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ABSTRACT 

 
Photoacoustic Computed Tomography in Biological Tissues:  

Algorithms and Breast Imaging. (August 2004) 

Minghua Xu, B.S., Qingdao University of Oceanography; 

M.S., Nanjing University 

Chair of Advisory Committee: Dr. Lihong Wang 

 
Photoacoustic computed tomography (PAT) has great potential for application in 

the biomedical field. It best combines the high contrast of electromagnetic absorption 

and the high resolution of ultrasonic waves in biological tissues. 

In Chapter II, we present time-domain reconstruction algorithms for PAT. First, a 

formal reconstruction formula for arbitrary measurement geometry is presented. Then, 

we derive a universal and exact back-projection formula for three commonly used 

measurement geometries, including spherical, planar and cylindrical surfaces. We also 

find this back-projection formula can be extended to arbitrary measurement surfaces 

under certain conditions. A method to implement the back-projection algorithm is also 

given. Finally, numerical simulations are performed to demonstrate the performance of 

the back-projection formula. 

In Chapter III, we present a theoretical analysis of the spatial resolution of PAT 

for the first time. The three common geometries as well as other general cases are 

investigated. The point-spread functions (PSF’s) related to the bandwidth and the 
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sensing aperture of the detector are derived. Both the full-width-at-half-maximum of the 

PSF and the Rayleigh criterion are used to define the spatial resolution.  

In Chapter IV, we first present a theoretical analysis of spatial sampling in the 

PA measurement for three common geometries. Then, based on the sampling theorem, 

we propose an optimal sampling strategy for the PA measurement. Optimal spatial 

sampling periods for different geometries are derived. The aliasing effects on the PAT 

images are also discussed. Finally, we conduct numerical simulations to test the 

proposed optimal sampling strategy and also to demonstrate how the aliasing related to 

spatially discrete sampling affects the PAT image.  

In Chapter V, we first describe a prototype of the RF-induced PAT imaging 

system that we have built. Then, we present experiments of phantom samples as well as 

a preliminary study of breast imaging for cancer detection. 
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CHAPTER I 

INTRODUCTION 

 

A. Overview 

The photoacoustic (PA) effect refers to the generation of acoustic waves by 

electromagnetic (EM) waves. Although this effect was first reported in 1880 [1], it did 

not attract much attention until the 1970s when lasers burst onto the scene. Since then, a 

great deal of experimental and theoretical work on photoacoustics in various branches of 

physics, chemistry, biology, engineering, and medicine has been reported in the 

literature [2-12]. 

In the past decade, biomedical photoacoustics, particularly PA imaging using 

pulsed EM excitation, has undergone tremendous growth [13-16]. Non-ionizing EM 

waves such as optical or microwave/radio frequency (RF) waves with low radiation are 

often utilized for PA generation in biomedical applications. For simplicity, we will use 

RF to represent either microwave or RF waves or both throughout the text.  

The motivation of PA imaging using pulsed EM excitation is to combine the 

resolution advantages of ultrasound and the contrast advantages of the EM properties in 

the optical and RF regions. Pure ultrasound imaging can provide better resolution than 

optical imaging in depths greater than ~1 mm, since ultrasound scattering is 2–3 orders 

of magnitude weaker than optical scattering in biological tissues [17,18]. However, 
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ultrasound imaging is based on the detection of mechanical properties in biological 

tissues, so it has weak contrast for early stage tumors. Moreover, it cannot image either 

oxygen saturation or the concentration of hemoglobin. Likewise, pure RF imaging 

cannot provide good spatial resolution because of its long wavelength [19]. Utilizing 

operating frequencies in the range of 500–900 MHz, RF imaging can only provide a 

spatial resolution of ~1 cm [20]. The spatial resolution of PA imaging, as well as the 

maximum imaging depth, is scaleable with the detected ultrasonic frequency range. For 

example, PA signals in the MHz range can provide millimeter spatial resolution that is 

limited by the PA wavelength, since the velocity of sound in soft tissues is ~1.5 mm/µs. 

 

B. Photoacoustic generation theory 

In our study of photoacoustic imaging of biological tissues, we focus mainly on 

the thermoelastic mechanism of PA generation with low radiation of pulsed optical or 

RF sources, in which a sound or stress wave is produced as a consequence of the 

thermoelastic expansion that is induced by a slight temperature rise, typically less than 

0.01 oC, as a result of the energy deposition inside the biological tissue through the 

absorption of the incident EM energy. The thermoelastic mechanism has special features 

that make PA techniques amenable for biomedical applications. First, it does not break 

or change the properties of the biological tissue under study. Secondly, only non-

ionizing radiation is used, unlike in x-ray imaging or positron-emission tomography 

(PET).  The non-destructive (non-invasive) and non-ionizing nature of PA techniques 

makes them ideal for in vivo applications. Thirdly, the relationships between PA signals 
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and the physical parameters of biological tissues are well defined. This advantage 

permits the quantification of various physiological parameters such as the oxygenation 

of hemoglobin. 

In soft tissues, the thermal diffusion effect on the PA signal is usually negligible 

since the EM energy is deposited in the sample within a relatively short time. Therefore, 

the efficiency of PA generation is high. Upon the absorption of the pulse energy, the 

thermal diffusion during the pulse period can be estimated by the following thermal 

diffusion length [5]: 

pTT D τ=δ 2 , (1.1) 

where pτ  is the pulse duration and TD  is the thermal diffusivity of the sample. Thermal 

diffusivity for most soft tissues is s/cm104.1~ 23−×TD [17]. For example, for an RF 

pulse of s5.0 µ=τ p , m 5.0 µ≈δT , which is typically much less than the spatial 

resolution of most PA imaging systems and the characteristic heating length pL  defined 

by the penetration depth of the EM wave or the size of the absorbing structure.  

Photoacoustic waves, like all other acoustic/ultrasonic waves, propagate in three-

dimensional (3D) space. For simplicity, the inhomogeneity of acoustic speed in soft 

tissues is usually neglected in calculating acoustic wave propagation. The speed of sound 

is relatively constant at 1.5 mm/µs with a small variation of less than 5% in most soft 

tissues [17,21]. If acoustic heterogeneity becomes important, we can resort to a pure 

acoustic technique, such as ultrasound pulse-echo imaging or ultrasound tomography, to 

map out the acoustic inhomogeneity. 
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Here, we review some fundamental equations. In response to a heat source 

),( tH r , without considering thermal diffusion and kinematical viscosity, the pressure 

),( tp r  at position r and time t in an acoustically homogeneous liquid-like medium 

obeys the following wave equation [5,6,12,22]: 

),(),(
1

),(
2

2

2
2 tH

tC
tp

tc
tp

p

rrr
∂
∂β−=

∂
∂−∇ , (1.2) 

where ),( tH r  is the heating function defined as the thermal energy deposited by the EM 

radiation per time per volume ( c –the speed of sound; β –the isobaric volume expansion 

coefficient; and pC –the specific heat).  

The solution, which is based on Green’s function, can be found in the literature 

of physics or mathematics [23–26]. In general, the solution of Eq. (1.2) in the time 

domain can be expressed by 

c
ttp t

tHrd

C
tp

rr

r
rr

r
′−

−=′
′∂

′′∂
′−
′

π
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),(

4
),(

3

. (1.3) 

The heating function can be written as the product of a spatial absorption function and a 

temporal illumination function: 

)()(),( tIAtH rr = . (1.4) 

Particularly, if )()( ttI δ= , the initial photoacoustic pressure at position r equals 

)()()(0 rrr Ap Γ=  [27], where )(rΓ  is the Grüneisen parameter equal to pCc /2β .  

In this thesis, we define the Fourier transform pair on variable ctt =  as:  
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tdtiktFkF )exp()()(
~

∫
+∞

∞−
= , (1.5) 

and  

dktikkFtF )exp()(
~

)2/1()( −π= ∫
+∞

∞−
, (1.6) 

where k = ω/c and ω is an angular frequency and equal to fπ2 .  

Thus, Eq. (1.2) can be rewritten as: 

)(),(~)( 0
22 rr ikpkpk =+∇ , (1.7) 

where ),(~ kp r  is the Fourier transform of ),( tp r . Based on Green’s theorem, the 

spectrum ),(~
0 kp r  of the pressure ),( 0 tp r  detected at 0r  can be written in the frequency 

domain [23-26] as: 

)(),(
~

),(~
00

)(3
0 rrrr ′′′−= ∫∫∫ ′

pGrdikkp out
kV

, (1.8) 

where V ′  is the volume of the source )(0 r′p ; and ),(
~

0
)( rrout

kG  is a Green’s function:  

0

0
0

)(

4

)exp(
),(

~

rr

rr
rr

−′π
−′

=′
ik

G out
k , (1.9) 

which corresponds to an outgoing wave.  

 

C. Absorption contrast and penetration  

In biomedical applications, non-ionizing EM energy in the optical (from visible 

to near-IR) and RF regions is often utilized for PA excitation. This is not only because 

the EM waves in this region are safe for human use, but also because they provide the 
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high contrast and adequate penetration depths in biological tissues that are required for 

various applications [17,18,28,29].  

No other EM spectrum seems practical for PA generation in deep tissues. For 

example, T-rays that lie between the above two EM spectra do not penetrate biological 

tissue well due to water-dominated absorption. In the short-wavelength spectrum below 

the visible region, such as ultraviolet, radiation has high photon energy and, therefore, is 

harmful to human subjects. On the other hand, if the RF frequency is too low, the 

absorption is too weak for efficient PA generation. 

 

1. RF properties 

The RF properties of biological tissues are related to the physiological nature of 

their electrical properties. The electrical properties [29] can be described by the complex 

permittivity )/(0 ωσ+εε′=ε∗ j  or complex conductivity 0εε′ω+σ=σ∗ j , where σ  is 

the conductivity (S/m); ε′ is the relative permittivity (dimensionless); 0ε  = 8.85 pF/m 

(permittivity of vacuum) and ω  is the angular frequency. This formulation assumes that 

the dielectric properties of the tissue are linear. In terms of these properties, the 

wavelength λ  of an EM wave in tissue is )/Re/( 00 εε=λ ∗fc  and the 1/e penetration 

depth of the field is )/Im2/( 00 εεπ=δ ∗fc , where Re and Im represent the real and 

imaginary parts, respectively, and 0c  is the velocity of the RF wave in vacuo. 

In the RF region, such as 0.3–3 GHz, EM waves can readily be transmitted 

through, absorbed or reflected by biological tissue boundaries in varying degrees 
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depending on the body size, tissue properties and EM frequency. However, little 

scattering occurs in tissues in this frequency range [28]. The penetration depth is equal to 

the reciprocal of the absorption coefficient when scattering and diffraction are ignored. 

For example, the absorption coefficients in fat (low water content) and muscle (high 

water content) are about 0.1 and 1 cm–1 at 3 GHz, respectively, and about 0.03 and 0.3 

cm–1 at 300 MHz, respectively.  

The two properties that have the strongest effect on the degree of RF absorption 

are ionic conductivity and the vibration of the dipolar molecules of water and proteins in 

biological tissues [28]. A small increase in ionic conductivity or water content in tissue 

can produce a significant increase in RF absorption. It is believed that the ionic 

conductivity and/or water content in cancerous tissue are higher than in normal tissue 

due to an increased concentration of blood and proteins. These increases are the result of 

angiogenesis in rapidly growing tumors. 

 

2. Optical properties 

The optical properties of biological tissue in the visible (400 to 700 nm) and 

near-IR (700 to 1400 nm) region of the EM spectrum are related to the molecular 

constituents of tissues and their electronic and/or vibrational structures. They are 

intrinsically sensitive to tissue abnormalities and functions. Optical scattering properties 

reveal architectural changes in biological tissue at the cellular and sub-cellular levels, 

whereas optical absorption properties can be used to quantify angiogenesis and hyper-
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metabolism. The absorption coefficients of visible to near-IR light  vary between ~0.1 to 

~10 cm–1 in biological tissues [18]. Contrast agents, such as indocyanine green, can also 

be used to increase optical absorption.  

Light scattering is quite strong in biological tissues. The reduced or effective 

scattering coefficient is described by )1( gss −µ=µ′ , where sµ  and g are the scattering 

coefficient and the anisotropy factor, respectively. Typically 100~sµ  cm–1 and g ~ 0.9 

in the visible to near-IR region [18]. When scattering is much stronger than absorption, 

the effective penetration depth δ  of light equals the reciprocal of the effective 

attenuation coefficient )(3 saaeff µ′+µµ=µ ; otherwise, the relationship is more 

complicated [18].  There are two optical windows that allow light to penetrate relatively 

deep into biological tissues. The main one lies between 600 and 1300 nm and the second 

one between 1600 to 1850 nm (in the mid-IR range from 1400 to 3000 nm) [17] The first 

window allows deeper penetration than the second one, because the second one is 

bounded by two water absorption bands.  

 

3. Ultrasonic properties 

In the low MHz frequency range (<10MHz), ultrasound has the properties of low 

scattering and deep penetration in soft tissues [17,21]. The total attenuation results from 

the combined losses due to absorption and scattering, while the scatter component 

accounts for about 10–15% of the total attenuation. The attenuation of all tissues is 

dependent upon temperature, a variation of which is also frequency dependent. The 

frequency dependency of ultrasonic attenuation and absorption can be represented by the 
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expression baf=µ , where a, b are constants and f is the frequency of ultrasound [17]. A 

mean value of ultrasound attenuation equals ~0.6 dB cm–1 MHz–1 for soft tissues [21]. 

The attenuation increases with the frequency, so the distance over which useful levels of 

energy can be propagated becomes less as the frequency is increased. Typically, 3 MHz 

might be the maximum frequency for a 150-mm penetration [21].  However, in the high 

MHz frequency range, both scattering and attenuation are increased tremendously, while 

penetration depth is markedly decreased.  

 

4. Safety 

For safety reasons, human exposure to EM radiation must be limited. One of the 

important technical parameters for safety is the so-called maximum permissible 

exposure (MPE), which is defined as the level of EM radiation to which a person may be 

exposed without hazardous effects or biological changes. MPE levels are determined as 

a function of EM wavelength (or frequency), exposure time and pulse repetition. The 

MPE is usually expressed in terms of either radiant exposure in J/cm2 or irradiance in 

W/cm2 for a given wavelength and exposure duration. Exposure to EM energy above the 

MPE can potentially result in tissue damage.  Generally, the longer the wavelength, the 

higher the MPE; and the longer the exposure time, the lower the MPE. 

The IEEE standard (Std C95.1, 1999 edition) defines MPE levels with respect to 

human exposure to RF fields from 3 kHz to 300 GHz [30]. For an RF radiation in the 

range of 0.3–3 GHz in a controlled environment, MPE = f / 300 mW/cm2, where f is the 

frequency in MHz. For exposure to pulsed RF fields with pulse durations of less than 
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100 ms, the MPE in terms of peak power density for a single pulse is given by the MPE 

multiplied by the averaging-time in seconds and divided by 5 times the pulse-width in 

seconds, i.e., Peak-MPE = MPE×Averaging-time/(5×Pulse-width), where the averaging-

time for 0.3–3 GHz is 6 min that is an appropriate time period over which exposure is 

averaged for purposes of determining compliance with an MPE. If there are more than 

five pulses during any period equal to the averaging-time, the Peak-MPE per pulse 

should be divided by the pulse repetition frequency (PRF: N pulses per second), i.e., 

Peak-MPE/Pulse = Peak-MPE/N. For example, for an RF wave at f = 3 GHz, MPE = 10 

mW/cm2. If the pulse duration is 0.5 µs, Peak-MPE = 10×360/(5×0.5×10–6) mW/cm2 = 

1.44 MW/cm2. If the PRF is N = 50 /s, Peak-MPE/Pulse = 1.44/50 = 28.8 KW/cm2, and 

the corresponding pulse energy density is Peak-MPE/Pulse×Pulse-width = 28.8 KW/cm2 

×0.5 µs = 14.4 mJ/cm2. 

The American national standard (Z136.1-2000) defines MPE levels for specific 

laser wavelengths (180nm–1mm) and exposure durations [31]. For example, in the case 

of skin exposure to a laser beam in the visible and NIR range (400–1400nm), MPE = 

200CA mW/cm2 for an exposure duration (T) of 10–30000s, 1.1CAT0.25 J/cm2 for an 

exposure duration of 10-7–10s, or 20CA mJ/cm2 for a single short pulse with a duration of 

1–100 ns, respectively, where CA = 1.0 in 400–700 nm, 102(λ-0.7) in 700–1050nm, and 5.0 

in 1050–1400nm, respectively; λ is the wavelength. For example, for a 632.8-nm laser, 

MPE = 20 mW/cm2 for a CW source, and MPESP = 200 mJ/cm2 for a single pulse with a 

duration of 10 ns. However, to determine the applicable MPE for an exposure to a 

repetitive-pulse laser, the wavelength, the PRF, the duration of a single pulse, the 
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duration of any pulse groups (T) and the duration of a complete exposure (Tmax) must be 

known. The appropriate MPE/Pulse is the value that indicates the greatest hazard from 

testing the following three rules. Rule 1, Single-pulse limit: The MPESP is limited for 

any single pulse during the exposure. Rule 2, Average-power limit: The MPE is limited 

to the MPE for the duration of all pulse trains, T, divided by the number of pulses, n, 

during T, for all exposure durations up to Tmax. Rule 3, Repetitive-pulse limit: The MPE 

is limited to MPESP multiplied by a correction factor, n-0.25, where n is the number of 

pulses that occur during the exposure duration Tmax. As an example, let us determine the 

MPE for a 632.8-nm laser that has a pulse width of 10 ns and a PRF of 10 Hz. According 

to rule 1, MPESP = 200 mJ/cm2. According to rule 2, assume an exposure duration of T = 

10 s. The MPE for a 10-s exposure is MPE = 1.1×100.25 = 2 J/cm2. Then, the MPE/Pulse 

based on a 10-s exposure is MPE/Pulse = 2/100 J/cm2 = 20 mJ/cm2, since the total 

number of pulses in a 10-s interval is n = PRF×10 = 10×10 = 100 pulses. According to 

rule 3, MPE/Pulse = n–0.25×MPESP = 100–0.25×200 mJ/cm2 = 63 mJ/cm2. Rule 2 provides 

the MPE/Pulse since it is the most conservative (i.e., lowest value) calculation. 

 

D. Photoacoustic tomography 

Photoacoustic tomography (PAT) is a novel imaging modality, which uses all of 

the PA signals measured at different positions around the sample. As discussed earlier, 

with this technique, it is assumed that, following a short pulse of EM illumination, a 

spatial distribution of acoustic pressure inside the tissue is simultaneously excited by 

thermoelastic expansion that acts as a source for the acoustic response. The intensity of 
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the acoustic pressure is strongly related to the locally absorbed EM energy. The acoustic 

waves from the initial acoustic source propagate toward the surface of the tissue with 

various time delays. Wideband acoustic transducers are placed around the tissue to 

intercept the outgoing acoustic waves, which are further used to inversely recover the 

initial acoustic source.   

From a physical point of view, PAT represents an inverse source problem 

analogous to PET, except that PAT is based on diffraction “optics” due to the diffraction 

of the ultrasonic wave and PET is based on geometric “optics” due to the straight-line 

propagation of the γ-rays.  Therefore, PAT belongs to the field of diffraction tomography. 

Since acoustic waves do not travel along straight lines, the projections are not line 

integrals, which are in contrast to those in straight-ray tomography such as PET and x-

ray CT. Nevertheless, many imaging concepts and mathematical techniques for other 

imaging modalities, such as ultrasonic, x-ray and optical tomography, can be borrowed 

for PAT applications. 

A number of groups worldwide have made significant contributions to this topic. 

Two methods are often used: scanning PAT with focused ultrasonic transducers and 

computed tomography with unfocused ultrasonic transducers that have a small aperture. 

The latter requires computer-based reconstruction. PAT is also called optoacoustic 

tomography (OAT) or thermoacoustic CT (TCT). The former refers particularly to the 

use of light as the excitation source, while the term “thermoacoustic” emphasizes the 

thermal expansion mechanism in PA generation, in which the heating may be induced by 

various excitation sources such as high-power ultrasound rather than EM waves.  
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A few researchers [32-35] have demonstrated PA imaging by scanning with a 

focused ultrasonic transducer, which is actually analogous to the B-mode scan in 

ultrasonography. Each detected time-resolved signal is converted into a 1D image along 

the acoustic axis of the transducer, analogous to an ultrasonic A-line or A-scan. Cross-

sectional images are formed by combining the 1D images acquired from the same plane. 

The axial resolution along the acoustic axis is dependent on both the width of the 

radiation pulse and the width of the impulse response of the transducer. The lateral 

resolution is determined by the focal diameter of the ultrasonic transducer. 

A majority of the more recent works have focused on reconstruction-based PAT. 

Several approximated reconstruction algorithms have been demonstrated. Among them, 

Kruger et al. [36-38] suggested a filtered back-projection algorithm under circular or 

spherical measurement geometries, analogous to that used in x-ray computed 

tomography; Liu [39] presented an approach based on matrix inversion; Hoelen and de 

Mul et al. [40,41] constructed a time-domain delay-and-sum focused beam-forming 

algorithm to locate the PA sources in a sample in the planar scan geometry; Köstli et al. 

[42] reported an image reconstruction by back-projection of detected two-dimensional 

(2D) pressure distributions; Paltauf et al. [ 43 ] studied an iterative reconstruction 

algorithm to minimize the error between the measured signals and signals calculated 

from the reconstructed image; and Zhulina [44] explored an optimal statistical approach.  

A recent breakthrough in PAT research is the exact reconstruction theories. Xu et 

al. reported exact Fourier-domain reconstructions for spherical [45] and cylindrical [46] 

measurement geometries with point-detector measurements. Both Xu et al. [47] and 
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Köstli et al. [48,49] presented an exact Fourier-domain reconstruction for planar scans. 

Xu et al. [45,50,51] also demonstrated that exact Fourier-domain reconstructions can be 

closely approximated by time-domain modified back-projection formulas with spatial 

weighting factors, which are the cosines of the angles between the normal of the 

detection surface and the vectors from the detection positions to the reconstructed points 

of the acoustic sources. These works clearly revealed the degree of approximation 

between the exact solutions and the approximate back-projection methods including 

those reported by other researchers [36-42].  

PAT can be used to image animal or human organs, such as the breast and the 

brain, where the angiogenesis networks, blood vessels, or blood perfusion can be 

measured. Recent experimental PAT works are summarized here. Kruger et al. 

conducted phantom studies [52-53] and developed TCT scanners with 434-MHz radio 

waves to image the breast [54]. They acquired images of porcine kidney [55] as well as 

of human subjects [56,57].  Kruger et al. [58,59] also designed small-animal imaging 

systems using ultrasound transducer arrays and pulsed laser excitations, and phantom 

samples as well as nude mice were imaged ex vivo. Katabutov and Oraevsky et al. [60] 

pursued OAT in biological tissues, and their recent work was summarized in the 

preceding reference. Esenaliev et al. [61], using a near-IR laser (1064 nm), tested the 

sensitivity of PAT in detecting small model tumors embedded in bulk phantoms that 

simulated breast tissues. Oraevsky et al. [62] applied an arc array to the detection of 

breast cancer in vivo. Hoelen et al. [40,41] demonstrated that PAT can image blood 

vessels with high resolution ex vivo. Wang et al. [45-47,63-65] tested tissue phantom 
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samples in various measurement geometries using both laser and RF excitations. They 

reported the first in vivo noninvasive transdermal and transcranial imaging of the 

structure and function of the rat brain by means of laser-induced PAT [66] and then 

successfully demonstrated 3D imaging [ 67 ]. In addition, an optical method was 

demonstrated for 2D ultrasonic detection [68-73]; and a material that may be suitable as 

a breast phantom for use in photoacoustics was also reported [74]. Reports of more 

experiments can be found in recent proceedings [13-16].  

 

E. Outline 

In this dissertation, we focus on the development of reconstruction algorithms of 

PAT for breast imaging. First, detailed derivations of both Fourier-domain and time-

domain formulas are presented in Chapter II. Then, some key technical issues including 

spatial resolution and sampling strategy are investigated in Chapter III and IV, 

respectively. Finally, a prototype of an RF-induced PA imaging system is introduced and 

experiments using phantom samples as well as a preliminary study of breast imaging for 

cancer detection are reported in Chapter V. 
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CHAPTER II 

RECONSTRUCTION ALGORITHMS 

 

A. Introduction 

The key of success in PAT is appropriate reconstruction algorithms. In general, 

different measurement geometries need different reconstruction algorithms. The three 

geometries commonly used are planar, cylindrical and spherical surfaces.  

As mentioned in Chapter I, various reconstruction algorithms have been reported. 

Among them, the Fourier-domain reconstruction formulas [45-49], based on a full-angle 

view, are exact, but they are not likely to be widely used because of their requirement of 

multiple integrations or infinite-series summations and also because of the limited-angle 

view in practical applications and the difficulty of precisely interpolating in the Fourier 

domain. The reconstruction algorithms based on matrix inversion or iterative methods 

[39,43] are also not likely to be widely implemented because of their memory-storage 

requirement and the time-consuming computation required for the reconstruction of 

complicated structures. In practical applications, the back-projection or delay-and-sum 

[32,38,40-42] method is the most widely utilized reconstruction algorithm; this method 

is based on the idea that different acoustic sources in a sample can be differentiated by 

the traversed times and intensities of the photoacoustic signals measured by the 

detectors, since pulse-induced photoacoustic signals are wide-band signals. 

Most back-projection algorithms have been proposed for PAT on a case-by-case 

basis in specific geometries. These algorithms were not derived based on the exact 
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reconstruction theory of PA imaging, but simply borrowed from other imaging 

modalities, such as x-ray tomography or ultrasound imaging. Their practical applications 

in PAT are quite limited. The degrees of approximation of these algorithms in 

applications of PAT have not been clearly addressed.  The questions of what kinds of 

quantities are proper for summation and how to properly do the summation have not 

been clearly resolved either. 

In this chapter, by constructing Dirichlet Green’s function, we first present a 

formal reconstruction formula for arbitrary measurement geometry. Then, we can 

directly write down the Fourier-domain reconstruction algorithms for the three common 

measurement geometries. Next, we present a universal and exact time-domain back-

projection (BP) formula for the three common geometries. We also demonstrate this BP 

formula can be extended to general geometries under certain conditions. A method for 

implementing this algorithm is also described. Finally, numerical simulations are 

conducted to test the performance of the BP formula. 

 

B. Fourier-domain algorithms 

We start by providing a description of the measurement geometry. As Fig. 2.1 

shows, we assume that 0S  is the measurement surface that encloses the source )(0 r′p . 

Particularly, for the planar geometry, we assume there is another planar surface 0S ′  

(parallel to 0S ) at infinity and that the combination of 0S ′  and 0S  encloses the source 

)(0 r′p . For convenience, we denote 00 SSS ′+=  for the planar geometry and 0SS =  for 

the other two geometries.  
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In principle, we can construct a Dirichlet Green’s function ),(
~

1
)( rrD

kG  [23,26], 

which satisfies the boundary condition: 0),(
~

1
)( =rrD

kG  for 1r  on S  and r inside S . 

Then, according to Green’s theorem, the acoustic pressure ),(~ kp r  inside surface S  can 

be computed by the surface integral:  

)],(
~

)[,(~),(~
0

)(
000 rrnrr D

k
s

S
GkpdSkp ∇⋅= ∫ , (2.1) 

where 0∇  denotes the gradient over variable 0r  and s
0n  is the normal of surface S  

pointing to the source. Since )0,()(0 == tpp rr , we get 

)],(
~

)[,(~)2/(1)( 0
)(

0000 rrnrr D
k

s

S
GkpdSdkp ∇⋅π= ∫∫

+∞

∞−
. (2.2) 
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(a) (b) 

FIG. 2.1. (a) In the measurement, an ultrasonic detector at position 0r  on a surface S0 

receives PA signals emitted from source )(0 r′p . In the reconstruction, a quantity 

related to the measurement at position 0r  projects backward on a spherical surface 

with respect to position 0r . (b) In the planar geometry, assume there is another 

surface 0S ′  at infinity and that the combination of S0 and 0S ′  encloses the source 

inside. 
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For the three common geometries, the function ),(
~

1
)( rrD

kG  can be written in some 

explicit expressions, with which we can directly write down the reconstruction formulas 

that are consistent to the Fourier-domain formulas summarized in Ref. [75]. 

 

1. Spherical geometry 

As shown in Fig. 2.2(a), it is assumed that the measurement geometry is a 

spherical surface ),,( 0000 ϕθ= rr  in the spherical polar coordinates ),,( ϕθ= rr , where θ 

is the polar angle from the z-axis and ϕ is the azimuth angle in the xy-plane from the x-
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FIG. 2.2. Schematic of measurement geometries: (a) spherical geometry, (b) planar 
geometry, and (c) cylindrical geometry.  
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axis. The sample under study lies inside the sphere, i.e., ),,()( 00 ϕθ= rpp r  where 0rr <  

and 0)(0 =rp  when 0rr > . Compared with Fig. 2.1, in this case, 0S : 01 rr = .  

Since r is inside 0S , the Dirichlet Green’s function is usually convenient to 

modify the free-space incoming-wave Green’s function (complex conjugate to the 

outgoing Green’s function) 

1

1
1

)(

4

)exp(
),(

~

rr

rr
rr

−π
−−

=
ik

G in
k , (2.3) 

by the addition of a free standing wave ),(~
1rrkψ  in the following form [26]: 

),(~),(
~

),(
~

11
)(

1
)( rrrrrr k

in
k

D
k GG ψ+= , (2.4) 

where 

( ) )(),(
~

11
)(22 rrrr −δ−=+∇ in

kGk , (2.5) 

and 

( ) 0),(~
1

22 =ψ+∇ rrkk . (2.6) 

In the spherical geometry, the incoming Green’s function can be expanded as 

[24]: 

∑
∞

=

⋅+
π

−=
0

11
)2(

1
)( )()()()12(

4
),(

~

l
lll

in
k Pkrhkrjl

ik
G nnrr , (k > 0), (2.7) 

where )(⋅lj  is a spherical Bessel function of the first kind; )()2( ⋅lh  is a spherical Hankel 

function of the second kind; )(⋅lP  is a Legendre polynomial; and rrn =  and 111 rrn =  

are unit vectors. Therefore, for 0>k , we construct 
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According to the Wronskian formula related to the spherical Hankel functions [24]: 
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substituting Eq (2.8) into (2.2) gives 
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2
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with ∗−= )];,(
~

[);,(
~

00 kKkK rrrr  (k < 0) ( ∗  denotes the complex of conjugate), where 

)()1( ⋅lh  is the spherical Bessel function of the first kind and 000 rrn =  is a unit vector.  

In addition, Eq. (2.10) is consistent to the following formula summarized in [75]: 

),(
~

),(~)( 00000
0

rrrr kS
KkpdkdSp ∫∫

+∞
= , (2.12) 

with );,(
~

2),(
~

00 kKK k rrrr = . 

 

2. Planar geometry 

As show in Fig. 2.2(b), it is assumed that the measurement surface lies in the 

0=z  plane, i.e., )0,,( 000 yx=r  in a Cartesian coordinate system ),,( zyx=r . The 

sample lies above the plane, i.e., ),,()( 00 zyxpp =r  where 0>z  and 0)(0 =rp  
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otherwise. Compared with Fig. 2.1, in this case, 0S : 01 =z  and 0S ′  at infinity, and s
0n  

along axis z.  

By the image method, we construct [24]: 
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where 2
1

2
1

2
1 )()()( zzyyxxR ±+−+−=± . By taking the limit →′0S  ∞, the integral 

over surface 0S ′  in Eq. (2.2) gives 2/)(0 rp . Therefore,  
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Further, by substituting Eq. (2.13) into (2.14), we get  
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In addition, the incoming Green’s function can be written as [24,26]: 
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Using the contour evaluation in the complex plane [24] and considering the following 

definition of rectangle function: 

⎩
⎨
⎧ <

=ξ
 otherwise ,0

2/1ξfor  1,
)(rect  (2.18) 

we can rewrite the incoming Green’s function as ( 0zz > ): 
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where  22 vu +=ρ ; sgn(k) = 1 if k > 0 and sgn(k) = –1 if k < 0. Therefore, Eq. (2.16) 

can be rewritten as 
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Substituting Eq. (2.21) into (2.15) gives 
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As shown in Eq. (1.8) in Chapter I,  
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substituting Eq. (2.26) into (2.25) gives 
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The above equation shows ),( rr ′F  is an odd function of k. Thus, 0)( =ε r . Therefore, 
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with ),(
~

0 rrkK  as the expression of Eq. (2.22), which is consistent to the formula 

summarized in [75]. 
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3. Cylindrical geometry 

As shown in Fig. 2.2(c), it is assumed that the measurement surface is a circular 

cylindrical surface ),,( 0000 zϕρ=r  in a circular cylindrical coordinate system 

),,( zϕρ=r . The sample lies in the cylinder, i.e., ),,()( 00 zpp ϕρ=r  where 0ρ<ρ  and 

0)(0 =rp  otherwise. In this case, 0S : 01 ρ=ρ . The incoming Green’s function can be 

expressed in the cylindrical coordinates as (k > 0): 
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where 22
zkk −=µ  ( )zkk >  and 22 kki z −=µ )( zkk < ; )(⋅nJ  and )()2( ⋅nH  are a 

Bessel function of the first kind and a Hankel function of the second kind, respectively. 
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where )()1( ⋅nH  is a Hankel function of the first kind. According to the Wronskian formula 

related to the Hankel functions [24]:  
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substituting Eq. (2.32) into (2.2) gives 
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and for k < 0, ∗−= )];,(
~

[);,(
~

00 kKkK rrrr ; and )()1( ⋅nH  is a Hankel function of the first 

kind.  

In addition, Eq. (2.33) is consistent to the following formula summarized in [75]: 
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C. Universal time-domain algorithm 

1. Back-projection formula 

Our further study shows that the Fourier-domain reconstruction formulas for the 

three common geometries can be further simplified into a universal back-projection 

formula; however, the derivations on a case-by-case base are too extensive. For 

readability, we first propose the BP formula, and then demonstrate the exactness of the 

formula.  

The back-projection formula takes the following form: 
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where ),(
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kG  is a Green’s function: )4()exp(),(
~

000
)( rrrrrr −π−−= ikG in

k , which 

corresponds to an incoming wave. The BP formula only involves a free-space Green’s 

function ),(
~

0
)( rrin

kG  instead of a boundary-dependent Dirichlet Green’s function. In 

addition, it is straightforward to rewrite Eq. (2.38) in the time domain (to be detailed 

later). 

Now, we begin to prove that the BP formula offers an exact reconstruction of the 

PA source, i.e., )()( 0
)(

0 rr pp b ≡ , for the three common geometries. Substituting Eq. (1.8) 

into (2.38) gives 

),(PSF)()( 0
3)(

0 rrrr ′′′= ∫∫∫ ′
prdp

V

b , (2.39) 

where ),(PSF rr′  is a point-spread function (PSF), expressed by 

)],(
~

)[,(
~1

),(PSF 0
)(

000
)( rrnrrrr in

k
sout

kS
GGdSikdk ∇⋅−′

π
=′ ∫∫

∞+

∞−
. (2.40) 

According to Gauss’s theorem [24], Eq. (2.40) can be rewritten as: 

)],(
~

),(
~

[
1

),(PSF 0
)(

00
)(

00
0

rrrrrr in
k

out
kV

GGdVikdk ∇′⋅∇
π

=′ ∫∫
+∞

∞−
, (2.41) 

where 0V  is the volume enclosed by surface S .  

Because both ),(
~

0
)( rr′out

kG  and ),(
~

0
)( rrin

kG  are scalar functions, we have the 

identity [24]: 
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 (2.42) 

For convenience, we denote ∇′  as the gradient over variable r′  and ∇  as the gradient 

over variable r . Since 000 rrrr −′∇′−=−′∇  and 000 rrrr −−∇=−∇ , Eq. (2.42) 

can be rewritten as 
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 (2.43) 

The Green’s functions ),(
~

0
)( rr′out

kG  and ),(
~

0
)( rrin

kG  satisfy the following equations, 

respectively: 

)(),(
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~
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)(2

0
)(2 rrrrrr −′δ−=′+′∇′ out

k
out

k GkG , (2.44) 

and 

)(),(
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00
)(2

0
)(2 rrrrrr −δ−=+∇ in

k
in

k GkG . (2.45) 

Multiplying Eq. (2.44) by ),(
~

0
)( rrin

kG  and (2.45) by ),(
~

0
)( rr′out

kG , then subtracting them 

and rearranging, we obtain 
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 (2.46) 

We then substitute Eq. (2.46) into (2.43) and further substitute Eq. (2.43) into 

(2.41) and rewrite ),(PSF rr′  as a summation of two terms: 

),(),(),(PSF )2()1( rrrrrr ′+′=′ PP , (2.47) 

where the first term is 
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and the second term is 
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The first term reduces to a delta function: ).()2/()(),(
2)1( rrrrrrrr −′δ=−′π−′δ=′P  

The second term involves a volume integral that depends on the measurement geometry. 

Particularly, when rr =′ , 0),()2( =′ rrP . The second term can also be rewritten as 

])([)(
2

1
),( 2)2( ∗++ +∇′+∇

π
=′ errerrP rr , (2.50) 

where ∗ denotes the complex conjugate and kdkFierr k ),(
~

0
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+∞+  with  
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0
)(

0
)(

0
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rrrrrr in
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out
kVk GGdVF ′=′ ∫ . (2.51) 

In the spherical geometry, we have (k > 0) [24]: 
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k Pkrhkrjl
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G nnrr , (2.52) 

and ∗′=′ )],(
~

[),(
~

0
)(

0
)( rrrr in

k
out

k GG  with the replacement of n by n′ , where r/rn ′=′ , 

000 / rrn =  and r/rn = . Since 00
2

00 Ω= ddrrdV  and the identity [24]: 
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PPd , (2.53) 
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substituting ),(
~

0
)( rrin

kG  and ),(
~

0
)( rr′out

kG  with the expansion of Eq. (2.52) into (2.51) 

gives 
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with )()()( 0
2

0
2

0
2 krnkrjkrm lll += , where )(⋅ln  is a spherical Bessel function of the 

second kind. From Eq. (2.54), ),(
~

rr′kF  is real. Thus, )(r+err  becomes purely imaginary. 

Therefore, from Eq. (2.50), 0),()2( =′ rrP .  

In the planar geometry, we have ∗′=′ )],(
~

[),(
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)( rrrr in

k
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of Eq. (2.19) with the replacements of ),,( zyx=r  by ),,( zyx ′′′=′r , ),( vu  by ),( vu ′′ , 

and ρ  by 22 vu ′+′=ρ′ , respectively. Since 
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, (2.55) 

 substituting ),(
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)( rrin

kG  and ),(
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kG  into (2.49) gives 
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 (2.56) 

The above equation shows 0),()2( =′ rrP . Actually, in the planar geometry, by taking 

the limit →′0S  ∞, the integral over surface 0S ′  gives 2/)(0 rp , then, Eq. (2.38)  becomes 

identical to Eq. (2.15). 
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In the cylindrical geometry, we denote ),,( z′ϕ′ρ′=′r , ),,( zϕρ=r , and 

),,( 0000 zϕρ=r . In this case, we have (k > 0) [26,75]: 
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 (2.57) 

and ∗′=′ )],(
~

[),(
~

0
)(

0
)( rrrr in

k
out

k GG  with the replacements of n by n′ , zk  by zk ′ , and µ  by 

µ′ , respectively, where 22
zkk −=µ  and 22

zkk ′−=µ′ ; )(⋅nJ  is a Bessel function 

of the first kind; )()2( ⋅nH  is a Hankel function of the second kind; )(⋅nI  is a modified 

Bessel function of the first kind; and )(⋅nK  is a modified Bessel function of the second 

kind. Since 00000 dzdddV ϕρρ=  and the identity [24]: 
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substituting ),(
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kG  with the expansion of Eq. (2.57) into (2.51) 

gives 
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 (2.59) 

with )()()( 0
2

0
2

0
2 µρ+µρ=µρ nnn NJM , where )(⋅nN  is a Bessel function of the second 

kind. There are properties: )()1()( ⋅−=⋅− n
n

n ZZ  for nZ  = nJ  and nN ; and )()( ⋅=⋅− nn ZZ  
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for nZ  = nI  and nK . Therefore, the summation [ ]∑
+∞

−∞=

ϕ−ϕ′
n

in )(exp  in Eq. (2.59) reduces 
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in Eq. (2.59) reduces to [ ])(cos zzkdk zz −′∫
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∞−
. From Eq. (2.59), ),(

~
rr′kF  is real. Thus, 

)(r+err  becomes purely imaginary. Therefore, from Eq. (2.50), 0),()2( =′ rrP . 

In conclusion, for all three common geometries, we get ),(),(PSF rrrr ′δ=′ . 

Therefore, from Eq. (2.39), we prove )()( 0
)(

0 rr pp b = . Particularly for the planar 

geometry, by taking the limit →′0S  ∞ in Eq. (2.38), we find that the integral over 0S ′  

gives 2/)(0 rp . Since the relationship: ),(
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0
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0 rrrr in
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k GG −∇=∇ , by taking the 

inverse Fourier transform of ),(~
0 kp r , we rewrite Eq. (2.38) in the time domain as: 
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where 0Ω  is the solid angle of the whole surface 0S  with respect to the reconstruction 

point inside 0S : π=Ω 20  for the planar geometry and π=Ω 40  for the spherical and 

cylindrical geometries.  

In addition, a similar inversion formula for the spherical geometry was reported 

in Ref. [76]. We find it can be simplified to Eq. (2.60).  We rewrite Eq. (1.8) as:  

)()()4/1(),( 00
3

0 0 trpdtdtpt
V

t
−−δπ= ∫∫∫∫ rrrr . (2.61) 
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If we denote ∫=Ψ
t

tdtptt
0 00 ),(),( rr , the reconstruction formula for the spherical 

geometry can be written as [76]:  
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Since 000 /)( rrrrrr −−=−∇ , the above formula reduces to  
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Similarly to prove 0),()2( =′ rrP , we find 0)( =rF . Therefore, )()( )(
00 rr bpp =′ . 

Further, we can rewrite Eq (2.60) as  

000
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0 ),(

1
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0

Ω−=
Ω

= ∫Ω
dtbp b rrrr , (2.65) 

with the back-projection term: 

),(2),(2),( 000 tp
t

ttptb rrr
∂
∂−= , (2.66) 

where ( )[ ]000

2

000 // rrrrnrr −−⋅⋅−=Ω sdSd , which is the solid angle for a detection 

element dS0 with respect to a reconstruction point at r. As shown in Fig. 2.1, the 

reconstruction simply projects the quantity ),( 0 tb r , which is related to the measurement 

at position 0r , backward on a spherical surface with respect to position 0r . The term 
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dΩ0/Ω0 in Eq. (2.65) is a factor weighting the contribution to the reconstruction from the 

detection element dS0. The first derivative over time t actually represents a pure ramp 

filter k in the frequency domain. The ramp filter depresses the low-frequency signal. It is 

not surprising that the relatively high-frequency components of the PA signal play the 

primary role in the reconstruction of the acoustic source inside the tissue. In the special 

case when 10 >>− rrk , ),(),( 00 tpttpt rr >>∂∂ , therefore ttpttb ∂∂−≈ ),(2),( 00 rr .  

In addition, in the case that the detecting distances between the photoacoustic 

sources and the detecting transducers are much greater than the wavelengths of the high-

frequency photoacoustic signals, i.e., 10 >>−′ rrk  and 10 >>− rrk  ( rr ′>>0 rr >>0 ), 

with the following first-order approximations: 
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G in
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Eq. (2.49) reduces to 

.
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ik
dVikdkP

V π
′−⋅
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π

=′ ∫∫
+∞

∞−

rrn
rr  (2.69) 

It is easy to show 0),()2( =′ rrP . Therefore, if 10 >>− rrk , the back-projection formula 

Eq. (2.60) can be extended to arbitrary geometry with good approximation in the 

detection of small (compared with the measurement geometry) but deeply buried objects.   
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2. Implementation method 

Next, we discuss how to implement the BP algorithm. Usually, the EM pulse 

)(tI e  is not a delta function. However, as discussed in Chapter I, the thermal diffusion 

effect is negligible in most soft tissues. Thus, as Eq. (1.2) described in Chapter I, the 

initial PA source satisfies the following equation:  

cdt

tdI
ptp

tc
tp e )(

)(),(
1

),( 02

2

2
2 rrr −=

∂
∂−∇ . (2.70) 

Consider a detector with an impulse response of )(tI d ; we can write the measurement as:   

),()(),( 00 tptHtp rr ⊗=′ , (2.71) 

 with  

)()()( tItItH de ⊗= , (2.72) 

where ),( 0 tp r  is the pressure with a δ(t) EM excitation and its Fourier transform 

),(~
0 kp r  is expressed by Eq. (1.8); and ⊗  denotes a convolution. Thus, the spectrum of 

the measurement can be expressed by  

),(~)(
~

),(~
00 kpkHkp rr =′ , (2.73) 

where )(
~

kH  is the Fourier transform of )(tH . Replacing ),(~
0 kp r  with ),(~

0 kp r′  in Eq. 

(2.38) introduces the factor )(
~

kH  in the PSF expressed by Eq. (2.41), i.e., both in the 

first term Eq. (2.48) and in the second term Eq. (2.49).  

If )(
~

kH  is even, i.e., )(
~

)(
~

kHkH =− , it is easy to show 0),()2( =′ rrP . Thus, the 

PSF equals 
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dkkkRjkHP 2
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=′ rr , (2.74) 

where rr ′−=R , i.e., 

dR

RdH

R
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)(
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1
)(PSF

π
−= , (2.75) 

which is identical to the result in Ref. [75]. Since )(tH  is real, ∗=− )](
~

[)(
~

kHkH . If 

)(
~

kH  is odd, i.e., )(
~

)(
~

kHkH −=− , 0),()1( =′ rrP . Usually, however, 0),()2( ≠′ rrP . In 

this case, the BP formula Eq. (2.60) gives a “bad” reconstruction, because ),()2( rr′P  

doesn’t converge to a point as ),()1( rr′P  does. In other words, because acoustic pressure 

is phase-sensitive, the reconstruction may be seriously destroyed due to the phase-

distortions that are introduced in the measured PA signals by )(
~

kH . Moreover, the ramp 

filter k clearly indicates the contribution of each frequency component in the 

reconstruction. If the k weighting in the different frequency components is not followed, 

the reconstruction will also be distorted.  

Therefore, to accurately recover the source distribution, in principle we need to 

find a filter to adjust the measurement. Two types of filters are possible. One is to restore 

the pressure by )(
~

1 kF  such that  

1)(
~

)(
~

1 =kHkF , (2.76) 

and 

),(~),(~)(
~

001 kpkpkF rr =′ . (2.77) 

The other is to restore the derivative of the pressure, by )(
~

2 kF  such that  
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ikkHkF −=)(
~
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~

2 , (2.78) 

and 

),(~),(~)(
~

002 kpikkpkF rr −=′ .  (2.79) 

Since the real measurement is band-limited, we need to add a low-pass filter, such as a 

Hanning window, to dampen the noisy high-frequency components. Sometimes, we also 

need to remove a small portion of the low-frequency components if the ultrasound 

detectors are not sensitive in that frequency range. For convenience, we denote the 

additional band-pass filter as )(
~

kW . With filter )(
~

1 kF , we compute 
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and 
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where the Fourier transform  

dktikFT )exp()()2/1()][(1 −⋅π=⋅ ∫
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− . (2.82) 

which can be performed by the fast Fourier transform algorithm. Thus, the back-

projection term is  

),(2),(2),( 0
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10 tSttStb rrr −= . (2.83) 

With filter )(
~

2 kF , we first compute 
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2 kpkFkWFTtS rr ′= − , (2.84) 

then,  
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tdtStS
t

),(),( 0
)2(

200
)1(

2 rr ∫= . (2.85) 

 Thus, the back-projection term is  

),(2),(2),( 0
)2(

20
)1(

20 tSttStb rrr −= . (2.86) 

In addition, instead of the above frequency-domain filters, we can directly construct the 

corresponding time-domain filters.  

 

3. Numerical simulations1 

Now we want to conduct some numerical experiments to demonstrate the 

performance of the above BP formulas for PAT.  

                                                 

1 ©2003 IEEE. Reprinted, with permission, from M.-H Xu, Y, Xu and L.-H. Wang, 
“Time-domain reconstruction algorithms and numerical simulations for thermoacoustic 
tomography in various geometries,” IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003). 
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We consider uniform spherical absorbers surrounded by a non-absorbing 

background medium. For convenience, we use the centers of the absorbers to denote 

their positions. The uniform spherical absorber can be written as )()( 0 aaUAA rrr −−= , 

where 0A  is the absorption intensity, and a and ar  are the radius and the center of the 

sphere, respectively. As shown in Fig. 2.3(a), assume a sample contains five spherical 

absorbers with different absorption intensities and the centers of these spheres lie in a 

line parallel to the x-axis. For convenience, we call this line the horizontal center line. As 

shown in Fig. 2.3(b), from the smallest to the biggest, the radii are 0.5, 1, 2, 4 and 12 

mm, respectively, and the relative absorption intensities are 1, 1, 0.75, 0.5 and 0.2, 

respectively.   

We also assume that the RF pulse duration is very short and can be regarded as a 

delta function, and, consequently, that the photoacoustic signal irradiated from a uniform 

sphere can be calculated by )2/())(()/(),( 2
0 RctRctRaUCctp p −−−β=r , where R is 

the distance between the detection position 0r  and the absorber center ar  ( aR rr −= 0 ) 

[22]. As mentioned before, the quantity ttp ∂∂ /),( 0r   can be calculated through the 

Fourier transform. The band-pass filter we use here is a Hanning window: 

⎪
⎩

⎪
⎨

⎧
<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
π+

=

otherwise.                            ,0

, if ,cos5.05.0
)(

~ c
c

ff
f

f

fW  (2.87) 

We assume the photoacoustic waves to be in a frequency range below 4 MHz, and 

choose fc = 4 MHz. Here, the data sampling frequency is 20 MHz.  
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(a). Spherical geometry 

Figure 2.2(a) shows the spherical measurement geometry. To simulate a practical 

condition, we adopt only a half-spherical measurement area in the upper half space (z > 

0). Suppose a quarter circular array has 30 elements and the radius of the array is 50 mm. 

Then one can rotationally scan the array along its radius with a step size of 3 degrees to 

cover a half spherical measurement area. In this way, the measurement contains 3600 

detection positions, which are approximately evenly distributed in the measurement area. 

The sample center lies (0, 0, 12 mm) inside the measurement surface. Fig. 2.4(a) shows 

the reconstructed RF absorption distribution of the z = 12 mm plane, and Fig. 2.4(b) 

shows the comparison of the original and reconstructed absorption profiles along the 

horizontal center line. 
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FIG. 2.4. Reconstructed image from spherical measurement geometry using 3600 

detector positions with high cutoff frequency 4 MH: (a) a cross-sectional image at 
the z = 12 mm plane, (b) comparison of the original and reconstructed absorption 
profiles along the horizontal center line. 
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(b). Planar geometry 

We use the planar measurement geometry as shown in Fig. 2.2(b). Assume that 

the measurement area is 120 × 120 mm2 in the 0=z  plane and that the photoacoustic 

signals are collected at 3600 total detection positions that are evenly distributed in the 

measurement area. Such a measurement can be realized by using a rectangular ultrasonic 

array or by scanning a linear array or even by scanning a single detector to cover the 

measurement area. The center of the measurement area is (0, 0, 0). The sample center (0, 

0, 30) lies 30 mm above the measurement area. Fig. 2.5(a) shows the reconstructed RF 

absorption distribution of the 30=z  mm plane, and Fig. 2.5(b) shows the comparison of 

the original and reconstructed absorption profiles along the horizontal center line.  

 

(c). Cylindrical geometry 
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FIG. 2.5. Reconstructed image from planar measurement geometry using 3600 detector 

positions with high cutoff frequency 4 MHz: (a) a cross-sectional image at the 
30=z  mm plane, (b) comparison of the original and reconstructed absorption 

profiles along the horizontal center line. 
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We employ the cylindrical measurement geometry as shown in Fig. 2.2(c). 

Assume the measurement area is a cylindrical surface with a length of 90 mm and a 

radius of 50 mm.  One can use a linear ultrasound array, which is vertically placed and 

has 30 elements evenly distributed a length of 90 mm, to horizontally scan the sample, 

with a step size of 3 degrees to cover the measurement area. In this way, the 

measurement covers 3600 detection positions, which are approximately evenly 

distributed in the measurement area. The sample center lies at (0, 0, 0), the center of the 

measurement cylindrical surface. Fig. 2.6(a) shows the reconstructed RF absorption 

distribution in the 0=z  mm plane and Fig. 2.6(b) shows the comparison of the original 

and reconstructed absorption profiles along the horizontal center line. 

The above examples demonstrate the performance of the time-domain formulas for 

different measurement geometries. The reconstructed profiles are in good agreement 
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FIG. 2.6. Reconstructed image from cylindrical geometry using 3600 detector positions 

with high cutoff frequency 4 MHz: (a) a cross-sectional image at the z = 0 mm 
plane, (b) comparison of the original and reconstructed absorption profiles along 
the horizontal center line. 
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with the original distributions. As mentioned before, with a cutoff frequency fc = 4 MHz, 

the dominative frequency in )(
~

fWf  is 1.7 MHz, which corresponds to an acoustic 

wavelength of 0.9 mm. That explains why the small absorbers, as well as the boundaries 

of the big absorbers, can be faithfully reconstructed. The flat bases of the big absorbers 

are not faithfully recovered, which results from the limited-view detection. 

 

(d). Low resolution 

However, in the absence of a high frequency signal, the small size structure will 

be lost. For example, if the cut-off frequency fc = 1.5 MHz, the dominative frequency in 

)(
~

fWf  is about 0.6 MHz, which corresponds to an acoustic wavelength of 2.5 mm. 

Without loss of generality, we will take the spherical measurement geometry as an 

example. The other parameters in the numerical experiment are the same as the example 
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FIG. 2.7. Reconstructed image from spherical measurement geometry using 3600 

detector positions with high cutoff frequency 1.5 MHz: (a) a cross-sectional image 
at the z = 12 mm plane, (b) comparison of the original and reconstructed absorption 
profiles along the horizontal center line.  
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shown in Fig. 2.3. As shown in Fig. 2.7, not only is the small absorber nearly corrupted, 

but also the originally sharp borders of the big absorbers are greatly degraded. 

 

D. Summary 

In summary, we have presented in this Chapter a unified and exact time-domain 

back-projection algorithm for the three common measurement geometries. This 

algorithm can be straightforwardly extended to the limited-angle view case, in which the 

reconstruction may be incomplete and reconstruction artifacts may occur. The solid-

angle weighting factor in the BP formula, however, can compensate for the variations in 

the detection views. Numerical simulations have demonstrated the performance of the 

back-projection algorithm. In addition, the back-projection formula can also be extended 

to arbitrary geometry with good approximation in the detection of small (compared with 

the measurement geometry) but deeply buried object. This BP formula can serve as the 

basis for time-domain photoacoustic reconstruction in the three-dimensional space. 
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CHAPTER III 

SPATIAL RESOLUTION1 

 

A. Introduction 

Spatial resolution is one of the most important parameters of PA imaging. Many 

factors can affect the quality of a PA image. Important assumptions in reconstruction 

theory include the homogeneous acoustic property of the tissue sample and the full-angle 

view measurement. Acoustic inhomogeneity and attenuation blur the reconstructed 

image [77], although in some cases, the blurring can be corrected. Moreover, in reality, it 

is physically impossible to collect PA signals over a full-angle view. A limited angular 

range has to be tolerated. The incomplete data, however, can result in some 

reconstruction artifacts [78]. 

The spatial resolution of a PAT image can also be affected by the following 

parameters: (1) the pulse duration of the excitation EM wave, (2) the temporal-frequency 

bandwidth of the detection system including the ultrasound detector, and (3) the sensing 

aperture of the detector element. In the PA measurement, it is desirable to know how to 

choose appropriate parameters to meet the predefined spatial resolution. Past research 

work has only estimated the spatial resolution based on measurements or numerical 

simulations. So far, no general solution to the question has been reported.  

                                                 

1 M.-H Xu and L.-H. Wang, “Analytic explanation of spatial resolution related to 
bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” 
Phys. Rev. E, vol. 67, article number: 056605, 2003, pp.1-15. Copyright (2003) by the 
American Physical Society. 
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In this chapter, a complete theoretical explanation of the degree of spatial 

resolution that results from varying the bandwidth as well as the detector aperture is 

presented. Analytic expressions of point-spread functions on the spherical, planar and 

cylindrical measurement surfaces are explicitly derived.  

 

B. Bandwidth-limited PSF 

1. Space-invariance 

In Chapter II, we have obtained the point-spread function with the bandwidth 

characterized by )(
~

kH , for the three common geometries, as: 

dkkkRjkHRb
2

02
)()(

~
4

1
)(PSF ∫

+∞

∞−π
= , (3.1) 

i.e., 

dR

RdH

R
Rb

)(

2

1
)(PSF

π
−= , (3.2) 

where subscript b denotes that the PSF is related to the bandwidth; R is the distance 

between the point-source and the reconstruction point; and H(t)  is the temporal shape of 

the bandwidth )(
~

kH  that is assumed to be an even function. This expression can be 

derived on a case-by-case base as shown in [75]; however, the derivations are extensive.  

 Equation (3.2) indicates that the bandwidth-limited PSF is independent of the 

position of the point source but dependent on the distance R from the point source. 

Therefore, the PSF due to bandwidth is space-invariant.  
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Actually, the space invariance of PSF due to bandwidth can be extended to more 

general measurement geometries. In chapter II, we find the reconstruction for )(0 rp  can 

be expressed by a linear integral: 

);,(
~

),(~)( 000 kKkpdSdkp
S

rrrr ∫∫
+∞

∞−
= . (3.3) 

where S  is the measurement surface that covers the object under study and 

)],(
~

)[2/(1);,(
~

0
)(

000 rrnrr D
k

s GkK ∇⋅π= . 

As shown in Fig. 3.1, suppose another measurement surface 1S , which could be a 

spherical, planar or cylindrical measurement surface, can completely enclose surface S . 

Then, based on Green’s theorem [26], the pressure ),(~
1 kp r  at 1S  can be computed by 

the pressure ),(~
0 kp r  on surface S , 

 

R 
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A 

r0 

S 

S1 

r1 

r 

 
FIG. 3.1. Diagram of the measurement geometry: a measurement surface 1S  completely 

encloses another measurement surface S ; there is a point source A at ar  inside S ; 

R is the distance between an arbitrary point at r  and the point source A; 0r  and 1r  

point to an detection element on the surface S  and 1S , respectively. 
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where sn0/ ∂∂  is the normal component of the gradient on surface S  and points outward 

away from the acoustic source; and 0r  and 1r  represent detection positions on surfaces 

S  and 1S , respectively. Since the reconstruction based on Eq. (3.3) from the 

measurement on surface S  is exact, the pressure ),(~
1 kp r  on surface 1S  must be 

identical to the PA pressure directly generated by the source )(0 rp : 

),(
~

)(),(~
1

)(
001

0

rrrr out
kV

GpdVikkp ∫−= , (3.5) 

where V0 is the volume enclosed by S . 

Now, considering the bandwidth )(
~

kH , one can rewrite the reconstruction Eq. 

(3.3) as: 

[ ]),(~)(
~

);,(
~

)( 000 kpkHkKdSdkp
S

rrrr ⋅=′ ∫∫
+∞

∞−
. (3.6) 

In other words, Eq. (3.6) gives the exact reconstruction of a new and unique source 

)(0 rp′  from ),(~)(
~

0 kpkH r  measured on surface S : 

),(
~

)(),(~)(
~

0000
0

rrrr kV
GpdVikkpkH ′−= ∫ . (3.7) 

Based on Green’s theorem, the pressure on surface 1S  can be computed by the pressure 

),(~)(
~

0 kpkH r  on surface S , which is found equal to ),(~)(
~

1 kpkH r  with considering Eq. 

(3.4): 
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(3.8) 

This pressure must be identical to the PA pressure directly generated by the new source 

)(0 rp′  in volume 0V , 

),(~)(
~

),(
~

)( 1100
0

kpkHGpdVik kV
rrrr =′− ∫ , (3.9) 

i.e., 

),(
~

)(),(~)(
~

1011
1

rrrr kV
GpdVikkpkH ′−= ∫ , (3.10) 

since there is no source in the volume between the surfaces S  and 1S .  

Equation (3.10) indicates that the new source )(0 rp′  could be restored from the 

value ),(~)(
~

1 kpkH r  on surface 1S , if an exact reconstruction from data only on surface 

1S  does exist. In other words, the reconstruction for )(0 rp′  from the measurement with 

the bandwidth )(
~

kH  on surface S  is identical to the reconstruction from the 

measurement with the same bandwidth )(
~

kH  on surface 1S  that fully encloses S . 

Fortunately, we have already obtained the exact reconstruction formulas from 

measurements on such a surface 1S  as the spherical, planar or cylindrical measurement 

geometries. Therefore, the PSF of the point source as a function of bandwidth )(
~

kH  

from the measurement on surface S  is nothing but the same expression as Eq. (3.2).  
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2. Diffraction-limited resolution 

We consider a rectangular-shaped band, which is cut off at the frequency of cf . 

In this case, H(t) is a sinc function as π/)(sinc cc ktk , where xxx /)sin()(sinc =  and 

cck λπ= /2  ( cλ = cfc /2π ). From Eq. (3.2), we can easily derive the PSF as 

Rk

Rkjk
R

c

cc
b

)(

2
)(PSF 1

2

3

⋅
π

= . (3.11) 

The FWHM characterizes the extension of the PSF, which can be used to represent the 

spatial resolution. It is easy to show 5.0/)(3 1 =xxj  when 4983.2=x . Therefore, the 

FWMH of the PSF 

cc
cc

W fc
cfk

R λ≈=
π

×=×= 8.0/7952.0
/2

2.4983
2

2.4983
2 , (3.12) 
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FIG. 3.2. An example of the PSF as a result of the bandwidth (0, 4 MHz): (a) a grayscale 

view and (b) a profile through the point source. 
 
 



 51 

For example, if c = 1.5 s/mm µ , fc = 4 MHz, then FWHM ≈ 0.3 mm. The corresponding 

PSFb(R) is plotted in Fig. 3.2 (a) and (b).  

In an analogy to the Rayleigh criterion, an alternative definition of spatial 

resolution is the distance between two PSFs when the maximum (positive) of one PSF at 

the position of the first minimum (negative) of the second. Figure 3.3 shows the 

superposition of two PSF’s in the above condition, in which two point sources can be 

clearly distinguished. By this definition, the spatial resolution becomes csR λ≈ 92.0 , 

which is slightly wider than the FWHM. The Rayleigh criterion is more appropriate, 

however, because negative-valued artifacts are introduced into the reconstruction due to 

the finite bandwidth.  

Sometimes, a detection system has a finite bandwidth characterized by a central 

frequency 0f  with a low cutoff frequency Lcf  and a high cutoff frequency Hcf  . For 
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FIG. 3.3. Superposition of two PSF’s at the Rayleigh criterion. Dash line: normalized 

PSF expressed by )/()(3 1 xxj ππ . Solid line: superposition of two PSF’s. 
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simplicity, suppose 1)(
~ =kH  is in the above frequency range, and then the PSF can be 

expressed by  

Rk

Rkjk

Rk

Rkjk
R

Lc

LcLc

Hc

HcHc
b

)(

2

)(

2
)(PSF 1

2

3
1

2

3

⋅
π

−⋅
π

= , (3.13) 

where cfk LcLc /2π=  and cfk HcHc /2π= . 

For example, a system is with 30 =f  MHz, and Lcf  = 2 MHz and Hcf  = 4 MHz.  

The corresponding PSF is plotted as the dotted-line in Fig. 3.4. As shown in Fig. 3.4, the 

FWHM of the PSF with a bandwidth of (2 MHz, 4 MHz) is slightly narrower than the 

FWHM of the PSF with a wider bandwidth of (0, 4 MHz) [solid line in Fig. 3.4]. In 

other words, due to the absence of a low frequency component, the high frequency 

component will cause the FWHM to be narrower. The minimum value of the FWHM 

can be estimated in the PSF with a single frequency fc and zero bandwidth. The PSF in 
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FIG. 3.4. Comparison of the PSF’s with different bandwidths: dash-line, (0, 2 MHz); 

solid-line, (0, 4 MHz); dot-line, (2 MHz, 4 MHz); and dot-dash-line, 4 MHz. 
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this case is nothing but the integral kennel in Eq. (3.1): the zero-order spherical Bessel 

function )(0 Rkj c . Such an example, with 4=cf  MHz, is plotted as the dash-dot line in 

Fig. 3.4. Since 5.0)895.1(0 ≈j , the minimum FWHM ≈ 0.6 λc, where λc is the 

wavelength at the cutoff frequency fc. But, as shown in Fig. 3.4, a PSF that lacks a low 

frequency component does not concentrate in the center beam any more, and the side 

beams of the PSF slowly attenuate as the position gets farther away from the point 

source, thereby introducing significant artifacts in the investigation of large objects.  

In summary, the spatial resolution is actually diffraction-limited by the 

photoacoustic waves. The obtainable spatial resolution is on the order of the 

photoacoustic wavelength at the dominative frequency.  

 

C. Effect of detector aperture 

 Next, let us derive the analytic expressions of the PSF’s related to detector 

aperture size. As shown in Fig. 3.5, the real signal detected at position 0r  can be 

expressed as a surface integral over the detector aperture 

0
2

000 )(),(~),(~ rrrr ′′′=′ ∫∫ dWkpkpd , (3.14) 

where )( 0r′W  is a weighting factor, which represents the contribution from different 

elements of the detector surface to the total signal of the detector.  

 Since rrr ′+=′ 00 , Eq. (3.14) can be rewritten as 
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rrrrr ′′′+=′ ∫∫ 2
00 )(),(~),(~ dWkpkpd . (3.15) 

We suppose a point source )()(0 ap rrr −δ=  at ar . Then, from Eq. (1.8), we have 

( )
0

0
0 4

exp
),(~

rr

rr
r

−π
−

−=
a

aik
ikkp . (3.16) 

Further, we get the detected signal at position 0r  using Eq. (3.14) or (3.15). If the 

signal is not band-limited, by substituting ),(~
0 kpd r′  for ),( 0 kp r  in the exact 

reconstruction formulas as presented in Chapter II, one can get analytic expression of the 

aPSF  for the spherical, planar or cylindrical geometry, where subscript a denotes the 

PSF is related to the sensing aperture. In general, the analytic expressions cannot be 

thoroughly simplified for arbitrary detector apertures. In order to explicitly demonstrate 

the effects of the detector apertures on spatial resolution, we have to make some 

assumptions about the detector apertures. 

 

 

 

0r′  

r′  

0r  

Detector 
Surface 

o′  

o  
FIG. 3.5. Diagram of the detector surface r′  with origin o′ . The vector 0r  represents the 

center of detector o′  in the measurement geometry with origin o. The vector 0r′  

points an element of the detector aperture. 
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1. Spherical geometry 

As shown in Fig. 3.6(a), 0r  represents the center of detector o′  in the global 

spherical coordinates ),,( ϕθr  with the origin at the measurement geometry center o.  A 

local spherical coordinate system aligned with 0r  is used as well.  Assume that the 

detector is circularly symmetric about its center o′; in this case, the weighting factor 

depends only on θ′ , )()( θ′=′ WW r , where the angle θ′  between 0r′  and 0r —the polar 

angle of 0r′  in the local coordinate system—varies from 0 to Θ  depending on the size of 

the detector. The azimuthal angle ϕ′  of 0r′  in the local coordinate system varies from 0 

to π2 . The normal of the detector surface at point o′ is assumed to point to the center of 

the measurement geometry o.  The surface integral in Eq. (3.15) can be transformed into 

an integral over a curve radiating from the center o’ on the surface l′  and the azimuthal 
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FIG. 3.6. (a) Diagram of the spherical measurement geometry: θ′ is the angle between 0r  

and 0r′ ; ld ′  is an integral element on the detector surface; Θ is the angle of the 

radius of the detector aperture to the measurement geometry origin o; the extension 
of the PSF at point A is indicated; other denotations of the symbols are the same as 
in Figs. 3.1 and 3.3. (b) Perspective view of the lateral extension of the PSF’s of all 
the point sources along a radial axis in the spherical measurement geometry. 
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angle ϕ′ : 
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where r′′=′ /rn  and 
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Considering the expansion in the local spherical coordinates, and denoting 000 / r′′=′ rn , 

),(0 ϕ′θ′=′n , and ),( aaa ϕ′θ′=n , one obtains 
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where )( 0nn ′⋅alP  can be expanded as [14] 
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Then, one can evaluate the following integral 

)(cos)(cos2)( 0

2

0 allal PPdP θ′θ′π=ϕ′′⋅∫
π

nn . (3.21) 

Actually, aθ′  is the angle between 0r  and ar , i.e., 0cos nn ⋅=θ′ aa . 

Combining the results of Eqs. (3.19), (3.20), and (3.21), Eq. (3.17) can be 

rewritten as 
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 By replacing ),( 0 kp r  with ),(~
0 kpd r′  in the reconstruction formula as Eq. (2.12) 

shown in Chapter II: 
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and considering the identity [24]: 
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we obtain the reconstruction for the point source as: 
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Letting θ~  and ϕ~  be the polar and azimuthal angles of vector n  with respect to 

vector an , and using an identity similar to the one shown in Eq. (3.21), one can rewrite 

Eq. (3.25) as: 
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 (3.26) 

where )~cos(sin
~

sincos
~

cos~cos ϕ′−ϕθ′θ+θ′θ=γ . 
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(a) Special spherical aperture  

For simplicity, assume the detector is a small section of the spherical 

measurement surface, i.e., 00000 rr ==′+=′=′ rrrr . Therefore, one obtains 

θ′θ′=′′′⋅− drldr sin)(1 2
0

2
0 nn , (3.27) 

and 

1)()( 0
)1(

0
)1( =′ krhrkh mm . (3.28) 

Substituting the identities [24]: 

)(
2

)()(
2

2

0 aamm rr
r

dkkkrjkrj −δπ=∫
+∞

, (3.29) 

and  

)(cos2)(cos)()12(
0

nnnn ⋅−θ′δ=θ′⋅+∑
∞

=
a

m
mam PPm , (3.30) 

the following identity into Eq. (3.25), we obtain 

)(cos)(sin)(),(PSF
02

2
0 nnrr ⋅−θ′δθ′θ′θ′−δ= ∫

Θ

aaaa dWrr
r

r
. (3.31) 

Letting γ be the angle between an  and n , i.e., γ=⋅ cosnna , 

).()(

)cos(cos)(sin)(),(PSF

2

2
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02

2
0

γ−δ=

γ−θ′δθ′θ′θ′−δ= ∫
Θ

Wrr
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r

dWrr
r

r

a

aaa rr
 (3.32) 

If letting 1)( =θ′W , 
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[ ])()()(),(PSF
2

2
0 Θ−γ−γ−δ= UUrr

r

r
aaa rr , (3.33) 

where U is the step function, 1)( =xU  when x > 0 and 0)( =xU  when x < 0. 

Equation (3.33) indicates that, in this special case, the PSF only extends along 

the lateral direction, which is proportional to the solid angle of the detector aperture to 

the origin of the measurement geometry. The perspective view of the lateral extension of 

all the points in a radial axis looks like a cone as shown in Fig. 3.6(b). The farther the 

point source is away from the origin, the more extension the PSF has. Therefore, the 

lateral resolution is worse when the point is close to the detector. But, a lateral resolution 

superior to the aperture size can still be achieved if the object under study is close to the 

center of the geometry. 

 

(b). Small flat aperture 

Now, let us consider flat apertures. Sometimes, a set of small flat detectors is 

used to form a spherical measurement surface. Suppose the detector aperture is disk-like 

and its radius is P. Since 00 =′⋅ nn  in this case, 

rdrldr ′′=′′′⋅− 2
0 )(1 nn , (3.34) 

where θ′=′ tan0rr . If the aperture is small relative to the radius of the detection surface, 

i.e., 0rPr <<≤′ , the following approximation holds: 

0

2

0
22

000 2r

r
rrrrr

′
≈−′+=−′ . (3.35) 
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Neglecting the second-order and higher small quantities, one can approximate 

1)()( 0
)1(

0
)1( ≈′ krhrkh mm . Then, one can follow the derivation for the special spherical 

aperture and obtain 

)(cos)()(
1

),(PSF
02

nnrr ⋅−θ′δ′′′−δ= ∫ a

P

aaa rdrrWrr
r

. (3.36) 

Letting 1)( =′rW  and approximating θ′≈θ′= 00 tan rrr  for the small aperture case, one 

reaches 
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−γ−γ−δ=

θ′γ−θ′δ−δ=

θ′
θ′

γ−θ′δθ′−δ≈

∫

∫rr

 (3.37) 

Equation (3.37) indicates that, for the small flat aperture, the extension of the PSF is 

primarily along the lateral axis.  In fact, if we substitute Θ for P/r0, Eq. (3.37) becomes 

identical to Eq. (3.33) for the special spherical aperture. 

Particularly, at the center of the measurement geometry, i.e., 0=ar , we have 

0)0( mmj δ= , 1)(0 =⋅P , and )/()exp()()1(
0 krikrikrh −= . Assuming 1)( =′rW , Eq. (3.25) 

reduces to  

)exp()exp()(
1

),(PSF 0
0

0

0

2
000

rikrdr
r

r
dkkikrkrj

P

aa ′′′
′

−
π

= ∫∫
+∞

rr . (3.38) 

Using the relation 22
00 rrr ′+=′ , one can simplify Eq. (3.38) to 
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ik
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]1)[exp(
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),(PSF 0

2
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2
02

00

−−+
π

= ∫
∞+

rr . (3.39) 

Because 0rP << , the imaginary part is much less than the real part and hence can be 

neglected; as a result, one can obtain  

kdkrrPkkrj
r

aa )](sin[)(),(PSF 0
2

0
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π

≈ ∫
+∞

rr . (3.40) 

Using the following identity [24],  

),(
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)()()sin()( 2
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b
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+∞+∞

 (3.41) 

in the small-aperture case, i.e., 0rP << , Eq. (3.40) reduces to 
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P

),(PSF
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2
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P
r

r
aa −δ=rr  (3.42) 

Equation (3.40) indicates that the point source at the center becomes a circle with 

a diameter 0
2 rP .  

Next, we want to estimate the lateral extension at an arbitrary point. Taking the 

asymptotic form of the Hankel function to approximate 

),exp(
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′
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≈

′

 (3.43) 

one can rewrite Eq. (3.25) as 
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 (3.44) 

The above integral is still complicated. Here, we consider only the spread along ar  with 

the assumption of 1)( =′rW . Substituting 1)1()( ==⋅ mam PP nn  into Eq. (3.44) and 

considering the identity [79]: 

)(
)sin(

)()()()12( 0
0

kRj
kR

kR
krjkrjPm mam

m
am ==⋅+∑

∞

=

nn , (3.45) 

and further approximating )()cos2( 0
22

0 aaa rrkjrrrrkj −≈θ′−+  for the small-

aperture case ( 0rr <<′ , i.e., 1<<θ′ ), one obtains 

)exp()exp()(
1

),(PSF 0
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2
000

rikrdr
r

r
dkkikrrrkjr
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aaaa ′′′
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−−
π

= ∫∫
+∞

rn . (3.46) 

If we substitute arr −  for r, Eq. (3.46) becomes identical to Eq. (3.38). Thus, in the 

small-aperture case ( 0rP << ), Eq. (3.46) reduces to Eq. (3.42) with the replacement of r 

by arr − : 

. )
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(),(PSF
0

2

2

2
0

r

P
rr

P

r
r aaaa −−δ≈rn  (3.47) 

Equation (3.47) indicates that the point source at which ar  extends in the radial 

direction to a region with diameter 0
2 rP  is the same as the extension of the PSF at the 

recoding geometry center as shown in Eq. (3.42). But, in most cases, this extension is 

negligible. For example, when using a transducer with even a 6 mm diameter to image a 
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10-cm-size breast on a measurement geometry surface with a 15-cm diameter, 

mm 06.0150/32
0

2 ==rP . However, the lateral extension at r is on the order of 02 rrP  

as shown in Eq. (3.37). For example, even at 1=r  cm, 

mm 0.06 mm 4.0150/)3)(10)(2(2 0 >==rrP .  

 

2. Planar geometry 

In this case, we reasonably assume that the detector surface is flat. As shown in 

Fig. 3.7(a), 0r  represents the center of the detector o′  in the global Cartesian coordinates 

),,( zyx  with the origin at the measurement geometry center o.  Let x′ , y′ and z′ be the 

differences of the coordinates between 0r′  and 0r , respectively. For the following two 

linear translations: 

00 rr ′→ : 000 xxxx ′=′+→ , 000 yyyy ′=′+→ , (3.48) 

aa rr ′→ : aaa xxxx ′=′−→ , aaa yyyy ′=′−→ , (3.49) 

there exist the following translational invariances: 00 rrrr −′=′− aa . 

The detected signal at 0r  can be written as 

.),,(~),(

),(~)(),(~

00

2
00

ydxdkyyxxpyxW

dkpWkpd

′′′+′+′′=

′′+′=′

∫∫

∫∫ rrrrr

 (3.50) 

Using ),(~
0 kpd r′  to replace ),( 0 kp r  in the reconstruction formula Eq. (2.30) 

shown in Chapter II: 
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 (3.51) 

where 22 vu +=ρ , we get the reconstruction for the point source as: 

,)()()(),(

)()()(),(),(PSF

ydxdzzyyyxxxyxW

ydxdzzyyxxyxW

aaa

aaaaa

′′−δ′+−δ′+−δ′′=

′′−δ′−δ′−δ′′=

∫∫

∫∫rr

 (3.52) 

i.e.,  

)(),(),(PSF aaaaa zzyyxxW −δ−−=rr . (3.53) 

Supposing the detector surface is a disk with radius P, and 1),( =′′ yxW  when 

Ρyx <′+′ 22 , Eq. (3.53) reduces to 

 

0r′  

0r  

ar  

z 

o o′ 
r′ 

A 

PSF 

                         

P

x y

z

ra

 
        (a)                                                      (b) 

FIG. 3.7. (a) Diagram of the planar measurement geometry: P is the radius of the 
detector aperture; the extension of the PSF at point A is indicated; other 
denotations of the symbols are the same as in Figs. 3.1 and 3.5; (b) Perspective 
view of the lateral extension of the PSF’s of all the point sources along a line 
parallel with the z-axis in the planar measurement geometry. 
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)()(),(PSF zDΡUaa ∆δ−=rr , (3.54) 

where 22 )()( yxD ∆+∆= , and axxx −=∆ , etc. 

Equation (3.54) indicates that without considering the bandwidth, the PSF does 

not extend along the axial direction, but it greatly extends in the lateral direction. 

Moreover, the lateral extension is proportional to the detector aperture. The perspective 

view of the lateral extension of all the PSF’s in a line parallel with the z-axis looks like a 

cylinder as shown in Fig. 3.7(b). Therefore, the lateral resolution is totally blurred by the 

detector aperture, no matter where the point is. 

 

3. Cylindrical geometry 

(a). Special cylinderical aperture 

We first suppose the detector surface is a section of the cylindrical measurement 

surface. As shown in Fig. 3.8(a), 0r  represents the center of the detector o′  in the global 

cylindrical coordinates ),,( zϕρ  with the origin at the measurement geometry center o. 

Let ϕ′ be the difference between the polar angles of 0r  and 0r′ , and ρ′  and z′ be the 

projections of r′  in the x-y plane and the z-axis, respectively. Two sides of the detector 

are along the z-axis from –Z to Z, and the other two sides are parallel with the x-y plane 

and the polar angle ϕ′  varies from –Φ to Φ.  For the following two translations: 

00 rr ′→ : 000 ϕ′=ϕ′+ϕ→ϕ , 000 zzzz ′=′+→ , (3.55) 

aa rr ′→ : aaa ϕ′=ϕ′−ϕ→ϕ , aaa zzzz ′=′−→ , (3.56) 
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there exist the following translational invariances: 00 rrrr −′=′− aa .  

The detected signal can be written as 

.),(),,(~

)(),(~),(~

000

2
00

zddzWkzzp

dWkpkpd

′ϕ′ρ′ϕ′′+ϕ′+ϕ=

′′′+=′

∫∫

∫∫ rrrrr

 (3.57) 

Replacing ),( 0 kp r  by ),(~
0 kpd r′  in the reconstruction formula Eq. (2.37) shown 

in Chapter II: 
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                (a)                                               (b) 

FIG. 3.8. (a) Diagram of the cylindrical geometry: ϕ′ is the difference between the polar 
angles of 0r  and 0r′ ; ρ′  and z′ are the projections of r′  in the x-y plane and the z-

axis, respectively; Z is the half width of the detector aperture along the z-axis and 
Φ is the half angle of the width of the detector aperture parallel with the x-y plane 
to the center of the measurement geometry; the extension of the PSF at point A is 
indicated; other denotations of the symbols are the same as in Figs. 1 and 3. (b) 
Perspective view of the lateral extension of the PSF’s of all the point sources along 
a radial axis in the cylindrical measurement geometry. 
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 (3.58) 

we get the reconstruction for the point source as: 
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 (3.59) 

i.e., 

),()(),(PSF 0
aaaaa zzW −ϕ−ϕρ−ρδ

ρ
ρ=rr . (3.60) 

If 1),( =′ϕ′ zW , ϕ′  from –Φ to Φ and z′  from –Z to Z, Eq. (3.60) can be rewritten as 

)()()(),(PSF 0
aaaaa zzΖUU −−ϕ−ϕ−Φρ−ρδ

ρ
ρ=rr . (3.61) 

Equation (3.61) indicates that the extension of the PSF in the cylindrical 

geometry combines the properties of the PSF’s in the spherical and planar geometries. In 

this special case, the PSF does not extend along the radial direction. The perspective 

view of the lateral extension of all the point sources in a radial axis looks like a piece of 

cake as shown in Fig. 3.8(b). In the z-axis direction, the PSF extension is proportional to 

the detector size along the z-axis, just like the planar geometry. While parallel with the x-

y plane, the lateral extension is proportional to the angle of the detector width to the z-

axis, just like in the spherical case. Therefore, a lateral resolution that is better than the 
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aperture size can be obtained parallel to the x-y plane if the object under study is close to 

the center of the geometry; however, the lateral resolution along the z-axis is determined 

by the detector size. 

 

(b). Small rectangular aperture  

Sometimes a set of small rectangular detectors is used to form a cylindrical array. 

The normal of the detector at the center point o′  is assumed to point to the center of the 

measurement geometry. Two sides of the detector are along the z-axis from –Z to Z, and 

the other two sides are parallel with the x-y plane and have a length of 2P. One can 

follow the similar derivation in Section III I, and get the reconstruction for the point 

source as 

,
)(

)(
)()(

)](exp[),()(
2

1
),(PSF

0
)1(

22
0

)1(

0 µρ
ρ′+ρµ

µρµρµµ×

ϕ′−ϕ−ϕ′ϕ′ρ′′′−−δ
π

=

∫

∑∫∫
∞+

+∞

−∞=

+

−−

m

m
mam

m
a

P

Pa

Z

Zaa

H

H
JJd

imzWdzdzzzrr

 (3.62) 

where ϕ′ρ=ρ′ tan0 . Let 1),( =′ϕ′ zW . 

For the small aperture case, 0ρ<<ρ′ , one can approximate 

1
)(

)(

0
)1(

22
0

)1(

≈
µρ

ρ′+ρµ

m

m

H

H
. (3.63) 

Further, taking the small aperture approximation: ϕ′ρ≈ϕ′ρ=ρ′ 00 tan , and considering 

the following identity [24],  
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)(
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0 amam JJd ρ−ρδ
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=µρµρµµ∫

+∞
, (3.64) 

one can rewrite Eq. (3.62) as 
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)(),(PSF 0

/

/

0

0

ϕ′−ϕ−ϕδϕ′ρρ−ρδ
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i.e., 
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ρ
ρ−ρδ

ρ
ρ=rr . (3.66) 

Equation (3.66) indicates that, for the small flat aperture, the extension of the PSF is 

primarily along the lateral axis.  In fact, if we substitute Φ for 0/ρP , Eq. (3.66) becomes 

identical to Eq. (3.61) in the special cylinder aperture case. 

Next, we want to estimate the lateral extension of the PSF. One can also take the 

asymptotic form of the Hankel function to approximate  
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and then rewrite Eq. (3.62) as 

. )](exp[)()(

)](exp[)(
2

1
),(PSF 0

22
00

ϕ′−ϕ−ϕµρµρ×

ρ−ρ′+ρµρ′µµ−−
π

=

∑

∫∫
∞+

−∞=

+

−

+∞

a
m

mam

P

Paaa

imJJ

iddzzZUrr
 (3.68) 

Considering the identity [79] 

[ ] ),()()()(exp 0 DJJJim
m

mama µ=µρµρϕ−ϕ∑
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−∞=

 (3.69) 

Eq. (3.68) can be rewritten as 
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Equation (3.70) is still complicated. Here, by only considering the points along 

ar , i.e., letting aϕ=ϕ , and then taking the small aperture approximation ( 1<<ϕ′ ), 

)(])cos(2[ 0
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and 
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one can rewrite Eq. (3.70) as 
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Because 0ρ<<ρ′ , the imaginary part is much less than the real part and hence can be 

neglected,  
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(3.74) 

Using the following identity [15] 
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one can get the integral in Eq. (3.74) 
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 (3.76) 

The integral of Eq. (3.76) only exists in the range: aP ρ−ρ>ρ )2( 0
2 . Therefore, the 

PSF extends to a region with a diameter 0
2 ρP , which is negligible compared with the 

lateral extension as we discussed in the spherical geometry explanation. 

So far, we have derived the analytic PSF’s due to the detector apertures for the 

specific spherical, planar and cylindrical measurement geometries. The explicit 

expressions can be given when the detector surfaces are assumed to have the same 

geometric properties as the measurement geometries. Otherwise, it appears that 

explicitly carrying out the analytic derivations is impossible. But, in reality, the detector 

aperture is very small compared with the measurement surface. We have also estimated 

axial extension in this case and found it was negligible compared to lateral extension.  

 

4. Combined effects 

Finally, we attempt to analyze the combined effects of bandwidth and detector 

size together. Suppose the detected signal is band-limited, characterized by )(
~

kH  with a 

cutoff frequency ck , and the detectors have the same geometries as the measurement 

surfaces. One can then follow the derivations in Sections 2 and 3 and reach the following 

results: 
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(a) Spherical geometry: 

ϕ′θ′θ′′θ′= ∫∫ ddrRW bba sin)(PSF)()(PSF 2
0r  (3.77) 

where γ−+=′ ~cos222
aa rrrrR , )~cos(sin

~
sincos

~
cos~cos ϕ′−ϕθ′θ+θ′θ=γ , and θ~  and 

ϕ~  are the polar and azimuthal angles of vector n  with respect to vector an , 

respectively. 

(b) Planar geometry: 

ydxdRyxWzyx bba ′′′′′= ∫∫ )(PSF),(),,(PSF , (3.78) 

where 222 )()()( aaa zzyyyxxxR −+′+−+′+−=′ , 

(c) Cylindrical geometry: 

zddRzWz bba ′ϕ′ρ′′ϕ′=ϕρ ∫∫ 0)(PSF),(),,(PSF , (3.79) 

where 222 )()cos(2 zzzR aaaa ′+−+ϕ′+ϕ−ϕρρ−ρ+ρ=′ .  

Equations (3.77), (3.78) and (3.79) clearly reveal that the PSF can be regarded as 

a convolution of the detector aperture with the space-invariant PSFb. However, in the 

spherical geometry case, the convolution becomes complicated as shown in Eq. (3.77). 

Further, we can imagine how complicated the convolution could be with an arbitrary 

measurement geometry using arbitrary-aperture detectors. 
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Let us take the PSF in the planar geometry case as an example, which is shown in 

Fig. 3.9. The detector aperture is assumed to be a disk with a radius of 1 mm and a cutoff 

frequency fc = 4 MHz. In the axial direction, the extension of the PSF is similar to that 

shown in Fig. 3.2(b), which is determined by the bandwidth. However, as shown Fig. 

3.9(b), the PSF greatly expands in the lateral direction; and its corresponding FWHM ≈ 

2 mm, which is physically limited by the detector size. 

 

D. Summary 

We have proved that the PSF as a function of bandwidth is space-invariant for 

any measurement geometry when the reconstruction is linear and exact. The bandwidth 

limits the obtainable spatial resolution. We have also demonstrated that the finite 

aperture of the detector extends the PSF for different measurement geometries. The 
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FIG. 3.9. An example of the PSF due to the detector aperture: (a) a grayscale view and 
(b) a lateral profile through the point source 
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detector aperture blurs lateral resolution greatly at different levels for different 

measurement geometries but the effect on axial resolution is slight. The results offer 

clear instruction for designing appropriate photoacoustic imaging systems with 

predefined spatial resolutions. 
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CHAPTER IV 

SAMPLING STRATEGY 

 

A. Introduction 

Photoacoustic computed tomography is based on measurement of the outgoing 

acoustic waves emitted from the initial PA source. The measurement is performed by 

scanning wideband acoustic transducers around the sample under investigation. Each 

temporal PA signal, measured at various detection positions, provides one-dimensional 

(1D) depth, or radial, information about the acoustic source, while two-dimensional (2D) 

surface scans offer other 2D lateral information about the acoustic source. A 

combination of the temporal and spatial measurements may afford sufficient information 

for a complete reconstruction of a three-dimensional (3D) PA source.  

For computer-based reconstructions, the PA signals must be discretely sampled 

in both space and time. In reality, the outgoing PA waves are acquired around the initial 

PA source at a series of discrete spatial detection positions on the measurement surface 

with a spatial sampling frequency (i.e., the inverse of the sampling period); and at each 

detection position, a series of discrete temporal points is sampled with a temporal 

sampling frequency.  

According to the sampling (Nyquist) theorem, to accurately reconstruct a signal 

from a periodically sampled version of it, the sampling frequency must be at least twice 

the maximum frequency of the signal. Otherwise, a phenomenon known as aliasing is 

introduced, which causes confusion and serious measurement errors because the high-
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frequency components above half the sampling frequency disguise themselves as low-

frequency components in the discretely sampled data [80].  

Therefore, if the spatial-sampling period is not sufficient, aliasing artifacts will 

be introduced in the measured data. However, a smaller spatial-sampling period means 

more data acquisition positions, which may tremendously increase the amount of raw 

data for reconstruction as well as the data acquisition time if the measurement is 

performed by scanning a single detector or a small number of them. Therefore, it is 

desirable to know the optimal spatial-sampling period for PA measurement, but, so far, 

no sampling strategy for the PA measurement has been proposed.  

In the sampling of temporal signals, an analog anti-aliasing filter is often applied 

prior to the analog-to-digital (A/D) converter, which filters out frequency information 

that is higher than half the temporal sampling frequency. In a surface scan, however, the 

sampling of the positions is dependent on the measurement geometries. 

In this chapter, we first present a theoretical analysis of spatial sampling in PA 

measurement for various measurement geometries, including spherical, planar, and 

cylindrical surfaces. Then, based on the sampling theorem, we propose an optimal 

sampling strategy for PA measurement. Optimal spatial sampling periods for different 

geometries are derived. The aliasing effects on the PAT images in the different 

geometries are also discussed. At last, we conduct numerical simulations to test the 

proposed optimal sampling strategy and also to demonstrate how the aliasing related to 

spatially discrete sampling affects the PAT image. 
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B. Optimal sampling strategy 

From a physical point of view, the measurement is to collect the Fourier 

component )(~
0 kp  of the spatial source )(0 rp , where the Fourier transform is defined by 

rrkrk
r

3
00 )exp()()(~ dipp ⋅= ∫∫∫ , (4.1) 

and the inverse transform is 

krkkr
k

3
030 )exp()(~

)2(

1
)( dipp ⋅−

π
= ∫∫∫ . (4.2) 

Since the PA measurement system is linear, the measurement of )(~
0 kp  can be written as  

)(~)(
~

)(~
0 kkk pBpd = , (4.3) 

where )(
~

kB  is a system-dependent constant. If )(
~

kB  is not band-limited, )(~
0 kp  could 

be perfectly recovered from the measurement )(~ kdp . 

However, in the actual measurement, )(
~

kB  is band-limited. As discussed in 

Chapter III, the real signal detected at position 0r  can be expressed as the convolution of 

the surface integral over the aperture of the detector and the impulse response of the data 

acquisition system: 

),(~)()(
~

),(~
0

2
0 kpWdkHkp dd rrrrr

r
′+′′=′ ∫∫ ′

, (4.4) 

where r′  points to an element on the surface of the detector with respect to the position 

of the detector 0r ; )(r′W  is a weighting factor that represents the contribution from the 

various surface elements of the detector to the total signal received by the detector; and 
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)(
~

kH  is the Fourier transform of )()()( tItItH de ⊗= , in which )(tIe  and )(tI d  are the 

temporal illumination function and the impulse response of the detector, respectively.  

Obviously, the function )(
~

kH  works as a low-pass temporal-frequency filter that 

limits the temporal-frequency bandwidth of the measured PA signals, while )(r′W  acts 

as a low-pass spatial-frequency filter that restricts the spatial-frequency bandwidth of the 

data. The high-frequency information beyond these bandwidths is filtered out in the 

measurement. 

As discussed in the introduction, to accurately measure the signal in a finite 

bandwidth, the sampling frequency must be no less than the Nyquist frequency. In the 

sampling of temporal signals, it is straightforward to find out the Nyquist frequency. 

Assume )(
~

kH  has a rectangular-shaped bandwidth with a cutoff frequency of cf . Then, 

the temporal Nyquist sampling frequency equals 2 cf . Actually, in the measurement 

instrument, an anti-aliasing filter (low-pass filter) is often applied prior to the A/D 

converter to avoid aliasing. In a 2D surface scan, the spatial sampling is dependent on 

the measurement geometry. In the following three sections, we investigate three 

measurement geometries, including planar, spherical and cylindrical surfaces, 

respectively.  
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1. Planar geometry 

The Cartesian coordinates are used in this case.  We denote ),,( wvu=k  and 

),,( zyx=r . Assume the measurement surface is the z = 0 plane and the sample lies 

above this plane. 

First, we consider the idealized measurement condition. Taking the 2D Fourier 

transforms of ),(~
0 kpd r  on spatial variables 0x  and 0y  gives 

000000 )exp(),,(~),,(~ dydxivyiuxkyxpkvuq dd += ∫∫
+∞

∞−
. (4.5) 

Then, from the Fourier-domain reconstruction formula Eq. (2.30), we find the 

relationship between the Fourier spectrum ),,(~ kvuqd  of the measurement and the 

Fourier spectrum ),,(~
0 wvup of the source as: 

),,(~
2

1
),,(~

0 wvup
w

k
kvuqd = , (4.6) 

where 222)sgn( vukkw −−= .  

Next, we consider the actual measurement condition. Assume the detector has a 

flat sensing surface. The center of the detector surface represents the detector’s position 

0r . Denote ),( yx ′′=′r , which points to an element on the detector surface with respect 

to 0r ; and then ),()( yxWW ′′=′r  and ydxdd ′′=′r2 . 

Similarly, taking the 2D Fourier transforms of ),(~
0 kp r′  on spatial variables 0x  

and 0y  gives 

000000 )exp(),,(~),,(~ dydxivyiuxkyxpkvuq dd +′=′ ∫∫
+∞

∞−
. (4.7) 
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Then, from Eq. (4.4), one can derive 

),(
~

)(
~

),,(~),,(~ vuWkHkvuqkvuq dd
∗×=′ , (4.8) 

where the symbol * denotes the complex conjugate, and 

ydxdyivxiuyxWvuW ′′′+′′′= ∫∫
+∞

∞−
)exp(),(),(

~
. (4.9) 

The factor ),(
~

vuW  serves as a spatial-frequency filter. Three examples will be described 

below.  

In the first example, assume that the sensing aperture is a disk with a radius of P. 

If 1)( =′rW  when P≤′r  and 0 otherwise, then  

P

PJ
PvuW

ρ
ρ×π= )(2

),(
~ 12 , (4.10) 

where 22 vu +=ρ  and 1J  is the first order of the Bessel function. We plot the function 

ξξ /)(2 1J  as the solid line in Fig. 4.1. For simplicity, the main-lobe is regarded as the 

bandwidth. Since the first zero of the Bessel function 1J  is at 3.8317, the maximum u or 

v is PU /8317.3= . Therefore, the spatial Nyquist frequency equals PU /22.12/2 ≈π× . 

The spatial sampling periods should be Pyx 8.0, 00 ≤∆∆  along the 0x - or 0y -direction, 

respectively. 

In the second example, assume the sensing aperture is a rectangle with a half 

width of Z. If we let 1)( =′rW  when ZyxZ ≤′′≤− ,  and zero otherwise, then,  

vZ

vZ

uZ

uZ
ZvuW

)sin()sin(
4),(

~ 2 ×= . (4.11) 
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This is the product of two sinc functions. We plot the sinc function ξξ /)sin(  as the dash 

line in Fig. 4.1. For simplicity, the main-lobe is again regarded as the bandwidth. The 

first zero of the sinc function is at ZUu /π==  or ZVv /π== . Therefore, the spatial 

Nyquist frequency equals ZU /12/2 =π× . The spatial sampling periods should be 

Zyx ≤∆∆ 00 ,  along the 0x - or 0y -direction, respectively. 

In the third example, assume the detector is a point, i.e., 1),(
~ =vuW  for all u and 

v. Since only the non-evanescent wave is used for reconstruction, both u  and v  should 

be cut off at cfk cc /2π=  which is determined by the temporal-frequency bandwidth 

)(
~

kH . In this case, the spatial Nyquist frequency equals cfk cc /2/22 =π× . The spatial 

sampling periods should be cfkyx cc /2/, 00 π=≤∆∆  along the 0x - or 0y - direction, 

respectively. 
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2. Cylindrical geometry 

The cylindrical coordinates ),,( zϕρ=r  are employed in this case. The symbol φ 

denotes the azimuth angle from the x-axis. Assume the measurement surface is a 

cylindrical surface ),,( 0000 zϕρ=r . The sample is enclosed in this cylindrical surface. To 

conform to the Fourier transform Eqs. (4.1) and (4.2), we can change the Cartesian 

coordinates to the polar cylindrical coordinates by letting ),,( 0 γϕµ=k  and ),,( zϕρ=r  

with the following relationships: w=γ , 0cosϕµ=u , 0sin ϕµ=v , 22 vu +=µ  , 

ϕρ= cosx , ϕρ= siny , 22 yx +=ρ , and 222 µ+γ=k . Then, the inverse Fourier 

transform Eq. (4.2) can be rewritten as: 

)].cos(exp[),,(~
)2(

1
)exp(

2

1
),,(

000

00

2

020

ϕ−ϕµρ−γϕµ×

µµϕ
π

×γ−γ
π

=ϕρ ∫∫∫
+∞π+∞

∞−

ip

ddzidzp
 (4.12) 

Further, by expanding ),,(~
00 γϕµp  in circular harmonics as 

)exp(),(~
2

1
),,(~

0000 ϕ−γµ
π

=γϕµ ∑
+∞

−∞=

inpp
n

n , (4.13) 

and considering the identity [24] 

)](exp[)()()]cos(exp[ 00 ϕ−ϕµρ−=ϕ−ϕµρ− ∑
+∞

−∞=

inJii
n

n
n , (4.14) 

where )(⋅nJ is the Bessel function of the first kind, we can rewrite the inverse Fourier 

transform Eq. (4.12) as 
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).,(~)(
2

)(

)(exp
2

1
)exp(

2

1
),,(

00

0

γµρµµµ
π

−×

ϕ−
π

×γ−γ
π

=ϕρ

∫

∑∫
∞+

+∞

−∞=

+∞

∞−

nn

n

n

pJd
i

inzidzp

 

(4.15) 

The corresponding forward transform becomes 

).,,()()(2

)exp()exp(),(~

00

2

00

zpJdi

indzidzp

n
n

n

ϕρµρρρ+π×

ϕϕ×γ=γµ

∫
∫∫

∞+

π+∞

∞−

 

(4.16) 

We first consider the idealized measurement condition. Expanding ),,(~
00 kzpd ϕ  

in circular harmonics and then taking the Fourier transform on variable 0z  gives 

),,(~)exp()exp(),(~
0000

2

000 kzpindzidzkq ddn ϕ×ϕϕ×γ=γ ∫∫
π+∞

∞−
.
 

(4.17) 

The corresponding inverse transform is 

),(~)exp(
2

1
)exp(

2

1
),,(~

0000 kqinzidkzp dn
n

d γ×ϕ−
π

×γ−γ
π

=ϕ ∑∫
+∞

−∞=

+∞

∞−
. (4.18) 

Then, from the exact Fourier-domain reconstruction formula Eq. (2.37), we get the 

relationship between ),(~ kqdn γ  of the measurement and ),(~
0 γµnp  of the initial source as: 

)(
4

)(
),(~),(~

0
)1(

0 µρ−×γµ=γ n

n

ndn kH
i

pkq , (4.19) 

where )()1( ⋅nH  is the Hankel function of the first kind. 

Next, we consider the actual measurement condition. Assume the detector 

surface is a section of the cylindrical measurement surface. The center of the detector 

surface represents the detector’s position 0r . The vector 0r′  points to an element on the 

surface of the detector. Let ϕ′  be the difference between the polar angles of 0r  and 0r′ , 
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and z′  be the projection of 00 rrr −′=′  in the z axis; then, ),()( zWW ′ϕ′=′r  and 

zddd ′ϕ′ρ=′ 0
2r . Therefore, the real signal detected at position 0r  can be expressed as a 

surface integral over the aperture of the detector as: 

zddzWkzzpkHkp dd ′ϕ′ρ′ϕ′′+ϕ′+ϕ=′ ∫∫ 0000 ),(),,(~)(
~

),(~ r . (4.20) 

Similarly, expanding ),(~
0 kpd r′  in circular harmonics and taking the Fourier 

transform on variable 0z  gives 

),,(~)exp()exp(),(~
0000

2

000 kzpindzidzkq ddn ϕ′×ϕϕ×γ=γ′ ∫∫
π+∞

∞−
.
 

(4.21) 

Then, from Eq. (4.20), one can derive 

)(
~

)(
~

),(~),(~ γ×γ=γ′ ∗
ndndn WkHkqkq , (4.22) 

where 

zddinzizWWn ′ϕ′ρϕ′′γ′ϕ′=γ ∫∫ 0)exp()exp(),()(
~

. (4.23) 

The factor )(
~ γnW  acts as a spatial-frequency filter.  

For example, if we let 1),( =′ϕ′ zW  in – Φ < ϕ′ < Φ  and –Z< z′ < Z and zero 

otherwise, then  

Φ
Φ

γ
γ×Φρ=γ

n

n

Z

Z
ZWn

)sin()sin(
4)(

~
0 . (4.24) 

This is a product of two sinc functions. For simplicity, the main-lobe of the sinc function 

is regarded as the bandwidth. The first zero of the sinc function on γ  is at ZG /π==γ .  

Therefore, the spatial Nyquist frequency equals ZG /1)2/(2 =π× , and then the spatial 

sampling period along the 0z -direction should be Zz ≤∆ 0 . Because n is an integer, the 
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first zero of the sinc function for n is around ]/[ Φπ== Mn , where [] stands for integer 

rounding. Therefore, the maximum frequency of the bandwidth for n is )2/( πM . 

According to the circular sampling theorem [81,82], the angular Nyquist frequency 

equals M2 , and then the angular sampling period along the 0ϕ -direction should be 

N/20 π≤ϕ∆ , where 12 +≥ MN , i.e., Φ≈π<ϕ∆ M2/20 . For a small aperture with a 

diameter of δ , 0/2 ρδ≈Φ , so the spatial sampling period along the 0ϕ -direction should 

be 2/00 δ<ϕ∆ρ . 

 

3. Spherical geometry 

The polar spherical coordinates are adopted in this case. Denote θ  as the polar 

angle from the z-axis and ϕ  as the azimuth angle in the x-y plane from the x-axis. 

Assume the measurement surface is a spherical surface ),,( 0000 ϕθ= rr . The sample 

under study lies inside the sphere. To conform to the Fourier transform Eqs. (4.1) and 

(4.2), we can change the Cartesian coordinates to the polar spherical coordinates: 

),,( 00 ϕθ= kk  and ),,( ϕθ= rr , with the following relationships: 00 cossin ϕθ= ku , 

00 sinsin ϕθ= kv , 0cosϕ= kw , ϕθ= cossinrx , ϕθ= sinsinry , and ϕ= cosrz . Then, 

the inverse Fourier transform Eq. (4.2) can be rewritten as 

)exp(),,(~
)2(

1
),,( 000

2

0030
0

rk ⋅−ϕθΩ
π

=ϕθ ∫∫
+∞

Ω
ikpdkkdrp , (4.25) 

where 0000 sin ϕθθ=Ω ddd , 0θ : 0 to 2π and 0ϕ : 0 to 2π. 

Further, by substituting the following identity into Eq. (4.25) [83]: 
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∑∑
+∞

=

+

−=

∗ ϕθϕθ−π=⋅−
0

00 ),(),()()(4)exp(
l

l

lm

m
l

m
ll

l YYkrjii rk  , (4.26) 

where )(⋅lj  is the spherical Bessel function of the first kind, and )(⋅m
lY  is the spherical 

harmonics, and expanding the function ),,(~
000 ϕθkp  in spherical harmonics as: 

∑∑
+∞

=

+

−=

∗ ϕθ=ϕθ
0

000000 ),()(~),,(~
l

l

lm

m
l

m
l Ykpkp  , (4.27) 

we get 

)(~)(),()(
2

1
),,( 0

2

0
0

20 kpkrdkjkYirp m
ll

l

l

lm

m
l

l ∫∑ ∑
+∞+∞

=

+

−=

∗ ϕθ−
π

=ϕθ  . (4.28) 

The corresponding forward transform becomes 

),,()(),()(4)(~
0

2

00 ϕθϕθ+Ωπ= ∫∫
+∞

Ω
rpkrdrjrYidkp l

m
l

lm
l  , (4.29) 

where ϕθθ=Ω ddd sin , θ : 0 to 2π and ϕ : 0 to 2π. 

We first consider the idealized measurement condition. The pressure ),(~
0 kpd r  

can be expanded in spherical harmonics as 

),,(~),()(~
00000

0

kpYdkq d
m

l
m
dl ϕθϕθΩ= ∫Ω

 . (4.30) 

The corresponding inverse transform is 

∑∑
+∞

=

+

−=

∗ ϕθ=ϕθ
0

0000 ),()(~),,(~
l

l

lm

m
l

m
dld Ykqkp  . (4.31) 

Using the following additional theorem for the spherical harmonics [24]: 

∑
+

−=

∗ ϕθϕθ
+
π=⋅

l

lm

m
l

m
ll YY

l
P ),(),(

12
4

)( 000nn  , (4.32) 
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where ),( ϕθ=n  and ),( 000 ϕθ=n  are unit vectors and )(⋅lP  is the Legendre polynomial 

function, from on the exact Fourier-domain reconstruction formula Eq. (2.12), we get the 

following relationship between )(~ kq m
dl  of the measurement and )(~

0 kp m
l  of the initial 

source as: 

)(
4

)(
)(~)(~

0
)1(2

0 krhk
i

kpkq l

l
m
l

m
dl π

−×= , (4.33) 

where )()1( ⋅lh  is the spherical Hankel function of the first kind. 

Next, we consider the actual measurement condition. Assume that the detector 

surface is a small section of the spherical measurement surface. The vector 0r , which 

points to the center of the detector, represents the position of the detector. The vector 

rrr ′+=′ 00  points to an element on the surface of the detector. Denote θ′  as the angle 

between ),,( 0000 ϕ′θ′=′ rr  and ),,( 0000 ϕθ= rr . Assume the weighting factor is dependent 

only on θ′ , i.e., )()( θ′=′ WW r . Then, the measured signal can be expressed by a surface 

integral over the detector aperture as 

rrrr
r

′θ′′+=′ ∫∫ ′

2
00 )(),(~)(

~
),(~ dWkpkHkp dd , (4.34) 

where  0
2

00
22 Ω′=′=′ drdd rr . 

Similarly, ),(~
0 kpd r′  can be expanded in spherical harmonics: 

),(~),()(~
0000

0

kpYdkq d
m

l
m

dl r′ϕθΩ=′ ∫Ω
. (4.35) 

The function )(θ′W  can be expanded in Legendre polynomials as 
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∑
+∞
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′′ θ′=θ′

0

)(cos)(
l

ll PCW ,
 

(4.36) 

where the coefficients can be computed by 

θ′θ′θ′θ′+′
= ′

π

′ ∫ dWP
l

C ll sin)()(cos
2

12
0

.
 

(4.37) 

Further, by considering the identity [24]: 
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∗
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l

ln

n
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n
ll YY

l
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12
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)(cos 0000  , (4.38) 

we can expand )(θ′W  in spherical harmonics: 
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(4.39) 

where   

θ′θ′θ′θ′π= ′

π

′ ∫ dWPrW ll sin)()(cos2
~

0

2
0 .

 
(4.40) 

Then, by substituting Eqs. (4.34) and (4.39) into (4.35), we get 
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(4.41) 

In Eq. (4.41) the integral over 0Ω  gives mnll ,′δ  and then the summation ∑∑
+∞

=′

′+

′−=0l

l

ln

reduces 

to one term: ll =′  and mn = , and finally the integral over 0Ω′  gives )(~ kq m
dl  according to 

the definition of Eq. (4.30). In sum, Eq. (4.41) is simplified to 

)(
~~

)(~)(~ kHWkqkq l
m
dl

m
dl ×=′ . (4.42) 
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The factor lW
~

 acts as a spatial-frequency filter. 

For example, if we let 1)( =θ′W  when θ′  from 0 to Θ  and zero otherwise, then 

for 0≠l , 

l

PP
rW ll

l

)(cos)(coscos
2

~ 12
0

Θ−ΘΘ
π= + ,

 
(4.43) 

and for 0=l ,  

)cos1(2
~ 2

00 Θ−π= rW .
 

(4.44) 

Assume N/2 π=Θ . When 20≥N , the ratio 0

~
/

~
WWl  as a function of Nl /  

approaches a curve of ξξ /)(2 1J  with )2/( Nlπ=ξ  as the solid line in Fig. 4.1.  For 

simplicity, the main-lobe of the ratio is regarded as the bandwidth. The first zero is at 

NNl 4.2/23.8317 ≈π×= . According to the circular sampling theorem [81,82], the 

angular Nyquist sampling frequency equals N8.4 , and then the angular sampling period 

should be less than Θ≈Θ=π≈+π 8.04.2/2)4.2/()18.4/(2 NN . For a small aperture 

with a diameter δ, 0/2 rδ≈Θ , so the spatial sampling period should be less than 

δ<Θ× 4.08.00r . 

 

4. Summary and discussions 

The spatial sampling in the PA measurements for various geometries, including 

planar, cylindrical and spherical surfaces, have been studied in the above three sections. 

In general, the main-lobe of the spatial spectrum of the sensing aperture of the detector 

cuts off at about half the diameter of the rectangular-shaped surface or at four-tenths of 
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the disc-shaped surface. Therefore, in principle, if the spatial sampling period is less than 

half the diameter of the sensing aperture of the detector, aliasing due to spatially discrete 

sampling can be avoided or significantly reduced. Otherwise, significant aliasing may be 

present in the sampled data as a result of under-sampling (sampling at a frequency that is 

less than the Nyquist frequency). The aliasing effect on the PA reconstruction is actually 

dependent on the measurement geometry as well as the spectrum of the object under 

study. Two general cases are discussed below.  

If the detection scan is along a straight line, such as in a planar scan or a z-scan in 

a cylindrical scan, the aliasing effect on the reconstruction is similar no matter where the 

object is in relation to the scan line, because the spectrum of the object along the 

direction of the scan line is independent of the distance from the object to the scan line. 

For example, for a line object with a length of a that is parallel to the scan line, its spatial 

spectrum is a sinc function as )2//()2/sin( uaua . The main-lobe of this sinc function 

cuts off at aU a /2π= , which contains the most frequency information about the object. 

The actual measurement cuts off the spatial-frequency bandwidth at δπ=δ /2U , where 

δ  is the diameter of the sensing aperture of the detector. If δ<a , δ> UU a , that is to say, 

the whole spatial-frequency bandwidth of the measurement contains the frequency 

information of the object, the spatial sampling period must be less than 2/δ  to avoid 

aliasing. If δ>a , δ< UU a , that is to say, in addition to the whole region below aU , the 

spatial-frequency bandwidth of the measurement contains a frequency range from aU  to 

δU  that only provides some minor information about the object, the spatial sampling 
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period can be larger than 2/δ  but must be less than 2/a  for aliasing to be significantly 

reduced.  

If the detection scan is along a circle, such as a spherical or cylindrical scan, the 

aliasing effect on the reconstruction is related to the distance from the object to the 

center of the scan circle. For example, with an arc object parallel to the scan circle, its 

spatial spectrum along the circular direction is a sinc function as )]2/(/[)]2/(sin[ rlarla , 

where a and r are the arc length and the distance from the arc to the scan center, 

respectively. The main-lobe of this spectrum cuts off at an angular frequency at 

arLl a /2π== , which contains the most angular frequency information about the object. 

Obviously, when the object is farther away from the scan center, i.e., r is larger, the 

main-lobe has more l terms and a higher cutoff frequency. For a small aperture with a 

diameter of δ , the actual measurement cuts off the spatial-frequency bandwidth at 

around δπ== δ /2 0rLl , where 0r  is the radius of the scan circle. In the case of 

δ> // 0rar , i.e., δ> LLa , the spatial sampling period must be less than 2/δ  to avoid 

aliasing. In the case of δ< // 0rar , i.e., δ< LLa , the spatial sampling period can be 

larger than 2/δ  but must be less than 2/a  to reduce aliasing. However, a sampling 

period larger than 2/δ  has some risks. For example, with a spatial sampling period of δ , 

the aliasing may be minor for an object located inside 1rr <  if )2/(/ 01 δ= rar , but the 

aliasing will be significant for an object that is outside 1rr > .  
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C. Aliasing artifacts 

In this section, we use some numerical simulations based on the method 

described in Chapter II to illustrate the aliasing effect on PA reconstruction. We consider 

uniform spherical absorbers surrounded by a non-absorbing background medium. For 

convenience, we use the centers of the absorbers to denote their positions. The simulated 

PA signal is in a temporal-frequency range below 4 MHz, and the data sampling 

frequency is 20 MHz, which is sufficient to avoid aliasing related to the temporally 

discrete sampling. Two general cases are tested below.  

 

1. Linear scan 

One case involves a detection scan along a straight line. Without loss of 

generality, we can take the planar measurement area as an example. Assume the 

measurement surface is 40 mm × 40 mm. Two sides of the measurement area are parallel 

to the x-axis and y-axis of the Cartesian coordinates system, respectively, and the center 

of the measurement area is located at the center of the coordinates system. For 

simplicity, assume that the detector surface is a rectangle with a diameter of 2 mm. 

According to the theoretical results in Sec. B, the spatial sampling periods along the x- 

and y- axes should be less than 1 mm. In other words, the PA signal should be uniformly 

sampled from at least 41 positions in a length of 40 mm.  

We consider a pair of spherical absorbers with a diameter of 1.5 mm. The 

amplitudes of the initial acoustic pressures of these two absorbers are 1 and 0.2, 

respectively, and the centers of the absorbers are located at (–5, 0, 10) and (5, 0, 10) in 
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unit of mm, respectively. Curve 1 in Fig. 4.2 shows the initial pressure profile along the 

line through the centers of the absorbers.  

We computed the reconstructions from the measurements with various spatial 

sampling periods, including 4 mm, 2 mm, 1 mm, 0.5 mm, and 0.4 mm, which 

correspond to the 11×11, 21×21, 41×41, 81×81 and 101×101 detection positions 

uniformly distributed on the measurement area, respectively. The profiles of these 

reconstructions along the line through the centers of the absorbers are plotted as curves 

2–6 in Fig. 4.2, respectively. When the sampling periods are much greater than 1 mm 

(i.e., under-sampling), as, for example, curves 2 and 3 in Fig. 4.2, the reconstructions 
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FIG. 4.2. Pressure profiles along the line (y = 0, z = 10 mm) that is parallel to the x-axis. 

Vertical axis is the amplitude in arbitrary unit. Horizontal axis is in mm. Curve 1: 
original profile. Curves 2 to 6: reconstructions from the measurements with 
sampling periods, including 4 mm, 2 mm, 1 mm, 0.5 mm and 0.4 mm, respectively. 
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contain significant artifacts that result from the aliasing. The aliasing in curve 2 is so 

serious that the object with low amplitude is buried in aliasing noise. Curve 4 is in good 

agreement with the original profile because it is from a measurement with a sufficient 

sampling period of 1 mm, although the reconstruction is blurred by the limited 

bandwidth of the PA signal. Curves 5 and 6 have smaller sampling periods, 0.5 mm and 

0.4 mm, respectively, and their spatial-frequency bandwidths contain the first side-lobe 

of the sinc function shown in Eq. (4.11). The reconstructions for curves 5 and 6 are a 

little better than that for curve 4, but the improvement is not significant. This is because 

the amplitude of the side-lobe of the spectrum is much smaller than the value of the 

main-lobe.  

 

2. Circular scan 

Another case is when the detection scan is along a circle. We take the cylindrical 

measurement surface as an example. Assume the measurement area has a length of 90 

mm and a radius of 25 mm. We assume that the z-axis of the cylindrical coordinates 

system is parallel to the length of the measurement surface and the origin is located at 

the center of the cylindrical measurement surface. We also assume that the aperture of 

the detector is a section of the measurement surface, and its aperture sizes along the 0ϕ -

direction and the z-axis are π mm and 3 mm, respectively. According to the theoretical 

results in Sec. B, the spatial sampling periods along the 0ϕ -direction and the z-axis 

should be less than π/2 mm and 1.5 mm, respectively. In other words, the PA signal 
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should be uniformly sampled at a minimum of 101 positions along the 0ϕ -direction and 

61 positions along the z-axis, respectively.  

We consider a spherical absorber with a diameter of 1.5 mm. Assume that the 

amplitude of the initial acoustic pressure of the absorber is 1, the profile of which is the 

same as the left object in curve 1 of Fig. 4.2. In the simulation, the spatial sampling 

period along the z-axis is 1.5 mm, so the aliasing resulting from the discrete sampling 

along this direction is negligible. We assume that the center of the spherical absorber is 

located at the x-axis.  
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FIG. 4.3. Pressure profiles. Curves 1 to 3: reconstructions with sampling periods, 

including π mm, π/2 mm, and π/4 mm, respectively, along the line (x = 8 mm, z = 
0), when the absorber is at (x = 8 mm, y = z = 0). Curves 4 to 6: reconstructions 
with sampling periods, including π mm, π/2 mm, and π/4 mm, respectively, along 
the line (x = 16 mm, z = 0), when the absorber is at (x = 16 mm, y = z = 0). 
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We then compute two series of reconstructions with the absorber located at 

position 1 (x = 8 mm) and position 2 (x = 16 mm), respectively. Each series is from 

measurements with spatial sampling periods, including π mm, π/2 mm, and π/4 mm, 

which correspond to 51, 101, and 201 detection positions along the 0ϕ -direction, 

respectively. The profiles of the reconstructions are plotted as curves 1–3 for position 1 

and 4–6 for position 2 in Fig. 4.3, respectively. Both curves 1 and 4 have significant 

aliasing. However, curve 4 (the object at x = 16 mm) has stronger artifacts than curve 1 

(x = 8 mm). This indicates that when the object is farther away from the center of the 

scan circle, more aliasing artifacts occur in reconstruction, which is consistent with the 

theoretical results presented in the previous section. The aliasing effects on 

reconstruction curves 2, 3, 5, and 6 are negligible, since the spatial sampling periods are 

equal to, or less than half, the diameter of the sensing aperture.  

In summary, the above numerical experiments have demonstrated that half of the 

diameter of the sensing aperture is a sufficient spatial sampling period to significantly 

reduce aliasing, which is consistent to the theoretical results. Smaller sampling periods, 

such as one-quarter of the diameter of the sensing aperture, do not provide significant 

improvement in image quality.  Further decreases in the spatial sampling periods do 

tremendously expand the number of data acquisition positions required, which means an 

increase in the amount of raw data that must be included in the reconstruction as well as 

an increase in the data acquisition time if the measurement is performed by the scanning 

of a single detector or a small number of them.  
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D. Summary 

We have analyzed sampling strategies in PA measurement for three measurement 

geometries, including planar, spherical, and cylindrical surfaces. In practice, to 

significantly reduce aliasing, it is reasonable to let the discrete spatial sampling period be 

slightly smaller than half of the diameter of the sensing aperture of the detector. We 

conclude, however, that it is not necessary to let the sampling period be smaller than one 

quarter of the diameter of the sensing aperture because smaller sampling periods 

increase tremendously the number of the detection positions but do not provide 

significant improvement in image quality. Finally, our results indicate that the spatial 

resolution of PA reconstruction is physically limited by both the aperture size of the 

detector and the temporal-frequency bandwidth of the PA signal. 
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CHAPTER V 

BREAST IMAGING 

 

A. Introduction 

Breast cancer is the most common cancer among women, accounting for one out 

of every three cancer diagnoses. In 2001, the statistical expectation was that 

approximately 192,200 new cases of invasive breast cancer—and about 40,000 in situ 

carcinomas—would be diagnosed [84].  The incidence of breast cancer increases with 

age: approximately 3 out of 4 women with a new diagnosis of breast cancer each year 

are older than 50. 

Although breast cancer remains a leading cause of cancer deaths among women, 

the cure rate is much improved by early detection. X-ray mammography and 

ultrasonography are the current clinical tools for breast-cancer screening and detection.  

Mammography is the “gold standard”; however, it uses ionizing radiation and has 

difficulty in imaging pre-menopausal breasts, which are radiographically dense.  

Currently, ultrasonography is used only as an adjunct tool to x-ray mammography and 

tends to miss non-palpable tumors. 

RF electromagnetic waves can generate a myriad of effects in biological 

specimens.  Most of the effects are not harmful under controlled conditions and can 

therefore be used to make useful diagnostic measurements. The observed effects in 

tissue can be cataloged into thermal and nonthermal effects. The most investigated and 

documented effect of RF power on biological tissues is thermal: when electromagnetic 
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energy is transformed into kinetic energy in absorbing molecules, heating and 

subsequent thermoacoustic or photoacoustic emission occurs in the medium. 

The dielectric properties of tissues determine their patterns of energy deposition 

upon irradiation by an electromagnetic field.  Because the dielectric properties of normal 

and malignant tissues are found to vary appreciably over a range of frequencies [85] 

(Fig. 5.1), RF-based imaging is promising for early detection of tumors [86]. 

Throughout the RF region, all soft tissues of high water content have 

qualitatively similar properties.  The most striking feature is the large increase in the 

relative dielectric constant at frequencies below 0.1 GHz and the large increase in the 

conductivity at frequencies above 1 GHz [87]. At frequencies below 0.1 GHz, the large 

increase in the relative dielectric constant is due to the charging of cell membranes, with 

smaller contributions coming from the protein constituents and possibly ionic diffusion 

along surfaces in the tissue [87]. At frequencies above 0.1 GHz, the changes in the 
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FIG. 5.1. Properties of human breast tissues. 
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relative dielectric constant and conductivity with frequency probably reflect relaxation 

of the tissue proteins and protein-bound water as well as other sources [87]. At 

frequencies above ~5 GHz, the dipolar relaxation of tissue water primarily determines 

the change in the dielectric properties [87].  Because of the free water and sodium in the 

malignant tissue, conductivity increases significantly with frequency.  In addition, the 

“static” permittivity of the free water contributes predominantly to the permittivity of 

tissue at UHF frequencies.  

As discussed in Chapter I, the RF absorption or heating results from both ionic 

conductivity and vibration of the dipole molecules of water and proteins [28]. However, 

the absorption is a complex function of the frequency and the dielectric property of the 

tissue. In general, the absorption coefficient, which measures the probability of RF 

absorption per unit of infinitesimal length, can be calculated by [23] 

( ) ⎥⎦
⎤

⎢⎣
⎡ −ωεσ+µεω=α 1)/(1)2/( 2 ,

 
(5.1) 

where ω is the angular frequency, µ is the permeability, ε is the permittivity, and σ is the 

conductivity.  The reciprocal of the absorption coefficient is the 1/e penetration depth 

α=δ /1 .  Eq. (5.1) shows that the ionic conductivity property dominates the absorption 

at very low frequencies and the permittivity property dominated the absorption at very 

high frequencies. 

The 1/e penetration depths based on the data in Fig. 5.1 are plotted in Fig 5.2, 

which clearly shows that there is a large contrast in microwave absorption between the 

normal and malignant breast tissues in a wide range of frequencies [34]. The contrast 
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between tumor tissue and normal tissue is mainly caused by the extra water and bound 

sodium in the tumor tissue [88].  This large contrast is the primary motivation for our 

research and will be exploited by our application of RF photoacoustic tomography. Most 

other soft tissues have penetration depths in between those for muscle and fat tissues. 

The wide range of values among various tissues makes it possible to achieve high image 

contrast. In addition, there is a tradeoff between the RF absorption and the penetration 

depth. At the frequency of our experimental setup, 3 GHz, the penetration depths for fat 

and muscle are 9 and 1.2 cm, respectively. Therefore, 3 GHz microwave is a good 

choice for imaging big-sized fatty tissues such as human breast. 

In this chapter, we report an initial study of RF-induced PAT and its application 

of breast imaging. First, we describe a prototype of RF-induced PAT imaging system we 

have built. Then, we show some experimental results on phantom samples. Finally, we 

present a preliminary study of breast cancer detection. 
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B. Measurement method1 

In the initial study, for simplicity, we use 2-D circular measurement geometry. 

Figure 5.3 shows the experimental setup. A plexiglass container is filled with mineral 

oil. An unfocused transducer is immersed inside it and fixed on a rotation device. A step 

motor drives the rotation device and then moves the transducer scan around the sample 

on a horizontal x-y plane, where the transducer horizontally points to the rotation center. 

A sample is immersed inside the container and placed on a holder: it is made of a thin 

plastic material, which is transparent to microwaves. The transducer (V323, 

Panametrics) has a central frequency of 2.25 MHz and a diameter of 6mm.  

The microwave pulses transmitted from a 3-GHz microwave generator have a 

pulse energy of 10 mJ and a pulse width of 0.3 or 0.5 µs . A function generator (Protek, 

B-180) is used to trigger the microwave generator, control its pulse repetition frequency, 

and synchronize the oscilloscope sampling.  

In our experiments, the pulse repetition frequency is 50 Hz and the oscilloscope 

sampling frequency is 20 or 50 MHz. Microwave energy is delivered to the sample by a 

rectangular waveguide with a cross section of 72 mm × 34 mm or a horn. A personal 

computer is used to control the steps. The signal from the transducer is first amplified 

through a pulse amplifier, then recorded and averaged 100~500 times by an oscilloscope 

(TDS640A, Tektronix), and finally transferred to a personal computer for imaging. 

                                                 

1 ©2002 American Association of Physicists in Medicine. Reprinted, with permission 
from M.-H. Xu and L.-H. Wang, “Pulsed-microwave-induced thermoacoustic 
tomography: Filtered backprojection in a circular measurement geometry,” Med. Phy. 29, 
1661–1669 (2002). 
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C. Phantom experiments2 

1. Image contrast 

Image contrast is an important index for biological imaging.  Figure 5.4(a) shows 

a tested sample, which was photographed after the experiment. The sample was made 

according to the following procedure. First, we cut a thin piece of homogeneous pork fat 

tissue and shaped it arbitrarily to form a base. Its thickness is 5 mm and its maximum 

diameter is 4 cm. Then we used different screwdrivers to carefully make two pairs of 

                                                 

2 ©2002 IEEE. Reprinted, with permission, from M.-H. Xu and L.-H.Wang, “Time-
domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE 
Trans. on Med. Imaging 21, 814–822 (July 2002). 
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FIG. 5.3. Diagram of experimental setup. 
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holes that were approximately 4 mm and 6 mm in diameter, respectively. Finally, one 

big and one small hole on the left side was filled with pork muscle, while the big and 

small hole on the right side were filled with pork fat of the same type as that which made 

up the base. 

In the experiment, the transducer rotationally scanned the sample from 0 to 360 

degrees with a step size of 2.25 degrees. We used the 160 series of data to calculate the 

image by the back-projection method. The reconstructed image is shown in Fig. 5.4(b).  
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FIG. 5.4. (a) Photograph of the cross-section of a tissue sample; (b) Reconstructed 

image. 
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The outline and size of the fat base as well as the sizes and locations of the two muscle 

pieces are in good agreement with the original sample in Fig. 5.4(a). The high contrast is 

due to the low microwave absorption capacity of fat (low water content: 10%) and the 

high absorption capacity of muscle (high water content: 70%). The two pieces of fat are 

not visible in the image Fig. 5.4(b), which means the minute mechanical discontinuity 

between the boundaries of muscle and fat does not contribute much to the 

thermoacoustic or photoacoustic signal. On the contrary, the discontinuity improves the 

strength of the echo sounds in pure-ultrasound imaging. This experiment demonstrates 

that water content in tissues is one important factor that affects the RF absorption. 

 

2. Spatial resolution 

Spatial resolution is another important index for biological imaging. We used 

samples with a set of small thermoacoustic or photoacoustic sources to test the 

resolution. One tested sample is shown in Fig. 5.5(a), which was also photographed after 

the experiment was completed. The sample was made according to the following 

procedure.  First, we cut a thin piece of homogeneous pork fat tissue and made it into an 

arbitrary shape.  Its thickness was 5 mm with a maximum diameter of 4 cm.  Then we 

used a small screwdriver to carefully make a set of small holes about 2 mm in diameter.  

In the meantime, we prepared a hot solution with 5% gelatin, 0.8% salt and a drop of 

dark ink (to improve the photographic properties of the sample).  Next, we used an 

injector to inject a drop of the gelatin solution into each small hole and subsequently 

blew out the air to make good coupling between the gelatin solution and the fat tissue. 
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After being cooled in room temperature for about 15 minutes, the gelatin solution was 

solidified. Finally, the sample was buried 1-cm deep inside a fat base [Fig. 5.5(b)]. 

During the experiment, the transducer rotationally scanned the sample from 0 to 360 

degrees with a step size of 2.25 degrees. 
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FIG. 5.5. (a) Photograph of the cross-section of a tissue sample; (b) Side-view of the 
sample buried 1-cm deep inside a fat base; (c) Reconstructed image. 
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The reconstructed image produced by the back-projection method is shown in 

Fig. 5.5(c), which agrees with the original sample very well.  In particular, the relative 

locations and sizes of those small thermoacoustic or photoacoustic sources are clearly 

resolved and perfectly match the original ones.  

We further quantified the line spread function (LSF) of the imaging system with 

pulse duration of 0.3  µs. A metal wire with a diameter of 0.2 mm was buried in pork fat 

and then imaged by our imaging system with a scan radius of 75 mm. The photoacoustic 

image of the embedded wire is shown in Fig. 5.6(a).  Fig. 5.6(b) shows the profile of the 

LSF across the wire, where the ringing is caused primarily by the bandwidth of the 

detection system.  Its full width at half maximum (FWHM) is about 0.5 mm. We can, 

therefore, claim the spatial resolution of our experimental system reaches 0.5 mm, which 

agrees with the theoretical spatial-resolution limit for 3 MHz photoacoustic signals 

whose half wavelength is <0.5 mm in soft biological tissues.  It is worth noting that the 

claimed 0.5-mm resolution is a worst-case estimation of the true resolution because of 
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FIG. 5.6. (a) Photoacoustic image of a thin wire; (b) Profile across the wire. 
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the finite thickness of the wire (0.2 mm diameter). 

Of course, the detecting transducer has a finite physical size.  If it is close to the 

photoacoustic sources, it cannot be approximated as a point detector.  Its size will blur 

the images and decrease the spatial resolution.  Therefore, in experiments, the transducer 

must be placed some distance away from the tissue samples. 

 

3. Images of thick samples 

The advantage of using microwave is its long penetration depth in soft tissue. A 

microwave can reach a tumor buried inside tissue and heat it to generate photoacoustic 

waves. One tested sample is shown in Fig. 5.7. The experiment was conducted according 

to a procedure similar to the one above. 

Figure 5.7(a) shows the diagram of the measurement. Three small absorbers were 

buried inside a big fat base. The big pork fat tissue had a maximum diameter of 7 cm. 

Screwdrivers were used to carefully make three holes about 5 mm in diameter with a 

depth of 2.5 cm. Next, an injector was used to inject a drop of the same gelatin solution 

as above into each small hole, and, subsequently, air was blown out to improve the 

coupling between the gelatin solution and the fat tissue. These gelatin sources were 

about 5 mm in diameter. After being cooled at room temperature, the gelatin solutions 

solidified. The photograph of the sample at this stage is shown in Fig. 5.7(b). Finally, the 

holes were filled with fat, and the gelatin sources were buried in the fat tissue. During 

the experiment, a microwave was transmitted out to the sample from below. The 

transducer rotationally scanned the sample, including the gelatin sources, from 0 to 360 
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degrees in a plane as Fig. 5.7(a) shows. The distance between the transducer and the 

rotation center was 7 cm. The reconstructed image produced by our back-projection 

method, which agrees well with the original sample, is shown in Fig. 5.7(c). The relative 

locations and sizes of those photoacoustic sources perfectly match the buried objects in 

the original sample. 
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FIG. 5.7. (a) Diagram of the measurement; (b) Cross section of the tissue sample; (c) 
Reconstructed image. 
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D. Breast cancer imaging 

Finally, we took the prototype of PAT system to the University of Texas M.D. 

Anderson Cancer Center and conducted a preliminary study of breast imaging. In our 

initial study, we investigated big-sized tumors in breast mastectomy specimens. Four 

excised breast specimens were imaged. The tumor regions in these specimens can be 

located in the PAT images as expected. 

In experiments, we followed the following procedure.  

First, a mammogram before the mastectomy surgery of the breast was taken at 

the Cancer Center. Fig. 5.8(a) shows the mammogram of the biggest specimen in all the 

four samples we investigated. Generally, a mammogram is formed by the different 

attenuations of the x-ray beam within a patient's breast. Objects with increased 

attenuation produce shadows. The image contrast produced by an object depends on its 

attenuation of the x-ray beam. To improve the contrast, the breast is often taken with 

standard compression. 

After the surgery performed by Dr. Hunt, the excised specimen was placed in a 

plastic cylindrical container with a diameter of 10 cm [Fig. 5.8(b)]. The nipple of the 

specimen faced the bottom of the container to simulate the proposed in vivo geometry. 

The thickness of the specimen in the container was ~6 cm. The container had minimal 

effect on the transmission of RF, ultrasound, and x-ray.  

Then, another radiograph of the specimen was taken from the top of the 

cylindrical container [Fig. 5.8(c)]. In this case, the tumor region is not clear imaged. This 
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is because the 6-cm thickness of the specimen in the container seriously blurred the x-

ray image.  

Next, a conventional B-mode gray-scale sonogram of the specimen [Fig. 5.8(d)] 

was taken by Dr. Fornage using a real-time scanner (HDI 5000, Philips-ATL, Bothell, 

WA) equipped with a 5–12 MHz broadband linear array electronic transducer. The 

tumor region was marked by two lines. In sonogram, the contrast is based on the tissues’ 

mechanical properties. 

Finally, the specimen was imaged using our photoacoustic imaging system. A 

circular scan was carried out by a cylindrically focused ultrasound detector (2.25 MHz 

center frequency and 0.9 mm diameter) with a step size of 2-1/4 degrees. The scan radius 

was 7.5 cm. The reconstructed image [Fig. 5.8(e)] was computed by the back-projection 

method. We adjusted the image contrast and set a threshold level to depress the 

background. The tumor region clearly shows up (marked by a circle), the location of 

which agrees with the original sample’s. Of course, the normal breast tissues also have 

certain RF absorption. In principle, based on the pathological characteristics, the tumor 

region can be differentiated from the normal tissues.  

After these imaging experiments, the specimen was rendered to the Department 

of Pathology for histopathological diagnosis. This lesion was diagnosed as invasive 

lobular carcinoma with a size of ~1.5 cm.  

The rectangle in Fig. 5.8(d) marks the wave-guide aperture.  The wave-guide for 

this experiment was not large enough to cover the entire specimen.  Since then, we have 

upgraded our system with a larger wave-guide to overcome this problem.  
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FIG. 5.8. (a) Pre-operative mammogram showing suspicious density in the breast, which 

was taken with standard compression. (b) The mastectomy specimen placed in a 
plastic cylindrical container with a diameter of 10 cm (c) Radiograph of the 
mastectomy specimen in the container. (d) Sonogram of the specimen in the 
container.  (e) Photoacoustic image of the specimen in the container.  The rectangle 
marks the wave-guide aperture.  The tumor is marked by a circle in (a), (c) and (e) 
and by two white lines in (d). 
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E. Summary 

We have built a prototype of RF-induced photoacoustic or thermoacoustic 

imaging system. Then, we have conducted a series of experiments on physical phantom 

samples under circular measurement geometry. The reconstructed images calculated by 

the back-projection method agree with the original ones very well. Results indicate that 

this technique using reconstruction theory is a powerful imaging method that results in 

good contrast and good spatial resolution (0.5 mm).  

Finally, we have conducted a preliminary study of breast cancer detection. Four 

excised breast specimens have been tested. The tumor regions have been clearly located. 

This initial study shows that the RF-induced photoacoustic tomography has great 

potential in the application of breast cancer detection. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

PAT is based on the generation of acoustic waves by safe deposition of 

electromagnetic energy, such as light and radio-frequency wave, into biological tissues. 

Computer-based PAT is a novel imaging modality, which uses all the PA signals 

measured by unfocused small-aperture ultrasound detectors at various locations on a 

surface that encloses the sample under study. This technology combines the advantages 

of electromagnetic absorption contrast and ultrasonic resolution.  

We have developed time-domain reconstruction algorithms for PAT. For three 

common measurement geometries, including spherical, planar, and cylindrical surfaces, 

we have derived a universal exact time-domain back-projection reconstruction formula, 

which is computed with temporal back projections and coherent summations over 

spherical surfaces using a solid-angle factor weighting the contributions to the 

reconstructions from the detection elements at different locations. This back-projection 

formula can be straightforwardly extended to the limited-angle view case, in which the 

reconstruction may be incomplete and reconstruction artifacts may occur. The solid-

angle weighting factor, however, can compensate for the variations in the detection 

views. In addition, this back-projection formula can be extended to general geometry 

with good approximation in the detection of small (compared with the measurement 

geometry) but deeply buried objects.  
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We have investigated the spatial resolution of PAT. It is found that the point-

spread function as a function of bandwidth is space-invariant for any measurement 

geometry when the reconstruction is linear and exact. The obtainable spatial resolution is 

actually diffraction-limited by the photoacoustic waves. We also have demonstrated that 

the finite aperture of the detector extends the point-spread function for different 

geometries. The detector aperture blurs lateral resolution greatly at different levels for 

different geometries but the effect on axial resolution is slight. The results offer clear 

instruction for designing appropriate photoacoustic imaging systems with predefined 

spatial resolution. 

We have studied the optimal sampling strategy of PAT for three common 

measurement geometries. According to the sampling theorem, the discrete spatial 

sampling period must be slightly smaller than half of the diameter of the sensing 

aperture of the detector; otherwise, significant aliasing artifacts may be introduced in the 

measurement and reconstruction. However, it is not necessary to let the sampling period 

be much smaller, since smaller sampling periods increase tremendously the number of 

the detection positions but do not provide significant improvement in image quality. 

We have built a prototype of RF-induced PAT system. Phantom experiments 

have demonstrated PAT is a powerful imaging method that results in good contrast and 

good spatial resolution (~0.5 mm with 0.3 µs pulse duration). Actually, the spatial 

resolution is scalable with ultrasound frequency. We also have conducted a preliminary 

study of breast imaging. This initial study shows that the RF-induced photoacoustic 

tomography has great potential in the application of breast cancer detection. 
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