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ABSTRACT 
 
Due to sensor faults, it is a challenge to successfully detect and diagnose component faults in HVAC systems. The 
Principal Component Analysis (PCA) method has become a popular method to tackle this problem in recent years, 
but PCA is not capable of isolating sensor faults, such as sensor bias or sensor noise. The intention of this paper is to 
take sensor noise into account. This is accomplished by including sensor noise and sensor drift into a Bayesian 
probability calculation framework. In this approach, both of these potential faults are associated with a probability 
score once the system detects a fault. Component faults are not taken into account because we assume the PCA 
method is only the first step in detecting and diagnosing faults in HVAC systems. The sensor location effect has 
already been eliminated in the training process, so it is not considered either. This paper firstly discusses the 
drawbacks of applying traditional PCA method. For instance, we show that a sensor drift fault diagnosed by this 
method could actually be caused by sensor noise instead. The second part of the paper shows that by applying 
Bayesian probability calculations within the PCA analysis process, the false alarms caused by sensor noise can be 
partially excluded. 
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1. LITERATURE REVIEW 
 

 

Correctly working sensors are the key in successfully 
detecting faults in HVAC systems, however, sensor 
can fail as well. Dexter and Pakanen [1] divided 
sensor faults into three categories: location faults – 
wrongly placed, electrical installation faults – bad 
joints, incorrect power supply, etc. and sensor related 
faults – drift, no signal, etc.  
 
Among all the sensor faults, sensor drift and sensor 
bias are among the mostly difficult detectable faults, 
and have adverse impact on the system operational 
efficiency. Therefore, many researchers have 
contributed in detecting sensor faults, which can be 
categorized based on if the sensor faults are detected 
separately from component faults ([2, 3, 4, 5, 6, 7]) or 
together with component faults([9, 10]).  
 
These work can also be categorized based on the 
FDD methods. While a model based method is quite 
popular in HVAC component fault detection, it is 
rarely used to detect sensor faults. Among all the 
researches reviewed, only Wang and Wang [6] used 
this method. Rule based methods have been used by 
researchers for more than ten years. One of the 
pioneer work done by Yang and Jiang [2] compares 

the neighboring sensors, finding out the faulty sensor 
by checking through all the sensors against physical 
constraints. This method is not practical because it 
needs more sensors than necessary for control 
purpose. Schein et al. [9] developed a rule based 
method (APAR) to detect common faults in air 
handling units, including some sensor faults. Yang et 
al. [3] developed a set of rules to detect faults for 
only temperature sensors in air handling units.  
 
The third category of method is machine learning. 
This method just emerged in recent ten years, but has 
quickly been adopted and used by many researchers. 
Lee et al. [10] used Artificial Neural Network (ANN) 
to detect sensor faults in AHU, Hou et al. [5] 
combined Rough Set (RN) with ANN detect sensor 
faults. Principal Component Analysis (PCA) is a new 
method emerged in 2004 [7], and since then 
developed by Wang and Qin [11], Xiao et al. [12], 
Du and Jin [4,13].    
 
PCA has been suggested as a quick and effective 
method in detecting sensors in air handling units [7]. 
It has certain advantages compared to other methods. 
It is not as computationally intensive as ANN, it is 
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effective towards more sensors in the system as 
opposed to rule based method, it can separate 
component faults from sensor faults to some extent, 
and its results are reasonably good. However, the 
current analysis method to PCA results (Q-statistics, 
[7]) does not take into account the possibility of 
sensor noise, therefore, the false alarm rate could be 
relatively high. 
 
The initiative of this work is to explicitly take sensor 
noise into the fault diagnosis calculation algorithm, 
so that the diagnosis results have fewer false alarms. 
Although there are filters (such as exponential 
moving average filter) that can decrease the impact of 
random noise, and they are effective in negating the 
adversary effects of sensor noise, but the function 
they provide in practice are fuzzy, because the extent 
to which sensor data gets disturbed and smoothed by 
the filter are left unknown. Besides sensor noise, 
sensor location and component faults can also affect 
the sensor value. But sensor location effect has 
already been eliminated in the training process, 
component faults are not taken into account because 
we assume PCA analysis is just the first step in 
detecting and diagnosing faults in AHU.  
 

2. INTRODUCTION TO PCA 
 
Principal Component Analysis (PCA) method is a 
multivariate statistical analysis tool that can be used 
to reduce interdependent variables, so that the 
independent variables – principal components (PC) 
can be found and conserved. Since it appeared in 
Pearson [14], it has been used as a data analysis tool 
in bioinformatics [15], artificial intelligence [16], and 
HVAC system [7]. 
 
Suppose we have an original matrix x (x ∈ Rm×n) (m is 
the number of data points n is the number of 
variables of each data). After normalizing x to xn, the 
interdependence between all the variables can be 
found by calculating covariance matrix Σ (Σ∈ Rm×n). 
 

                                  Σ                            (1) 

 
The loading matrix U (U ∈  Rn×k, k<n) is then 
composed by the eigenvectors corresponding to the k 
largest eigenvalues of Σ. When a new sample of data 
Xnew comes, its principal component is calculated 
using the following equation 
 
                	                      (2) 
 

The error between new data and its principal 
component is based on  
  
                  	 	 ‖ ‖                     (3) 
 
The sum of enew for all features is the indicator as 
fault, each individual enew is the indicator for that 
specific sensor, which is proportional to the 
likelihood the sensor is drifty.  
 

3. BAYESIAN PROBABILITY 
CALCULATION 
 

Assume there is observed data y, which is based on 
hypothesis . In order to make probability statement 
about , firstly we need to assume a prior probability 
for  as p( ). Then the joint probability of  and y is 
calculated by  
 
 , |                         (4) 
 
Then the Bayes’ rule is used to calculate the posterior 
probability for P( | ) 
  

  | 	
|

                            (5) 

 
Now, if we have two different hypothesis 1 and 2, 
both have an effect on the observed data y, to 
calculate the posterior probability for 1 and 2, we 
need two important assumptions: (1) 1 and 2 have 
no causal relationship (2) Besides 1 and 2, there is 
no other hypothesis that will affect the data, note that 
this assumption holds true here if 1 is ‘sensor is 
drifty’ and 2 is ‘sensor is noisy’ (we don’t consider 
component faults at this point). The calculation is 
thus the following: 
  

 | 	
|

| |
      (6) 

 
4. SENSOR DRIFT FDD SCHEME 

 
Based on PCA method and Bayesian probability 
calculation, we have come up with following scheme 
to detect and diagnose sensor drift (shown in Fig.1).  
 
The difference between this scheme and the one used 
in [7] is the way training data is used, and the 
probabilistic extension of the result using Bayesian 
calculation. 
 

5. DESCRIPTION OF SYSTEMS 
 
To test this FDD scheme, we have developed an Air 
Handling Unit (AHU) system on Dymola [8], which  
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is a general purpose physics system modeling and 
solving environment. In this system, fresh air comes 
in and mixes with return air, both fresh air mass flow 
rate and mixed air mass flow rate are measured with 
sensors. Mixed air goes through a cooling coil, 
supply fan and to conditioning zone. Cooling coil 
chilling water mass flow rate is controlled by cooling 
coil valve, it is in a feedback loop with supply air 
temperature sensor. The supply air fan is controlled 
by the static pressure in supply air duct. Both supply 
air temperature control and supply air static pressure 
control are PI control. 
 
Return air comes back from conditioning zone and 
goes through return air fan, part of it mixes with fresh 
air, the rest of it is exhausted. Return air fan is 
maintained at a constant rotation speed.  
 

 
 
 

6. DESCRIPTION OF EXPERIMENT 
 
To test how the FDD scheme works for the system, 
we have chosen 11 sensors, two set points and two 
control signals, which form an enclosed AHU 
system, as shown in Table 1. 
 

The simulation is conducted from 8am until 12pm. 
The conditioning zone is simulated using a 60 cubic 
meter filled with uniformly conditioned air. To 
simplify the experiment, the air coming from AHU is 
fed directly to the conditioning zone. To observe the 
dynamic behavior in conditioned air, the boundary 
conditions are changed during the experiment. Fresh 
air temperature increases from 31°C to 36 °C, the 
chilled water temperature increases from 5°C to 7 °C,  
the supply air temperature set point decreases from 
28°C to 19°C, zone thermal load increases from 
10kw to 20kw.  
 
For the purpose of studying how sensor noise affects 
the PCA result, we need to assume the sensor 
accuracy. In the experiment, following accuracies are 
assumed for sensors (table 1). 
 
             Table 1.  PCA Matrix Data Points 

Index Name Accuracy 
1 FMF (fresh air mass flow rate sensor) 1% 
2 SMF (supply air mass flow rate sensor) 1% 
3 RMF (return air mass flow rate sensor) 1% 
4 FAT (fresh air temperature sensor) 1° 
5 SAT (supply air temperature sensor) 1° 
6 RAT (return air temperature sensor) 1° 
7 FAE (fresh air enthalpy sensor) 1% 
8 RAE (return air enthalpy sensor) 1% 
9 SWT (cooling coil supply water temperature 

sensor) 
1° 

10 OAP (outside air pressure sensor) 0.1% 
11 SAP (supply air pressure sensor) 0.1% 
12 SAS (supply air temperature set point) / 
13 SPS (supply air static pressure set point) / 
14 CCV (cooling valve control signal) / 
15 SFR (supply fan rotation speed control signal) / 

 
The simulation period is from 8am to 12pm (4 hrs). 
To remove the transient data at the starting stage, 
data in the first hour (8am-9am) is discarded. Data 
from 9am to 9:24am is used as training data, which 
contains 50 samples.  
 

7. DATA TRAINING 
 

7.1 Loading Matrix 
As mentioned above, we have in total 15 variables in 
the studying matrix. Since we have 50 samples in the 
training data, which is therefore a 15×50 matrix. Its 
generated eigenvector and eigenvalue matrix are 
15×15 matrix. The last six eigenvalue matrix is 
presented below: 
 
1.17 7 0 0 0 0 0

0 6.45 6 0 0 0 0
0 0 8.25 6 0 0 0
0 0 0 1.62 5 0 0
0 0 0 0 0.0013 0
0 0 0 0 0 14.99

 

                                                                                                     

Fig1.  Sensor Fault Detection and Diagnosis Schema 

 

Fig2. Sensor Fault Detection and Diagnosis Scheme 

Fig3.  Last Six Eigenvalue Matrix  
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As introduced in [7], there are many ways to decide 
the number of principal components. Here we select 
the last vector as principal component, since its norm 
value is much larger than the other vectors. Then the 
rest vectors are regarded as residual components. The 
residual matrix is then multiplied by training data to 
get the error matrix, from which the threshold for 
fault detection can be calculated. Again, as 
introduced in [7], there are many ways to determine 
the threshold. Here the sum of norm value of each 
feature residual is used as the threshold, which is 0.32 
in this case.  
 
7.2 PC Update Scheme 
 
The first test case uses normal operational as test data 
to see what the error score is like. Data after 9:24am 
are sampled every 12 minutes (in total 13 samples). 
During the period, the Principal Component (PC) is 
not updated. The result could be seen in Fig 4. 
 

 
 
 
The error score jumps at the last 12 minutes because 
during this period the boundary condition changes. 
The boundary condition has been changed at a 
constant speed from 9:24am to 11:53am. At 11:53am, 
the boundary conditions stop change and maintain at 
constant values. Therefore, the error score has been 
low before the last sample, and it jumps to high just 
at the last sample when constantly changing 
boundary condition is changed to a constant 
boundary condition. 
 
Therefore, it is concluded that the rate at which the 
boundary condition changes has to be tracked. If the 
rate changes significantly, then the PC has to be 
updated in real time. 
 

8. Experimental results 
 

8.1 Fresh air mass flow rate sensor 

In this test case, we test the fresh air mass flow rate 
sensor with possible noise and drift. Based on table 1, 
we added to FMF with noise that has zero mean and 
0.16kg/s standard deviation. The data is then fed to 
PCA analysis. The error score in this case can be seen 
as the dotted line in Fig 5. As shown, due to the noise, 
the error score is between 8 and 14 during most of the 
time.  
 

 
 
 
In the second case, we inserted a bias of 0.5kg/s at 
9:40am, which is shown as solid line in Fig 5. As we 
can see, at around 9:40, the error score jumped to 
over 4 as a result of this drift, however, after 9:48am, 
due to the normalization of sample data, the drift 
error is no longer visible. 
 
In the third case, we added both noise and drift to 
fresh air mass flow rate sensor (FMF). The result is 
surprising.  At the time both drift and noise happens, 
the error score actually drops. Which means if the 
result is only interpreted through the absolute value 
of error score, the conclusion maybe the opposite to 
the real case. This finding leads to our next step, 
using Bayesian method to calculate the probability 
for both sensor noise and drift, which is in the section 
9. 
 
A last note to the third case, this situation happens 
because the noise and drift are on the opposite 
directions (one is positive, the other is negative). In 
case they occur on the same direction, the error score 
is expected to increase. 
 
8.2 All sensors noise 
 
After we studied fresh air mass flow rate sensor, we 
tested the noise for all the other sensors. All the noise 
was with zero mean and standard deviation chosen 
from table 1. For each test case, we calculated the 

Fig5. Test Case – Fresh Air Mass Flow Rate Sensor 

Fig4. Error score of normal operational data 
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mean and average of the error score, which is listed 
in table 2.  
 

Table 2. Error Score Caused by Sensor Noise  
Index Sensor Name Score Mean Score Std 

1 FMF 12.9 1.34 
2 SMF 13.08 1.27 
3 RMF 13.12 1.61 
4 FAT 12.43 1.23 
5 RAT 12.03 1.48 
6 FAE 11.97 1.19 
7 RAE 11.81 1.21 
8 SWT 12.48 1.63 
9 OAP 13.06 1.4 
10 SAP 12.9 1.27 
11 TOT 65.44 1.36 

 
 
It is observed that although each different sensor has 
varying accuracy range, the error score caused by 
each noisy sensor is close, with a mean between 11 
and 13, and standard deviation smaller than 2.  
 
The case name ‘TOT’ stands for the case in which all 
sensors are added with noise. In this case, the total 
error score is larger than each specific sensor, but 
smaller than the sum of score for all the other cases, 
which suggests the total error score is a useful 
indicator of the extent of faults. But a more effective 
approach to detect multiple sensor faults is through 
error score of each individual feature. 
 
8.3 Error Score Caused by Drift 
 
Error score caused by drift is studied separately from 
noise. Two factors that affect the analysis are studied: 
(1) the time when the error occur (2) the direction of 
drift (positive or negative). The results are shown in 
Fig 6.  
 
It was found that the error score in this case depends 
more on the drift direction than the occurring time. 
This finding could change depending on the extent of 
the drift as well. But it is concluded that both the 
occurring time and drift direction could affect the 
error score. Another finding is that the error score 
caused by sensor drift in this experiment arranges 
from 4 to 17, which is comparable to the error score 
caused by sensor noise (average is between 11 and 
13). In another word, by purely looking at the error 
score, it is impossible to differentiate sensor drift 
from sensor noise. 
 

   

 
 
 
 

9. Probability Extension 
 

To extend the deterministic analysis to a probability 
based analysis, firstly we define notations shown in 
the following table – table 3.   
 
                          Table 3.   Notations 

Index Symbol Stands for 
1 Pnpr prior noisy probability 

2 Pdpr prior drifty probability 

3 Pen observation evidence that the sensor is noisy 

4 Ped observation evidence that the sensor is drifty 

5 Pnpo posterior noisy probability 

6 Pdpo posterior drifty probability 

7 εen expected noisy score 

8 εed expected drifty score 

9 εcf current feature error score 

10 σns history noisy score variance 

11 σds estimated drifty score variance 

12 δ threshold to employ drifty probability calculation 

 
 
We use the following algorithm to calculate Pnpo and 
Pdpo. 
 
Calculate the sensor is noisy probability 
 

, ,  
 
Calculate the sensor is drifty probability 
       If ϵcf  > δ 

    , ,   
       Else 
               0.001  
Update sensor drift posterior probability and sensor 
noisy posterior probability 

	 	  

 

Fig6. Error score caused by drifty fresh air mass flow rate sensor 
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10. Test case 

 
In the Bayesian calculation test case, the fresh air 

mass flow rate sensor (FMF) is used again. In this 
test case, it is assumed that the sensor noise standard 
deviation is 0.01 kg/s, and at 9:37am, a drift of -
0.16kg/s is seeded into the system. Due to both faults, 
the error score varies from 10 to 15 during the 
simulation, as shown in Fig 7.   
 
The Bayesian calculation result is shown as dotted 
line in Fig 7.  
 

 
 
 
It can be seen that the drift fault seeded at 9:37 is not 
really visible in both curves in this case. This is 
attributed to the closeness of error score caused by 
drift and sensor noise. But assume the drift is larger, 
the fault should manifest itself in a probability value 
higher than the peaks shown here.  
 
In the next case, the extent of noise is decreased, as 
shown in Fig 8. The error score caused by noise is 
less than 3. At 11:12 am, a drift of 0.16kg/s is seeded, 
which causes the error score increased to 10. In this 
case, the Bayesian algorithm captures the difference 
immediately and made a high probability prediction 
(90%).  
 
To conclude, with the prerequisite of training the 
normal operational data with artificial drift fault and 
random noise, using the Bayesian algorithm that is 
shown is this paper, user can now get a quantitative 

confidence of the diagnostic result. However, how 
well this algorithm works does depend on the 
difference between the errors scores caused by drift 
and noise. In case the difference is small, this 
algorithm will not report a drift fault when the cause 
is really a drift fault. 
 

               
 
 
 

11. Conclusion 
 
In this paper, we have tested a PCA method against 
various situations to check its robustness. We find 
that (1) Principal Component (PC) does not need to 
be updated if the system boundary condition changes 
at a constant speed, however, if the speed changes 
significantly, then PC has to be updated in real time. 
(2) Both sensor drift and sensor noise can be detected 
by PCA, sensor noise manifests itself throughout the 
whole simulation period, sensor drift is only visible 
when the fault happens. (3) The error score caused by 
sensor noise is comparable to the value caused by 
sensor drift, therefore, by looking at the absolute 
value of error score, it is impossible to differentiate 
sensor noise from sensor drift. 
 
 To help separate the noisy sensor case from a drifty 
sensor, we developed a Bayesian algorithm to 
calculate the probability of both noisy and drifty. It is 
found that Bayesian algorithm can filter certain 
alarms caused by sensor noise, although it does not 
help when the error score caused by noise and drift 
are close. But most of all, a Bayesian algorithm gives 
a quantitative confidence level of the diagnostic 
result to the user.  
 
 
 
 
 
 
 
 
 

Fig7.  Bayesian Calculation – Test case 
1

Fig8. Bayesian algorithm performance 
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