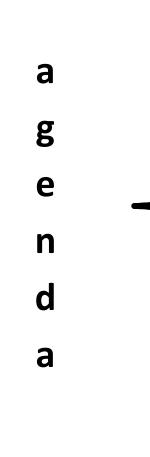
Energy@Work Inc. © 2011 www.Energy-Efficiency.com

Case Study: From Promise to High Performance


Achieving a 30%+ Reduction in Natural Gas Consumption through Existing Building Commissioning

> International Conference for Enhanced Building Operations October 18-20, 2011 / New York City

Proceedings of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011

Agenda

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

- 1. Introduction
 - 2. Opportunity Identification
 - 3. EB Cx Pre-planning Phase

Phase 1 – Planning Phase 2 – Investigation Phase 3 – Implementation Phase 4 – Persistence

4. Lessons Learned

5. Conclusion

Background

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

- Energy@Work has been working with what we'll call "Property Management Company" (PMC) for five years.
 - PMC manages over \$10 billion in commercial, industrial and multi-residential assets across North America,
 - PMC's Toronto assets include over 10 million ft² of commercial office space
- PMC has implemented Energy@Work's Energy Master Plan across its Toronto commercial portfolio.
- After three years, EMP properties achieved a 16% reduction, exceeding their target by 60%

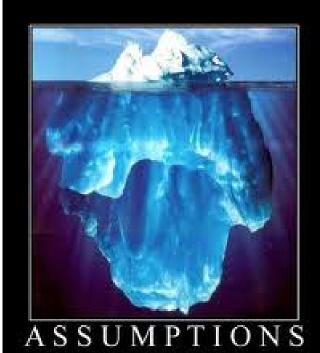
2 Adjacent & Similar Bld. Energy@Work Inc. © 2011 www.Energy-Efficiency.com

Building A:

- Built by a commercial developer.
- An active Energy Master Plan (EMP) working for past 3 years
- Property's energy team engaged, active and implementing projects

Building B: (Purchased and now operated by A's property manager)

- Built by a residential developer.
- Considered to have higher consumption because of history
- Joined the EMP with an energy audit, BOMA BESt certification, etc.


(Areas, occupancy, and operational requirements are comparable, and weather conditions identical)

Assumption

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

Building A:

Thought to be better constructed, commissioned and as a result, naturally have lower consumption.

Lesson #1: <u>Understand Right</u> "What does the data say?"

ESL-IC-11-10-26

AN EB-CX OPPORTUNITY

Proceedings of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011

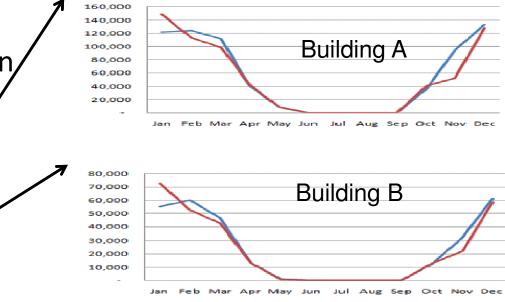
Energy@Work Inc. © 2011

www.Energy-Efficiency.com

Discovery! "B" Used Less Gas

Mystery:

Annual profiles for both properties were similar and generated from 2 years of <u>monthly</u> natural gas billing data:

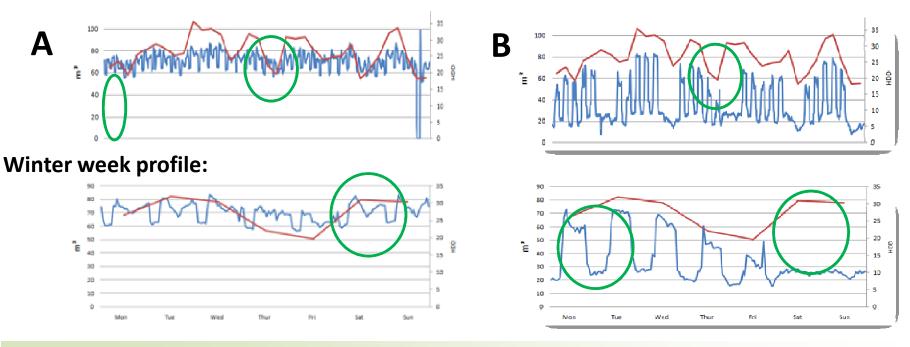

- 2008 (red) &
- 2009 (blue)

BUT, on closer examination:

consumption intensities were in different orders of magnitude;

```
<u>A: 12.21 ekWh/ft<sup>2</sup> per year</u>
```

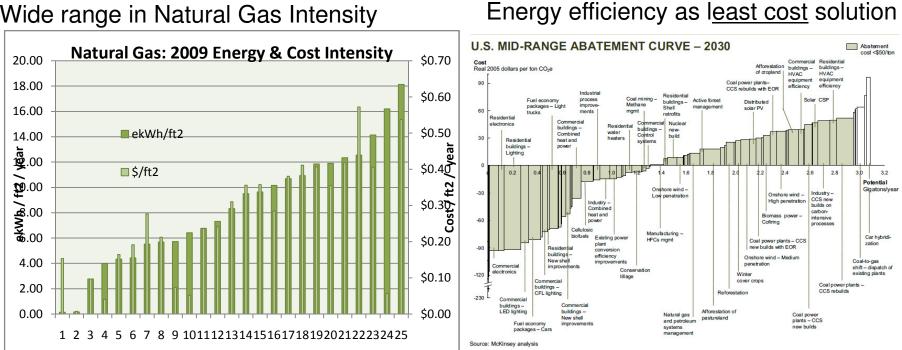
<u>B: 6.98 ekWh/ft² per year.</u>



E@W's Tool: ENERCOM Energy@Work Inc. © 2011 www.Energy-Efficiency.com

Energy Comparison Tool (EnerCom) allows side by side comparison of interval utility data plus temperature.

Winter month profile:


- m³ of natural gas in blue
- heating degree days (HDD) in red
- interesting anomalies and comparisons in green

Benchmarking / Opportunity

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

Benchmarking:

Plus:

Wide range in Natural Gas Intensity

Benchmarking highlights potential from the wide range in intensities. Knowing EE opportunities will provides the confidence to pursue projects

* Ref: "2010 Green Paper Final.pdf" – available at www.energy-efficiency.com

EB Cx Natural Choice

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

- Phase 1: Planning
- Phase 2: Investigation
- Phase 3: Implementation
- Phase 4: Persistence

Business case based on a 30% reduction target: * Simple Payback with no incentives: <u>0.85 Years</u>

* Payback with Gas Reduction Incentives: 0.50 Years

EB Cx Business Case

Business Case was developed and approved, pre-work included:

- 1. Natural gas supplier:
 - Replaced the natural gas meter to verify that the gas meter was properly calibrated
 - Provided 2 years of hourly interval data
 - Supported our efforts with their Monitoring and Targeting Program
- 2. RTM was installed on both properties' main natural gas meters
- 3. EB Cx Team organized

Additional Considerations Energy@Work Inc. © 2011 www.Energy-Efficiency.com

- Tenant comfort <u>MUST NOT</u> be compromised
- Operator engagement and 'buy-in' is essential
- Measurement and Verification (M&V) for customer confidence, incentives and in particular - sustaining savings

EB Cx Team: Essential

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

Top Level Support: Portfolio Director & Property Manager Technical Director Operations

EB Cx Team: Jolanta McKay, RoMar Engineering Michel Parent, Technosim Inc. Energy@Work Inc.

Utility: Enbridge Gas Distribution

Service providers: Boiler Maintenance Building Automation

Others:

Testing and Air Balancing (TAB) specialist

ESL-IC-11-10-26

EB CX PHASE 1 – PLANNING

Proceedings of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011

Phase 1 Highlights

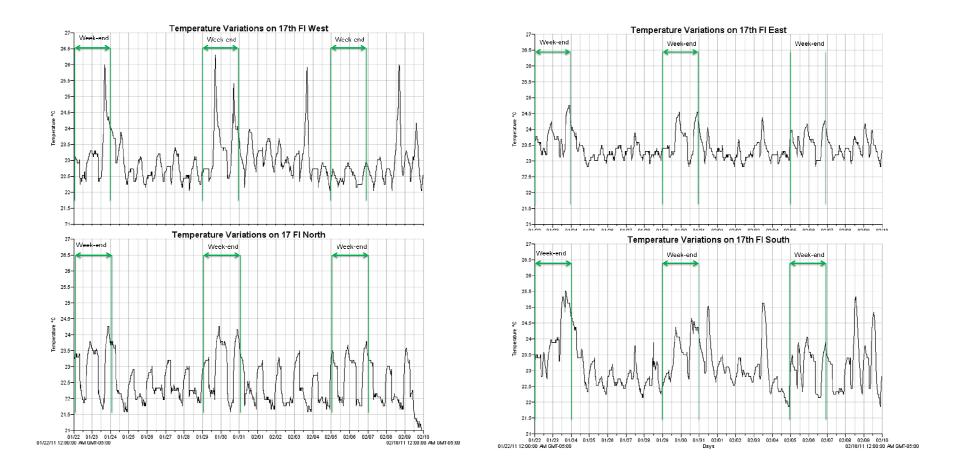
Energy@Work Inc. © 2011 www.Energy-Efficiency.com

- 1) Framework / objectives reviewed & established
- 2) EB-Cx Charter approved
- 3) Remote access to BAS was established
- 4) Real Time Monitoring (RTM) installed to provide outside air temperature (OAT)
- 5) RTM installed on both buildings' A & B gas meters Ideal for:
 - * Benchmarking,
 - * Energy Comparison Tool (EnerCom)
 - * Energy Comparison Analysis Tool (ECAT)

ESL-IC-11-10-26

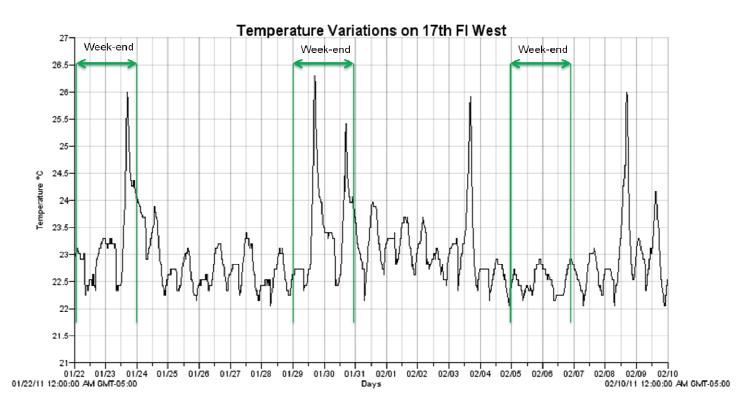
EB CX PHASE 2 – INVESTIGATION

Proceedings of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011


Functional Tests

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

- Temperature data-loggers installed
- Boiler motors data-loggers installed
- Boiler performance checked for proper modulation
- Remote access to the BAS allowed systems comparison to RTM and temperature data
- Temperature and relative humidity set-points assessed against operating conditions, ASHRAE standards, lease requirements
- Etc.


Example: 17th Floor Temp. Energy@Work Inc. © 2011 www.Energy-Efficiency.com

Graphs show temperature variations at the N, S, E and W perimeter locations.

17th Floor West

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

Minimum temperature @ 22 c; Maximum temperature @ 26.3c

- <u>Notes</u>: Temperatures climbed more than 25c 5 times over the period
 - Heating occurring in unoccupied periods
 - Inconsistent profiles that were not controlled

Phase 2 Result: 22 EEM

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

22 Energy Efficiency Measures (EEM)

EEM Varied:

- Operational
- Behavioural
- Technology
- Capital

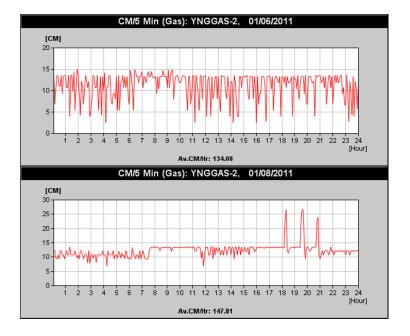
Lesson #2: <u>Use Right</u> Using test data to challenge assumptions and make change

ESL-IC-11-10-26

PHASE 3 – IMPLEMENTATION

Proceedings of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011

Example: EEM#4


Energy@Work Inc. © 2011 www.Energy-Efficiency.com

Boiler #1 Not Modulating

Observation: Lead boiler short cycling without modulating

Lead Boiler cycling from high-fire to low or off

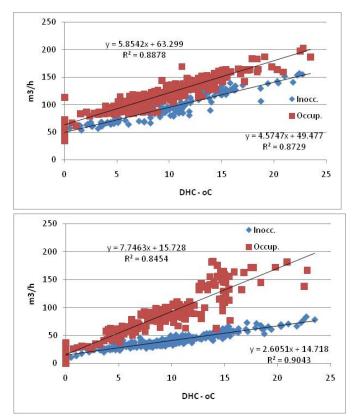
Lead boiler now modulating, BUT note lag boiler performance

Re-set BAS so that boilers are modulating as required & CHECK!Result:RTM allows operations to view natural gas use and ensuresystemsare controlled and performing as required.

Example: EEM#6

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

Sub-optimal Reset on Secondary Heating Loop

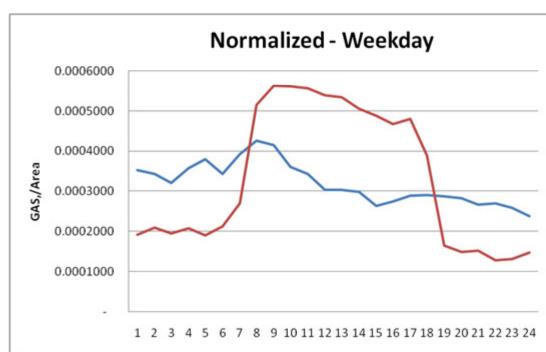

A regression analysis shows difference in stand-by losses and consumption in unoccupied modes

Bld. A:

Note: Nominal day-night differences also, higher stand-by losses

Bld. B:

Note: Distinct day-night consumption <u>*Also, lower stand-by losses*</u>



EEM#6 continued

Real-time data reaffirms observations.

Despite identical weather conditions (data is same-day), and comparable occupancy patterns, the difference between the two buildings' load shapes is stark.

Bld A, Blue: Day-night difference is negligible. Bld B, Red: Load shape shows sensitivity to occupancy (similar observations to temperature was also noted)

EEM #8: Identify and Correct Improperly Operating VFDs for CUs

Observation: 5 CUs were seen running at 100% and failing to modulate.

Possible causes: undersized units, heating/cooling combat, faulty boxes, sensor malfunctions, e.g. AHU 5 – setting is 20, however actual is 18.3 (too much OA to reach set point), plus VFD is at 88% (versus 75%)

Measure:

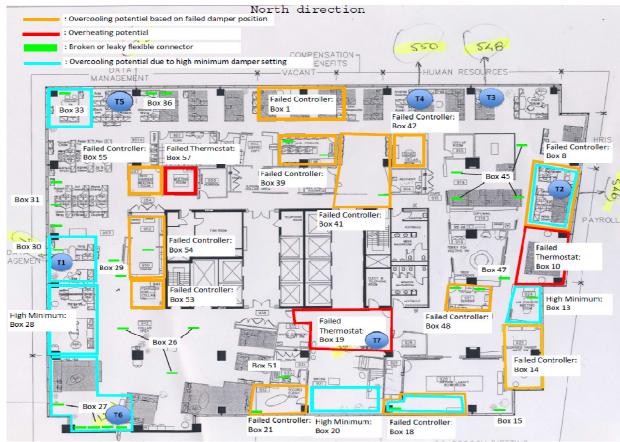
Coordinate with BAS Control team to program the "recommended set points"

i.e.: AHU 5 DA SP should be 20.

	-				AHU-05
Summary	Focus				
Status		Item	Value	Description	
	10	AHU-05.CU-C	On	CU CONTROL	
	-	AHU-05.CU-S	On	CU STATUS	
	Q	AHU-05.DA-T	18.3	DISCHARGE AIR TEMP - C	
	1	AHU-05.DA-SP	20.0	DISCHARGE AIR SETPOINT - C	
	12	AHU-05.CLG-C	0.0 % open	COOLING VALVE COMMAND	
	Q	AHU-05.STATIC	1.20	DISCHARGE STATIC - "WC	
	Q	AHU-05.RA-T	17.1	RETURN AIR TEMP - C	
	R	AHU-05.RAT-HL	24.0	RETURN AIR HIGH LIMIT - C	
	IP	AHU-05.RAT-LL	22.0	RETURN AIR LOW LIMIT - C	
	R	AHU-05.DAT-HL	20.0	DISCHARGE AIR HI LIMIT - C	
	12	AHU-05.DAT-LL	16.0	DISCHARGE AIR LO LIMIT - C	
	lä	AHU-05.LCP-S	On	SHARED CU STATUS	
		AHU-05.LCP5-CS	20.0 deg C	LCP5 CS OBJECTS	
	R	AHU-05.VFD-C	88.4 %	VFD SPEED COMMAND - %SPEED	
	9	AHU-05.FREQ	54.8 Hz	DRIVE FREQUENCY	
	Q	AHU-05.AMPS	12.5 A	DRIVE CURRENT	
	Q	AHU-05.POWER	8.6 KW	DRIVE POWER	

ESL-IC-11-10-26

EXAMPLE MEASURE: TESTING AND AIR BALANCING (TAB)

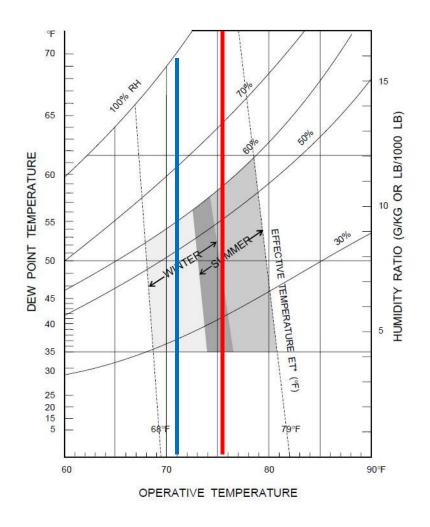

Proceedings of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011

Tenant Issues

- Tenant experience is subjective, but can be made actionable if verified with good data:
 - What was the temperature? Humidity level? Drafts? etc.
 - How does the data compare to established standards?
- Need to distinguish EB-Cx effects from other factors affecting use and comfort (proper M&V) – understand symptoms versus root causes.

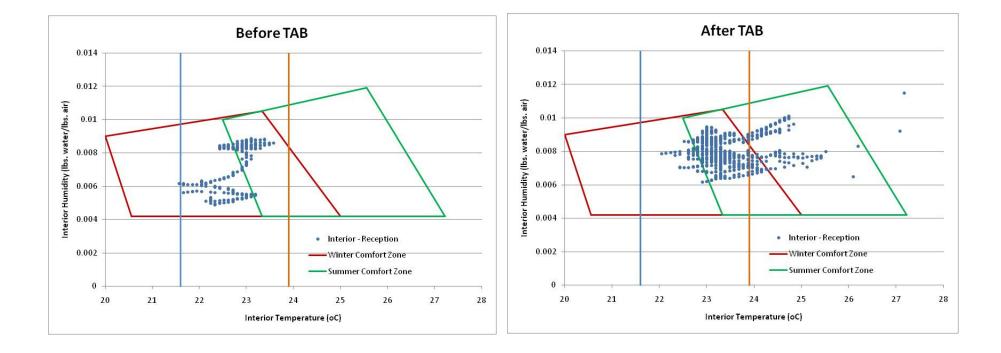
Facts: Collecting Information <u> Energy@Work Inc.</u> © 2011 <u> www.Energy-Efficiency.com</u>

- * Temperature and Humidity data loggers installed
 - * TAB Contractors hired
 - * EEM Project Plan Developed, Supervised and Executed


Energy@Work Inc. © 2011

www.Energy-Efficiency.com

ASHRAE Standard 55


"Thermal Environmental Conditions for Human Occupancy"

Thermal comfort chart: Industry-recognized indoor comfort reference.

E.g.: Zone T7

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

File: 2011-10-14 ICEBO New York R1.ppt, <u>Scott.Rouse@Energy-Efficiency.com</u>, 416 402-0525

30

TAB Findings

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

- 1. "Overall, the temperature measurements show that for all locations the comfort conditions before and after the balancing... were maintained or improved."
- 2. "In most spaces, the comfort conditions regularly drift below the ASHRAE summer comfort zone.

BUT

3. "This is due to the set point range adopted by the property" which falls below ASHRAE recommendations for summer.

TAB Results

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

The findings also generated a number of suggestions that would improve comfort conditions AND save energy, to the order of...

Re-heat savings: 2,500 m³/yr

and in addition:

Fan electricity savings: 7,000 kWh/yr

<u>Lesson #3:</u> <u>Understand Right → Use Right → Buy Right</u>

EB CX SAVINGS TO DATE

ESL-IC-11-10-26

Results to date: 30+% Saving

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

January natural gas use reduced 23% compared to: January (2008, 2009, 2010) . (Adjusting for HDD using the 18°C base)

Results:	
2008:	196 m ³ /HDD
2009:	179 m ³ /HDD
2010:	183 m ³ /HDD
2011 (EB Cx):	139 m ³ /HDD

Additional reductions achieved from EEMs implemented during the EB-Cx Process

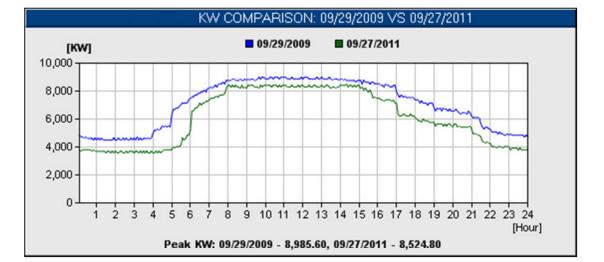
Subsequent third-party review: **<u>Revised to a 30+% reduction</u>**

ESL-IC-11-10-26

PHASE 4 – PERSISTENCE *Final Phase: Maintain Performance!*

ESL-IC-11-10-26

LESSONS LEARNED


Proceedings of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011

Lessons Learned

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

#1: <u>Understand Right</u> "What does the data say?" I.e.: Install real-time

monitoring on natural gas meter

#2: Use Right

Using test data to challenge assumptions and make change I.e.: Perform functional tests and measure results

#3: <u>Buy Right</u> Customize investment in the tools, projects and expertise to optimize building operations/efficiency going forward I.e.: Commission boilers to properly modulate

Thanks to Our Customers: We "Understand" Better!

Energy@Work Inc. © 2011 www.Energy-Efficiency.com

Thank you!

Please do not hesitate to contact Energy@Work Inc. with any additional inquiries...

> 250 The Esplanade, Suite 401A Toronto. Ontario M5A 1J2 Office: 416-642-0571

<u>Requests@energy-efficiency.com</u>

www.Energy-Efficiency.com

BOMA

Professional Engineers of Ontario

Canada Green **Building Council**

ASHRAE

Sustainable **Buildings** Canada

Association

Building Commissioning

CIET