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ABSTRACT 

 

Damage Analysis in Asphalt Concrete Mixtures Based on Parameter  

Relationships. (August 2004) 

Injun Song, B.S., Hanyang University; 

M.S., Hanyang University 

Chair of Advisory Committee: Dr. Dallas N. Little 

 
 

Asphalt pavements experience damage due to traffic loading under various 

environmental conditions.  Damage can be caused by viscoplastic flow and microcracks, 

fracture due to fatigue cracking, or fracture due to thermal cracking.  Asphalt pavements 

have the capability to remediate some of this damage depending on binder surface and 

rheological properties, filler surface properties, and length of rest periods.   

Asphalt mastic (asphalt and fine aggregates) properties play an important role in 

controlling damage and healing.   This dissertation addresses the development of a 

comprehensive methodology to characterize damage and healing in asphalt mastics and 

mixtures.  The methodology relies on nondestructive imaging techniques (X-ray CT), 

principles of continuum damage mechanics, and principles of micromechanics.  The X-

ray CT yields a damage parameter that quantifies the percentage of cracks and air voids 

in a specimen.  The continuum damage model parameters are derived from the 

relationship between applied stress and pseudo strain.  The micromechanics model 
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relates the damaged mastic modulus to a reference undamaged modulus.  This 

relationship is a function of internal structure properties (void size, film thickness, and 

percentage of voids), binder modulus, aggregate modulus, and bond energy between 

binder and aggregates.  The internal structure parameters are all obtained using X-ray 

CT and correlated. 

The developed methodology was used to characterize damage in asphalt mastic 

and mixture specimens tested using the Dynamic Mechanical Analyzer (DMA) and 

dynamic creep test. The damage parameter measured using X-ray CT correlated very 

well with the predictions of the continuum and micromechanics models.  All damage 

parameters were able to reflect the accumulation of damage under cyclic loading and 

were also able to capture the influence of moisture conditioning on damage.  Although 

this dissertation focused on fatigue cracking at room temperatures, the methodology 

developed can be used to assess damage due to different mechanisms such as permanent 

deformation and low temperature cracking. 
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CHAPTER I 

INTRODUCTION 
 

Fatigue cracking has been considered one of the three main distresses in asphalt 

concrete pavements along with permanent deformation, and thermal cracking. Fatigue 

cracking can be defined as the damage results from the accumulation of damage under 

repeated loading in asphalt pavements (Ghuzlan 2001). Therefore, characterizing 

damage has been considered one of the valuable methods in the models for improving 

design of pavements. Studies regarding damage in engineering materials have been 

performed by researchers such as Miner (1945), Kachanov (1958), and Perzyna (1984). 

They tried to define the effects of applied stresses, and temperature on damage 

accumulation. However, the accurate prediction of pavement performance still difficult 

because of complex and time consuming tasks as well as complexity of material 

behaviors.  

 

RESEARCH OBJECTIVES AND METHODOLOGY 

Texas Transportation Institute (TTI) successfully used the dynamic mechanical 

analysis (DMA) which is simple and easy method to evaluate the damage mechanics of 

the mastic as well as the microcrack healing potential of the mastic.  

 

 

This dissertation follows the style and format of the Journal of Materials in Civil 
Engineering, ASCE. 
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  X-ray computed tomography (CT) is a completely nondestructive technique for 

visualizing features in the interior of opaque solid objects to obtain digital information 

on their three-dimensional (3-D) geometry and properties (Denison et al. 1997). The 

suggested two methods can be used to characterize damage in asphalt mixtures and 

monitor the progression of the damage. Therefore, the key tools used to evaluate damage 

in the mixtures are DMA and X-ray CT experiment in this research.  

Specific objectives of this research are as follows: 

• Development of two critical points on both permanent deformation and 

fatigue cracking. 

• Validating DMA as a simple and accurate method does indeed monitor 

the progression of microcrack damage through tomography and 

micromechanics model. 

• Identification of X-ray CT as a valuable method to characterize damage 

in asphalt mixtures. 

• Investigation of damage levels at different loading status. 

• Investigation of the parameter relationships among three different damage 

indicators. 

• Identification of characteristics of damage in asphalt mixtures in the 

presence of water. 

• Development of methods to relate damage parameters. 

• Validating cohesive and adhesive model in asphalt mixtures. 

• Identification of correlation between DMA and X-ray CT method. 
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The methodology for using the DMA was fully developed in the previous study. 

Damage in the DMA experiment is monitored by decay in the normalized shear modulus 

and also by the accumulation of dissipated pseudo strain energy (DPSE). TTI used a 

micromechanics approach to monitor damage. This approach related the decay in 

modulus to microcrack growth in the sample tested. As the microcrack density and/or 

average crack length increased, the normalized modulus would decrease. This 

micromechanics relationship also included bond energy properties of the mixture. TTI 

also developed a protocol to measure surface energies of the aggregate and bitumen.  

Surface energies of the filler and bitumen can be used to calculate cohesive and adhesive 

bond strength of the asphalt mixture.   

X-ray CT was used to measure the damage in the DMA dry and wet specimens at 

four different loading cycles or loading steps. It is critically important to validate the 

damage that occurs during the DMA testing. They are truly related to microcrack 

development and propagation. Fortunately, a tool exists by which this can be assessed, 

computer assisted tomography. Although former studies successfully characterized 

asphalt mixtures using image analysis, they didn’t monitor the real progression of 

damage in the specimens since they used only the images just at initial (undamaged) and 

final (failure) stage. HMA and sand asphalt specimens before and after dynamic creep 

and DMA fatigue test were scanned by X-ray to capture the microstructures at different 

four steps with dry and wet condition. Damage parameter ξ  from X-ray CT was adopted 

to quantify the damage levels at each step in both HMA and sand asphalt specimens. 
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RESEARCH ORGANIZATION 

Three damage parameters were selected to represent the status of damaged and 

undamaged asphalt mixtures after reviewing literatures. There are two main approaches 

which were used to calculate the damage parameters in asphalt mixtures, those are, the 

void area approach and the damage approach. Perzyna (1984) introduced the void area 

approach which is based on the area of voids and cracks in the mixture. Kim et al. (1997) 

also showed the constitutive damage approach.  

Most commonly used materials in the asphalt research were selected and used for 

this research. Performance grade (PG) binder, granite, and Ottawa standard sand were 

used for this study. Two sizes of specimens were fabricated for the two types of 

mechanical tests. Three laboratory experiments of DMA, dynamic creep, and X-ray CT 

were conducted to get mechanical properties. The mechanical properties from DMA and 

dynamic creep test were used to calculate and analyze damage indicators while image 

analysis was performed based on the results from X-ray CT.  

The methods for comparing and validating results from the experiments were 

suggested and presented. 

Figure 1.1 shows the research procedures in brief. 
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Figure 1.1. Chart for Research Procedures. 
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CHAPTER II 

DAMAGE CHARACTERIZATION 

 

DEFINITION AND THEORIES 

Ghuzlan (2001) defined the mechanics of damage in his dissertation. Damage 

mechanics is the study of the mechanisms of deterioration of the material under loading 

by means of mechanical variables. Damage can be studied in three levels the microscale, 

mesoscale and the macroscale. At the microscale level, damage is the accumulation of 

micro stresses in the neighborhood of the defects or interfaces and the breaking of bonds, 

which damage the material. In the mesoscale level the microcracks and microvoids 

grwow and coalescence together to initiate one crack in a representative volume element. 

At the macroscale level, this is the growth of that crack. The microscale and mesoscale 

levels may be studied through the damage variables of the mechanics of the continuous 

media. The macroscale level is studied through the fracture mechanics with variables 

defined at the macroscale level. 

Lytton (2000) defined undamaged materials behaving linear viscoelastically 

under loading and unloading if its hysteresis does not change with repeated loading. 

Accumulated damage will be occurred when a material is subjected to repeated loading. 

After the material becomes damaged enough to the point it can not carry any more loads 

it will fail. Damage, therefore, can be defined as the deterioration occurring prior to 

failure by the reduction in the structural integrity of the material under repeated loading. 

As defined above, damage has been considered important components in the distresses 



 7 

and used for characterizing them. Thus, finding out the way to characterize asphalt 

mixture distresses in terms of relationships of damage parameters with more easy and 

simple methods is the main focus in this research. 

Miner (1945) is one of the first researchers who related failure of the material to 

damage. Continuum damage mechanics model was first developed for ductile materials 

by Kachanov (1958) in 1958. He introduced the variable � , which called “continuity” in 

his paper. Years later the variable �1D −=  was introduced as the international state 

variable. The D variable varies between 0 and 1 where the undamaged material will be 

with D = 0 and the damaged material will have D = 1. The main developments of 

damage theory occurred in 1970’ and 1980’, later the principles of thermodynamic and 

micromechanics were introduced. In 1984, Perzyna modified his simple model of an 

elastic-viscoplastic solid with internal imperfections due to the nucleation, growth and 

diffusion of voids in such a way that he introduced the additional information about the 

final stage of the necking process. 

Perzyna’s analysis of damage, that the rate of damage is a function of the rate of 

viscoplastic energy, confinement pressure, and effective viscoplastic strain as follows: 

 

)�,I,Wf(� vp1

.

vp

. ⋅⋅
=                                                                                        (2. 1) 

Where vp

.

W = the rate of viscoplastic energy,  

1

.

I  = the rate of change in the first stress invariant, and  
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vp

⋅

ε = the effective viscoplastic strain rate.  

 

Kim et al. (1997) tried constitutive damage approach for studying damage in 

asphalt concrete mixtures. They used continuum damage theory to model the damage 

during cyclic loadings and healing during rest periods. The continuum damage model 

consists of: 1) pseudo strain energy density function, 2) stress-strain relationship, and 3) 

damage evolution law as follows: 

 

),S(�WW m
RRR =                                                                                                        (2.2) 

R

R

�

W
�

∂
∂=                                                                                                                     (2.3) 

m�

m

R

m
S
W

S ��
�

�
��
�

�

∂
∂−=

⋅
                                                                                                        (2.4) 

Where RW = pseudo strain energy, 

 R�  = pseudo strain, 

 mS  = internal state variables (or damage parameters),  

mS
⋅

 = damage evolution rate, and 

m�  = material constant. 

 

This constitutive model predicts the damage growth and healing in asphalt 

concrete under monotonic loading with varying strains for both controlled-stress and 
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controlled-strain modes of loading. Perzyna (1984) showed that damage in metals grows 

at a small rate at the beginning of the deformation process until it reaches a critical value, 

which corresponds to a sudden loss in the material yield strength. Thereafter, damage 

grows rapidly at a very high rate leading to complete failure. However, asphalt concrete 

at relatively high temperatures typically behaves as a ductile material. It is, therefore, 

expected that damage does not evolve in such an exponential pattern, as is the case in 

brittle metals.  

Additionally, recent studies indicate that the average percent air void has been 

related to rutting (Brown and Cross 1992), fatigue cracking (Tayebali et al. 1994), low 

temperature cracking (Hiltunen and Roque 1994), stripping and permeability 

characteristics of asphalt mixtures (Roberts et al. 1996). 

Paris and Erdogan (1963) found the crack growth rate and Paris’ law is expressed 

as the damage evolution law in Equation 2.5. 

 

nAK
dN
dc =                                                                     (2.5) 

Where c  = crack length, 

N  = number of loading repetitions, 

nA,  = parameters dependent on the material and on the experimental conditions, 

and 

K  = stress intensity factor. 
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ξ  AND S AT ASPHALT MIXES 

Since the Equations 2.4 and 2.5 show that the physical meaning of the damage 

parameter can be considered amount of damage, the crack length and/or dissipated 

energy due to crack development with increasing number of loading cycles can be used 

for calculating damage parameters.  Therefore, Chapter VI introduced the correlation 

methods which adopted DPSE and two damage parameters which are based on crack 

length and dissipated energy are shown in this chapter.   

In this research, it was determined to adopt the damage definitions based on the 

amount of voids and stiffness changes. The two damage parameters were calculated by 

two main approaches which were conducted to study damage in asphalt concrete 

mixtures, that is, the void area approach and the constitutive damage approach. The void 

area approach is based on the area of void and crack in the mixture and the constitutive 

damage approach is a microscale level study of damage. Two damage parameters which 

were introduced by Perzyna (1984) and Kim et al. (1997) were included and compared 

each other in this research to find the relationships so that quantify the damage level 

simple and easily. 

Following the procedure as Tashman et al. (2004) and Lee et al. (2000a) 

proposed in their paper, two damage parameters ξ  and S can be determined for asphalt 

concrete mixtures. The damage parameter ξ  is expressed in terms of the ratio of area of 

cracks and voids to the total cross sectional area. Using the three laboratory experiments, 

the parameters in Equations 2.6 and 2.7 below can be acquired. 
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S
Av

� =                                                                                                                           (2.6) 

AsAvS +=                                                                                                                   (2.7) 

Where �  = damage parameter,  

Av = the area of cracks and voids,  

S = total cross sectional area of the specimen, and 

As = solid phase area, which includes the aggregate and asphalt binder,  

 

In the previous paper of Perzyna (1984) a simple model of an elastic-viscoelastic 

solid with internal imperfections due to the nucleation, growth and diffusion of voids 

was proposed. He showed that damage in metals grows at a small rate at the beginning 

of the deformation process until it reaches a critical value, which corresponds to a 

sudden loss in the material yield strength. Thereafter, damage grows rapidly at a very 

high rate leading to complete failure. Perzyna (1984) assumed that internal imperfections 

are generated from the nucleation, growth and transport of voids as follows: 

 

transportgrowthnucleation ���� )()()(
⋅⋅⋅⋅

++=                                                                               (2.8) 

1
P

nucleation Jl�Dtr
�1

h
�

⋅⋅
+

−
= )()(                                                                                    (2.9) 

)()()( P
growth �Dtr�1� −=

⋅
                                                                                           (2.10) 

( )x,t�D�� 2
0diffusiontransport ∇==

⋅⋅
)()(                                                                              (2.11) 
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Where  lh, = nucleation material function, 

⋅

1J = the first invariant of the Cauchy stress tensor, 

PD = rate of permanent deformation tensor, 

� = the matrix of the material function, 

0D = diffusion constant for constant temperature, and 

2∇ = Laplasian operator. 

 

In a room temperature, the Equation 2.9 is neglected and � is replaced by one 

scalar material growth function� . 

 

)(�)()( P
1

P Dtr�1Jl�Dtr
�1

h
� −++

−
=

⋅⋅
                                                                  (2.12) 

 

Tashman et al. (2004), however, found that asphalt concrete behave is different 

from that of brittle metals. They, therefore, proposed an empirical power law for damage 

evolution law. 

 

( ) ( ) ( )Ep
vp

Lp
1

Hp
vpovp1vp �EcILcWHc�)�,,I�(W� +++==                                          (2.13) 

Where 0�  = initial damage value,  

Wvp = viscoplastic energy,  

I1 = the first invariant of the stress tensor,  
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vp�  = effective viscoplastic strain, and  

Hc, Hp, Lc, Lp, Ec, and Ep = fitting coefficients. 

 
Damage parameter S can be defined from the evolution law shown in Equation 

2.4 and the pseudo strain energy density function are introduced in Equation 2.26. 

Combining the two equations by using chain rule Equation 2.14 yields Equation 2.15 as 

follows: 

 

dS
dt

dt
dC

dS
dC =                                                                                                               (2.14) 

�

2R
m�dS

dC
2
I

dt
dS

��

	

�

�−= )(                                                                                                 (2.15) 

 

Substituting Equation 2.14 into Equation 2.15 is expressed as: 

 

( )�1�/
2R

m�dt
dC

2
I

dt
dS

+

��

	

�

�−= )(                                                                                          (2.16) 

 

Finally, the equation is rearranged by means of integrating. 

 

( )


=

+
−

+

− −��

	

�
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1ii

�1�/
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2
I

S )()()()(                          (2.17) 
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Lee et al. (2000a) also used the time-dependent damage evolution process of 

asphalt concrete and defined that damage in continuum damage mechanics is any 

structural changes in a system. Kim et al. (2002) adopted the damage evolution law for 

their study on fatigue and healing potential of asphalt binders in sand asphalt mixtures. 

They used above equation by substituting R
m�  for R

m�  for their torsional controlled-strain 

mode fatigue test as shown in Equation 2.18. 

 

( )


=

+
−

+

− −��

	

�

� −≅
N

1i

�)1/(1
1ii

�1�/

i1i
2R

m,i ttCC�
2
I

S )()()(                  (2.18) 

Where S  = the damage parameter at each discrete cycle, 

R
m,i�  = the peak pseudo strain, 

iC  = the pseudo stiffness, and 

it  = the corresponding time. 

 

The material constant �  is initially assumed and then varied until cross-plotting 

the measured C against S at several different load-levels results in closure.   

 Figure 2.1 shows a typical relationship between pseudo stiffness C and damage 

parameter S. 

 

 



 15 

 

 

PSEUDO STIFFNESS AND DISSIPATED PSEUDO STRAIN ENERGY 

Pseudo stiffness eliminates a material behavior from viscoelasticity.  

Using DPSE instead of dissipated strain energy let time dependent viscoelastic 

behavior be eliminated as long as the initial stress or strain is negligible (Kim 1988). 

Also, the DPSE is a real damage indicator. Therefore, pseudo stiffness and DPSE 

provide more accurate way to characterize damage in the material.  

Figures 2.2 and 2.3 show typical undamaged linear and nonlinear viscoelastic 

material behavior under repeated loading conditions. The hysteresis loop area under 

loading and unloading in Figure 2.3 represents a DPSE.  

 

S

C

 
 

Figure 2.1. Typical Relationships between Pseudo Stiffness C and Damage 
Parameter S. 
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Figure 2.2. Typical Stress vs. Pseudo Strain Plot from Undamaged Linear 

Viscoelastic Material. 

 
 
 

Figure 2.3. Typical Stress vs. Pseudo Strain Plot from Undamaged Nonlinear 

Viscoelastic Material. 



 17 

 

 

Lee et al. (1998) defined secant pseudo stiffness and proposed a uniaxial pseudo 

strain energy density function RW  as follows: 

 

R
m

mR

�

�
S =                                                                                                                      (2.19) 

Where RS = pseudo stiffness, 

R
m� = peak pseudo strain in each stress-pseudo strain cycle, and 

m� = stress corresponding to R
m� . 
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W ))(())(( +=                                                                   (2.20) 

 

Figure 2.4 shows a general graph plot of pseudo stiffness change with increasing 

number of cycles at controlled- stain mode in terms of measured stress against calculated 

pseudo strain. 
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Based on the Equation 2.3, stress-strain relationship becomes 
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R
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R
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∂
∂= )()(                                                                       (2.21) 

 

The Equations 6.20 and 6.21 are simplified as follows when pseudo strain 

R� becomes R
m�  and M ( R

m� - R
S� ) = R

m� . With the previous assumption, G becomes 0 since 

the ratio of R�  to R
m�  is 1. 

 

R
me

R
m

R
m ��SC

2
I

W )(=                                                                                                      (2.22) 

 

 
 
 

Figure 2.4.  Pseudo Stiffness Change with Increasing Number of Cycles at 

Controlled- Stain Mode. 
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Viscoelastic body with damage can be identified by Equation 2.23.  

 

R
m )�C(S� =                                                                                                                 (2.23) 

 

We can get the general form of the constitutive equation for a viscoelastic body 

during damage is presented as: 

 

R
mm IC(S)�� =                        (2.24) 

 

The time-dependent damage evolution law for viscoelastic materials is typically 

rate-dependent and is expressed as: 

 

�

R
m )
S

W
(S

∂
∂

−=
⋅

              (2.25) 

 

Only for controlled-strain condition is considered in this research and hence 

R
m� = R

me� . 

Finally, the Equation 2.22 can be expressed as follows: 

 

( )2R
m
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W )(=                        (2.26) 
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Kim et al. (2002) applied the Equation 2.26 for torsional controlled-strain mode 

fatigue test as shown in Equation 2.27. 

 

2R
m

R
m �SC

2
I

W ))((=            (2.27) 

 

A typical graph of stress versus pseudo strain curve under cyclic loading is 

shown in Figure 2.5 in which pseudo stiffness and pseudo strain energy density function 

are depicted. 

Figure 2.5 depicted a hysteresis loop which is obtained after getting a plot of 

stress against pseudo stiffness and then DPSE is calculated based on the area of the 

hysteresis loop.  

 

 
 
 

Figure 2.5. Pseudo Stiffness and Pseudo Strain Energy Density Function. 
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To represent the change in the slope of stress-strain loops under controlled-stress 

loading, the defined pseudo stiffness ( RS ) in Equation 2.19 was defined and shown in 

Figure 2.6. 

 

 

 
 

 

Figure 2.6 shows pseudo stiffness changes by number of cycles as well as stress-

pseudo strain hysteresis loops at different loading cycles under controlled-stress mode.  

Pseudo Strain

S
tr

es
s

1st cycle 2nd 17th 179th 359th 809th
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1

 
 

Figure 2.6. Stress-Pseudo Strain Plot and Pseudo Stiffness Changes with Increasing 

Loading Cycles in Controlled-Stress. 
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Dissipate Pseudo Strain Energy for Asphalt Concrete Mixture 

Schapery (1984) proposed the extended elastic-viscoelastic correspondence 

principle, which can be applied to both linear and nonlinear viscoelastic materials. The 

correspondence principle stated that constitutive equations for certain viscoelastic media 

are identical to those for the elastic cases, but stresses necessarily physical quantities in 

the viscoelastic body. Instead, they are pseudo variables.  

The peak pseudo strain above at a current time t under a constraint strain 

amplitude 0ε  of cyclic loading can be represented as follows (Lee, 1996): 

 

[ ]*0 )(
2

)( EtEtR
m += εε                                                                                                  (2.28) 

Where 0ε  = strain amplitude, 

)(tE  = relaxation modulus, and 

*E  = dynamic modulus. 

 

Equation 2.29 having generalized power law and its parameters were determined 

by performing a 10000 sec creep test on a single specimen. The dynamic modulus also 

can be calculated with Equations 2.30, 2.31 and 2.32 proposed by Kim et al. (1995). 

 

ntDDtD 10)( +=                                                                                                          (2.29) 
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)
2

cos()2)(1(' 10
ππ n

fnDDD n−+Γ+=                                                                           (2.31) 

)
2

sin()2)(1('' 1
ππ n

fnDD n−+Γ=                                                                                   (2.32) 

 

Pseudo strain calculation requires the relaxation modulus test as we can see in 

Equation 2.28, but the test has large load response as a result of the immediate increase 

in strain input. A simpler test, therefore, such as creep test is desirable to predict the 

relaxation modulus for practical purposes. Linear viscoelastic theory allows one to 

predict the modulus as long as the load level in the creep testing is within the linear 

range. Kim et al. (1995) suggested a method to predict the relaxation modulus from the 

calculated creep compliance '
1)(' ntDtD ×=  in creep test as shown in Equation 2.33.  

 

π
π

'
)'sin(

)('
1

)(
n

n
tD

tE ⋅=                                                                                                 (2.33) 

 

It is possible to calculate pseudo strain energy for the asphalt concrete mixture 

using Equation 2.22 after getting the pseudo stiffness from the asphalt concrete mixture 

by Equation 2.19, and Equation 2.29 to Equation 2.33. 
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Dissipated Pseudo Strain Energy for Sand Asphalt 

Schapery (1984) defined elastic-viscoelastic correspondence principle and it is 

applied to torsional shear pseudo strain: 

 

ξ
ξ
γξγ dtG

G

t

R

R

∂
∂−≡ �0 )(

1
                      (2.34) 

Where γR = pseudo strain in the shear mode,  

RG  = reference shear modulus that is an arbitrary constant,  

)(tG  = shear relaxation modulus, and  

γ = time-dependent shear strain.  

 

Kim et al. (1994 and 1995) introduced pseudo stiffness ( RS ) as shown in 

Equation 2.19, and which was modified for torsional stress mode: 

 

R
m

mR

�

�
S =                                                                              (2.35) 

Where RS = pseudo stiffness, 

R
m� = peak pseudo strain in each physical stress-pseudo strain cycle, and 

 m� = physical stress corresponding to R
m� . 

 

The analytical harmonic representation of the shear strain component at time t 

under the zero mean cyclic strain condition can be expressed as: 
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)()sin()( 0 tHtt θωγγ +=                                           (2.36) 

Where 0γ = shear strain amplitude,  

ω  = angular velocity,  

θ = regression constant, and  

)(tH  = Heaviside step function.  

 

Kim et al. (2002) replaced the pseudo strain in Equation 2.34 by Equation 2.36 

and it yields the respective pseudo strain at time, t  as: 

 

)]sin([
1

)( *
0 φθωγγ ++= tG

G
t

R

R                                                                             (2.39) 

Where *G  = linear viscoelastic dynamic modulus in shear mode, and  

φ  = linear viscoelastic phase angle.   

 

Therefore, Equation 2.37 is used for Equation 2.27 which makes it possible to 

calculate the DPSE in the sand asphalt with torsional stress mode loading. Figures 2.7 

and 2.8 which illustrate the parameters �  and φ . As shown in Figure 2.7, the parameter 

�  represents the time lag between the real strain and ideal strain. In Figure 2.8, the 

parameter φ  also can be defined as the time lag between the applied stress and the 

resulting strain.  
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Figure 2.8. Graph for φ . 
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Figure 2.7. Graph for � . 
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CHAPTER III 

FATIGUE CRACKING 

 
Fatigue cracking due to repeated traffic loading is one of the major distresses in 

asphalt concrete pavements. Perzyna (1984) proposed three mechanisms of the 

nucleation, the growth, and the transport of voids that drive the damage in the material. 

Similarly, Kim et al. (1997) introduced fatigue crack mechanism that starts from 

microcracks and later propagate, densify, and coalesce due to tensile or shear stress or 

combinations of both to form macrocracks.  

Either controlled-stress method when a constant stress amplitude is applied, or 

controlled-strain when a constant strain amplitude is applied is selected for general 

fatigue tests. Also, applying a constant stress amplitude appears to be good for thick 

asphalt pavements under repetitive loading, while the controlled-strain method is 

suitable for thin pavements (Yoder 1975, Tangella 1990, and Tayebali 1994). Kim et al. 

(2002) used DMA in their study with cylindrical sand asphalt mixtures to characterize 

fatigue damage and healing effects during controlled-strain, torsional testing at the 

temperature of 25 °C.   

The energy approach has been used for predicting fatigue behavior and life of the 

asphalt mixtures. In this research, DPSE concept was applied for damage analysis of the 

asphalt mixtures. 

 



 28 

THE FIRST AND SECOND INFLECTION POINT 

The first inflection point (FIP) defines a decreasing rate of change in stiffness 

associated with microcracking in the sample.  The second inflection point (SIP) also 

infers a mechanical behavioral change possibly associated with the macrocracking.  A 

transition point between the two inflection points represents the shift from microcracking 

to macrocracking.  The rate of stiffness reduction abruptly increases at this transition 

point.  As Rowe and Bouldin (2000) skillfully proposed, the meaning of the transition 

point can be explained mathematically using the Taylor’s series expansion. 
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Where *E = stiffness or modulus,  

*
oE = initial stiffness or modulus, and  

n  = number of load cycles. 

 

THEORY OF VISCOELASTICITY  

Schapery (1984) suggested the extended elastic-viscoelastic correspondence 

principle applicable for both linear and nonlinear viscoelastic materials and proposed 

pseudo strain equations as calculated linear viscoelastic stress divided by a reference 

modulus. 
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Where ij� , ij� = physical stresses and physical strains, 

R
ij� , R

ij� = pseudo stresses and pseudo strains, 

RE = reference modulus that is an arbitary constant, and 

E(t) , D(t) = relaxation modulus and creep compliance, respectively. 

 

Stress-strain relationship for linear viscoelastic materials is expressed as: 
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Equation 3.5 is presented by using Equation 3.3 as: 
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Kim et al. (2002) extended the above equations for torsional shear pseudo strain 

such that: 
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 (t)� LVE  = calculated linear viscoelastic stress, 

�  = time history at which strains were measured, 

R�  = pseudo strain in the shear mode, 

RG  = reference shear modulus that is an arbitrary constant, 

G(t)  = shear relaxation modulus, and  

�  = time-dependent shear strain.  

 

The analytical harmonic representation of the shear strain component at time t 

under the zero mean cyclic strain condition can be expressed as: 

 

�)H(t)sin(�i��(t) 0 +=                                 (3.9) 

Where 0� = shear strain amplitude,  

�  = angular velocity,  

� = regression constant, and  

H(t)  = Heaviside step function.  



 31 

 

Pseudo strain defined in Equation 3.8 is replaced by Equation 3.9 yields the 

Equation 3.10 for pseudo strain at time t as follows: 

 

[ ])�sin(�iG�
G
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R

R φ++=                               (3.10) 

Where *G  = linear viscoelastic dynamic modulus in shear mode, and  

φ  = linear viscoelastic phase angle.   

 

Equation 3.10 can be rewritten by assuming the value of RG to be unity and it 

becomes Equation 3.11. 

 

*
0

R
m G�� =                                                                                                                (3.11) 

Where R
m�  = peak pseudo strain in each cycle. 

 

Therefore, linear viscoelastic dynamic modulus *G and strain amplitude are the 

only ones to calculate the peak pseudo strain at any loading cycle. 

Generally, the complex modulus of a viscoelastic material is composed of a 

storage (elastic) modulus and a loss (viscous) modulus. Therefore, the dynamic modulus 

is defined by Equation 3.12 in terms of measuring the values of peak stress and peak 

strain amplitude or storage and loss modulus when a repeated cyclic test is performed. 
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Where o� , o�  = peak stress and strain amplitude at each cycle, respectively,  

G'  = storage modulus, and  

G"  = loss modulus.     

 

The phase angle due to time lag between stress and strain can be easily expressed 

as: 
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In this approach, only the peak pseudo strain within each cycle is typically used.  

The pseudo strain reaches the peak when the sine function in Equation 3.10 becomes 1. 

Linear viscoelastic material properties such as the linear viscoelastic dynamic modulus 

and the phase angle are usually determined by means of a dynamic frequency sweep test. 

In addition, the peak pseudo strain in Equation 3.11 is equal to the maximum stress in 

Equation 3.12 in the linear viscoelastic region for RG  = 1.       

Equation 3.14 represents the static relaxation modulus by which is calculated the 

linear viscoelastic modulus. 
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n
1tGGG(t) −

∞ +=                                                                                                        (3.14) 

Where G(t)  = shear relaxation modulus,  

∞G  = long-time equilibrium modulus,  

1G  = regression constant, and  

n  = regression constant representing the slope between modulus and time.   

 

The storage and loss modulus in frequency domain can be calculated as: 
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Where 	 = gamma function.   

 

The linear viscoelastic dynamic shear modulus is easily determined by using 

Equations 3.12, 3.15, and 3.16.   
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CHAPTER IV 

PERMANENT DEFORMATION 

 

Rutting is defined as a surface depression in the wheel paths (Huang 1993). It 

stems from the small amount of permanent deformation in any of the pavement layers 

and/or the subgrade. Accumulation of the small deformation during each time a load is 

applied is developed as a pavement distress. Rutting is considered one of the most 

significant distresses that can cause severe damage in asphalt concrete pavements, along 

with fatigue cracking, low-temperature cracking, and moisture damage. The distress 

decreases the pavement service life and causes safety problems such as hydroplaning 

from entrapped water following deformed wheel paths. Water also can penetrate into the 

unbound base and then failure is accelerated due to excessive water. Therefore, it has 

long been a problem in hot mix asphalt (HMA) pavement. Through the years, 

researchers have used different kinds of fundamental, empirical and simulative test 

methods to estimate the rutting performance of HMA. Permanent deformation 

characterized by appropriate methodologies can help us to improve pavement 

performance. 

In fundamental tests, unconfined and confined cylindrical specimens in creep, 

repeated, or dynamic loading; cylindrical specimens in diametral creep or repeated 

loading; and Superpave shear tester (SST) repeated shear at constant height (RSCH); 

shear modulus; quasi-direct shear; and shear strength tests have been used. In empirical 

tests, Marshall and Hveem tests were used. In simulative tests, Georgia loaded wheel 
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tester, asphalt pavement analyzer (APA), Hamburger wheel tracking device (HWTD), 

Laboratoire Central des Ponts et Chaussees (Paris) wheel tracker, Purdue University 

laboratory wheel tracking device, Nottingham pavement testing facility, and model 

mobile load simulator are being used (Sousa et al. 1991, TRC E-C016 2000). 

A lot of wheel tracking test devices like APA and HWTD have been developed 

and used for simulating field conditions in laboratories. Recently a couple of studies 

gave some absolute values and acceptable rut depth criteria generated from wheel 

tracking devices (Wang et al. 2002; Kandhal and Mallick 1999, Shami et al. 1997), but 

there are no current methods to explain rutting development in the laboratory tests. 

The APA has shown some promise results as a rut testing equipment (Shami et al. 

1997). Testing with the APA will be conducted according to the procedure 

recommended by the Georgia Department of Transportation test method GDT-115. Hose 

pressure and wheel load will be 690 kPa and 445 N will be carried out to 8,000 cycles 

and rut depth measured continuously. A cylindrical sample 100 mm diameter by 150 

mm from a Superpave gyratory compactor is subjected to a static axial load for creep 

and strength tests. The tests are performed with several different confining pressures. 

 

LABORATORY PERMANENT DEFORMATION TESTS 

Repeated Shear at Constant Height (RSCH) 

The RSCH test with SST is used to evaluate rutting resistance of HMA mixtures 

for the Superpave volumetric analysis system. The RSCH is a good tool to compare 

empirically two or more samples. The test is generally used for Superpave performance 
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tester. It is used to estimate relative rutting performance (Sousa 1995). A haversine shear 

load is applied to a HMA specimen. A standardized method for the test is introduced in 

AASHTO TP7 procedure F. 

 

Hamburg Wheel Tracking Device (HWTD) 

The HWTD developed in Germany and has been used for evaluating rutting and 

stripping of pavements. It carried out 20,000 passes with a steel wheel rolls across the 

surface of HMA specimens and rut depth measured continuously.  

 

Asphalt Pavement Analyzer (APA) 

As described in Chapter VII, the APA is an automated, new generation Georgia 

load wheel tester. The standardized method is the Georgia Department of Transportation 

test method GDT-115. In general, hose pressure is 690 kPa. One set of back and forth 

movement is considered one cycle and 8,000 cycles are performed with measuring rut 

depth continuously. There have been a number of studies to match the APA test results 

to field data or other laboratory tests such as Kandhal and Mallick (1999). They 

presented fair correlations between permanent deformation from APA and from RSCH 

conducted with the Superpave shear tester. 

 

RUTTING PREDICTION 

Permanent strain deformation in HWTD and RSCH test results are expected by 

following two equations (Wang et al. 2002). 
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NaLN pp log)()( += εε            (4.1) 

NbLN pp log)(log)(log += εε           (4.2) 

Where )(Npε = permanent strain accumulated during N load applications, and 

)(Lpε , a , b = material constant. 

 

Following Equations 4.3 and 4.4 are SHRP A-003A rut depth prediction model 

(Sousa 1995). 

 

p
mRD ε×= 280                                                (4.3) 

Where RD = rut depth (mm), and 

p
mε = maximum permanent shear strain. 

 

)log(24.136.4)log( ESALscycles +−=          (4.4) 

 

Asphalt Institute (1982) proposed the failure criteria for rutting by following 

equation. 

 

477.49 )(10365.1 −−×= cdN ε            (4.5) 

Where dN = allowable number of load repetitions to limit permanent deformation, and 

cε = compressive strain at top of subgrade. 
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Generally, the creep test appears to be useful to estimate rutting potential in 

asphalt mixtures. The creep test data were also used by Finn et al. (1983) with the same 

form of the equation suggested by Shell researchers for expecting permanent 

deformation. 

 

mix

avs
imi S

hCh
σ××=∆ −−− 111            (4.6) 

Where ih −∆ 1 = change in layer thickness, 

ih −1 = layer thickness, 

ih −1 = average vertical compressive stress, 

 mixS = creep modulus at particular time of loading and temperature, and 

imC − = correction factor. 

 

 Kandhal and Mallick (1999) used granite, gravel and limestone mixes and 

measured rutting in APA to correlate with the film thickness. They found that granite 

and limestone mixes tend to have more rutting with film thickness increase, for gravel 

the rutting decreased with film thickness increase. 

 

2)(035.053.2 fDRD ×+=              (4.7) 

Where fD = film thickness (mm). 



 39 

 

 A relation for binder courses with granite and limestone is presented as: 

 

2)(2754.0)(137.605.37 ff DDRD ×+−=           (4.8) 

 

For wearing gravel courses, the best relation was found to be: 

 

)(log017.1439.19 10 fDRD −=           (4.9) 

 

Shami et al. (1997) introduced a temperature-effect model based on APA test 

results as presented in Equation 4.10 in terms of given test temperature and a given 

number of cycles. 
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         (4.10) 

Where R = predicted rut depth, 

0R = reference rut depth obtained at reference test conditions 0T  and 0N , 

T , N = temperature and number of load cycles at the rut depth sought, and 

0T , 0N = reference temperature and load cycles at 0R . 

  



 40 

 Brown and Bell (1977, 1979) compared rut depth results between theoretical 

prediction and measured values in the Nottingham Test Track. The comparisons between 

them indicated reasonable agreement. 

 Another rutting prediction model was presented by Kirwan et al. (1977). The 

model used layer-strain approach and a nonlinear finite element computer program. In-

place rutting is somewhat less than expected value from the model. 

 The layer-strain method for predicting deformation was also used by Monismith 

et al. (1977). In the paper, he used material properties from repeated load triaxial test and 

the elastic computer program ELSYS was used to calculate pavement deformation. 
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CHAPTER V 

IMAGE ANALYSIS 

 

Digital image analysis can be defined that converting pictures into a digital form 

and extracting some information from the pictures by means of various mathematical 

procedures. This information may be characteristic of cracks or any damage on a 

pavement surface area. In this research, asphalt concrete mixture and sand asphalt 

specimens representing asphalt pavement surface area were used to get pictures for 

damage parameters.  

The advent of computer imaging technology and nondestructive techniques has 

made it possible to characterize engineering materials based on the distribution of its 

internal structure (Denison et al. 1997, Masad et al. 1999a and b). Digital image analysis 

has been used to study asphalt concrete structure quantitatively. Eriksen and Wegen 

(1993) conducted microscopic analysis of air voids in asphalt concrete mixtures at the 

Danish Road Institute. Coarse aggregates in asphalt concrete mixture were analyzed 

using image analysis by Yue et al. (1995). 

An image analysis technique is generally consist of three major steps such as 

image acquisition, image processing and image analysis as shown in Figure 5.1. 
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Figure 5.1. Three Major Steps Consisting Image Analysis Technique. 
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It is well established that air voids play an important role in determining 

resistance of asphalt mixtures to major pavement distress including rutting, fatigue 

cracking, and low-temperature cracking (Monismith 1992). Air voids and cracks 

determine damage parameter values in asphalt mix specimens.  Using X-ray CT system 

along with digital image analysis techniques, air voids and cracks are detected for 

damage parameters in the asphalt mix specimens. X-ray CT imaging has been used 

increasingly in civil engineering material research in recent years and it is a completely 

nondestructive technique for visualizing features in the interior of opaque solid objects 

to obtain digital information on their three-dimensional (3-D) geometry and properties 

(Denison et al. 1997). In the meanwhile, X-ray CT method can be performed with the 

sample before or after destructive test since it is a nondestructive test. Therefore, X-ray 

CT is the most effective method for destructive micro and macro-property tests such as 

fatigue or rutting and it can be used to study the relationship between microstructure and 

macro-property.  

X-ray CT system consists of a source and a detector with the test specimen 

placed in between as shown in Figure 5.2.  The source transmits X-ray radiation with 

certain intensity. As X-rays penetrate through a specimen, part of the radiation gets 

absorbed, part of it gets scattered, while the remaining part penetrates through the 

specimen.  The intensities of these transmitted X-rays are recorded with an array of 

detectors placed at the other side of the specimen. X-rays passing through the specimen 

along several different paths in several different directions produce the set of CT images. 
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Scanning of a slice is complete after collecting the intensity measurements for a full 

rotation of the specimen and then it is shifted vertically by a fixed amount.  

 

 

 

 

 

Digital images were captured to measure air void and crack size at different 

depths with asphalt mix specimens. Horizontal slices of sand asphalt specimens were 

captured every 0.03148 mm and those of HMA were 1 mm without offset. The captured 

images were saved in TIFF. As shown in Figure 5.3, two types of cylindrical samples 

with dimension of 100 mm × 150 mm for asphalt mixture and 12 mm × 50 mm for sand 

asphalt were used. The analysis did not include the top and bottom 22.5 mm of a mixture 

 
 

X-Ray Source

Detector

Specimen
Collimator
(window)

 
 

 
 

Figure 5.2. Components of X-ray CT System (Masad et al. 2002). 
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and sand asphalt specimen to exclude the effect of surface voids on the distribution and 

the defections caused by experimental errors.  

 

 

 

 

 
 
 

Figure 5.3. Configurations of Two Specimens for Image Analysis. 
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The image analysis technique was used in this research to identify and quantify 

air voids and cracks which are based on analyzing gray images. The captured images 

from X-ray CT system were used to identify air voids and cracks within the specimen. 

As presented in Figure 5.4, air voids and cracks are shown in black and aggregates are 

white. In order to identify air voids which have low density, a threshold gray intensity 

must be determined. The gray intensity measured on a given point may be higher or 

lower than this threshold. Accordingly, the point is assigned to be either part of the air 

void, cracking, asphalt binder or aggregate. Image analysis software, Image Pro Plus 

(1998), was used for the procedure. The software has a built in language, Image Pro 

Basic (IPBasic): IPBASIC is the interpreter built into Image Pro Plus.  

 

 

 
 

 
 

Figure 5.4. Gray-Scale Image of Sand Asphalt Sample from X-ray CT. 
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Following the settings as described in Chapter VII, dynamic creep test with 

asphalt mixture and DMA with sand asphalt were conducted to calculate the damage 

parameters from the image analysis. Four points were selected from the two tests based 

on each performance behavior. The last point means the starting point of tertiary flow in 

dynamic creep test and the SIP in DMA test. The second and the third point are 

determined after deciding the last point in each performance graph plot. The second is 

one third of initial point of tertiary flow or FIP of the DMA result. The first point 

represents a specimen having undamaged condition. Two replicates at each point with 

two conditions of dry and wet were scanned. Therefore, 16 samples each test for a total 

number of 32 were analyzed. Figure 5.5 briefly shows the selected four points at each 

dynamic test. 
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Figure 5.5. Typical Test Results from Creep and DMA test and Selected Four Points 

for Digital Image Analysis. 
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CHAPTER VI 

THEORETICAL METHODOLOGY 

 

TWO CRITICAL POINTS FROM LABORATORY TESTS 

Permanent deformation is composed of two different mechanisms (Roberts et al. 

1996, Lee et al. 2000b): densification and repetitive shear deformation. The densification 

occurs at the early stage of cyclic loading, while the shear deformation is a long-term 

process. Tseng et al. (1989), Lytton (2000) and Bhairampally (1998) showed that 

permanent deformation relates to microcracking and defined a transition point where 

microcracking starts. Mohammad et al. (2000) and Wang et al. (2002) introduced three 

stages of rutting performance in their laboratory wheel tracking tests. Si (2001) also 

described the mechanism of microcracks and permanent deformation in his dissertation. 

When an asphalt concrete is subjected to repeated loading, it hardens with accumulating 

plastic deformation. If there is no microcrack arrestor, nor the material heals rapidly, it 

will reach a point where it is stiff enough for microcracks to initiate and grow. The 

asphalt concrete starts accumulating more plastic deformation after beginning of 

microcracks, where is commonly called “tertiary flow”. 

Fatigue in asphalt mixes is generally consisting of three states, those are crack 

initiation, crack propagation, and disintegration. The first step is crack initiation in which 

microcracks are developed and followed by crack propagation which shows the 

development of macrocracks out of microcracks resulting in stable crack growth. The 

last state is disintegration which represents the collapse and final failure of the materials 
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because of unstable crack growth (Jacobs 1995). Little and Kim (2002) also suggested 

that microcracking is associated with both fatigue cracking damage and the 

accumulation of permanent damage (rutting) under repeated loading. As Rowe and 

Bouldin (2000) also showed a typical fatigue behavior with classified performance 

regions as shown in Figure 6.1, Kim et al. (2002) suggested two regions with transition 

point. Little and Kim (2002) used DMA to evaluate microcraking damage potential in 

sand asphalt mixtures. Microcracking has been shown to be associated with the 

permanent damage as well as fatigue cracking. 

 

 

 

 

Generally, both permanent deformation and fatigue cracking can be evaluated by 

the ratio of predicted number of load repetition ( ijn ) to allowable number of load 

 
 

Figure 6.1 Regions of Fatigue Behavior (redrawn from Rowe and Bouldin 2000). 
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repetitions ( ijN ) and damage ratio of end of year is defined by its summation as shown 

in Equation 6.1 (Huang 1993). 

 

��
= =

=
p

i

m

j ij

ij
r N

n
D

1 1

                 (6.1)  

Where rD = damage ratio at end of year, 

ijn = predicted number of load repetitions for load j in period i, 

ijN = allowable number of load repetitions, 

p = number of periods in each year, and  

m = number of load groups. 

 

Since the prediction of load repetitions for the both two distresses is deeply 

related to the damage ratio that is the life of pavement, a lot of researches have been 

done to expect it by means of developing theoretical or empirical models from 

laboratory tests such as wheel tracking or creep test. After reviewing their models and 

how they were developed, we can propose methodologies to relate HMA pavement 

performance with damage parameters. 
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Permanent Deformation Prediction in Terms of the Two Critical Points 

A method for predicting deformation in the asphalt concrete surface area of a 

road is described. The method is based on an analysis of the stiffness behavior of the 

HMA, the stiffness values of the bituminous samples being derived from a static creep, 

APA, and DMA test. Under compressive loading conditions of a simple wheel tracking 

test to the torsional shear stress in strain controlled DMA test, the correlation among the 

three lab tests was able to predict the permanent deformation of HMA mixtures. The FIP 

and SIP were introduced and used as two critical points to predict permanent 

deformation. 

As described earlier, three sample sizes were used depending on their final use. 

Figure 6.2 shows geometric configurations of the asphalt mixtures and sand asphalt 

which were fabricated for the three tests.  

 

 

 

 
 
 
(a) Creep                                   (b) APA                           (c) DMA 
 

 
Figure 6.2. Sample Configuration for the Creep, APA, and DMA Test. 
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Detailed setups and materials for the laboratory tests which were used in this 

chapter are described in Chapter VII. 

 

1. Stiffness Calculation 

Stiffness or modulus of asphalt mixtures has been used for characterizing major 

distresses. Monismith and Tayebali (1988) considered stiffness for characterizing asphalt 

concrete pavement section and proposed stiffness with different traffic conditions as 

shown in Table 6.1.  

 

 

 

 

Calculating stiffness modulus allows the results of the three tests to be compared 

directly by plotting each data at two inflection points. In general, creep test result can 

Table 6.1. Proposed Stiffness Moduli for Austrian Traffic Conditions (Monismith and 

Tayebali 1988). 

Smix (MN/m2) Traffic Category 

 

20-30 

 

30-45 

 

45 

 

 

Minor traffic 

 

Medium-heavy traffic 

 

Extensive traffic 
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shows three major zones such as primary, secondary, and tertiary. DMA result also has 

two inflection points in the data plotting of dynamic shear modulus (G*) against number 

of cycles.  On both tests, two inflection points of FIP and SIP are observed. The FIP and 

the SIP define a decreasing rate of changes in stiffness.  

APA has been used for comparing permanent deformation susceptibility and 

shown good comparisons among the wheel tracking machines. The machine, however, 

doesn’t have any mechanical properties in the result so it rarely used for mechanical 

analysis as creep test did. By means of direct comparison among the three tests, the 

correlations were found and used to predict permanent deformation in rutting test. DMA 

adopted to expect SIP in APA result and the prediction was validated in terms of creep 

test. Figure 6.3 shows measured stiffness from HMA and sand asphalt with APA result. 
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(a) 
 
Figure 6.3. Measured HMA Stiffness from (a) Static Creep Test, (b) DMA and 

(c) APA result. 
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Figure 6.3. Continued. 
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(1) HMA stiffness (Smix) 

Hills et al. (1974) suggested methods to calculate the stiffness of mixtures in 

creep and rutting test such as APA. In the creep test the strain ( mixε ) in the mix which is 

a function of the loading time was measured at a fixed temperature and then mixture 

stiffness was calculated with constant stress ( 0σ ) as shown in Equation 6.2. 

 

mixε
σ 0

mixS =                                          (6.2)                                                         

Two graphs plotting the static creep test results as Smix against deformation at 

two critical points were shown in Figure 6.4. 

In general, the vertical surface displacement of an elastic layer on a rigid base, w, 

is expressed as follows (Ueshita et al. 1968): 

 

IB
E
p

w ⋅⋅=                               (6.3)                                                                                                

Where p = uniformly distributed pressure on loaded area, 

B = width of loaded area, 

E = modulus of elasticity of upper layer, and 

I = surface displacement influence value which is a function of Poisson’s ratio of  

the upper layer, ratio of thickness T of upper layer to width of loaded area, 

shape of loaded area, and condition at the interface.
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Figure 6.4. Smix against Deformation in Static Creep Test for Calculating (a) FIP and 

(b) SIP. 
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For the laboratory rutting tests, elastic layer model for two layers was used by 

denoting coI  in Equation 6.4 based on the Equation 6.3.  
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I co
co                                                                                      (6.4) 

Where coI = the displacement influence value, 

cow = the displacement at the center of the loaded area,  

∞E  = modulus of elasticity of the lowest layer, and 

a = the radius of the loaded circular area. 

 

Other symbols are as explained before. 

The fundamental assumptions of the APA test are that the two layers are infinite 

in horizontal direction and the lowest layer is infinite in the vertically downwards 

direction. Poisson’s ratio of the layers υ and υ∞ take fixed values of 0.28. Needing 

numerical values for Equation 6.4, we plotted the equation as a graph of coI  against a/T 

and the results are shown in Figure 6.5. This was done by using ELSYM5 to calculate 

cow . In the elastic analysis program ∞E is 104 times of assumed E (241150 MN/m2) or 

greater because the cylindrical samples rested on steel base plate for APA tests. 
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Substituting E = Smix in Equation 6.4 gives Equation 6.5 as follows: 

 

 

co

co
mix w

TpI
S

⋅⋅
=                                     (6.5)                                                                                

 

Figure 6.6 plotted calculated stiffness from the Equation 6.5 against rut depth 

measured by APA. 
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Figure 6.5. The Relationship between coI  and a/T Derived from ELSYM5 Analysis. 
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(2) Dynamic Shear Modulus (G*) 

As described above, the stiffness from mixture tests such as static creep and APA 

is calculated to compare with the result from DMA test with sand asphalt.  

In repeated cyclic tests, the dynamic modulus is typically determined by 

monitoring the ratio of the peak stress to the peak strain amplitude or measuring storage 

and loss modulus: 
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                                    (6.6)                                                                

Where oτ = peak stress amplitude at each cycle, 
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Figure 6.6.  Smix versus Rut Depth from APA. 
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oγ = peak strain amplitude at each cycle,  

'G = storage modulus, and  

"G  = loss modulus. 

 

The FIP and SIP can be monitored and calculated from DMA test. Figure 6.7 

shows calculated G* against number of cycles in DMA test for calculating FIP and SIP. 

 

2. Expecting the Second Inflection Point 

After finding the two inflection points by using stiffness modulus from the DMA 

test, the SIP in APA and creep can be predicted with the following equation: 

 

)(
F

S
Fe N

N
CSIP ×=                                         (6.7)                                                                              

Where  eSIP = expected SIP in creep or APA 

FC = number of loading cycles at FIP in creep or APA, 

FN = number of loading cycles at FIP in DMA, and 

SN = number of cycles at SIP in DMA. 
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Figure 6.7. G* against Number of Cycles in DMA Test for Calculating (a) FIP and (b) 

SIP. 
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In Figure 6.8, the typical graph plots from DMA and APA were shown with two 

critical points. The SIP in creep or APA was also expected from the ratio of SN  to FN . 

In addition to calculate SIP in creep from DMA test as shown in Equation 6.7, as defined 

earlier for FIP and SIP, second derivative method with creep test result was used as well. 
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Figure 6.8. Typical Graph Plots from (a) DMA and (b) APA with Expected 

SIP Value Based on DMA Data. 
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DAMAGE PARAMETER COMPARISONS 

The damage indicators parameters � , S and RW  were taking at four steps based 

on the previous studies which show that both permanent deformation and fatigue 

cracking have similar performance behaviors. 

Three different comparing methodologies are proposed in this chapter to find out 

damage parameter the relationships among � , S, and RW  from sand asphalt mixtures by 

DMA, and from HMA by dynamic creep test. Thereafter, the relationships can be 

validated using creep, DMA, APA tests. The first method is to compare directly with 

same parameter by calculating each parameter values from dynamic creep test with 

asphalt concrete mixture and from DMA test with sand asphalt. The second is to 

compare the image analysis method with DMA method in terms of the parameters. In 

 
(b) 
 
Figure 6.8. Continued. 



 65 

other words, the damage parameter �  for X-ray CT can be expected by S, and RW  that 

are calculated from DMA. The third is based on the micromechanic cohesive and 

adhesive model. Parameters in the models are calculated or measured from image 

analysis results. 

Finally, the best fitting analysis method and parameters were selected based on 

the results from DMA and dynamic creep test after comparing the proposed three types 

of methods.  

 

Method I: Characterizing Damage in Asphalt Mixtures by Damage Parameter 

Relationship 

HMA and sand asphalt specimens were used to calculate parameters � , S, and 

DPSE RW . Chapter II introduced and characterized the three parameters. The 

parameters represent damage states at previously defined points before and after failure 

of samples. As can be seen in Figure 6.9, the �  values are obtained after performing X-

ray CT for both HMA and sand asphalt specimens. In the meantime, others are directly 

obtained from mechanical tests. Once they are calculated, each one is compared so that 

the results from different mechanical tests show good agreements.  

As Little et al (1998) showed in their report, one of the ways to quantify the 

damage is by using DPSE. Asphalt concrete shows viscoelastic characteristics which are 

time and history dependent under constant stress or strain. Therefore, analyzing the real 

behavior of asphalt concrete is more difficult under realistic testing conditions. The time-

dependent viscoelastic behavior is eliminated by DPSE instead of dissipated strain 
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energy only if the initial strain or stress is negligible to induce any damage within the 

material (Kim and Little 1990). 

DPSE concept was introduced previously and adopted for calculating and 

comparing the two damage parameters. 

 

Method II: Correlate Parameters at Same Damage States 

The second method to correlate the parameter �  with S and RW that are from 

dynamic creep test and DMA to compare the values at the same damage status of the 

specimens. Calculated �  value in both HMA and sand asphalt are plotted with S and 

RW  that are calculated by the mechanical results from DMA. Figure 6.10 depicts the 

second method to show the concept to correlate X-ray CT result with DMA. 

 

Method III: Cohesive and Adhesive Micromechanics Model 

Cohesive and adhesive micromechanicsmodel were used to validate the 

relationships between parameters by using the results from X-ray CT and DMA.  

Lytton (2004) developed an equation, based on micromechanicsanalysis of 

cohesive and adhesive damage in asphalt-aggregates mixture, for the ratio of the 

damaged modulus to the undamaged modulus of the binder.  It is postulated here that 

this ratio is the same for the mastic as the reduction in the mastic modulus is due to the 

degradation in the binder modulus.  Mechanical and chemical asphalt properties, i.e., 

stiffness, stress, and bond energy, were used to see the relation between damaged and 

undamaged modulus of asphalt.  
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Figure 6.9. Flow Chart for Method I Using Pseudo Strain Energy. 
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Figure 6.10. Damage Parameter Comparisons at Each Step (Method II). 
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CHAPTER VII 

MATERIALS SELECTION AND EXPERIMENTAL SETUP 

 

Materials used in this laboratory study consisted of asphalt binder, aggregate, and 

sand. It was determined to use the same asphalt binder PG 64-22 which is the most 

commonly used asphalt binder in the United States for the both HMA and sand asphalt 

to maintain consistency in the test. The aggregate used in the mixture composed of 

Georgia Granite provided by Vulcan Materials Co. 

 

ASPHALT BINDER (PG 64-22) 

PG binders were introduced in Superpave system. The binder grading system 

corresponds to the expected high (average 7-day max high pavement temperature at 20 

mm depth) and low (minimum temperatures at pavement surface) temperatures of the 

location of the pavement. The asphalt binders are required to meet the minimum and/or 

maximum values when they were tested with specified tests for material properties. The 

Superpave performance based binder grades are selected based on the climate prevailing 

at the project site (Roberts et al. 1996). Table 7.1 gives the performance based binder 

grades in the specification. 

The mixing and compaction temperature were determined by plotting viscosity 

against temperature as we can see in Figure 7.1.  

A rotational coaxial cylinder viscometer (RV) was adopted in Superpave and 

described in ASTM D4402. The RV was used in this research to calculate binder 
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viscosity and determine mixing and compaction temperature for mixtures as shown in 

Table 7.2. 

 

 

 

 

 

 

Table 7.1. Superpave Performance Based Asphalt Binder Grades (Roberts et al. 

1996). 

High Temperature Grades (°C) Low Temperature Grades (°C) 

PG 46 -34, -40, -46 

PG 52 -10, -16, -22, -28, -34, -40, -46 

PG 58 -16, -22, -28, -34, -40 

PG 64 -10, -16, -22, -28, -34, -40 

PG 70 -10, -16, -22, -28, -34, -40 

PG 76 -10, -16, -22, -28, -34 

PG 82 -10, -16, -22, -28, -34 

 

Table 7.2. Mixing and Compaction Temperature As Defined by The Rotational 
Viscometer. 
 

Temp (°C) Pa·s Mixing Temp(°C) Compaction Temp(°C) 

135 0.6110 
175 0.0881 

158 ~ 166 148 ~ 153 
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SAMPLE FABRICATION 

Creep and APA 

Dense-graded HMA which were intended to dynamic and APA tests were 

designed according to Superpave specifications. A Superpave gyratory compactor was 

used for preparing specimens. Georgia granite was selected to produce the gradation 

shown in Figure 7.2. This gradation was selected in accordance with limits given in 

Superpave specifications. As stated earlier, PG 64-22 asphalt binder was selected and 

used to fabricate sand asphalt for asphalt concrete specimens.  

After batching the aggregates, 4.5 % of asphalt binder by weight of mixture was 

mixed to meet the specified % of air voids (AV), voids in mineral aggregate (VMA), and 

voids filled with asphalt (VFA).  
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Figure 7.1. Determination of Mixing and Compaction Temperature. 
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Two sample sizes were selected depending on their final use as shown in Figure 

6.2. Compaction was performed in a split mold to fabricate cylindrical samples having 

100 mm diameter and 150 mm height for creep test with 7% AV. The test specimens 

evaluated for APA were also fabricated with a diameter of 150 mm and a height of 75 

mm. The same asphalt binder and gradation which were used for making samples for 

creep and APA test. Acceptable uniformity of all the fabricated samples was verified by 

means of bulk specific gravity and air void content. 

 

 

Dynamic Mechanical Analysis (DMA)  

Same asphalt binder of PG 64-22 was employed for sand asphalt to eliminate the 

variability caused by using different type of asphalt binder. Only the aggregates passing 
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Figure 7.2. Dense Gradation for Georgia Granite. 
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sieve the #16 (1.18 mm sieve size) were used following the Ottawa standard sand 

gradation as can be seen in Figure 7.3 since the size of sand asphalt sample is much 

smaller than that of asphalt concrete mixtures for creep and APA test. The selected size 

of aggregates forms a sand asphalt mixture capable of maintaining its shape without 

plastic flow during testing and the selected gradation of the aggregates met the standard 

sand requirements provided by ASTM C 778. 

 

 

 

Eight percent of binder by weight of dried aggregate was added to make sand 

asphalt samples. Reasonable arbitrary value of the eight percent binder was selected to 

provide an average “film thickness” of approximately 10 microns.  As described earlier, 
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Figure 7.3. Ottawa Standard Sand Gradation with Upper and Lower Limit by ASTM C 

778. 
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AASHTO T 209 method which is to use rotational viscometer was adopted to determine 

mixing and compaction temperature for making samples.  

Kim (2003) suggested a methodology in his dissertation to characterize fatigue 

damage by using DMA. Figure 7.4 shows a specially fabricated mold which was 

designed and used to fabricate the 11.0 grams of cylindrical sand asphalts for DMA test. 

The trial and error method was adopted to determine the required mass for one sample 

which has a 50 mm long with a 12 mm diameter. The schematic diagram of cylindrical 

sample of sand asphalt with holders in DMA is offered in Figure 7.5. The cylindrical 

sample for DMA test was adopted to avoid complex data analysis. To install the 

fabricated sample in DMA two sample holders and epoxy glue were used in this research. 

 

 

 
 

 
Figure 7.4. Compaction Mold Assembly for Sand Asphalt Sample Fabrication. 
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Sample Preparation for Wet Conditioned Test 

 This research follows AASHTO DESIGNATION: T283-89 (1993), title of 

“Resistance of Compacted Bituminous Mixture to Moisture-Induced Damage”, for 

preparing wet conditioned samples. Figure 7.6 shows a vacuum apparatus for wet 

conditioned specimens. Table 7.3 summarizes the procedures step by step as follows: 

. 
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Figure 7.5. Geometric Dimension of Cylindrical Sand Asphalt Sample. 
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Figure 7.6. Vacuum Apparatus for Wet Conditioned Specimens. 

Table 7.3. Procedures for Wet Conditioned Specimens. 
 

Task Content 

1 Place the sample in the vacuum container 

2 Fill the container with distilled water at room temperature so that the 
samples have at least 25mm of water above their surface 

3 Apply a vacuum and leave the samples submerged in water for 5 
minutes 

4 
Determine the bulk specific gravity by T 166 and calculate the 
percent saturation (should be between 55 percent and 80 percent). If 
volume of water is more than 80 percent, discard the sample 

5 Soak the sample in a bath containing distilled water for 24±1 hours 
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EXPERIMENTAL SETUP 

Dynamic Creep 

The creep test has been used for many years to estimate the rutting potential of 

HMA. Creep test data can be used to evaluate the permanent deformation potential of 

asphalt concrete mixtures when the laboratory creep testing is performed in such a 

manner as to simulate realistic field stress conditions (Little et al. 1993). In a dynamic 

creep test, the strain in the mixture is measured as a function of time in the laboratory 

under unconfined conditions at a fixed temperature. 

Figure 7.7 shows the dense grade asphalt mixture specimen installed in a 

materials testing system (MTS). The MTS machine was used for the dynamic creep test 

with dense graded asphalt concrete mixtures having 100 mm diameter 150 mm high as 

shown in Figures 6.2 and 7.8. A load system consisting of a testing machine, 

environmental chamber, measuring system, and specimen was used for the test.  
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Only one stress level of 0.45MPa was selected in this research in order to have a 

uniform basis for comparison. The selected stress level was determined based on trial 

tests to ensure that the test sample would exhibit tertiary flow within a reasonable testing 

time. To compare the DMA results, room temperature of 25˚C was applied. 

The axial deformations were measured at two locations 180° apart (in a plain 

view) by using 100 mm length linear variable differential transformers (LVDTs). The 

experimental set up for dynamic creep test is shown in Figure 7.8 and Table 7.4 shows 

detail conditions for creep test. 

 

 
 
 

Figure 7.7. Dense Grade Asphalt Mixture Installed in MTS. 
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Figure 7.8. Dynamic Creep Test Set Up with Axial LVDT. 

Table 7.4. Conditions for Creep Test. 
 

Condition Value 

Deviatory Stress (MPa) 0.45 

Temperature (°C) 25 

Gauge Length (mm) 100 
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Three basic zones which are primary, secondary and tertiary zones in a typical 

plot of the compliance against time a graph on a log-log scale were described by 

Kaloush and Witczak (2002) as can be seen in Figure 7.9. The primary zone is where the 

strain rate decreases sharply under static load and tends to stabilize reaching the 

secondary zone. In the secondary zone, the strain rate remains almost constant under the 

applied static load and starts increasing in the tertiary zone. 

 

 
 

 

 

 

Since this test apply a specific stress level in a dynamic form, it needs an 

application and rest period. In general, 0.9 sec of rest periods followed by a stress 

application period of 0.1 sec is applied for the test. Figure 7.10 shows the input stress 

wave form for dynamic creep test.  

 
 
 

Figure 7.9. Typical Three Basic Zones in Creep Test by Plotting Creep Compliance 

against Time on Log Scale. 
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Three basic zones of primary, secondary, and tertiary zone were detected from 

the dynamic creep test as well, when the permanent strain data were plotted versus the 

number of load cycles. 
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Figure 7.10. Input Stress Wave Form For Dynamic Creep Test. 
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Asphalt Pavement Analyzer (APA) 

Figure 7.11 shows an APA machine which is basically a modified and improved 

version of the Georgia load wheel tester. By far, the APA is the most popular and 

commonly used loaded wheel tester in the USA. 

 

 

 

Shami et al. (1997), Kandhal and Mallick (1999) used APA in his research for 

evaluating permanent deformation. Testing with the APA was conducted according to 

the procedure recommended by the Georgia Department of Transportation test method 

GDT-115. Hose pressure and wheel load were 690 kPa. The test carried out to 8000 

 
 
 

Figure 7.11. Test Specimens in Laboratory Wheel Tracking Tester APA.  
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cycles at 38°C and rut depth measured continuously. One set of forward and backward 

strokes comprise one cycle. All the tests conducted in this research were dry condition to 

emphasize the rutting behavior of the mixtures. Three pairs of samples were tested at a 

test. Data from each pair was recorded to one channel.  

 

 

Dynamic Mechanical Analysis (DMA)  

Each sample after following the procedures described above was mounted in the 

DMA instrument as shown in Figure 7.12. At least 20 minutes equilibrium time was 

applied with closing the chamber to allow equilibrate desired test temperature.   

 

 

 
 
 

Figure 7.12. Cylindrical Sand Asphalt Sample Installed in DMA. 
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The torsional shear was used in a strain-controlled mode and the test data were 

collected by a data acquisition (DAQ) system with a 16-bit multi channel board. 

Considering traffic movements, damage simulation in the torsional loading would be 

better than that in the bending loads (Reese 1997). 

Average values of stresses and strains from the following equations were used in 

this research:   

 

H
Rϕγ =                                                                                                                         (7.1) 

3

2
R
T

π
τ =                                                                                                                         (7.2) 

Where R  = radius of cylinder,  

H  = length of cylinder,  

ϕ  = actuator angular displacement, and  

T  = transducer torque. 

 

Figure 7.13 shows the dynamic loading mode which has sinusoidal wave form. 

Strain-controlled cyclic tests were performed at 0.28% strain level at 25°C with 10Hz of 

frequency.  Stiffness reduction and phase angle change due to damage accumulation can 

be monitored as the number of loading cycles increase.  
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Kim et al. (2001) explained testing protocol above using this protocol in which a 

thermocouple wire was used to measure the history of heating and heat dissipation 

during torsional testing and rest periods.  
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Figure 7.13. Typical Controlled-Strain Mode DMA Test Following Sinusoidal 

Dynamic Loading. 
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CHAPTER VIII 

RESULTS AND CONCLUSIONS 

 

DATA POINT DECISION BASED ON DYNAMIC TESTING 

Basically, both damage parameter ξ  and S are calculated from dynamic creep 

test with HMA and DMA with sand asphalt samples which were fabricated for dry and 

wet condition. Chapter VII introduced dynamic creep and DMA fatigue test settings for 

controlled-strain mode. Figure 8.1 plots the calculated creep compliance D(t) on the 

corresponding time from dynamic creep test. Figure 8.2 depicts how the stiffness from 

DMA decreases as number of cycles increase in both dry and wet condition. The plots in 

the two graphs show that wet conditioned samples are more sensitive to the stress. 

The results from the mechanical tests are not only used for calculating 

parameters to show the damage by damage parameters and relate the parameters, but 

also they are used to determine two critical points. Third order polynomial equations 

were made on the each curve and then the two critical points in the graphs were obtained 

by second derivative of the equations. The asphalt mixture behavior, therefore, in 

dynamic loading have four distinct regions. The selected four points are illustrated below 

in Figures 8.1 and 8.2 and each point represents damage step until the test specimen 

reaches failure. Step1 is considered an initial condition without any damage. Generally, 

there are three distinct regions in creep test such as the primary, the secondary, the 

tertiary zone. Witczak et al. (2002) defined the secondary zone as the region in which 

strain rate decreases with loading time. Rowe and Bouldin (2000) also considered four 
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regions of fatigue behavior and the second region was the microcrack zone. Based on the 

results from this research and these previous studies, Step2 is defined as the FIP in the 

whole fatigue behavior. Step3 is the SIP matching with the start point of tertiary flow 

and macro cracking. Step4 represents the failed condition by the dynamic loading.  

Table 8.1 summarized the values of the four points for HMA and sand asphalt 

specimens. The points are marked in Figures 8.1 and 8.2. 

 

 

Table 8.1. Summary of the Four Points for Analysis.  
 
                               (unit: sec (cycle)) 

Test Condition Step1 Step2 Step3 Step4 

Dry 0 
(0) 

219.8 
(220) 

549.6 
(550) 

1099.1 
(1099) 

Dynamic Creep 

Wet 0 
(0) 

179.8  
(180) 

449.6  
(450) 

899.1  
(899) 

Dry 0 
(0) 

86.0 
(860) 

200.0 
(2000) 

336.0 
(3360) 

DMA 

Wet 0 
(0) 

100.0 
(1000) 

236.0 
(2360) 

436.0 
(4360) 
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DATA ANALYSIS FOR ξ  

Former image analysis studies take the images just at initial and final (failure) 

stage of destructive tests or from material properties such as aggregate angularity and 

texture before fabricating samples, therefore, the procedures are hard to represent the 

real damage of tested specimens between initial and the failure status even though they 

can be used to estimate indirectly from their methods.  

HMA and sand asphalt specimens before and after dynamic creep and DMA 

fatigue test were scanned by X-ray to capture the microstructures at different four steps 

with dry and wet condition. Damage parameter ξ  was adopted to quantify the damage 
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Figure 8.1. Creep Compliance versus Loading Time with Stress-Controlled Dynamic 

Creep Test. 
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Figure 8.2. Stiffness versus Number of Cycles with Strain-Controlled DMA Test in 

(a) Dry Condition and (b) Wet Condition. 
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levels at each damage step in both HMA and sand asphalt specimens. Data analysis 

showed that the parameter was good to see the damage changes in both specimens. The 

degree of scattering in terms of standard deviation was used to show the differences of 

damage in HMA at each damage step. 

Image analysis methods and steps are introduced in Chapter V. As described in 

the chapter, selecting proper threshold value is critical because the subsequent 

measurements are sensitive to its value.  

Threshold levels were determined by focusing on the air voids in the initial step 

(undamaged specimens) with gray-scale images acquired through X-ray CT. In other 

words, threshold values were determined when they match up to the air voids measured 

by bulk specific gravity. Accordingly, measured gray intensity at a given point may be 

higher or lower than the threshold. Therefore, it is assigned to be either part of the air 

void, cracking, and aggregates. Following the threshold level decision, the gray-scale 

image was converted to black-and-white image based on the threshold level so that it is 

possible to calculate parameter values. Table 8.2 shows the determined threshold values 

for HMA and sand asphalt both in dry and wet condition. 
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Hot Mix Asphalt Concrete Mixture (HMA) 

Figures 8.3 and 8.4 show the results of the damage parameter measurements at 

each damage step. Four curves are plotted for the same condition. Each curve is 

composed of 158 points representing results from horizontal sliced images and indicates 

the amount of damage measured at pre-determined steps. Each point in the figures is 

calculated values based on the 1 mm slice image from the HMA mixtures without offset. 

The height ratio is defined as the ratio of vertical distance from the top of the specimen 

to the total height of sample because there were slight different heights among the 

fabricated samples. 

Figure 8.3 shows that the damage parameter ξ  values decreased initially and 

then they increased up to 0.2 in the rest of steps. As can be seen in Figures 8.3 and 8.8, 

Table 8.2. Determined Threshold Values for Image Analysis. 

Specimen Condition Value 

Dry 59 

HMA 

Wet 90 

Dry 115 

Sand Asphalt 

Wet 130 
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the damage parameter values in both the two types of specimens exhibited slight changes 

in the first three damage steps in dry condtion. 

 

 

 

 

There were significant changes of ξ  occurred between Step1, undamaged 

condition, and Step2 and the results were shown in Figures 8.4 and 8.9. 
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Figure 8.3. Damage Parameter ξ  Distribution in HMA (Dry Condition). 
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HMA images showed that there were distinct regions with respect to damage 

parameter ξ  as shown in Figures 8.3 and 8.4. Approximately, the first and last 10 

percent of the height of HMA specimens have high void contents because of the direct 

contact with the gyratory plates causing restriction in the mobility of the aggregates and 

reducing the efficiency of the kneading action (Tashman et al. 2001). The three regions 

were separated by 15 percent for the top and the bottom and 70 percent for the middle of 

total height. Damage parameter ξ  was studied separately in the three regions. Figure 8.5 

shows the parameter changes of the three regions at each damage step in HMA. The 

middle region was selected based on the graph plots in the figures below: 
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Figure 8.4. Damage Parameter ξ  Distribution in HMA (Wet Condition). 
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Figure 8.5. Damage Parameter ξ  Changes of Three Distinct Regions at Each Damage 

Step in (a) Dry Condition and (b) Wet Condition in HMA. 
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Figure 8.6 shows the average values of damage parameter ξ  changes by dynamic 

creep test from both dry and wet conditioned specimens at the defined four steps. As 

expected, the wet conditioned specimens experienced higher damage throughout the 

steps. 

 

The calculated standard deviation was also adopted for supplementary way to 

show the HMA damage status at each damage step. Table 8.3 summarized the standard 

deviation and ξ  values from HMA. Because the sand asphalts used for DMA have 

relatively homogeneous properties and does not show significant degree of dispersions 

in the results, only HMA results from dynamic creep test were included to estimate 

standard deviation. The standard deviation based on the data from the dynamic creep test 

was estimated and plotted in Table 8.3 and Figure 8.7.  

The standard deviation is a measure of how widely values are dispersed from the 

average value (the mean). Following Equation 8.1 was used for standard deviation. 
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Figure 8.6. Comparison of Damage Parameter ξ  at Dry and Wet Condition in HMA. 
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Where ..DS  = standard deviation, 

n = number of samples, and 

x  = measured damage parameter value. 

 

Table 8.3 and Figure 8.7 show that standard deviation in wet condition has more 

degree of scattering than in dry condition and there is a relatively big shift at Step2 as 

shown in Figure 8.4. On the contrary, no significant increase was detected at Step2 in 

dry condition.  

 

 

Table 8.3. Data Summary of Standard Deviation and Average Parameter Value ξ  

from HMA. 

 Standard Deviation Average ξ  

Dry    

Step 1 0.376 0.076 
Step 2 0.348 0.071 
Step 3 0.407 0.082 
Step 4 0.531 0.107 

Wet    

Step 1 0.027 0.074 
Step 2 0.037 0.139 
Step 3 0.053 0.135 
Step 4 0.055 0.149 
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Sand Asphalt 

Figures 8.8 and 8.9 show the increasing damage parameter ξ  values after DMA 

tests with sand asphalt specimens. Each curve represents the amount of damage 

measured at each damage step. Four curves are plotted for the same condition. Each 

curve is composed of 700 points and indicates the amount of damage with two replicates 

measured at pre-determined steps. The points in the two figures are calculated values 

from image analysis technique based on the thickness of 0.03148 mm images without 

offset. Assuming that the damage status in the same tested samples is symmetric, half of 
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Figure 8.7. Standard Deviation at Each Damage Step in HMA. 
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the total length of a specimen was scanned by X-ray and the images were analyzed. 

Therefore, the height ratio in the figures was defined as the ratio of vertical distance 

from the bottom to a half of height of sample. 

The applying torsional stress and accumulation of fatigue loose the structure of 

the specimen with increasing the amount of air voids and cracks. The degree of 

scattering data, however, did not change significantly throughout the steps. The damage 

distribution in a same step is quite different from that of HMA. It is believed that the 

different type of materials caused the different results. In other words, as described 

earlier, small loose sand asphalt samples using only binder and Ottawa standard sand 

have more homogeneous characteristics than dense graded HMA samples with Georgia 

granite. Also, the different mixing and compaction method and loadings types - 

compression (dynamic creep test) and torsional (DMA test) stress - can be considered for 

the reasons. 

Figure 8.8 shows that a significant change of damage parameter values occurred 

between Step3 and Step4 in dry condition while the parameters in the first three steps 

show smooth increasing.  
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Samples in wet condition experienced a significant change of damage parameter 

between Step1 and Step2 as shown in Figure 8.9. The rate of damage changes is 

decreasing after the relatively big shift from Step1 to Step2. The same patterns of 

parameter changes were investigated in the wet conditioned HMA specimens. 
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Figure 8.8. Damage Parameter ξ  Distribution in Sand Asphalt (Dry Condition). 
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The average values from the each curve in Figures 8.8 and 8.9 are plotted in the 

following Figures 8.10 and 8.11 for both dry and wet condition. Figure 8.10 (a) shows 

the change of damage levels in dry condition while Figure 8.10 (b) is in wet condition. 

The patterns of average values in the following figures exhibit the similar results as the 

whole data values in Figures 8.8 and 8.9. 
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Figure 8.9. Damage Parameter ξ  Distribution in Sand Asphalt (Wet Condition). 
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Figure 8.10. Damage Parameter ξ  Changes at Each Damage Step in Sand Asphalt in 

(a) Dry Condition and (b) Wet Condition. 
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Figure 8.11 is a plot of damage parameter ξ  results from both dry and wet 

conditioned specimens at pre-defined steps. As expected, the wet conditioned specimens 

experienced higher damage throughout the steps. 

 
 

 
 
 

Although there were a couple of differences between HMA and sand asphalt test 

such as geometric, materials, and loading condition, both results of damage parameters 

ξ  showed similar performance characteristics in the both dry and wet condition. Using 

average values of the damage parameter ξ  produced similar results as whole data were 
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Figure 8.11. A Comparison of Damage Parameter ξ  in Dry and Wet Condition in 

Sand Asphalt. 
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used. Therefore, the average values are adopted and used to analyze and compare with 

different types of parameters representing damage in the HMA and sand asphalt 

specimens. 

 

DATA ANALYSIS FOR S 

Dynamic creep test with HMA and DMA with sand asphalt samples are 

fabricated in dry and wet condition and then damage parameter S is calculated based on 

the results from the two laboratory experiments. Equations 2.17 and 2.18 in Chapter II 

are for the calculating damage parameter S which is calculated at each discrete cycle by 

obtaining the peak pseudo strain ( R
m�  or R

m,i� ) and pseudo stiffness ( iC ) corresponding 

time ( it ). Kim et al. (1995) suggested a method to predict the relaxation modulus of 

HMA from the calculated creep compliance '
1)(' ntDtD ×=  in creep test as shown in 

Equation 2.29 in Chapter II. Equation 2.19 also defined pseudo stiffness RS  in terms of 

peak pseudo strain and corresponding stress (Lee et al. 2000a). Based on the Equations 

2.19 and 2.33, pseudo stiffness was calculated for dry and wet conditioned HMA. 

Pseudo stiffness in torsional mode stress is calculated by DMA with controlled-strain 

and measured stress.  

The following Figure 8.12 illustrates that the stiffness calculated from HMA has 

similar features like it from sand asphalt with DMA. The initial stiffness, before 

applying stress, of the dry sample is bigger and the performance life is longer than wet 

conditioned sample as expected. After getting the pseudo stiffness from HMA and sand 

asphalt samples, it is easy to calculate damage parameter S by using Equations 2.17 and 
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2.18. There were reasonable experimental results when parameter S was used as a 

damage parameter to reflect conditions of damaged sand asphalt samples and compare 

with other steps and parameters. The calculated S from both dry and wet conditioned 

HMA with increasing stress shows similar results as ξ . In other words, the wet 

conditioned samples were damaged more than dry conditioned ones. In controlled-stress 

mode experiment such as dynamic creep test, the strain is increasing which results in the 

similar graph plots like Figure 8.6 when Equation 2.17 is used. Figure 8.13 depicts the 

changes of damage parameter S with increasing loading stress. Theoretically, the value S 

at the initial step (Step1) is set to zero. Figure 8.13, therefore, shows just the steps after 

starting damage procedures, that is, Step2, Step3, and Step4. 
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(a) 
 
Figure 8.12.  Plots of Pseudo Stiffness versus Loading Time in (a) Dry Condition 

and (b) Wet Condition. 
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Figure 8.12.  Continued. 
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(b) 
 
Figure 8.13.  Damage Parameter S Changes at Each Damage Step in Dry and Wet 

Condition in (a) HMA and (b) Sand Asphalt. 
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DATA ANALYSIS FOR DPSE 

Chapter VI described the DPSE by plotting the measured stress against pseudo 

strain. The sample undergoing fatigue testing exhibits hysteresis loop in both plotting of 

measure stress against physical strain and pseudo strain. The inner area of the hysteresis 

loop by plotting measured stress against pseudo strain is defined DPSE. As can be seen 

in Equation 2.26, the DPSE is composed of pseudo strain ( R
� ) and changing stiffness of 

the material due to changes in microstructure of the material such as increasing damage 

and/or healing. Lee et al. (2000b) and Si et al. (2002) also explained the calculation of 

DPSE by obtaining pseudo strain for damaged nonlinear asphalt concrete as shown in 

Figure 2.5. DPSE which should be related to the fatigue fracture and healing can be used 

as a real damage indicator since it represents energy dissipation after eliminating 

material viscoelasticity. 

Figure 8.14 shows the variations of DPSE in controlled-stress and controlled-

strain mode each. Slope of variances in the early stage and in the final stage is stiffer 

than in the middle stage of growing damage. As shown in Figure 8.14 (a), HMA under 

controlled-stress increase DPSE with increasing pseudo strain values. On the contrary, 

controlled-strain loading mode decreases DPSE as displayed in Figure 8.14 (b). 

However, Figure 8.14 indicates that wet conditioned samples are more damaged than dry 

ones at every step as expected. The damage expressed by DPSE is independent of 

loading modes and can be used as an indicator for damage levels.
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(b) 
 
Figure 8.14. DPSE RW  Changes at Each Damage Step in Dry and Wet Condition in 

(a) HMA and (b) Sand Asphalt. 
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SURFACE AREA PARAMETER AND AVERAGE RADIUS 

“Surface Area Parameter” and “Average Radius” are added to the three 

parameters. The “Surface Area Parameter” is defined as average of void perimeters 

summation as Equation 8.2. Equation 8.3 is used for “Average Radius”. 

 

�
= ⋅

=
n

i i

i

r
P

n
ParameterAreaSurface

1
2

1
π

                                                                         (8.2) 

Where n  = number of air voids and cracks, and 

P  = perimeter of each void and crack. 

 

π⋅
=
�

=

n

A
diusAverage Ra

n

i
i

1                                                                                            (8.3) 

Where A  = area of each void and crack. 

 

Figures 8.15 (a) and 8.16 (a) show HMA surface area parameter and average 

radius at each damage step in dry and wet conditioned specimens. The calculated values 

of the two parameters in sand asphalt are plotted in Figures 8.15 (b) and 8.16 (b) as well. 

As expected, the values are increasing with increasing accumulated damage in both dry 

and wet conditioned samples. All the wet specimens have experienced high damage. All 

the following four figures showed rapid changes between at the first step and at the 

second step in wet conditioned samples as shown in previous results of Figures 8.4 and 

8.9. 
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(b)  
 
Figure 8.15. Calculated Surface Area Parameter from (a) HMA and (b) Sand 

Asphalt at Each Damage Step. 
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. 
Figure 8.16. Calculated Average Radius from (a) HMA and (b) Sand Asphalt at 

Each Damage Step. 
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THE RATIO OF DAMAGE INDICATOR 

The pseudo stiffness values from each dynamic test were used for calculating the 

percentage of aggregate surface area that is replaced by moisture ( iP ) with previously 

determined adhesive surface energies both under dry and wet condition as shown in 

Equation 8.5. Figures 8.17 and 8.18 show the results of ratio of damage indicator at each 

damage step and the percentage of the aggregate surface area that has been exposed to 

water. 

Cheng (2002) defined the ratio of stiffness under wet conditions to stiffness 

under dry conditions by the work of adhesion ratio between asphalt and aggregate in wet 

and dry conditions. The stiffness ratio in dynamic creep and DMA test is defined by 

normalized pseudo stiffness as shown in Equation 8.4. 

 

a
d

i
a
wi

a
d

R
di

R
wi

G
PGPG

NS

NS

∆
∆+−∆

=
)1(

,

,                                                                               (8.4) 

Where R
diNS ,  = normalized pseudo stiffness under dry condition at i th cycle, 

R
wiNS ,  = normalized pseudo stiffness under wet condition at i th cycle,  

a
dG∆  = bond energy of adhesion between asphalt and aggregate under dry  

condition, 

a
wG∆  = bond energy of adhesion between asphalt and aggregate under wet  

condition, and 

iP  = percentage of surface area of the aggregate that is replaced by water in the  
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        mixture. 

 

The Equation 8.4 can be expressed for iP  as shown: 
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                                                                                       (8.5) 
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Figure 8.17. Ratio of Damage Indicator at Each Damage Step. 
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Figure 8.18. Percentage of the Aggregate Surface Area Exposed to Water at Each 

Damage Step. 
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CHARACTERIZING DAMAGE IN ASPHALT MIXTURES BY DAMAGE 

PARAMETER RELATIONSHIP (METHOD I) 

Detailed comparison methods among damage indicators were presented in 

Chapter VI. As shown in Figure 6.9, the first method for characterizing damage in 

asphalt mixtures is direct comparisons between the same parameters from HMA and 

sand asphalt.  

Both HMA and sand asphalt specimens under dynamic stress were used to get 

the three damage indicators ξ , S, and  DPSE. The concept of the parameters was 

introduced and their values were plotted in the previous figures. The results from HMA 

are correlated to those from sand asphalt samples by means of the three damage 

indicators as shown in Tables 8.4, 8.5, Figures 8.19, 8.20, and 8.21. 

Figure 8.19 shows damage parameter ξ  from X-ray CT at different four states in 

dry and wet condition. The results from HMA and sand asphalt specimens show that 

they increase in number as shown previously. There is a good agreement between HMA 

and sand asphalt results for ξ . As explained early, damage in both HMA and sand 

asphalt increase rapid in the early and end stages while middle stages are almost same 

states or shows slow increases. Figure 8.20 displays damage parameter S from the two 

dynamic mechanical tests. The results from HMA agree well with calculated values in 

sand asphalt. Each state of damage shows similar slopes variances in dry and wet 

conditioned samples as shown in Figure 8.20. Figure 8.21 shows the variation of DPSE 

during the change of damage states in dry and wet condition. To compare results from 

different stress mode in a graph, values from HMA are expressed in reverse order in the 
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figures. There are also good agreements between HMA and sand asphalt results in the 

two conditions.  

 

 

 
 

 
 

Table 8.5. Correlation of HMA and Sand Asphalt in Wet Condition. 
 

HMA 
Sand ξ S DPSE 

ξ 0.9962 - - 

S - 0.9487 - 

WR - - 0.7561 

 

Table 8.4. Correlation of HMA and Sand Asphalt in Dry Condition. 
 

HMA 
Sand ξ S DPSE 

ξ 0.8823 - - 

S - 0.9894 - 

WR - - 0.9924 
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(b) 
 
Figure 8.19. Comparison of Damage Parameter ξ  from HMA and Sand Asphalt in (a) 

Dry Condition and (b) Wet Condition. 
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(b) 
 
Figure 8.20. Comparison of Damage Parameter S from HMA and Sand Asphalt in (a) 

Dry Condition and (b) Wet Condition. 
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(b) 
 
Figure 8.21. Comparison of DPSE from HMA and Sand Asphalt in (a) Dry 

Condition and (b) Wet Condition.  
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CORRELATE PARAMETERS AT SAME DAMAGE STATES (METHOD II) 

Chapter VI introduced the second characterizing the method with Figure 6.10. As 

shown in the figure, the method relates one parameter from HMA to the other different 

damage indicators results from sand asphalt and vice versa. This method does not 

compare the same parameters, but between the different ones. Parameter ξ  from X-ray 

CT is compared with the parameters, S and DPSE, from DMA to see whether or not the 

parameters can explain the damage progressions acquired by X-ray CT. 

 

Correlation of ξ  with S and DPSE in Sand Asphalt  

DMA has been used to characterize material properties and fatigue life, which is 

a simple mechanical testing can be used to characterize damage states in asphalt 

mixtures. In this research, the mechanical testing results are shown and correlated with 

each other. Finally, DMA testing can substitute for X-ray CT method if the relation 

between DMA and X-ray CT result is defined. 

Figure 8.22 presents that average parameter value of ξ  at each state in dry and 

wet condition agree well with S from sand asphalt. 
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Figure 8.22. Damage Parameter S versus ξ  in Sand Asphalt in (a) Dry Condition and 

(b) Wet Condition. 
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DPSE is plotted with ξ  at each state in dry and wet condition as illustrated in 

Figure 8.23. The relationship in dry condition is better than wet condition. Better results 

are acquired at Step2 and Step3. 
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(a) 
 
Figure 8.23. DPSE versus ξ  in Sand Asphalt in (a) Dry Condition and (b) Wet 

Condition. 
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Correlation of ξ  in HMA with S and DPSE in Sand Asphalt  

The average values of damage parameter ξ  at each damage step from HMA are 

presented below in Figures 8.24 and 8.25 with S and DPSE from sand asphalt. All the 

three parameters are plotted for the relationship between results from X-ray CT and 

DMA. Expecting damage parameter ξ  in HMA by S and DPSE in sand asphalt makes 

possible to verify and/or compare the results in Figures 8.22 and 8.23. 

Figure 8.24 displays the damage parameter S in sand asphalt plots on parameter 

ξ  in HMA with both dry and wet conditioned specimens. Calculated parameter DPSE 

from DMA is compared to ξ  in HMA in Figure 8.25. 
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Figure 8.23. Continued. 
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Figure 8.24. Damage Parameter S in Sand Asphalt versus ξ  in HMA in (a) Dry 

Condition and (b) Wet Condition. 
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(b) 
 
Figure 8.25. DPSE in Sand Asphalt versus ξ  in HMA in (a) Dry Condition and (b) 

Wet Condition. 
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 EXPECTING ASPHALT CONCRETE PAVEMENT PERFORMANCE IN 

TERMS OF DAMAGE PARAMETER ξ , S, and DPSE 

Generally, to relate mechanical properties to predict pavement performance or 

distress, modulus of materials or stiffness have been used for permanent deformation and 

fatigue cracking. Modulus of a material is an important property to predict material 

distress by stress. Kim (2003) showed and defined fatigue life by means of material 

stiffness loss due to fatigue damage accumulation. Witczak et al. (2002), however, used 

creep compliance, D(t), to relate stress to strain and noted that using compliance is more 

advantageous than the modulus for viscoelastic materials since it separates time-

dependent components. 

Tables 8.6 and 8.7 show the correlations of each parameter from sand asphalt in 

dry and wet condition. Tables 8.8 and 8.9 show the variances of normalized parameter 

values.  

 

 

Table 8.6. Correlation of Each Parameter from Sand Asphalt in Dry Condition. 
 

 ξ G* S DPSE 

ξ 1.0000 0.9950 0.9535 0.9996 

G* - 1.0000 0.9642 0.9977 
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Table 8.8. Variance of Normalized Parameter Value from Sand Asphalt in Dry 

Condition. 

 ξ G* S DPSE 

ξ 1.0000 0.1000 0.2289 0.1139 

G* - 1.0000 0.0966 0.0012 

 

Table 8.7. Correlation of Each Parameter from Sand Asphalt in Wet Condition. 
 

 ξ G* S DPSE 

ξ 1.0000 0.9784 0.9616 0.6217 

G* - 1.0000 0.9642 0.9977 
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From Figure 8.26 to Figure 8.31, results from damage parameter ξ , S, and DPSE 

are plotted on the original graph plots from the mechanical testings such as dynamic 

creep and DMA. Once the plots show well agreements with D(t) and G*, the parameters 

representing damage can substitute for them so that DMA mechanical test method can be 

used for X-ray CT or even HMA test in terms of calculated DMA results such as S, and 

DPSE. 

Figures 8.26, 8.27, and 8.28 plotted the parameterξ , S, and DPSE at each state 

on the stiffness G* calculated from DMA in both dry and wet conditioned sand asphalt. 

The results show that all the three parameters follow the same trend as the calculated 

stiffness by DMA. As can be seen in the figures, the G* explains relatively well the 

parameterξ  and dry conditioned samples show better agreements as well. 

 

Table 8.9. Variance of Normalized Parameter Value from Sand Asphalt in Wet 

Condition. 

 ξ G* S DPSE 

ξ 1.0000 0.1565 0.2544 0.0489 

G* - 1.0000 0.0142 0.1199 

 



 

 

129 

0

10

20

30

40

50

60
M

ill
io

n
s

D
yn

am
ic

 S
he

ar
 M

od
ul

us
, G

*
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

D
am

ag
e 

P
ar

am
et

er
,

G*

ξ

Step 1 Step 2 Step 3 Step 4

 
(a) 

0

10

20

30

40

50

60

M
ill

io
n

s
D

yn
am

ic
 S

he
ar

 M
od

ul
us

, G
*

0.185

0.195

0.205

0.215

0.225

0.235

0.245

0.255

0.265

0.275

0.285

D
am

ag
e 

P
ar

am
et

er
,

G*

ξ

Step 1 Step 2 Step 3 Step 4

 
(b) 
 
Figure 8.26. Comparison of Damage Parameter ξ  and Stiffness G* from DMA in 

(a) Dry Condition and (b) Wet Condition. 
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(b) 
 
Figure 8.27. Comparison of Damage Parameter S and Stiffness G* from DMA in (a) 

Dry Condition and (b) Wet Condition. 
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Figure 8.28. Comparison of Damage Parameter DPSE and Stiffness G* from DMA 

in (a) Dry Condition and (b) Wet Condition. 
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Tables 8.10 and 8.11 show the correlations of each parameter from HMA in dry and 

wet condition. Tables 8.12 and 8.13 show the variances of normalized parameter values.  

 

 
 
 

 
 

Table 8.11. Correlation of Each Parameter from HMA in Wet Condition. 
 

 ξ D(t) S DPSE 

ξ 1.0000 0.8282 0.8180 0.8722 

D(t) - 1.0000 0.9981 0.9962 

 

Table 8.10. Correlation of Each Parameter from HMA in Dry Condition. 
 

 ξ D(t) S DPSE 

ξ 1.0000 0.9155 0.6791 0.8165 

D(t) - 1.0000 0.9083 0.9797 
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Figures 8.29, 8.30, and 8.31 plotted the parameterξ , S, and DPSE at each state on 

the creep compliance D(t) calculated from dynamic creep test in both dry and wet 

conditioned HMA.  

Table 8.13. Variance of Normalized Parameter Value from HMA in Wet Condition. 

 

 ξ D(t) S DPSE 

ξ 1.0000 0.0347 0.2671 0.3206 

D(t) - 1.0000 0.1373 0.1619 

 

Table 8.12. Variance of Normalized Parameter Value from HMA in Dry Condition. 

 

 ξ D(t) S DPSE 

ξ 1.0000 0.0835 0.1682 0.3002 

D(t) - 1.0000 0.0377 0.0405 
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(b) 
 
Figure 8.29. Comparison of Damage Parameter ξ  and Creep Compliance D(t) from 

Dynamic Creep Test in (a) Dry Condition and (b) Wet Condition. 
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(b) 
 
Figure 8.30. Comparison of Damage Parameter S and Creep Compliance D(t) from 

Dynamic Creep in (a) Dry Condition and (b) Wet Condition. 
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(b) 
 
Figure 8.31. Comparison of DPSE and Creep Compliance D(t) from Dynamic Creep 

in (a) Dry Condition and (b) Wet Condition. 
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MICROMECHANICS COHESIVE AND ADHESIVE MODEL (METHOD III) 

The properties of the fine and coarse aggregate define the aggregate matrix.  If 

the aggregate shape, form, and texture properties of the matrix as well as the adhesive 

bond strength between the mastic and aggregate are known, then the impact of the 

aggregate matrix can be integrated with the impact of the mastic to assess damage.  The 

adhesive bond between the mastic and the aggregate can be calculated based on bond 

energy measurements of these components to assess the potential for adhesive fracture 

or debonding in the dry state or in the presence of moisture. 

Lytton (2004) developed equations, based on micromechanical analysis of 

cohesive and adhesive damage in asphalt-aggregates mixture, for the ratio of the 

damaged modulus to the undamaged modulus of the binder. Mechanical and chemical 

asphalt properties, i.e., stiffness, stress, and bond energy, were used to see the relation 

between damaged and undamaged modulus of asphalt. Lytton (2004) showed 

dependence of mixture stiffness and strength on film thickness with the equations of 

cohesive and adhesive fracture for the relationship. A thin film of asphalt of thickness, t , 

between two platens with a cross-sectional area, A , and subjected to a constant strain 

loading will have the relation between damaged 'E  and undamaged modulus E  for 

cohesive fracture as shown in Equation 8.6. All the cracks on the cross-sectional area are 

assumed circular plan view. 
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Where t  = the film thickness, and 

c
fG∆  = the total cohesive fracture bond energy of the asphalt. 

 

The average number of cracks m  can be calculated on cross-sectional areas by 

obtaining damage parameter ξ  and mean crack radius c  from X-ray CT. Once the 

parameter ξ  is calculated in Equations 2.6 and 2.7, the number of cracks is simply 

obtained by following Equation 8.7. 

 

 2
c

A
m

π
ξ=               (8.7) 

The asphalt cement film thickness t  is calculated using the following equation 

(Roberts et al. 1996): 

  

1000×
⋅

=
agg

asp

WSA

V
t              (8.8) 

Where t  = average film thickness (microns), 

aspV  = effective volume of asphalt cement (liters), 

SA  = surface area of the aggregate (m2/kg of aggregate), and 

aggW  = weight of aggregate (kg). 

 

Following Equation 8.9 defines the stress σ  with constant strain 0ε  for the 

Equation 8.6. 



 

 

139 

 

0εσ E=               (8.9) 

  

Equation 8.10 shows the modulus relation between the damaged and the 

undamaged modulus for adhesive fracture under constant strain loading. 
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Where fE , sE  = the modulus of the fluid (asphalt) and the solid (aggregate),  

     Respectively, and 

a
fG∆  = the total adhesive fracture bond energy of the material. 

 

Equation 8.11 shows the modulus relation between the damaged and the 

undamaged modulus for cohesive fracture under constant stress loading. 
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Equation 8.12 shows the modulus relation between the damaged and the 

undamaged modulus for adhesive fracture under constant stress loading. 
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Applying the definitions above for the shear stress mode, the four equations can 

be rewritten as Table 8.14.  

 

 

 

Cheng (2002) presented the bond energy of cohesion ( c
fE∆ and c

fG∆ ) and 

adhesion ( a
fE∆ ) under dry and wet condition. The cohesive and adhesive bond energy 

Table 8.14. Cohesive and Adhesive Fracture Equations in Shear Stress Mode 

Loading. 
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values from Cheng (2002) for binder and mixtures were adopted and the adhesive values 

for sand asphalt ( a
fG∆ ) were calculated based on the following Equations 8.13, 8.14 and 

Table 8.15.  

 

( )+−−+ ΓΓ+ΓΓ+ΓΓ=∆ abab
LW
a

LW
b

a
dG 2          (8.13) 

( ) ( ) +−−+++−−−+
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w

a
wG

2222

42222
     (8.14) 

Where a
dG∆ , a

wG∆  = adhesive surface energies for dry and wet condition, respectively, 

LWΓ  = Lifshitz-van der Waals component of the bond energy, 

+Γ  = Lewis acid component of the bond energy, 

+Γ  = Lewis base component of the bond energy, and 

subscript a , b , w  = each means aggregate, binder, and water, respectively.  

 

 

Table 8.16 shows the determined surface energies for cohesive and adhesive 

fractures in dry and wet condition. 

Table 8.15. Component Values for Adhesive Bond energy Calculation in Dry 

and Wet Condition of Sand Asphalt. 

LW
aΓ  LW

bΓ  +Γa  +Γb  −Γa  −Γb  LW
wΓ  +Γw  −Γw  

64.8 7.34 11.0 18.38 250.8 28.76 21.8 25.5 25.5 
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Table 8.16. Calculated Cohesive and Adhesive Surface Energies in Dry and Wet 

Condition. 

Surface Energies (J/m2) 
Specimen Fracture 

Mode Step 1 Step 2 Step 3 Step 4 

Cohesive 0.1062 0.1062 0.1062 0.1062 
HMA 

Adhesive 0.1992 0.1992 0.1992 0.1992 
Cohesive 0.1062 0.1062 0.1062 0.1062 Sand 

Asphalt Adhesive 0.2150 0.2150 0.2150 0.2150 
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Figure 8.32. The Cohesive Bond Energy Measured for Dry and Wet Conditions in 

HMA, and Cohesive Bond Energy Back Calculated from the Micromechanics 

Model for Partially Damaged Material. 
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The bond energy values that gave the best fitting to the experimental 

measurements of ( '/ ff EE  or ff GG /' ) were back calculated from the micromechanics 

models for the damaged materials under wet condition. The back calculated values are 

between those measured for the dry and wet condition as shown in Figure 8.32. Table 

8.17 shows the back calculated bond energy values under wet condtion. 

 

 

 

The fittings of the model results to the experimental measurements are shown in 

Figure 8.33 through Figure 8.36. Figures 8.33 and 8.34 show the calculated and 

measured modulus ratios from cohesive and adhesive models each based on 

micromechanics which were applied using the data from sand asphalt. Results from 

HMA were used for the controlled-stress model as shown in Figures 8.35 and 8.36. To 

exclude the variability from different tests and conditions and compare the results, 

normalized value was used.  

Table 8.17. Back Calculated Surface Energies under Wet Condition. 

 
Surface Energies under Wet Condition 

(J/m2) Specimen  Fracture 
Mode 

Step 1 Step 2 Step 3 Step 4 

Cohesive 0.1062 0.0850 0.0801 0.0178 
HMA 

Adhesive 0.1992 0.1652 0.1574 0.0575 

Cohesive 0.1062 0.0662 0.0502 0.0192 Sand 
Asphalt Adhesive 0.2150 0.1432 0.1145 0.0590 
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(b) 
 
Figure 8.33. Cohesive Fractures in (a) Dry Condition and (b) Wet Condition 

under Controlled-Strain. 
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(b) 
 
Figure 8.34. Adhesive Fractures in (a) Dry Condition and (b) Wet Condition 

under Controlled-Strain. 
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(b) 
 
Figure 8.35. Cohesive Fractures in (a) Dry Condition and (b) Wet Condition 

under Controlled-Stress. 
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(b) 
 
Figure 8.36. Adhesive Fractures in (a) Dry Condition and (b) Wet Condition 

under Controlled-Stress. 
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Table 8.18 listed parameter values used for calculating the modulus ratios both 

under controlled-strain and controlled-stress mode of loading. The dynamic shear 

rheometer (DSR) measured the rheological properties complex shear modulus at room 

temperature of 25°C with 10Hz of frequency for the modulus of the asphalt ( fE or fG ). 

Barksdale (1996) presented modulus of granite which was used for fabricating HMA and 

Carmichael (1989) measured stiffness of sand. The suggested each modulus is adopted 

for the adhesive micro mechanics models. Film thickness values used for the micro 

mechanics models for both HMA and sand asphalt were calculated by using image 

analysis technique. 

 

 

 

Following two figures, Figures 8.37 and 8.38, show the comparisons between 

measured and calculated modulus changes by means of the cohesive and adhesive model. 

The both measured and calculated shear modulus at any number of cycles are 

normalized with respect to the initial modulus, and the damage parameter is normalized 

Table 8.18. Parameters Used for Micro Mechanics Models. 
 

Specimen Condition 
Ef  or Gf 

(MPa) 
Es or Gs 

(MPa) 

Film 
Thickness, t  

(µm) 
Dry 0.28 45000 115 

HMA 
Wet 0.28 45000 220 

Dry 0.28 38000 93 Sand 
Asphalt Wet 0.28 38000 125 
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with respect to the maximum damage at the end of loading.  It can be seen that the 

normalized modulus ratio and damage parameter follow the same trend as the 

normalized shear modulus confirming the relationship between microcracking and the 

degradation in the shear modulus measured and calculated from the micromechanics 

model and the DMA. 

 It is evident that the micromechanics model is capable of describing the 

experimental measurements under dry and wet conditions.  
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Figure 8.37. Comparison of Measured and Calculated Shear Modulus by Cohesive 

and Adhesive Fracture Model in (a) Dry Condition and (b) Wet Condition. 
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Figure 8.37. Continued. 
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(b) 
 
Figure 8.38. Comparison of Measured HMA Stiffness Ratio with Cohesive and 

Adhesive Fracture Model in (a) Dry Condition and (b) Wet Condition. 
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INFLUENCE OF HEALING IN THE MASTICS 

As described in the previous chapters, DMA was used for fatigue test at 25 °C 

under controlled – strain cyclic loading mode. Kim (2003) showed that microdamage 

due to the fatigue loading can be healed when rest periods applied during fatigue testing. 

The fatigue life increase in terms of healing process with rest periods was evident.  

Damage parameters ξ , S and DPSE were used for observing healing in the sand 

asphalt by recovery of the damage indicators. The parameters before and after rest 

periods were monitored to calculate healing potential of the sand asphalts. The rest 

periods of ten two-minute were conducted with applying 0.28 percent of torsional shear 

cyclic loading at 25 °C for the sand asphalt specimens under dry condition. The number 

of load repetitions applied before each rest period is equal to one tenth of failure point 

which was defined earlier as the fourth step in the fatigue life without rest periods. The 

controlled – strain cyclic loading was continued after the last rest period. 

Figure 8.39 shows the microdamage healing effect due to rest periods by 

illustrating dynamic modulus data set for with and without rest periods. The modulus 

increases after each rest period, and then decreases as the loading continues after the rest. 

It is evident that the ten two-minute rest period increases the fatigue life. 

Four damage steps were defined earlier based on the fatigue test data from DMA. 

Damage parameters ξ  at the steps with rest periods were calculated by using image 

analysis technique and Figure 8.40 plotted the results with dynamic shear modulus.  
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Figure 8.40. Damage Parameter ξ  Changes with Rest Periods. 
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Figure 8.39. Dynamic Modulus Recovery after Applying Rest Period.  
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The three damage indicators, that is damage parameters ξ , S and DPSE, were 

calculated for both with and without rest periods and compared. Figure 8.41 to Figure 

8.43 demonstrate the comparison of each parameter at the defined steps. 
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Figure 8.42. Damage Parameter S with and without Rest Periods. 

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 1000 2000 3000 4000 5000

Number of Cycles

D
am

ag
e 

P
ar

am
et

er
,

w/ Rest Period

w/o Rest Period

 
 
Figure 8.41. Damage Parameter ξ  with and without Rest Periods.  
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Figure 8.43. DPSE with and without Rest Periods. 
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CONCLUSIONS 

• Permanent deformation is composed of two different mechanisms: densification 

and repetitive shear deformation. Fatigue cracking in asphalt mixtures is 

generally considered by three states, those are crack initiation, crack propagation, 

and disintegration. Permanent deformation and fatigue cracking test are 

performed and two critical points on both tests are defined based on the results. 

• The best fitting third order polynomial regression model has been developed and 

used to determine FIP and SIP by second derivatives of the equations in DMA 

test results. The two inflection points were adopted as critical points not only for 

fatigue test analysis but also permanent deformation test.  

• Sand asphalt cylindrical specimens were fabricated using the specially designed 

mold for 50 mm long and 12 mm diameter. DMA as a simple and accurate 

method was successfully used to evaluate the damage mechanics of the asphalt 

mixtures. DMA was also validated to monitor the progression of microcrack 

damage through CT and micromechanics models. The normalized shear modulus 

at any number of cycles and the normalized damage parameters were plotted. 

The normalized damage follows the same trend as the normalized shear modulus 

confirming the relationship between microcracking and the degradation in the 

shear modulus measured in the DMA. 

• Computer imaging technology is a nondestructive technique and make it possible 

to characterize engineering materials based on the distribution of its internal 

structure. It is well established that air voids play an important role in 
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determining resistance of asphalt mixtures to major pavement distress including 

fatigue cracking, permanent deformation, and low-temperature cracking. 

Therefore, X-ray CT experiment was used to quantify the damage in asphalt 

mixtures for image analysis. Data analysis showed that X-ray CT was a valuable 

method to characterize and monitor the damage under different loading levels in 

asphalt mixtures. 

• Damage levels were investigated in terms of different damage indicators of ξ , S, 

and DPSE at different loading status. Parameter ξ  was calculated values from X-

ray CT and image analysis software. Parameter S, and DPSE were calculated at 

each discrete cycle by obtaining the peak pseudo strain ( R
m�  or R

m,i� ) and pseudo 

stiffness ( iC ) corresponding time ( it ). 

• Three methods were developed to compare the results from mechanical and 

image analysis experiments such as DMA, dynamic creep and X-ray CT. The 

first method was direct comparisons of the three damage indicators between 

HMA and sand asphalts. The second is between parameter ξ  from X-ray CT and 

S and DPSE. The third is comparisons of the three indicators in terms of cohesive 

and adhesive micromechanics model. 

• There are well agreements among the parameters and the relationships such as 

correlation and variances were presented. 
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• Damage captured from X-ray in asphalt mixtures in dry condition are less than 

the specimens in the presence of water which is consistent with the other 

parameters.  

• In general, it can be seen that the damage increased with an increase in loading 

cycles.  Also, there was slight change in damage in the first three stages of 

loading the dry specimen.  However, damage increased significantly between the 

first and second steps of loading the wet specimens.  The results indicate the low 

resistance of wet specimens to damage compared with the dry specimens. 

• Lytton (2004) developed an equation, based on micromechanicsanalysis of 

cohesive damage in asphalt-aggregates mixture, for the ratio of the damaged 

modulus to the undamaged modulus of the binder. The model validated results 

from X-ray CT and DMA. It is evident that the micromechanics model is capable 

of describing the experimental measurements under dry and wet conditions. 
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APPENDIX A 

 

COMPARISON OF DAMAGE PARAMETERS IN DIFFERENT 

CONDITIONS  
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Figure A.1 Comparison of Damage Parameter S from Creep Test and ξ  from DMA 

in (a) Dry Condition and (b) Wet Condition. 
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Figure A.2. Comparison of Dissipated Pseudo Strain Energy RW  from DMA and S 

from Creep Test in (a) Dry Condition and (b) Wet Condition. 
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Figure A.3. Comparison of Damage Parameter ξ  from DMA and Dissipated Pseudo 

Strain Energy RW  from Creep Test in (a) Dry Condition and (b) Wet Condition. 
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Figure A.4. Comparison of Damage Parameter S from DMA and Dissipated Pseudo 

Strain Energy RW  from Creep Test in (a) Dry Condition and (b) Wet Condition. 
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Figure A.5. Comparison of Damage Parameter S and Dissipated Pseudo Strain 

Energy RW  from DMA in (a) Dry Condition and (b) Wet Condition. 
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Figure A.6. Comparison of Damage Parameter S and ξ  from Creep Test in (a) Dry 

Condition and (b) Wet Condition. 
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Figure A.7. Comparison of Dissipated Pseudo Strain Energy RW  and ξ  from Creep 

Test in (a) Dry Condition and (b) Wet Condition. 
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Figure A.8. Comparison of Dissipated Pseudo Strain Energy RW  and S from Creep 

Test in (a) Dry Condition and (b) Wet Condition. 
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Table A.2. Correlation of Dry and Wet Condition in Sand Asphalt. 
 

Dry 
Wet ξ S WR 

ξ 0.8718 - - 

S - 0.9984 - 

WR - - 0.7281 

 

Table A.1. Correlation of Dry and Wet Condition in HMA. 
 

Dry 
Wet ξ S WR 

ξ 0.4761 - - 

S - 0.9283 - 

WR - - 0.9947 
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APPENDIX B 

 

VOID CONTENTS FOR THE TESTING SPECIMENS AND 

BASIC PROPERTIES FOR HOT MIX ASPHALT CONCRETE  
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Table B.1. Void Contents of Specimens Used for Tests 
 

Specimen Condition Step 
Void Content  
Undamaged 

Specimens (%) 

Void Content  
Damaged 

Specimens (%) 

1 7.4766 8.3239 

2 7.5617 8.2753 

3 7.5167 8.1488 
Dry 

4 7.3242 9.7396 

1 6.7758 7.0515 

2 7.2089 9.519 

3 6.617 8.7064 

HMA 

Wet 

4 7.5237 8.9798 

1 15.187 14.8816 

2 13.479 14.729 

3 14.394 16.5115 
Dry 

4 14.682 16.1529 

1 13.839 14.1630 

2 13.769 15.1171 

3 14.217 14.9514 

Sand 
Asphalt 

Wet 

4 13.979 16.5891 
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Table B.2. Basic HMA Properties for Mix Design 

Properties Value 

Optimum Asphalt Content (%) 4.5000 

Rice specific Gravity (Gmm) 2.471 

Bulk specific Gravity (Gmb) 2.376 
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Table B.3. Measured Specific Gravity for Georgia Granite. 

Size 

(mm) 

Bulk Specific 

Gravity 

(Oven Dry) 

Bulk Specific 

Gravity 

(S.S.D) 

Apparent 

Specific 

Gravity 

19 2.71 2.72 2.74 

12.5 2.70 2.72 2.74 

9.5 2.70 2.72 2.74 

4.75 (#4 sieve) 2.71 2.72 2.74 

Passing #4 sieve 2.67 2.70 2.75 
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