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Charge Hall effect driven by spin-dependent chemical potential gradients and Onsager relations
in mesoscopic systems
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We study theoretically the spin-Hall effect as well as its reciprocal phenomenon (a transverse charge current
driven by a spin-dependent chemical potential gradient) in electron and hole finite size mesoscopic systems.
The Landauer-Buttiker-Keldysh formalism is used to model samples with mobilities and Rashba coupling
strengths which are experimentally accessible and to demonstrate the appearance of measurable charge currents
induced by the spin-dependent chemical potential gradient in the reciprocal spin-Hall effect. We also demon-
strate that within the mesoscopic coherent transport regime the Onsager relations are fulfilled for the disorder
averaged conductances for electron and hole mesoscopic systems.
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INTRODUCTION

In the very active field of semiconductor based spintronics
the control of spin can be achieved by the manipulation of
the strength of spin-orbit (SO) interactions in paramagnetic
systems. Within this context, the newly proposed intrinsic
spin-Hall effect (SHE) in p-doped semiconductors by Mu-
rakami et al.' and in a two-dimensional electron system
(2DES) by Sinova et al.? offers new possibilities for spin
current manipulation and generation in high mobility para-
magnetic semiconductor systems. In contrast to the earlier
proposed extrinsic spin-Hall effect,>> which is associated
with scattering from impurities, the intrinsic spin-Hall arises
purely from host semiconductor band structure and repre-
sents a spin-current response generated perpendicular to the
driving electric field.

Recently, the spin Hall effect was experimentally ob-
served by Kato et al.® in n-doped GaAs using the Kerr effect
and by Wunderlich et al.” in the p-n junction light-emitting
diodes based on two-dimensional hole gas (2DHG)
(Al,Ga)As. Although the experiment by Wunderlich et al.
seems to be in the regime where the intrinsic effect in 2DHG
is dominant, the main theoretical focus has been concen-
trated so far on 2DEG with Rashba SO interactions, where
Rashba term is linear with k.>8-2! The influence of disorder
on infinite 2DEG is still unclear (for a recent review see Ref.
21). For &-function impurities the analytical calculations of
vertex corrections in the ladder approximation seem to can-
cel the intrinsic spin-Hall effect in a weak scattering
regime.lz’14 However, these calculations have been chal-
lenged recently.’® Further, the numerical calculations for
2DEG based on Kubo formula using continuum model in
momentum space'® and discrete model in the real space?
show finite spin-conductivity in a weak scattering regime
which goes to zero in the thermodynamic limit.>>?* In con-
trast, for the infinite 2DHG the vertex corrections vanish.2425
Further the numerical calculations for 2DHG based on Kubo
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formula using continuum model in momentum space show
the finite value of SHE in a weak scattering regime which
goes to constant in the thermodynamic limit.??

The calculations within the Landauer-Buttiker (LB) for-
malism on finite size systems'’~'%2¢ model a sample of
micro/nanosize attached to contacts. The calculations on
electron mesoscopic systems show that spin Hall conduc-
tance is a fraction of /87 in a weak scattering regime.!”"1
Moreover, a mesoscopic spin-Hall conductance is robust
against the disorder.!”~!° Very recently Wu and Zhou consid-
ered the Luttinger model,?” showing as expected that SHE
can be much larger in hole systems in comparison with the
electron ones. Although the experimental measurement by
Wunderlich et al.” concern 2DHG systems with broken in-
version symmetry, the pure cubic Rashba term was not con-
sidered in detail within the LB formalism so far.

The observation of spin-Hall effect through transport
measurements is one of the urgent experimental challenges
facing this spin-transport physics. Recently, an H-probe
structure has been proposed to measure the effect where the
spin-Hall effect could be measured indirectly by detecting
charge voltages induced by the reciprocal spin-Hall effect
(RSHE).!” This RSHE, where transverse charge current is
driven by spin dependent chemical potential, was proposed
in a context of extrinsic spin-Hall effect by Hirsch* and for-
mulated in a semiclassical approach by Zhang and Niu.?
Also, the Onsager relation between the spin-Hall conductiv-
ity and reciprocal charge-Hall conductivity was established
within a wave packet model through a redefinition of the
spin-current including spin-torque terms in the bulk.?® We
show here that within the mesoscopic regime, and more spe-
cifically within the Landauer-Buttiker-Keldysh formalism,
the Onsager relations are satisfied within the models studied
for the disorder averaged conductances. Because the conduc-
tances are formulated with respect to the leads which have no
spin-orbit coupling, it is not necessary nor consequential to
introduce the spin current redefinition in our problem.?
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In this paper we compare the magnitude of the SHE as
well as the RSHE in finite electron and hole mesoscopic
systems within the LB formalism. We show that the conduc-
tances associated with both effects are significantly larger in
the hole systems. Furthermore, we analyze the possible ex-
perimental setup to measure the RSHE. We show that the
charge current driven by a spin-dependent chemical potential
gradient is on the order of hundred nano-ampers for typical
voltages in hole systems and should be experimentally mea-
surable.

MODEL HAMILTONIAN FOR HOLE SYSTEM AND LB
TREATMENT OF THE SPIN-HALL EFFECT AND
ITS RECIPROCAL CORRESPONDENT

The observation of the spin-Hall effect and its reciprocal
phenomenon in transport is the next experimental challenge
in the subfield of spintronics using spin-orbit interactions to
manipulate the spin.

The continuum effective mass model for 2DHG in a nar-

row inversion asymmetrical well is given by:2® H=p?/2m"
+i(N/203)(p G, —pl6_)+ Hy;,, where H, describes disorder.
We use the tight-binding approximation® to model the dis-
ordered conductor within the LB formalism. Within this ap-
proximation the continuum effective mass envelope function
Hamiltonian becomes:
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where t=%%/2m"af and t5o_i3=—\/2a}, ay is the mesh lattice
spacing, and &==*ayX,+ayy. The first term represents a
quenched disorder potential and disorder is introduced by
randomly selecting the on-site energy €; in the range
[-W/2,W/2]. The continuum effective mass model for
2DES and its tight-binding correspondent can be found
elsewhere.!®19

Within the leads the SO coupling is zero and therefore
each lead should be considered as having two independent
spin-channels. Moreover, in leads without the SO coupling,
the spin current is measured in a medium where spin is con-
served removing the ambiguity of spin-current definition.
For SHE, leads constitute reservoirs of electrons at chemical
potential wq, ..., uy, where N is the number of leads that we
consider to be four [see Fig. 1(b)]. For RSHE, the chemical
potential is spin dependent in leads 1 and 2 allowing the

PHYSICAL REVIEW B 72, 155305 (2005)

A
H= =0

= it=0

FIG. 1. (Color online) The schematic picture of setup to mea-
sure (a) charge Hall effect driven by spin dependent chemical po-
tential and (b) spin-Hall effect.

generation of spin-force in the x direction [see Fig. 1(a)]. In
the low temperature limit k37 << Er and for low bias-voltage,
the particle current going through a particular channel is
given  within the LB  formalism by* [,

—(e/h)Eq(, poq.o'lVy=V,], where p labels the lead and
T, 4.0 1s the transmission coefficient at the Fermi energy
Er between the (p,o) channel and the (g,0’) channel. This

transmission  coefficient is  obtained by T, ..,
=TiI, ,G*T', ,,G*] where T',, is given by T, ,(i.j)
—1[2 (l, J)- E ,(i,/)]. The retarded and advanced Green'’s

functlon of the sample G®'A with the leads taken into account
through the sclf energy ER/A(l j) has a form GRA(i,j)
=[ES; ;—H,; E,’flﬁ(l, NI T . Here the position representa-
tion of the matrlces L, Gt H, j» and 3R are in the subspace
of the sample. Within the above formalism the spin current
through each channel is given by L,
=(e/4mZ 0T, 5g.0'[ V) o). The spin force driven
charge-Hall conductance, gg, is defined as the ratio of
charge current in the y direction induced by the spin-
dependent chemical potential along the x axis to this spin-
dependent chemical potential difference [see Fig. 1(a)].

. (B +15)
Ges= ﬁ (2)

where VZT— '/e. The spin-Hall conductance, GSC, is defined
as the ratio of spin-current in the x direction induced by
charge voltage difference in y direction to this voltage differ-
ence

goo Bu=h) &)
Vi=V; '~

where V,;=pu;/e, and the labels are indicated in Fig. 1(b). G
and G are defined by analogy. We set the absolute value of
voltage for spin and spin force driven charge-Hall effects as
V=pu/e=2.5 mV.

RESULTS AND DISCUSSION

In order to address the key issue of experimental obser-
vation of spin force driven charge-Hall effect as well as to
establish the Onsager relation between spin-Hall effect and it
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reciprocal correspondent we choose realistic parameters for
our calculations which model currently attainable systems.
We consider an effective mass of m =0.05m, for electron
systems and m"=0.5m, for hole ones. The disorder strength
W=0.09 meV  corresponds to the mobility of
250 000 cm?/ Vs, which is typical for a semiconductor like
(In,Ga)As. We take the Rashba parameter A in the range
from O to 100 meV nm, easily obtained in experiments,3!-?
and we choose the electron concentration n,, in a range
between 3 X 10'"" ecm™2 and 1.3 10'?> cm™2. The Fermi en-
ergy is obtained from the chosen carrier concentration as-
suming an infinite two-dimensional (2D) gas. Parameters
considered here correspond to t,=0-02t, Ep/W
~500-800 in other theoretical studies!”'® with small varia-
tion due to mesh scaling as physical system size and effec-
tive masses for hole and electron systems are kept constant.
The Fermi energy is close to the bottom of the band and Ep
changes from —3.9¢ to —3.5¢ in units of Refs. 17 and 18
dependent on electron concentration.

In the detection of spin force driven charge-Hall effect the
first task is to generate a spin force which can be realized by
spin dependent chemical potential in the leads. The ferro-
magnetic leads are not the good candidates because although
magnetization exists in ferromagnetic leads, the chemical po-
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FIG. 3. (Color online) The spin-force driven charge current as a
function of electron concentration and Rashba coupling, A, for me-
soscopic  square sample 100nm by 100nm and w
=250 000 cm?/Vs.
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FIG. 2. (Color online) Pro-
posal of experimental setup to
measure the reciprocal spin-Hall
effect. (a) Mask (light-gray) cov-
ers a sample and leads except for
two holes in the longitudinal leads
where circularly polarized light
shines. (b) Full schematics of the
experimental setup.

Light source
—
Beam splitter
N

A Polarizers
e

tential is the same for both spin directions. Here, we propose
the optical method of spin-dependent chemical potential gen-
eration by shining the beam of circularly polarized light on
the leads (see Fig. 2). The right-circularly polarized beam
shines on the right lead [lead 2 in Fig. 1(a)] and the left
circularly polarized beam on the left one [lead 1 in Fig. 1(a)].
The sample as well as the transverse leads should be covered
by mask, preventing the light absorption anywhere except
the small part of longitudinal leads as shown in Fig. 2(a).
Choosing semiconductor leads for this setup, e.g., GaAs, will
cause the opposite spin polarizations in left and right leads
through optical selection rules. Using the beam splitter
should produce the same light intensity in each leads provid-
ing simultaneously the spin-dependent chemical potential be-
tween leads 1 and 2 and the total charge current across a
sample equal zero. Having produced the spin-dependent
chemical potential in the leads, we perform calculations us-
ing nonequilibrium Green function method presented in pre-
vious section. Figures 3 and 4 present the charge current /3
=13, +15| [see sample configuration Fig. 1(a)] as a function of
SO coupling N and electron or hole concentrations, respec-
tively. The charge current for electron systems show oscilla-
tions with respect to the electron density and SO coupling.
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FIG. 4. (Color online) The spin-force driven charge current as a

function of hole concentration and Rashba coupling, A, for mesos-

copic square sample 100 nm by 100 nm and =250 000 cm?/Vs.
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FIG. 5. The spin-Hall conductance as a function of SO coupling
for 100 nm by 100 nm square system for different concentration of
holes (close symbols) and electrons (open symbols).

The period of current oscillations depends on the system
size, however, its maximal value seems to be around 40 nA
for systems sizes achievable in our calculations. For hole
mesoscopic systems (see Fig. 4), the charge current also os-
cillates with N and for system sizes on the order of
100 nanometeres is on the order of hundred nanoampers in a
wide range of densities starting from 6 X 10'" cm™. Hence
the charge current is much larger in hole systems and shall be
detectable in experiments.

Figure 5 presents the spin-Hall conductance G- as a
function of A for electron and hole systems. One can see that
spin-Hall conductances (Fig. 5) and spin-force driven charge
conductances (see Figs. 3 and 4) behave similarly. Spin-Hall
conductances for electron systems oscillate with SO coupling
and have values of the fraction of e/87 in agreement with
results presented in Refs. 17-19. Similarly behave the spin-
Hall conductances for hole systems. However, Gf{é are sev-
eral times larger for hole systems in comparison with elec-
tron ones, which is associated with much larger effective
mass in a case of hole systems. Let us emphasize that for
electron and hole systems with the same effective masses the
spin-Hall effect can be larger for electron systems. Moreover,
in mesoscopic systems where Fermi energy as well as mul-
tichannel effects are important the straightforward renormal-
ization of effective mass of electron and hole systems to
compare the spin-Hall conductance suggested by Ref. 27
does not have to be correct. Our calculations in mesoscopic
systems are in agreement with the linear response Kubo cal-
culation for 2DEG and 2DHG which show that spin-
conductance is much more larger for hole systems.>?° The
sign of spin-Hall and charge Hall conductances in mesos-
copic systems depends on the Fermi energy.

The Onsager relations express the symmetry between the
transport coefficients describing reciprocal processes in sys-
tems with a linear dependence of response to the driving
forces. Within the models studied, considering disorder av-
eraged conductances, the relations can be derived by utiliz-
ing the time reversal symmetry and the inversion symmetry
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FIG. 6. (Color online) Onsager relation between the spin-Hall
conductance G- (open symbols) and spin-force driven charge-Hall
conductance Gy (close symbols) for different L by L hole systems.

on the x-y plane which relate T,..,=Tzna, and Ty om
=T gn:an» TESpPeEcCtively, where o, and n,m are the spin and
lead labels and a bar represents the opposite direction. Within
the SHE V{=V7=0 and V5=-V;=V,/2 following the labels
of Fig. 1. Within the RSHE Vi=V{=0 and V{=VJ
=5(0)V,y/2 where s(1)=+1 and s(])=—1. Within the LB for-
malism and these boundary conditions we obtain for the
spin-current associated with the SHE:

Iéipin = 11 - 1% = VOE s(o-)(Tol;oﬁ - To—l;a4)/2v

o,

and for the charge current associated with the RSHE:

5=0+1=VX s()(Tosa1 = To3a0)/2-

o,

The above symmetries imply that 7gy.4=T50,03=T53.3-
This then yields I}""=-I5 which implies the Onsager relation

Gse=-Gs. (4)

This is verified numerically in Fig. 6 which presents the dis-
order averaged spin-Hall conductance and charge Hall con-
ductance for hole systems of different sizes. For a specific
disorder realization this relation does not hold and is only
approximate depending on the strength of the fluctuations
induced by disorder. This relation between Gg- and Gy is
consistent with predictions of semiclassical wave-packet
theory, where standard definition of spin-current was modi-
fied by a spin-torque term.”®33 However, as seen from the
above derivation and noted in the introduction, our finding of
an Onsager relations in mesoscopic coherent systems do not
involve such spin-torque term since all spin-currents are de-
fined in the non-spin-orbit coupled leads.

SUMMARY

We have analyzed the spin Hall effect as well as its recip-
rocal effect in mesoscopic hole and electron systems. We
have shown that the spin-Hall as well as the spin-dependent
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chemical potential gradient driven charge-Hall conductances
are several times larger for hole systems. Further we have
proposed the experimental setup to detect the transverse
charge current driven by the spin-dependent chemical poten-
tial gradient through transport measurements. We have
shown that this charge current is of the order of hundred
nano-amperes in hole systems and should be detectable.
Also, we have established a direct relation between the dis-
order average spin-Hall and spin-dependent chemical
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potential driven charge-Hall conductances in the mesoscopic
systems.
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