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We describe the charge transport in ferromagnets with spin-orbit coupled Bloch bands by combining the
wave-packet evolution equations with the classical Bolzmann equation. This approach can be justified in the
limit of smooth disorder potential. Besides the skew scattering contribution, we demonstrate how other effects
of disorder appear which are closely linked to the Berry curvature of the Bloch states associated with the wave
packet. We show that, although being of the same order of magnitude as the clean limit contribution, generally
disorder corrections depend differently on various parameters and can lead to the sign reversal of the Hall
current as the function of the chemical potential in systems with a nonconstant Berry curvature in momentum
space. Earlier conclusions on the effects of disorder on the anomalous Hall effect depended stricly on the lack
of momentum dependence of the Berry curvature in the models studied and generalizations of their findings to
other systems with more complicated band structures were unjustified.
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I. INTRODUCTION

The theory of the anomalous Hall effect �AHE� has a long
history. The appearance of the Hall current requires breaking
of some basic symmetries. It was proposed by Karplus and
Luttinger in the early 1950s �Ref. 1� that the anomalous Hall
effect in ferromagnets results from the interplay of the ex-
change field, which breaks the time-reversal symmetry, and
the spin-orbit coupling, that violates the chiral symmetry.
Interestingly, at the same time a similar effect was predicted
and explained in geometrical optics,2 however, its relation to
the AHE was revealed only recently3,4 after the modern in-
terpretation of both effects in terms of the Berry phase,
which affects the motion of wave packets, had been
constructed.5–7 Luttinger8 built a detailed theory of the AHE
based on the high-order quantum Boltzmann equation
calculations.9 In that work Luttinger identified various con-
tributions, known today as Berry phase contribution, the
skew scattering, the side jump on the impurity potential, and
a contribution that involves interference from many scatter-
ers.

Since then, a number of theoretical works appeared that
extended the theory. However, until recent time most of them
had been devoted to what is today called the extrinsic AHE.
In the extrinsic AHE a simple Bloch band structure of the
system is assumed and the spin-orbit interaction is localized
on the impurity potential via terms of the form �SO�̂zẑk
��Vdis�x�, etc. It was recognized by Smit, Berger, and
others10–16 that in this case the main contributions to the Hall
current will be those from impurities via the side jump and
the skew scattering mechanisms. In contrast to the extrinsic
AHE, the intrinsic one assumes that the spin-orbit coupling
is already present in the band structure of the system and
generally cannot be considered as weak in comparison even
with the Fermi energy. Recently the interest toward the in-
trinsic AHE has grown up considerably due to different ap-
plications in the diluted magnetic semiconductors �DMS�
and due to the interesting modern interpretation of the Hall

current in terms of the Berry phase.5,17 The Berry phase con-
tribution to the Hall current was shown to be in good quan-
titative agreement with experiment in many different materi-
als with strong spin-orbit couping in their band structure,
giving weight to the theory involving this contribution
alone.17–19

The Luttinger’s theory of the intrinsic AHE, however, pre-
dicts that other contributions should arise due to the scatter-
ing from a disordered potential even if the disorder potential
itself is spin independent. The asymmetry in scatterings be-
comes transparent in the basis related to the Bloch states. As
an example, Luttinger considered a rather simplified model
which demonstrated that such corrections must reverse the
sign of the Hall current in the dc limit, in comparison to the
clean limit, though in the high-frequency ac case the clean
limit contribution should dominate. The same results have
been shown by several other works utilizing different ap-
proaches and focusing on this simplified model.20–22

The results from these simplified models seem to be in a
contradiction with recent work which did not find such a
change of sign in numerical simulations or in a comparison
with the experimental results. We show here that a possible
resolution of this discrepancy is the simplicity of the early
models from which many generalizations were stated with-
out justification and whose results depended drastically on
the simple momentum dependence of the Berry curvature of
the Bloch states.

The work by Luttinger and works of other authors, related
to the disorder contribution to the AHE, are rather involved.
Generally various contributions separately turned out to be
not gauge invariant and only the final result was physically
meaningful. Because of these shortcomings, we reformulate
the basic arguments of the previous authors in terms of
wave-packet dyanamic equations which are fully gauge in-
variant and consistent with prior results.6 Being gauge invari-
ant, the wave-packet equations allow one to identify the
physical meaning of various contributions. We should note,
however, that the wave-packet equations are valid only in the
limit of smooth potentials. This restricts the applicability of
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our conclusions and generalizations of our results should not
be made to regimes where the semiclassical treatment is not
justified without careful checks; therefore we did not make
the goal to construct the final theory of the disorder in the
AHE but rather to construct a simple formalism that demon-
strates basic features of the problem and highlights a basic
key ingredient missed by prior theories studying the effects
of disorder, namely the importance of the momentum depen-
dence of the Berry curvature.

We have found that the change of the sign of the Hall
current due to the disorder, found in the early works, is not
universal and arises in the models where the bands have
constant Berry curvature in momentum space. We focus our
attention to the case of Rashba coupled two-dimensional
electron gas �R2DEG� with smooth disorder, where the time-
reversal symmetry is broken by an out-of-plane Zeeman
field. In the diluted magnetic semiconductors the Berry cur-
vature is strongly momentum dependent. This separates para-
metrically the clean contribution from the others and makes
the sign reversal not universal. Rather generally we find the
same sign of the total Hall current for realistic bands except
in extreme situations where one of the bands becomes de-
pleted.

We organize the rest of the paper as follows. In Sec. II we
review the wave-packet dynamics theory of Sundaram and
Niu.6 In Sec. III we analyze the model for constant Berry
curvature obtaining in a physically clear way the reversal of
sign in the presence of smooth disorder. In Sec. IV we apply
the theory to the case of the Rashba model and show the
nontrivial dependence of the contributions from disorder
scattering and the clean Berry phase contribution as a func-
tion of the Fermi energy, and in Sec. V we present our con-
clusions.

II. WAVE-PACKET EQUATIONS

The motion of wave packets formed by Bloch states is
governed by the following equations:6

d

dt
k = eE − � V�r� , �1�

d

dt
r =

���k�
�k

−
dk

dt
� F , �2�

where ��k� is the energy dispersion in the band, E is the
external electric field acting on a wave packet having the
electric charge e ,V�r� is the local potential in the sample, for
example, the potential of impurities, and F is the Berry cur-
vature of the Bloch band. For the two-dimensional motion
only the out-of-plane component of F is nonzero,

Fz = 2Im� �us

�ky
�� �us

�kx
� , �3�

where �us� is the Bloch state in the absence of the electric
field and impurities and s is the index of the band.

The second term in Eq. �2� is responsible for the so-called
anomalous velocity. For the reader not familiar with the no-
tion of anomalous velocity we provide in the Appendix a

simple example from classical physics that gives an intuitive
explanation of the physical meaning of the anomalous veloc-
ity in Rashba coupled 2DEG. For the rigorous theory we
refer to the original papers.6

The anomalous velocity is orthogonal to the direction of
the electric field1,23 �which we chose to be along the x axis�,

vy
�a� = Fz

dkx

dt
. �4�

The semiclassical equations �1� and �2� map the quantum-
mechanical problem to a classical one where particles have
the electric charge e and move according to equations of the
wave-packet dynamics. We assume that at equilibrium the
distribution of such classical particles is the same as the
Dirac distribution of electrons in the sample. This mapping
to a classical system considerably simplifies the treatment of
the problem both analytically and numerically. Analytically,
one can apply the classical Boltzmann equation approach to
calculate the transport coefficients, numerically the
molecular-dynamics simulation of the motion of classical
particles is simple and may not be restricted to a small sys-
tem size as, for example, in the case of a numerical diago-
nalization of a quantum-mechanical Hamiltonian.

Unfortunately Eqs. �1� and �2� are valid in the adiabatic
limit only. They can be applied to very smooth impurity
potentials so that transitions between bands can be disre-
garded. They cannot be applied to the case of scatterings on
a short-range delta-function-like potential. Only scatterings
on impurities, whose potential varies appreciably only on
distances much larger than the size of the wave packet, can
be calculated this way.6 In spite of this restriction of its ap-
plicability the limit of a smooth potential is a very interesting
one to investigate the influence of disorder on the anomalous
Hall effect. In realistic applications a system with long-range
impurities is realized, for example, in the high mobility 2D
electron gas24 and the out-of-plane Zeeman field can be in-
duced there by polarizing nuclear spins or by introducing
additional magnetic impurities.

Recently another related effect, namely the intrinsic spin
Hall effect, was introduced.25 A number of theoretical papers
have explored the importance of the disorder. The debates on
this topic are ongoing �see, e.g., Refs. 26–28�. Understanding
the AHE may shed light on the disorder role in the spin Hall
effect.

III. CONSTANT BERRY CURVATURE

A. Clean limit

In many recent applications the Berry curvature F
strongly depends on the momentum of the wave packet
k.5,19,30 However, it is instructive to consider first the one
Bloch band 2D system with constant Berry curvature Fz. The
case with constant Berry curvature has been considered in
the earlier theories of the AHE, whose results have been
extrapolated directly to systems with nontrivial Berry curva-
ture momentum dependence. We show in the following sec-
tion that such extrapolation is unjustified in the cases where
the Berry curvature has a strong dependence on momentum.
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This, as we will show, leads to interesting predictions for
R2DEG and probably DMS.

For a constant Fz the anomalous velocity �4� leads to the
following contribution to the Hall current from the unper-
turbed part of the distribution function in a single band at
zero temperature:

Jyx
�clean� = e� d2kf0�k�vy

�a� = e�
0

kF

kdk�
0

2� d�

�2��2eExFz

=
e2ExFzkF

2

4�
, �5�

where f0�k� is the equilibrium distribution function and kF is
the Fermi momentum. The upper index �clean� means that
the quantity is calculated in the absence of disorder and the
distribution function of the wave packets coincides with the
one in equilibrium at Ex=0.

The case of constant Fz is realized in the conducting
bands whose states are weakly hybridized with the states in
the valent hole bands21 where the spin-orbit coupling is al-
lowed. If the kinetic energies of electrons in the conducting
band are much smaller than the gap between conducting and
valent zones, the Berry curvature due to such an induced
spin-orbit coupling can be considered as a constant for all
conducting electrons. In modern applications it can be real-
ized in some limiting situations, like in the case of R2DEG at
a strong Zeeman field �see the following sections�. The main
conclusion in the early literature was that due to the spin-
orbit coupling, in the stationary state the distribution function
acquires an additional asymmetric contribution plus the so-
called side jump, namely the shift of the electrons during the
impurity scattering changes the average drift velocities so
that the total Hall current reverses the sign in comparison
with Eq. �5� and has the same absolute value. In this section
we show that for smooth impurity potentials the wave-packet
approach easily reproduces the sign reversal of the Hall cur-
rent when Fz=const. In comparison to previous works, how-
ever, our approach keeps the derivation gauge invariant and
hence is physically clear.

B. Effects of disorder

According to Eq. �5� if the distribution function is the
same as in the equilibrium at zero external field a Hall cur-
rent appears in the external field due to the anomalous ve-
locity. However, in the steady state the distribution function
is no longer f0�k�. In the electric field and on time scales
much larger than the scattering time particles diffuse with a
constant velocity rather than accelerate as in the absolutely
clean case. The anomalous velocity and hence the clean con-
tribution to the Hall current are proportional to the accelera-

tion k̇x. Since in the steady state the average acceleration is
zero up to the first order in external electric field Ex one can
expect that disorder should strongly influence the Hall cur-
rent.

A natural way to study the effect of disorder on the trans-
port in our case is the classical Boltzmann equation. There is,
however, a complication when both nonzero Berry curvature
and finite sizes of impurities must be considered. At a scat-

tering on an impurity potential not only the momentum but
also the coordinate of a particle changes. Usually such a
coordinate shift at the scattering is discarded since after av-
eraging over many scatterings such random shifts cancel
each other and only the changes of the momentum matter.
However, when Berry curvature is nonzero the additional
�anomalous� shift does not disappear after the averaging. To
see this, suppose that the term with the Berry curvature Fz in
Eq. �2� is small in comparison with the first one and calculate
the corresponding correction to the shift of the particle dur-
ing the scattering on impurity. Integrating Eq. �2� over the
time interval at which a particle feels the impurity potential
during a single scattering and treating the second term in Eq.
�2� as a small perturbation one can find that, after the scat-
tering, a particle makes an additional shift,

�r�k,k�� = z � �k� − k�Fz + �
t1

t2 ��

�k
dt , �6�

where k� and k are momentums, respectively, after and be-
fore the scattering, t1 and t2 are times of entering and leaving
the impurity in a semiclassical picture. The second term on
the right-hand side of Eq. �6� is just the shift due to the
normal velocity. To first order in Fz and �V it is not affected
by the Berry phase and hence is averaged to zero after many
scatterings; therefore we will disregard it in our future dis-
cussion.

The particle’s displacement due to the first term in Eq. �6�
is due to the anomalous velocity. This shift does not depend
explicitly on the details of the impurity potential and does
not have the chiral symmetry. There are two main rather
distinct effects due to the appearance of this anomalous shift.
The first effect, the so-called side jump, is that the y compo-
nent of this shift does not cancel after the averaging over
many scatterings and thus contributes to the drift velocity
perpendicular to the electric field, i.e., to the Hall current. We
will focus on this effect in the following subsection. The
second effect is that when a scattering takes place in the
presence of an external electric field there is a change in the
potential energy upon a scattering given by

�U = − eEx�x , �7�

where �x is the shift along the external electric field.11–13

Both of these effects, as shown below and in the next sub-
section, give the same contribution as Eq. �5� but with an
opposite sign in the particular case of a momentum-
independent Berry curvature. Because both contributions are
linear in Ex we are able to consider them separetly when
considering the linear response of the system.

Let us focus first on the second effect. Here only the
anomalous part of this shift is important for Hall current
calculations,

�x = − Fz�k�y − ky� , �8�

and the effect of the normal part of the shift only renormal-
izes the diagonal current response to Ex. Since the total en-
ergy remains the same after an elastic scattering, the kinetic
energy must change by the same amount,

���k,k�� = ��k�� − ��k� = eEx�x . �9�
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This effect leads to an instability of the initial equilibrium
distribution function f0�k�= f0(��k�) due to scatterings. The
Boltzmann equation is given by

� f

�t
= − 	

k�

��k,k��„f���k�� − f„��k���… , �10�

where ��k ,k�� is the scattering rate. Kinetic energies before
and after a scattering do not coincide but the difference be-
tween them is small. Since we are seeking a contribution
linear in Ex we can substitute f by f0 which depends only on
the kinetic energy ��k� so we can expand

f0„��k�… − f0„��k��… =
− df0

d�

��k�� − ��k��

= −
df0

d�
eExFz�ky − k�y� . �11�

This yields

� f

�t
= − 	

k�

��k,k��
− df0

d�
eExFz�ky − k�y� � 0. �12�

The distribution function will relax until a contribution to it
compensates this relaxation in the stationary limit.

To find the new equilibrium distribution one should sub-
stitute f�k�= f0(��k�)+gE�k� into the right-hand side of Eq.
�10�. To make �f /�t=0 in Eq. �12� the correction gE�k� must
be the following:

gE�k� = −
− df0

d�
eExkyFz. �13�

This contribution is not symmetric in the y direction. This
means that already the normal velocity can contribute to the
Hall current in the stationary state:

Jyx
normal = e� d2k

�2��2gE�k��vy
�normal�� = −

e2ExFz

�4��
kF

2 �14�

which has the opposite sign and is exactly the same in the
absolute magnitude as the anomalous velocity contribution in
the clean limit given by Eq. �5�.

C. Side jump

The anomalous change of energy after the scattering is not
the only important effect of the anomalous shift �7�. The
anomalous shift during the scatterings has generally a com-
ponent perpendicular to the direction of the electric field,

�y�k,k�� = Fz�k�x − kx� . �15�

It does not contribute to the change of energy during the
scattering but it shifts a particle along the y axes. If such
shifts do not compensate each other after many scatterings,
they should contribute to the total Hall current. This phenom-
enon is known in the theory of the extrinsic Hall effect as the
side jump. If scatterings happen with the rate ��k ,k�� in
average the particle moving with the momentum k also ac-
quires the anomalous drift velocity perpendicular to the elec-
tric field,

�vy
�sj��k��imp = 	

k�

��k,k���y�k,k�� = − Fzkx/	 , �16�

where

1/	 = 	
k�

��k,k��
1 − cos�k,k��� �17�

and “�sj�” marks the side jump contribution to the physical
quantity.

In the equilibrium the side jump does not lead to the Hall
current because the anomalous velocity �16� changes the sign
under the transformation kx→−kx. and the distribution func-
tion in the equilibrium is invariant under this transformation.
However, when the electric field is applied the nonequilib-
rium correction to the distribution function appears which
has no such symmetry under the momentum reflection.

This correction to the distribution function can be derived
by means of the standard approach to the Boltzmann equa-
tion. Up to the first order in the electric field the standard
Boltzmann equation for one band, ignoring the asymmetric
contribution considered in the previous subsection, is

− eExvx
�normal��−

� f0

��
� = − 	

k�

��k,k��
f�k� − f�k���

�18�

where f0�k� is the equilibrium distribution function. Equa-
tion �18� has a solution f�k�= f0�k�+g�k� where to the first
order in the electric field

g�k� = eEx	�−
� f0

��
�vx

�normal�, �19�

vx
�normal� is the normal velocity along the electric field, which

in our case is

vx
�normal� =

���k�
�kx

= bkx, �20�

where we assumed that the conducting band has a trivial
dispersion ��k�=bk2 /2 where b=1/me. The side-jump con-
tribution of impurities to the anomalous velocity leads to the
Hall current

Jyx
�sj� = e� �vy

�sj��k��impg�k�
kdkd�

�2��2

= −
e2ExFz

�2��2 �
0

2�

d� cos2��� � d�kk
2
��F − �k�

= −
e2ExFz

�4��
kF

2 . �21�

As in the previous impurity contribution, the Hall current
due to the side-jump has the opposite sign and the same
magnitude as the one in the clean limit. The physical mean-
ings of both impurity contributions, however, are very differ-
ent. The side jump current appears because the anomalous
velocity is proportional to the acceleration of the particle but
in the stationary state the average acceleration should be zero
�up to the terms of the first order in the electric field�,
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namely, while the external electric field accelerates the wave
packet during its motion between impurities, the impurity
potential generally decelerates it. During such a deceleration
the wave packet has the anomalous velocity with the oppo-
site sign and hence the side-jump contribution should com-
pensate or at least decrease the pure limit result. The de-
scribed picture is of course oversimplified, which will be
clear from the discussion of a momentum dependent Fz. In
reality, the external electric field equally accelerates all elec-
trons in the Fermi sea but effective deceleration due to im-
purity scatterings is, on average, seen only by the electrons
near the Fermi level because there the distribution function
acquires a correction required to compensate the acceleration
by the external field. Hence the side-jump contribution is the
property of the Fermi surface while the clean limit Berry
phase contribution appears from all electrons even deep in
the Fermi sea.

D. Total current and numerical check

The total Hall current is the sum of the clean limit contri-
bution, of the side-jump and of the normal velocity contribu-
tions. For the constant Fz we find

Jyx
�total� = Jyx

�clean� + Jyx
�sj� + Jyx

�normal� = −
e2ExFz

�4��
kF

2 . �22�

As it was predicted in the former literature which focused on
models with constant Fz, the total current has the same mag-
nitude but with the opposite sign as the one in the absolutely
clean system. Our derivation, however, is considerably sim-
pler and is straightforward to generalize to a case with a
more complicated band structure such as Rashba coupled
2DEG.

To confirm the analytical result �22� numerically we simu-
late the motion of particles according to equations of motions
�1� and �2�. Initially all particles were prepared uniformly
distributed over the momentum space having the absolute
value of the momentum less than a specified Fermi momen-
tum. The action of an impurity was simulated by the poten-
tial of a wall of a finite thickness with a very fast linearly
growing potential inside the wall. The wall is sufficiently
long to disregard the effects on its edges. This type of impu-
rity does not allow the skew scattering mechanism to appear
because for every scattering on the wall that changes mo-
mentum from k to k� there is a process when a particle hits
the same wall from another side and scatters from k� into k.
Thus both processes have equal probability and ��k ,k��
=��k� ,k�. Figure 1 demonstrates a scattering on such an
impurity. We would like to point to the analogy of the scat-
tering in Fig. 1 with Goos-Hänchen’s and with Fedorov’s
shifts in geometrical optics.29 One can consider the effect of
a wall on the wave packet as the one due to an electric field
E� acting on it only inside the wall in the direction perpen-
dicular to the wall. Although the potential in the wall can be
strong in comparison with the external electric field, we sup-
pose that the motion inside the wall is still governed by the
equations of the wave-packet dynamics. Such a scattering
problem can be solved exactly. This solution shows that for
the given type of scatterings the theory of the anomalous

shift is valid even if we do not assume that the anomalous
velocity term in wave-packet equations is small. This is use-
ful because the bigger anomalous velocity is needed to ac-
celerate the numerical calculations.

Let components of the momentum of the particle incident
on the wall be k and k� parallel and perpendicular to the
wall, respectively. In the presence of an additional external
electric field the total force has generally also a nonzero
component parallel to the wall eE where E is the projection
of the external electric field on the direction along the wall.
Expressions for the final momentum and coordinates right
after the scattering are strongly simplified in the limit of
large E�, so that all terms O�1/E�� can be dropped. In this
limit the scattering time is vanishing and in Eq. �2� one can
disregard the first term in comparison with the second one

since k̇��E� is large. Dropping the term with �� /�k� Eq.
�2� can be readily integrated over the time of the scattering
leading to the relations �r =eFz�k�−k��� and k� =k. Solv-
ing them together with the energy conservation equation
��k�+eEr =��k�� we arrive at following expressions for the
momentum of the outgoing particle:

k� = k

k�� = − k� − EFz. �23�

In addition, the scattered particle appears in a point of the
interface shifted in comparison to the incident point by the
amount

�r = 2k�Fz + EFz
2. �24�

The shift r is exactly the anomalous shift in the impurity
potential. Note also that, as it follows from Eq. �23�, when a
scattering happens in the additional external electric field
with nonzero projection to the direction of this shift E, the
absolute magnitude of the momentum changes, which leads
to the instability of the equilibrium distribution function, dis-
cussed in previous sections. The scattering time in this limit
is small enough to be disregarded so numerically such a scat-
tering can be easily simulated by choosing the coordinate
system related to the wall orientation and updating the mo-
mentums and coordinates according to �k ,k� ,r ,r��
→ �k��� ,k�� ,r +�r ,r��, r� is the same for the incident and

FIG. 1. Scattering of a particle on impurity. The impurity is
assumed to have the shape of a long stripe with linearly growing
potential inside.
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the outgoing particle. In between scatterings equations of
free motion in the external electric field are also trivially
solvable. In our simulations we assumed the “noncrossing
approximation,” namely we suppose that every scattering
happens on a different impurity. The algorithm consists of
two parts. First we generate randomly the distance L to the
next impurity. We suppose that between impurities particles
move only under the action of the electric field. The integra-
tion of wave-packet equations leads to the following trajec-
tories:

k�x = kx + Ext ,

k�y = ky ,

x� = x + kxt +
Ext

2

2
,

y� = y + �ky + FzEx�t . �25�

The time t of the motion to the next impurity was estimated
from the equation 
�x�−x�2+ �y�−y�2�1/2=L. Solving this re-
lation with the solution �25� we find the momentum and
coordinates of the particle before the new scattering. In the
second step we randomly generate the orientation angle of
the impurity, switch into the related coordinate system, and
update particle’s coordinates and the momentum according
to Eqs. �23� and �24�. Then we return to the initial coordinate
system and repeat the circle. We repeat this circle sufficiently
many times to allow the distribution to relax to the stationary
one �usually a few scatterings is enough�, however, the total
evolution time was small enough in order to avoid strong
heating of the system. In our simulations, every particle
makes about 102–103 scatterings during the whole time. To
prevent strong heating the electric field is chosen sufficiently
small Exl /EF�10−4 where l is the typical scattering length
and EF is the Fermi energy. The total current can be derived
as the sum of total displacements of all particles divided by
the evolution time.

In Fig. 2 we compare the analytical result �22� with our

numerical simulations for the fixed Fermi energy but differ-
ent strengths of the spin-orbit coupling, and hence Fz. Both
analytical and numerical results are in excellent agreement
with each other. This result survives at an arbitrary magni-
tude of the Berry curvature.

In Figs. 3 and 4 we visualized the stationary distribution
function of particles in the momentum space, calculated nu-
merically for the system placed in the uniform electric field.
Brighter areas represent higher densities. To increase the
contrast, we subtracted the initial equilibrium distribution
�i.e., without electric field� from the calculated one. In Fig. 3
the Berry curvature is set to zero. In this case the correction
to the equilibrium distribution is symmetric along the electric
field. Figure 4 shows that when the Berry curvature becomes
nonzero, the distribution function acquires the additional
asymmetric contribution, which obviously deposits to the
Hall current.

E. Analogy between extrinsic and intrinsic AHE

As we showed above, in the AHE there is a possibility of
disorder effects similar to those previously studied in the
extrinsic AHE studies focused on gradient terms of the dis-
order but arising instead from Berry curvature consider-
ations. In this subsection we discuss how this relation is en-
coded in the wave-packet equations �1� and �2�. We consider
here only the case of constant Berry curvature. The wave-
packet dynamic equations do not arise from a particular
Hamiltonian. Nevertheless, it is possible to make them arise
from a Hamiltonian by adding terms of higher order in po-
tential gradient. We remind the reader that Eqs. �1� and �2�
were derived in the approximation of a smooth potential so
that its higher gradients could be discarded. Therefore such a
procedure should not change the physics at least to the order
of the approximation of the whole theory. Consider the fol-
lowing system:

d

dt
k = eE − � V�r� − � 
k � � V�r��F �26�

FIG. 2. Hall conductivity vs strength of the Berry curvature in
the model with momentum independent Fz. Solid line is the theo-
retical prediction that includes impurity scatterings and dotted line
is the prediction of the clean limit contribution. Triangles show
results of the numerical simulations. Simulations were performed in
units e=�=m=1 and kF=1.

FIG. 3. Distribution of particles over the momentum space in
the stationary state with electric field applied along the y axis at
zero Berry curvature. Parameters are as follows: kF=1, Ey =0.003,
Ex=0, Fz=0. Average distance between impurities is l�0.5 in units
m=�=e=1.
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d

dt
r =

���k�
�k

− 
eE − � V�r�� � F . �27�

Except for one term of the second order in gradients of the
potential the system is equivalent to the wave-packet equa-
tions �1� and �2�. The new system �26� and �27� already
corresponds to the classical Hamiltonian evolution with the
following Hamiltonian:

H�k,r� = ��k� − F„k � 
eE − � V�r��… + V�r� − eEr .

�28�

This Hamiltonian has the same structure as in typical models
of the extrinsic AHE,11–13 and the Berry curvature now plays
the role of an effective spin-orbit coupling constant. As we
mentioned, the main contributions to the extrinsic Hall cur-
rent have been proved to be the side jump and the skew
scattering. In our previous calculations, including numerics,
we ignored the skew scattering mechanism, as it is rather
different parametrically, nevertheless the skew scattering can
be calculated by same wave-packet techniques because the
second term on the right-hand side of Eq. �28� is responsible
for both skew scattering and the side-jump contributions in
the extrinsic AHE. Note also that the skew scattering current
will depend on the Berry curvature and thus will also have a
geometric interpretation. The fact that the side jump is the
only other surviving contribution in the extrinsic AHE is in
agreement with our previous findings.

IV. RASHBA 2DEG WITH EXCHANGE COUPLING

Recently studied systems with AHE such as DMS and
Rashba 2DEG have Berry curvature that strongly depends on
momentum of the wave packet.30 When Fz is no longer a
constant the simple arguments leading to canceling of some
terms may not work. One can notice that when an electron
decelerates it has in general different momentum than when
it accelerates, in other words, the uniform electric field ac-

celerates all electrons down to the bottom of the Fermi sea
but impurities produce nonzero deceleration in average only
for electrons near the Fermi surface. The Berry phase ac-
quired by accelerating electrons depends now not only on the
acceleration but on the momentum itself, therefore contribu-
tions from impurities and from uniform electric field do not
necessarily cancel each other.

The Hamiltonian of R2DEG with the electric field along
the x direction and the exchange field in the z direction is

H = H0 + HSO + Hexch − eExx + Vimp, �29�

H0 =
bk2

2
�0, b = 1/m , �30�

HSO = ��ky�x − kx�y� , �31�

Hexch = h�z, �32�

where Vimp is the impurity potential.
Diagonalizing the unperturbed part of the Hamiltonian we

find the energy dispersion

�±�k� = bk2 ± ���k�2 + h2. �33�

There are two bands; the minor band has the plus sign in the
above expression. Fermi momentums can be derived by in-
version of Eqs. �33�. We denote them as kF− and kF+, respec-
tively, for the major and minor bands.

The Berry curvature is different for different bands,

Fz
s = 2Im�� �us

�ky
� �us

�kx
� , �34�

where �us� is the Bloch state in the absence of electric field
and impurities and s=± is the index of the band: the plus is
for the minor and the minus is for the major one. In the case
of the Hamiltonian �29� the Berry curvature is30

Fz
s�k� = − s

h�2

2
��k�2 + h2�3/2 , �35�

at �k�h this gives Fz
s�k��−s�2 / �2h2�=const and we reduce

the problem to the one considered in previous sections. In the
opposite limit at �kh we find

Fz
s�k� � −

sh

2�k3 . �36�

The anomalous velocity has the same magnitude but dif-
ferent signs for different bands so filled states with the same
k from different bands will compensate each other in calcu-
lations of the clean contribution and to find the Hall current
we should only integrate over uncompensated states of the
major band. The Hall current from the unperturbed electron
distribution function in the clean case is

FIG. 4. Distribution of particles over the momentum space in
the stationary state with electric field applied along the y axis at the
nonzero Berry curvature. Parameters are as follows: kF=1, Ey

=0.003, Ex=0, Fz=−1. Average distance between impurities is l
�0.5.
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jyx
�clean� = e�

0

2�

d��
kF+

kF− kdk

�2��2 
eExFz
−�k��

= e�
0

2�

d��
kF+

kF− kdk

�2��2

eExh�2

2
��k�2 + h2�3/2

=
e2Ex

2�2��� 1
�1 + �kF+�/h�2

−
1

�1 + �kF−�/h�2� ,

�37�

in the case EF�kF±h the expression �37� is simplified,

jyx
�clean� � ��k � EF �

kF
2

2m
� =

e2Exh�kF− − kF+�
�2��2�k2

���kF− − kF+� � 2�m� =
e2Exh

4�EF
; �38�

note that here kF+ is the Fermi momentum of the minor band.
The above formulas are valid when there are electrons in
both bands. At a sufficiently low Fermi level �EF�h ,�kF−�
the minor band becomes depleted and the transport is only in
the major band. In this case the clean limit Hall current is

jyx
�clean� =

e2Ex

2�2���1 −
1

�1 + �kF−�/h�2� . �39�

We address next the effects of impurity scattering within the
formalism that we have developed.

As in the case of the constant Berry curvature, the non-
equilibrium contribution to the distribution function is the
sum of the usual one gs�k�, which appears to compensate the
electron acceleration

gs�k� = eEx	�−
� f0

��
�vs,x

�normal� �40�

and of the anomalous one gE
s �k� due to the shift of the kinetic

energy of the scattered particle. We suppose here that the
impurity potential is weak, namely V�r��EF ,�kF and disre-
gard the variation of the Berry curvature near a wave packet
during a scattering because the absolute magnitude of the
momentum does not change appreciably. The derivation of
the anomalous correction is analogous to Eqs. �10�–�13�,

gE
s �k� = −

− df0

d�
eExkyFz

s. �41�

The normal velocity of the wave packet is

vs,x
�normal� =

��s�k�
�kx

. �42�

The expression for the drift velocity due to the side jumps
along the y axis is the same as in Eq. �16�. The side-jump
current is

jyx
�sj� = 	

s=±
e� �vs,y

�sj��k��disg
s�k�

kdkd�

�2��2

= 	
s=±

� d�
cos2���
�2��2 � d�s,ke

2ExFz
s�k�k2
�EF − �s,k�

=
he2Ex�

2

2�4��
� kF+

2


��kF+�2 + h2�3/2 −
kF−

2


��kF−�2 + h2�3/2� .

�43�

At EF�kFh this expression can be simplified,

jyx
�sj� �

he2Ex

8�EF
. �44�

If EF�h only the major band survives and

jyx
�sj� =

− he2Ex�
2

2�4��
kF−

2


��kF−�2 + h2�3/2 . �45�

The normal current contribution is

jyx
�normal� = 	

s=±
e� d2k

�2��2vs,y
�normal�gE

s �k�

= 	
s=±

� d�
sin2���
�2��2 � d�s,ke

2ExFz
s�k�k2
�EF − �s,k� .

�46�

Comparing the last expression with the one for the side-jump
current �43� we find that they are different only by an ex-
change of cos��� and sin��� under the integral over the
angle. Thus we arrive at the general result,

jyx
�normal� = jyx

�sj�. �47�

Finally,

jyx
�total� = jyx

�clean� + jyx
�sj� + jyx

�normal�. �48�

As it is seen from Eqs. �38� and �44� the side-jump con-
tribution may not change the sign in comparison with the
clean contribution for sufficiently large Fermi energy. This is
very distinct from the case of the constant Berry curvature
where such a contribution exactly cancels the pure one. At
the limit EF�kFh we find for the total current

jyx
�total� �

he2Ex

2�EF
. �49�

The total Hall current not only has the same sign as the clean
limit prediction, but also increases due to scatterings. Note
also that up to a coefficient of the order unity, in this limit,
the total current has the same dependence on various param-
eters.

In Fig. 5 we compare the theoretical prediction of Eqs.
�48� with the prediction of the pure Berry phase contribution
�37�.

V. DISCUSSION AND CONCLUSION

We calculated the anomalous Hall current in the presence
of a smooth disorder potential by combining the wave-packet

SINITSYN et al. PHYSICAL REVIEW B 72, 045346 �2005�

045346-8



dynamic equations with the classical Boltzmann equation.
For the case of constant Berry curvature our results are in
agreement with some known predictions of the very earliest
works on AHE. The gauge invariance of our approach clari-
fies the physical meaning of various disorder contributions to
the Hall current and reveals the relation between the extrin-
sic, related to the gradients of the disorder potential, and
Berry curvature effects in the presence of disorder.

We have shown that early results, like that of the Lutting-
er’s sign reversal prediction, cannot be used directly for new
applications such as diluted magnetic semiconductors, where
the Berry curvature is strongly momentum dependent. Our
prediction for the Hall current, Fig. 5, is distinct from the
clean limit �or the pure Berry phase� one. Thus the total Hall
current changes the sign when the Fermi level increases. In
contrast, the clean limit prediction for the models considered
remains of the same sign. The filled states in both bands with
the same momentum compensate each other, hence for the
clean case the band having more filled states always wins. In
contrast, impurity contributions are sensitive not only to the
density of states near the Fermi level, but also to the magni-
tude of the Berry curvature near the Fermi level.

The change of sign of the Hall current as a function of
chemical potential originates from the competition between
two bands. The minor band has the smaller number of filled
states than the major one but it also has lower kF and hence
the stronger Fz�kF�. According to our calculations, such a
change of sign should generally happen when the chemical
potential is close to the depletion point of the minor band.
When the minor band is totally depleted we always observe
the reversal of the sign of the Hall current in comparison to
the clean limit contribution. We also note that such a com-
petition should be applicable to the skew scattering mecha-
nism as well. This follows from the fact that the strength of
the skew scattering should be proportional to the Berry cur-
vature at the Fermi surface.

Our results can be generalized to DMS and although in
this case the complicated behavior of the bands, as compared
to the R2DEG, may change the quantitative behavior there is
still a competition in DMS of Hall currents from major and
minor bands and Berry curvature is also usually decreasing
when momentum is increasing. However, the intricate depen-
dence of the clean limit AHE observed in these systems ver-
sus the simple dependence observed in the R2DEG will re-
quire a careful analysis.

Although we have verified most of our predictions by
numerical simulations, the correspondence between the
wave-packet approach and the evolution of a true quantum
system with disorder remains to be investigated. An effect
not taken into account in our calculations is that the spin
density in the wave packet polarizes when the wave packet is
accelerated.31 This effect is crucial for the spin Hall effect
and its importance for calculations by the Boltzmann equa-
tion should be understood.

The final theory of disorder in the AHE can be achieved
only by purely quantum-mechanical calculations, for ex-
ample, based on the Keldysh technique. At present interast-
ing approaches to systems with Berry curvature have
emerged,32 as well as different mechanisms to generate the
anomalous Hall current,33 but we believe that the wave-
packet approach combined with the classical Boltzmann
equation is worth studying because it provides the simplest,
to our knowledge, demonstration of the related physics and
the wave-packet equations themselves have been well justi-
fied by the quantum theory.

Note added. Recently we became aware of the related
effort by V. K. Dugaev et al.35 of a more quantum-
mechanical approach to the problem with similar qualitative
conclusions. Our approach, however, is quite different and in
combination with this work may shed further light on the
physical interpretation of the effect.
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APPENDIX: CLASSICAL INTERPRETATION OF THE
WAVE-PACKET DYNAMICS IN A RASHBA 2DEG

To make the semiclassical result more transparent we
show how the anomalous velocity arising from the Berry
curvature can appear in a purely classical system. This clas-
sical anomalous velocity originates from the nonadiabatic
contributions to the equations of motion in the linear-
response regime and are not present when a simpler adiabatic
approximation is considered.

We consider the motion of a classical particle having the
electric charge e and the classical spin S attached to it.
Choose the Hamiltonian to be

FIG. 5. �Color online� Hall conductivity vs the Fermi energy in
the R2DEG. The black line is the pure limit Berry phase prediction.
The red curve shows the prediction of the theory that includes im-
purity scatterings �43� and �47�. Data are given in units e=�=m
=1 for the case h=0.7, �=0.4. The sharp change in the behavior
above EF=0.7 is due to the appearance of electrons in the minor
band.
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H =
k2

2m
+ 2��kySx − kxSy� − eExx + 2hSz. �A1�

The analogy with the Rashba Hamiltonian �29� is obvious. In
the classical problem we substitute operators by correspond-
ing classical variables. We will suppose also that �S�=1/2 as
for true electrons. The Hamilton equations for the evolution
of coordinates �x ,y� and momentum �kx ,ky� and Landau-
Lifshitz equations for the evolution of spin components read

ẋ =
kx

m
− 2�Sy , �A2�

ẏ =
ky

m
+ 2�Sx, �A3�

k̇x�t� = eEx, �A4�

k̇y�t� = 0, �A5�

Ṡ = − � � S , �A6�

where � is the effective magnetic field acting on the spin.
From the Hamiltonian �A1� we can read this effective mag-
netic field acting on the particle with the momentum k
= �kx ,ky�,

� = − 2��ky,− �kx,h� . �A7�

The absolute magnitude of this field is

��� = �4�k2�2 + h2� . �A8�

Assuming that the electric field Ex is weak, the variation
of the momentum and hence of the effective magnetic field is
very slow and, if at the initial moment the classical spin is
directed along the magnetic field, it will follow the direction
of this slowly varying field. This adiabatic approximation
follows from the Landau-Lifshitz equations and yields an
approximate solution for Eq. �A6� given by S�a��t�
= ± �S����t� / ����, where “+” and “−” correspond to the initial
direction along or opposite to the magnetic field, respec-
tively. Substituting this time dependence of the spin direction

into equations for particle velocities one can find that in the
adiabatic approximation

ẋ =
��0�k�

�kx
,

ẏ =
��0�k�

�ky
, �A9�

where �0�k�=k2 /2m���k��2+h2, i.e., a particle with spin
along the field � has energy dispersion as an electron in the
major band of R2DEG. In the strict adiabatic approximation
of this classical Hamiltonian particles do not exhibit the
anomalous velocity seen in the second term of the group
velocity of the quantum-mechanical wave-packet dynamics
described by Eq. �2�.

However, this classical model does capture the correct
contribution to the anomalous Hall effect related to the Berry
curvature once we go beyond the strict adiabatic approxima-
tion and consider instead the more general linear response.
The nonadiabatic corrections describe deflection of the clas-
sical spin from the direction of the instant magnetic field.
They are small but can still be of the first order in the electric
field and hence affect the transport properties in the linear
response. Looking for a solution of the Landau-Lifshitz
equations �A6� in the form S=S�a�+
S we find that in the
first order in the external electric field the spin direction ac-
quires the component perpendicular both to the effective
field and its derivative,25 i.e.,


S = ± �S�
�

���3
�

d�

dt
. �A10�

If h�0 this correction has in-plane components and hence
affects the velocity of the particle, i.e., it gives a contribution
to the right-hand side of Eqs. �A2� and �A3�. Substituting
Eqs. �A7� and �A8� into Eq. �A10� we find


Sx�k� = ± �S�
�hk̇x

2
�k��2 + h2�3/2 , �A11�


Sy�k� = � �S�
�hk̇y

2
�k��2 + h2�3/2 . �A12�

Then substituting Eqs. �A11� and �A12� into Eqs. �A2� and
�A3� for �S�=1/2 we find equations identical to the wave-
packet ones with the Berry curvature given in Eqs. �2� and
�34�.

We emphasize that although being an interesting demon-
stration of the effect, the model of classical charged particles
with classical spins cannot always be employed in calcula-
tions of the Berry curvature and quantum corrections for
other types of the Hamiltonian may appear.34
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