4.23)

where σ̂  is the estimated MRPS and δσ  is the attitude error of MRPs. The composite 

rule for the MRPs leads to the following [29] 

 
ˆ ˆ ˆ ˆ(1 ) (1 ) 2[ ]

ˆ ˆ ˆ1 2

T T

T T

δ δ δ δ
δ δ δ

− + − − ×
=

+ − ⋅
σ σ σ σ σ σ σ σσ

σ σ σ σ σ σ
 (4.24)

For small δσ , Eq. (4.24) can be approximated using [31] 

 
3 3

ˆ ˆ ˆ ˆ ˆ(1 2 ) (1 ) 2[ ]

ˆ ˆ ˆ ˆ ˆ(1 ) 2[ ] 2

T

T TI

δ δ δ

δ×

 ≈ + ⋅ − + − × 
 ≈ + − + × + 

σ σ σ σ σ σ σ σ σ

σ σ σ σ σσ σ
 (4.25)

From 

 ˆ( ) ( ) ( )A A Aδ=σ σ σ  (4.26)

It follows that 
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 ˆ( ) ( )i
iA Aδ∂ ∂

=
∂ ∂
h σ σ r
σ σ

 (4.27)

Using the fact that for small δσ  

 3 3( ) 4[ ]A Iδ δ×≈ − ×σ σ  (4.28)

Eq. (4.27) can now be evaluated using the chain rule to yield 
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 (4.29)

4.4  Gaussian Least Square Differential Correction 

The Gaussian Least Square Differential Correction determines the optimal 

parameters of the nonlinear static equations. The cost function of this optimization 

problem is formulated to minimize the weighted square sum of the residual errors based 

on the Wahba problem least squares error criterion, given by 

 
1

1 ˆ ˆ( ( )) ( ( ))
2

N
T

i i i i i
i

J W
=

= − −∑ b h x b h x  (4.30)

where, i  is the beacon index and N  is the available total number of line-of-sight vector 

measurements and 0TW W= >  is a weight matrix used to weight the relative 

importance of each measurement. In the minimum variance estimation sense, the inverse 

measurement covariance matrix 1R−  is a optimal weight matrix W . This optimization 

problem is solved by a non-linear least square algorithm, the Gaussian Least Square 

Differential Correction (GLSDC) estimation method [32]. Explicit closed form solution 

of the minimization problem in Eq. (4.30) impossible to find directly, however, it is 

known that a unique global minimum usually results if four or more beacons are present. 

GLSDC is designed to converge to accurate least square estimates, given approximate 

starting values through the iterative approximation procedure. Assume that the current 
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estimates of the unknown states ˆ kx  are available, then unknown objective states 1ˆ k +x  are 

related to their respective current estimates and unknown correction ∆x  

 1ˆ ˆk k+ = + ∆x x x  (4.31)

If the components of ∆x  are sufficiently small, we may linearize ˆ( )h x  in Eq. 

(4.18) about ˆ kx  using a first-order Taylor series expansion as 

 ,ˆ ˆ( ) ( )i i k i kH≈ + ∆h x h x x  (4.32)

where ,i kH  is the Jacobian matrix of measurement model with respect to the current best 

estimate 

 ,
ˆ k

i
i kH ∂ =  ∂ x

h
x

 (4.33)

Then the residual after state update can be linearly approximated as 

 , 1 1 , , ,ˆ ˆ( ) ( )i k i i k i i k i k i k i kH H+ +∆ = − ≈ − − ∆ = ∆ − ∆b b h x b h x x b x  (4.34)

With N  available line-of-sight vector measurement, measurement set and predicted 

measurement set can be written by 
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and the measurement residual set and sensitivity matrix are given by 
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The local strategy for determining the approximate corrections is to select the 

particular corrections that lead to minimize the sum of squares of the linearly predicted 

residuals: 

 1
1 ( ) ( )
2

T
k k k k kJ A W A+ ≈ ∆ − ∆ ∆ − ∆Y x Y x  (4.37)

The minimization Eq. (4.37) is analogous to the minimized quadratic form. Therefore 

the appropriate state correction is given by 

 T
k k kP A W∆ = ∆x Y  (4.38)

where kP  is the covariance matrix which is given by 

 1( )T
k k kP A WA −=  (4.39)

Then, ˆ kx  will be updated with an improved estimate of 1ˆ k +x  from Eq. (4.31). 

In order to implement the GLSDC, an initial guess ˆ ox  is required to begin the 

algorithm and stopping condition of iteration with an accuracy dependent tolerance 

given by 

 1k k

k

J J
J

J W
εδ −−

≡ <  (4.40)

where ε  is a prescribed small value. If Eq. (4.40) is not satisfied, then the update 

procedure is iterated with the new estimate as the current estimate until the process 

converges, or maximum number of iterations is exceeded, or J  increases on successive 

iterations. The complete GLSDC algorithm is summarized in Figure 28. 

While a theoretical proof of convergence of the GLSDC algorithm is not available, 

for four distinct line-of-sight measurements and starting estimates adequate starting 

values, reliable convergence has been achieved. It is expected that the MRPs are not 

used and Euler angle are used, then much more restrictive i.e. good starting values are 

necessary for convergence due to kinematic and geometric non-linearity. Experience 

indicates that initial attitude errors of 0.2∆ ≤σ , which is corresponding to large 
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rotational errors of less than  45o∼  about any axis, converges very quickly, Likewise, 

position errors of / 0.2∆ ≤r r  usually converge quickly. Even for such large starting 

errors, we find ten or fewer iterations are usually required to reach a converged solution. 

When more iterations are required, we typically find the reason to be that the beacons 

are too close in an angular sense as seen by the sensor. When the suffered angle is less 

than ten degrees, poor geometric and convergence difficulties arise. The actual 

convergence statistics is studied in Chapter VI. 
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Figure 28 Gaussian Least Squares Differential Correction algorithm 
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CHAPTER V 

DYNAMIC STATE ESTIMATION 

In case we have information about the nonlinear system dynamics and stochastic 

properties of measurement and model error, we can better estimate position, attitude, 

linear velocities, and angular velocities using dynamic optimal estimation technique [32], 

[33], [34]. For slow motions and fast update rates, a very simple dynamical model may 

suffice. For fast irregular motions and slow update rates, however, a complicated and 

accurate dynamical model is required. Alternatively, we may use very precise rate or 

acceleration sensor (IMU) in lieu of a dynamical model. The dynamical model can vary 

from near trivial to very complicated, as mentioned above. In the presented research, an 

EKF algorithm is developed using line of sight measurement from the VisNav system 

with attitude parameters by the MRPs, for various dynamical models. 

5.1  Extended Kalman Filter Description 

The VisNav systems involve nonlinear continuous-time state and discrete-time 

measurements in Eq. (4.17) collected by a digital signal processor. The state equation 

and measurement equations are represented by [32], [33]: 

 ( ) ( ( ), ) ( ) ( )t t t G t t= +x f x w  (5.1)

 ( , )k k k kt= +Y h x v  (5.2)

where process noise ( )tw  and measurement noise kυ  are zero mean Gaussian noise with 

covariance given by 

 { } { }0, ( ) ( ) ( ) ( )TE E t Q t tτ δ τ= = −w(t) w w  (5.3)
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 { } { }0, T
k k l k klE E R δ= =v v v  (5.4)

The structure of EKF can be divided into two primary parts, propagation and 

update. The state equations and error covariance matrix equation are propagated forward 

in time until a measurement occurs 

 ( ) ( ( ), )t t t=x f x  (5.5)

 ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP F t P t P t F t G t Q t G t= + +  (5.6)

where ( )F t  is the sensitivity matrix of the state equation with respect to the best current 

estimate 

 
ˆ ( )

( )
t

F t ∂ =  ∂ x

f
x

 (5.7)

For computational efficiency, continuous-time state and covariance matrix 

equation may be converted into discrete-time system [32] 

 1ˆ ˆk k k
− +
+ = Φx x  (5.8)

 1
T T

k k k k k k kP P G Q G− +
+ = Φ Φ +  (5.9)

where kΦ  is the state transition matrix for the step from kt  to 1kt + , and { }T
k k kQ E= w w . 

where kw  is the driven response at 1kt +  due to the presence of the white Gaussian noise 

during the 1( , )k kt t +  interval. If we can assume that F  is constant over 1( , )k kt t +  interval of 

sampling, Then the state transition matrix is simply the matrix exponential of kF t∆ : 

 k k
kF te I F t∆Φ = ≈ + ∆  (5.10)

Given the new measurement at time kt , the state and covariance can be updated 

using the following equations: 
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 ˆ ˆ ˆ( )k k k k kK+ − − = + − x x Y h x  (5.11)

 ˆ( ( ))k k k k kP I K A P+ − −= − x  (5.12)

where the superscript +  and −  denote the estimate after measurements update and the 

propagated estimate at the update time, respectively. The optimal Kalman gain kK  can 

be determined which minimizes the norm of the estimation error. It is equivalent to 

minimize the trace of the error covariance kP+  

 { }ˆ ˆ( ) ( )( ) ( )T
k k k kMin J K Tr E Tr P+ + + = − − = x x x x  (5.13)

Then, the optimal Kalman gain kK  is determined as 

 
1T T

k k k k k k kK P H A P A R
−− − = +   (5.14)

where kA  is the sensitivity matrix of the measurement equations: 

 
ˆ

k

k

A
−

∂ =  ∂ x

h
x

 (5.15)

5.2  Zero Acceleration Dynamic Model 

The applicability of the EKF rests on the availability of an accurate dynamical 

model because we use a dynamical model to predict the states. However, dynamical 

modeling for aircraft and spacecraft includes many difficulties in establishing valid 

torque and force models. This research assumes the simplest model, namely a piecewise 

constant linear and angular velocity model between each measurement, which has been 

forced a reasonable assumption for high sampling rate. In this case, the state vector for 

the EKF is the relative position vector p , the modified Rodrigues attitude parameters σ , 

the relative linear velocity vector v , and the relative angular velocity vector ω . 

Therefore, the state equations are given by 
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[ ]1 1[(1 ) 2[ ] 2 ] ( )

4 4

v

T TI B

ω

=

= − + × + =

=

=

p v

σ σ σ σ σσ ω σ ω

v d

ω d

 (5.16)

where vd  and ωd  are the zero mean white Gaussian process noise. Notice the exact 

nonlinear kinematic model is used to propagate ( )tσ ; this enables large angle 

displacements. The exact kinematics wisely make approximations at the acceleration 

level where the physical uncertainty actually arises.  

Then the linearized model Jacobian matrix used in the EKF are given by 

 
[ ]

3 30 0 0
10 0 ( )
4

0 0 0 0
0 0 0 0

I

B
F

× 
 ∂ 

= ∂ 
 
 
  

σ σ
σ  (5.17)

where the partial derivatives of σ  with respect to σ  and ω  are arranged as 

 { }3 3
1 [ ]
2

T T TI ×
∂

= − − × + +
∂
σ ωσ ω σ ω σω
σ

 (5.18)

The first two equations in Eq. (5.16) represent the exact kinematic relationships. So, they 

are enforced exactly, i.e. process noise should not affect these two exact kinematic 

differential equations. The structure of the G  matrix should reflect how the process 

noise covariance Q should propagate the covariance matrix between measurement 

updates. Therefore the first two rows of G  are zeros, G has the structure 

 
3 3

3 3

0 0 0 0
0 0 0 0
0 0 0
0 0 0

G
I

I
×

×

 
 
 =
 
 
  

 (5.19)
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5.3  VisNav / IMU Integration 

In the previous chapter, we assumed the zero acceleration model with process 

noise so that the EKF will “forget” the past and revise the position and velocity estimate 

accordingly. However, the estimated state history is not actually constrained to enforce 

zero acceleration. Furthermore, the VisNav system requires the VisNav sensor to access 

the number of beacons’ signals being received. Sometimes, one or more of the optical 

target will be out of sensor field-of-view or the viewing angles between two or more 

beacons may be so small that we could encounter a geometric singularity. These events 

occasionally make geometric solutions via GLSDC impossible and cause an intermittent 

data dropout. In this case, we can continue to provide a navigation estimate by 

propagating with the equations of motion or by integrating the dead reckoning sensor 

output such as an IMU. On the other hand, the IMU output is corrupted by bias and drift; 

but these can be neatly estimated by the EKF from the independent VisNav 

measurement. The VisNav/IMU integration method can take advantage of the strengths 

of both systems while minimizing the impact of their weaknesses. Thus, integration of 

the VisNav with an IMU into a forward EKF is necessary to establish a robust 

navigation system. For the same reasons, there are analogous GPS/INS integration 

studies, leading to Kalman filter based navigation algorithms [35], [36], [37] that use 

two or more data types. 

The present research has developed a more precise and robust navigation 

algorithm by employing a VisNav/IMU sensor fusion technique in which the 

independent VisNav system measurements serve to correct long-term drift of IMU. 

These lead to an EKF (EKF) which computes the optimal navigation solution by proper 

gains operating on the inputs from the VisNav and IMU. Thereby, this fused navigation 

system provides a continuous best estimate of the dynamic system’s position, velocity 

and attitude vector, and is much more robust with respect to occasional VisNav data 

dropouts than forward propagation using an approximate dynamical model.. 
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5.3.1  IMU Measurement Model 

An Inertial Measuring Unit (IMU) provides densely measured linear acceleration 

and angular rate by the accelerometer and gyro. IMU has a wide dynamic bandwidth and 

can be sampled at high rates, therefore it can capture the fast dynamics of a 

maneuverable vehicle such as an aircraft. Furthermore, an IMU does not rely on any 

external aids and does not necessary to emit or receive any detectable radiation. 

However, IMU measurements are corrupted by noise, scale factor errors, bias and drift 

variation so that the errors may be accumulated and lead to significant drift in the 

position, velocity, and attitude output.  

The IMU of six degree-of-freedom measurement systems is designed to measure 

linear acceleration along three orthogonal axes and rotation rates around three 

orthogonal axes using three accelerometers and three axis gyro to make a complete six 

degree-of-freedom measurement of the dynamics. The acceleration and angular rate 

measured by the accelerometers and gyro respectively is represented as: 

 a a

ω ω

= + +

= + +

a a b η
ω ω b η

 (5.20)

where, a  is the linear accelerometer output along body axes, a  is true linear 

acceleration, ab  is the acceleration bias, aη  is the white Gaussian acceleration output 

noise, ω   is the gyro output angular rate around body axes, ω  is true angular rate, ωb  is 

the angular rate bias, and ωη  is the white Gaussian angular rate output noise. 

As one inexpensive and moderately accurate IMU, consider the specifications for 

the Crossbow IMU-300CB as summarized in Table 4 [38]. 
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Table 4 Specifications of Crossbow IMU-300CB 

Update rate(Hz) 100Hz>  

3 axis -Gyro 

Range(deg/sec) 100±  

Bias(deg/sec) 2.0< ±  

Scale Factor Accuracy(%) 1<  

Non-Linearity(% FS) 0.3<  

Resolution(deg/sec) 0.05<  

Random Walk(deg/min) 0.85<  

3 axis – accelerometer 

Range(g) 2±  

Bias(mg) 30< ±  

Scale Factor Accuracy(%) 1<  

Non-Linearity(% FS) 1<  

Resolution(mg) 1.0<  

Random Walk(m/s/min) 0.15<  
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5.3.2  Extended Kalman Filter with VisNav/IMU Integration 

The application of the EKF to combine the VisNav and IMU measurements 

requires an adequate dynamic model: 

 ( ) ( ( ), ) ( ) ( )t t t G t t= +x f x w  (5.21)

where ( )tx  is 15 1×  system state vector defined as: 

 ( ) [ : : : : ]at ω=x p σ v b b  (5.22)

Recall that the state vector is comprised by relative position vector p , modified 

rodrigues attitude parameters σ , and relative velocity vector v , defined with respect to 

the inertial reference frame. On the other hand, acceleration bias ab  and angular rate 

bias wb  are defined with respect to the body frame. The system dynamics is represented 

by 

 
[ ]

/

1 ( ) [ ]
4

( )[ ]T
B N a v

a a

B

C

ω ω

ω ω

=

= − −

= − −

=

=

p v

σ σ ω b η

v σ a b η

b υ

b υ

 (5.23)

where /B NC  is the direction cosine matrix which transforms the inertial reference frame 

to body frame, so /
T
B NC  transforms the body frame to the inertial reference frame. In 

order to apply the EKF described in section 5.1, the Jacobian matrix of state differential 

equations 
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3 3

/

0 0 0 0
10 0 0 ( )
4

( ) 0 0 0 ( ) 0
0 0 0 0 0
0 0 0 0 0

T
B N

I

B
F t C

× 
 ∂ −

∂ 
=  −
 
 
 
 

σ σ
σ

σ  (5.24)

where the partial derivatives of σ  with respect to σ  and ω  are arranged as: 

 { }3 3
1 ˆ ˆ ˆ ˆ[ ]
2

T T TI ×
∂

= − − × + +
∂
σ ωσ ω σ ω σω
σ

 (5.25)

w  is 15 1×  system noise vector defined as 

 1 3[0 : : : : ]v aω ω×=w η η υ υ  (5.26)

where aυ  is white Gaussian noise of accelerometer first-order Markov and ωυ  is white 

Gaussian noise of gyro first-order Markov process error. The corresponding system 

noise influence matrix ( )G t  is defined as 

 

[ ]

/

3 3

3 3

0 0 0 0 0
10 ( ) 0 0 0
4

( ) 0 0 ( ) 0 0
0 0 0 0
0 0 0 0

T
B N

B
G t C

I
I

×

×

 
 
 −
 

=  −
 
 
 
 

σ

σ  (5.27)
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CHAPTER VI 

SIMULATION STUDIES 

For the numerical simulation studies, it was assumed that the chase vehicle which 

uses the VisNav sensor system during a range 65 meters i.e. we adopt as typical initial 

condition, the initial position [ ]50,30,30 T= −p  meters to target vehicle (Figure 29). It 

was also assumed that the 20 degree in roll, 10 degree in pitch, and 5 degree in yaw 

occur during maneuver. These position and attitude initial conditions initiate a nominal 

maneuver to the origin performed in 60 seconds. 

The position and attitude data update rate was taken as 100Hz which is the data 

update rate of the current invented VisNav system. Based on historical understanding of 

spacecraft and aircraft dynamics, this update is more than adequate for all but the most 

aggressive of maneuvers. Using a modern IMU, this rate can be increased, if needed, to 

accommodate special applications. For sake of simplicity, the ISC is assumed to be the 

same as that the vehicle’s body frame. Eight beacons within a volume of 1 2 2× ×  meters 

are used with locations in on the target vehicle as seen Figure 30. This is compatible 

with near optimum geometry for the end game of a rendezvous and docking maneuver. 

The simulated VisNav measurements were calculated from the co-linearity 

equations and white Gaussian noises were added to the measurements according to the 

VisNav calibration accuracy with a standard deviation of 2.0E-5 meters. Figure 31 

shows that the image coordinates corresponding to the simulated trajectory. 

6.1  GLSDC Implementation 

A GLSDC optimal estimation algorithm using line-of-sight vector measurements 

from the VisNav system is applied to measured data consistent with the simulated 

navigation trajectory.  
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Figure 29 Simulated trajectory 
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Figure 30 Beacons’ configuration 
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Figure 31 Time evolution of the image coordinates corresponding to the simulated 

trajectory 

 

In order to check the robustness of the initial guess of the GLSDC for case of 

using MRPs, very poor initial guess as almost arbitrary values are set for the initial guess 

as shown in Table 5.   

The condition number of covariance matrix is shown in Figure 32 and the number 

of iterations of GLSDC as measurements are received as a function of time are shown in 

Figure 33. For all of these iterations, we used the poor starting estimates of Table 5. 

Note the extremely well conditioned iterations as range approaches zero results in 

extremely efficient terminal convergence, but even in the worst conditioned cases at the 

beginning stage, ten or fewer iterations were required. In practice, the convergence can 

be vastly accelerated by using a neighboring converged solution to begin, rather than 

initiation with large estimation errors was done for illustration here. These are reputation 

of many similar trials to verify that these solutions are the global minima. 
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Table 5 Initial guess of GLSDC 

 True values Initial Guess 

Position <m> [ ]50,30,30 T−  [ ]1,1,1 T−  

MRPs [ ]0.09, -0.04, 0.03 T [ ]0, 0, 0 T  

 

 

As the chaser approaches the target, the image coordinates are more separated over 

the whole span the PSD active area (Figure 31), so there is a better geometric condition 

(the beacons become separated by about 90 degrees). On the other hand, small 

separations of beacon images reduce the distinction of each beacon, which geometric 

produces a dilution of precision (the beacons approach angular co-location). In the limit, 

as the beacons image approach a point, the measurement Jacobian has only two non-zero 

singular values, rather the six, as required for six degree of freedom navigation solution. 

The condition number becomes smaller approaching the ideal minimum of unity as the 

chaser approaches to the target and just a few iterations are necessary at the final stage 

of navigation.  

The position/attitude errors and 3-sigma bounds from the converged covariance 

matrix, for case of using GLSDC algorithm are shown in Figure 34 and Figure 35. The 

converged position estimate errors at the beginning of the navigation are around 5 

meters, and reduce to less than 1 centimeters as the chaser reaches its target just in front 

of the beacons. The converged attitude estimate errors at the beginning of the maneuver 

are around 5 degrees, and reduce to values less than 0.1 degree at final stage. 

It is emphasized that each plot in Figure 34 and Figure 35 correspond to a six 

degree-of-freedom least square position and attitude estimated based purely or geometry. 

As will be evident in the next chapter, these geometrical best estimates can be tied 

together using the EKF, to proceed a smoother and even more precise optimal estimate 

for relative position and attitude. 
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Figure 34 Position/attitude errors and 3-sigma bounds of GLSDC 

(Approach phase) 
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Figure 35 Position/attitude errors and 3-sigma bounds of GLSDC                      

(End-game) 
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6.2  EKF Implementation with Zero Acceleration Model 

To illustrate convergence from a poor starting estimate, the initial estimates for the 

EKF implementation are set to 80% of their respective true state values. This initial 

estimates accuracy corresponds approximately to the GLSDC accuracy at the beginning 

stage of the navigation. The initial covariance matrix is set to the following diagonal 

matrix 

 3
12 1210oP I ×=  (6.1) 

It have been verified that the convergence history depends only weakly on oP , whereas 

the long-term convergence is especially independent of oP . The covariance matrix of 

process noise Q  is assumed to be 

 

3 3

3 3
5

3 3
3

3 3

0 0
0

10

0 10

Q
I

I

×

×
−

×
−

×

 
 
 =  
 
  

 (6.2) 

The position and attitude errors and 3-sigma bounds in case of using an EKF 

algorithm are shown in Figure 36 and Figure 37. The converged position estimate errors 

near the beginning of the navigation process are around 1 meter, and reduce to a few 

millimeters as the chaser reaches near the target, just in front of the beacons. The 

converged attitude estimate errors at the beginning of the maneuver are around 1 degree, 

and reduce to values less than 0.03 degree at final stage. The EKF also provides dynamic 

information such as linear velocity and angular rate with processing of VisNav 

measurements. The velocity/angular rate estimation errors are shown in Figure 38. 

Figure 39 clearly shows that the EKF with the zero acceleration plus process noise 

model performs extremely well in case the motion of the chaser was sufficiently slow as 

compared to the rate of acquisition and processing of line of sight measurements. 
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Figure 36 Position/attitude errors and 3-sigma bounds of EKF with zero 

acceleration model (Approach phase) 
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Figure 37 Position/attitude errors and 3-sigma bounds of EKF with zero 

acceleration model (End-game) 
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Figure 38  Linear velocity/angular rate errors and 3-sigma bounds of EKF with 

zero acceleration model (Approach phase) 
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Figure 39  Linear velocity/angular rate estimation of EKF with zero acceleration 

model (Approach phase) 
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Table 6 Acceleration and gyro error specifications for the IMU 

Accelerometer Error 

 Bias White noise (Std.) Bias noise (Std.) 

x-axis 20.3cos( /100) / sect m< > 3 21.0 10 / secm−× < >  8 21.0 10 / secm−× < >  

y-axis 20.3cos( / 200) / sect m< > 3 21.0 10 / secm−× < >  8 21.0 10 / secm−× < >  

z-axis 20.3sin( /100) / sect m< > 3 21.0 10 / secm−× < >  8 21.0 10 / secm−× < >  

Gyro Error 

 Bias White noise (Std.) Bias noise (Std.) 

x-axis 2sin( /100) deg/sect < >  38.0 10 deg/ sec−× < > 81.0 10 deg/ sec−× < >

y-axis 2sin( / 200) deg/ sect < >  31.0 10 deg/ sec−× < > 81.0 10 deg/ sec−× < >

z-axis 2cos( /100) deg/ sect < >  3 21.0 10 deg/ sec−× < > 81.0 10 deg/ sec−× < >

 

6.3  EKF Implementation with VisNav/IMU Integration 

For implementation of the VisNav/IMU integrated EKF, it was assumed that the 

IMU performance was as shown in Table 6. The bias and standard deviation of noise of 

accelerometer and gyro applying to the measurement simulation are selected based on 

the specification of Crossbow IMU-300CB in Table 4. To show a typical convergence, 

the initial estimates for the EKF implementation are set to 80% of their respective true 

state values. This initial estimates accuracy is corresponding to the GLSDC accuracy at 

the beginning stage of the simulation. 

The initial covariance matrix is set to the following diagonal matrix: 

 3
15 1510oP I ×=  (6.3) 
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and the covariance matrix of process noise Q  is assumed to be 
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 =  
 
 
  

 (6.4) 

In order to check the feasibility in case of VisNav measurements drop out, it was 

assumed that only two beacons are within the field-of-view for 1 second at 37 meters far 

from the target and all beacons are out of field-of-view for 1 second at 18 meters far 

from the target. 

The position/attitude errors and 3-sigma bounds using VisNav/IMU EKF are 

shown in Figure 40 and Figure 41 . The position errors at the beginning of the navigation 

are around 1 meters, and reduce to errors less than 1 millimeter as the chaser reaches its 

target just in front of the beacons. The attitude errors at the beginning of the maneuver 

are around 1 degree, and reduce to values less than 0.01 degree at final stage.  

The VisNav/IMU also provides precise dynamic information such as linear 

velocity, angular rate, and linear acceleration. Figure 42 shows the linear velocity and 

angular rate errors and 3-sigma bounds. Consequently, the VisNav/IMU integrated EKF 

permits the improved and continuous state estimates in case of VisNav measurements 

dropout for a short duration. The VisNav/IMU integrated EKF state estimates remains 

stable during the complete loss of VisNav measurements. 
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Figure 40 Position/attitude errors and 3-sigma bounds of EKF with IMU 

(Approach phase) 
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Figure 41 Position/attitude errors and 3-sigma bounds of EKF with IMU          

(End-game) 
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Figure 42 Linear velocity/angular rate errors of EKF with IMU                 

(Approach phase) 
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Figure 43 Linear velocity/Angular rate estimation of EKF with IMU         

(Approach phase) 
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Figure 44 Accelerometer bias/ gyro bias estimation of EKF with IMU               

(Approach phase) 
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Table 7 Navigation accuracy summary 

Navigation accuracy (1σ) 

Relative position accuracy <m> Relative attitude accuracy <deg>

Target-
chaser 
range 
<m> 

GLSDC Zero  

accel. 

VisNav/ 

IMU 

GLSDC Zero  

accel. 

VisNav/ 

IMU 

60 4 0.3 0.3 4 0.3 0.3 

30 1 0.1 0.06 2 0.2 0.1 

10 0.15 0.02 0.01 0.8 0.1 0.06 

5 0.01 0.003 0.002 0.2 0.05 0.02 

Dock 0.003 0.001 0.0005 0.1 0.03 0.01 

 

6.4  Discussion 

As the vehicle approaches to the target, the navigation accuracies of both GLSDC 

and dynamics state estimation solution become significantly better due to better 

geometric condition for triangulation. GLSDC successfully determined the position and 

attitude through several iterations even given a poor initial guess. The nonlinearities of 

measurement model and state model are reduced using MRPs. However, the iteration 

caused a computational load and GLSDC geometric solution is sensitive to the 

measurement noise, especially as range to the beacons increase. The EKF with zero 

acceleration model determined the position and attitude as well as the linear velocity and 

angular rate, without iteration. Since the VisNav sensor gives the line-of-sight vector 

measurements at a very high rate, the zero acceleration model is reasonable (assuming 

that the linear velocity and angular rate are piecewise constant during the time interval 

of each measurements). The EKF results shows a more stabilized and accurate solution, 



   86

as compared to the GLSDC results. The position and attitude errors of EKF were 

reduced about one order of magnitude compared to the GLSDC. Furthermore, EKF is 

more efficient from a computational point of view by avoiding iteration procedure for 

each set of measurements. 

The simulated navigation accuracy is summarized with reference to Table 7. These 

accuracies are improved somewhat with respect to the EKF without the IMU, however 

the robustness with respect to data dropout is vastly improved. The accuracy, 

bandwidth, and robustness of the integrated VisNav/IMU navigation system are 

superior to any other existing proximity navigation approach. 
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CHAPTER VII 

SUMMARY AND CONCLUSION 

In this dissertation, an analytical, computational, and experimental study of 

proximity navigation is reported. Central to the approach, a recently developed analog 

optical navigation sensor system (VisNav) is considered. This sensor orchestrates the 

energy emitted by four or more optical beacons to optimize the signal-to-noise of 

individual measurement and eliminate the pattern recognition problem altogether. 

A central difficulty that comes with application of the VisNav system is calibration 

of the systematic departure from the ideal co-linearity relationship of the object-to-image 

projection. The calibration process developed lead to errors on the order of one part in 

100 being reduced to about one part in 1000. 

GLSDC was developed for determining the best geometric position and attitude 

information from each set of 4 or more measurements. By considering the MRPs as 

attitude parameters, robust convergence with respect to the poor initial guess was 

achieved as well as computational efficiency. 

Two EKF filter algorithm were developed for recursive dynamic state estimation, 

the first used only VisNav measurements and the second integrated VisNav and IMU 

measurements. It was found that the VisNav/IMU integration using EKF achieved 

substantially superior performance, and eliminating the need for a dynamical model (for 

acceleration level motion), and also making the system robust in the presence of 

occasional VisNav data dropout . 

Several issues remain to be better addressed in future research, as follows: 

1. The calibration process needs to be refined to find optimal basis functions 

that optimize storage and real-time computational burden. 
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2. The VisNav hardware design needs to be further optimized to minimize 

measurement error and thereby improve the accuracy of the resulting 

navigation solution. 

3. Consider the case of range being too great to geometrically solve for the 

navigation estimation problem via GLSDC. The line-of-sight to the 

beacons still contains information, than the integrated system combined 

with an IMU should result in a navigation solution. 
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