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Consistency between the Lorentz-force independence of the resistive transition
in the high-T, superconductors and the standard theory of flux flow
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In a uniform flux-flow state of a type-II superconductor, (i) the resistivity tensor p,~ is independent
of the dissipative transport current density J, and (ii) there exists a constraint on the relative
orientation of J and the average Aux density B. These two simple general properties can already
account for the Lorentz-force independence of the resistive transition in high-T superconductors for
the applied current in the ab plane, and the magnetic Beld making any not-too-small angle with this
plane.

Measurements of the resistive transition of high-
temperature superconductors (HTSC's) in the presence
of an applied magnetic field have shown that the Lorentz-
force dependence [or the dependence upon the angle be-
tween the applied current density J'" (assumed uniform)
and the average magnetic Hux density B] of the resistiv-
ity p is practically absent or very weak (see, for example,
Refs. 1—4). Iye et al. l~l have performed a comparative
study on thin Film samples of Bi2Sr2CaCu20s (Bi2212),
YBa2CusOT (YBCO), and amorphous Moce alloy. They
observed a nearly ideal Lorentz-force dependence of p in
the MoGe sample, as expected from the usual flux-flow
theory, whereas the Lorentz-force dependence was com-
pletely absent in the Bi2212 sample; and an intermedi-
ate behavior was observed in YBCO wherein p shows
a weak (or partial) Lorentz-force dependence. ild) Since
the anisotropy is extremely large in Bi2212, moderate in
YBCO, and zero in MoGe, this comparison suggests that
anisotropy may play an important role for the disappear-
ance of the Lorentz-force dependence of p in HTSC's.
The large anisotropy in HTSC's is due to the layered
crystal structures. Kes et al. proposed an explanation
for the Lorentz-force independence (LFI) of the in-plane
resistivity (J'" applied parallel to the ab plane), in which
they assume that only the transverse component (per-
pendicular to the layers) of B is responsible for forming
vortices ("pancake" vortices in the Cu-0 layers). But
this interpretation cannot account for the existence of
dissipation when B is exactly parallel to the layers. (')
An alternative explanation was proposed by Iye et al. (")
in terms of hopping of vortex segments (between the lay-
ers) across the layers and nucleation of pancake and an-
tipancake vortex pairs. In this mechanism of flux motion
the dissipation mainly depends on the nucleation of the
pancake and antipancake vortex pairs (which are driven
apart by the Lorentz force) and therefore is independent
of the relative orientation of B and J'" (both parallel

to the layers). A similar explanation was suggested by
Ando et al. in terms of the dynamics of thermally ac-
tivated pancake and antipancake vortex pairs. As for
the out-of-plane configuration (J'" is applied parallel to
the c axis), for which some sort of a LFI of p has also
been observed, none of the above explanations applies,
because the movements of the pancake vortices in the
layers cannot lead to a voltage in the c direction. This
diFiculty has led to suggestions that thermal fluctuations
may be important as an source of dissipation. ' The pur-
pose of this paper is to show that, although those non-
standard-flux-flow explanations may still be relevant to
the understanding of the out-of-plane LFI, and perhaps
also of the in-plane LFI when the angle 0 between B and
the c axis is very close to 90, the standard theory of
flux How (in which the usual Abrikosov Hux-line lattice
is assumed) is actually already sufFicient for the expla-
nation of the in-plane LFI for all other values of 0, i.e. ,
for B pointing in any direction which makes a not-too-
small angle with the ab plane. As for the cases when the
present explanation fails, we find that taking a view from
the standard theory of flux flow implies that J' has a
nondissipative component along B which can induce, for
example, helical instabilities in the vortex lines, making
the analysis of the experimental data more dificult. In
other words, the experimenters did not do simple flux-
flow experiments in those cases. Our argument invokes
only two general properties of a type-II superconductor
in a uniform flux-How state: (i) The resistivity tensor
p;~ (including all the diagonal and Hall elements) is in-
dependent of the dissipative transport current J, and
(ii) there exists a constraint on the relative orientation
of JT and B. Property (i) is a trivial consequence of the
usual theory of linear response, and property (ii) follows
simply from the fact that the electric field K induced by
the flux motion is always perpendicular to B. Thus both
properties are quite independent of any specific theoreti-
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cal model of flux flow. We shall see that these two simple
general properties of flux flow can already imply a type
of in-plane LFI, without the need to invoke any non-flux-
flow mechanisms of dissipation.

Consider in general an anisotropic superconductor in a
uniform flux-flow state. The orientation of B may be ar-
bitrary with respect to the principal axes of the sample.
The energy dissipation in the flux-flow state is generally
believed to be due to Joule heating of normal excitations
and relaxation of the order parameter. Time-dependent
Ginzburg-Landau (TDGL) theoryii i2 is a simple the-
ory which can account of both of these two dissipation
mechanisms. Thus TDGL theory is often used to inves-
tigate the flux-flow phenomenon. (It has been extended
to include the Hall effect in the flux-flow state by al-
lowing the order-parameter relaxation constant to have
an imaginary part. ) One of the most fundamental
conclusions of these studies is that, quite independent of
the simplifying assumptions of TDGL theory, the macro-
scopic electric field E, induced by a uniform flux motion
with velocity v, obeys

E = —(v x B)/c,

which is valid generally for both isotropic and anisotropic
superconductors. Equation (1) was also derived by
Josephson &om a different argument. The quantities
E and B are the spatial averages of the correspond-
ing microscopic quantities e(x) and b(x), respectively;
i.e. , E = (e(x)) and B = (b(x)). Microscopically
e(x) = —(1/c)v x b(x) is not possible in general, i2 but
for the spatially averaged (macroscopic) fields E and B,
Eq. (1) holds.

The dissipative transport current density J, which is
the spatial average of a local current density J(x) [i.e.,
J = (J(x))), is related to E by

T=J; = o.;~E~, (2)

As we have said, property (i) is a trivial consequence
of the usual linear response theory: The transport co-
efficients (here o.;~ or p;~) cannot depend on the driving
perturbation. Thus p;z cannot depend on J . This prop-
erty is clearly true at all applied fields H. It is obeyed,
for example, in all previous calculations of p,z based on
the TDGL theory, which, due to the nonlinearity of
the TDGL equations, were done explicitly only in either
the low- (H near H, i) or the high- (H near H,2) field
limits (here H, i and H, 2 are the lower and upper crit-
ical fields, respectively). (See, in particular, Ref. 15 for
a newly completed calculation for an anisotropic super-
conductor in a Geld oriented arbitrarily with respect to
the principal axes. )

where o;z is the flux-flow conductivity tensor, and the
convention of summing over repeated indices is employed.
[Note that J(x) must not include a nondissipative com-
ponent with a nonvanishing average along B.] The in-
verse of Eq. (2) defines the flux-flow resistivity tensor
~v (=~,, '):

TE,. = p;~J-.

Property (ii) is seen when we notice &om Eq. (1) that
E is always perpendicular to B:

E B=0. (4)

This constraint on the relative orientation of E and B,
when combined with Eq. (3), implies a constraint on the
relative orientation of J and B:

p~B,J = 0. (5)

Equation (5) implies that, with B fixed, one is free to
vary two of the three components of J only, and vice
versa. Here we see an important difference between the
electrical conduction in the flux-flow state and that in
the normal state: In the former, E, being induced by the
motion of vortices, is always perpendicular to B, whereas
in the latter the relative orientation of E and B can be
arbitrary. For isotropic superconductors, Eq. (5) merely
implies J J B, which can be easily incorporated in flux-
flow experiments by applying B perpendicular to a film
or slab sample. Then J'", which is often applied along
the sample, can be identified with J . For anisotropic
superconductors, the incorporation of this constraint is
far more difIicult, and is usually ignored in experiments,
so that J'" can no longer be identified with J in general.

Consider a coordinate system whose axes coincide with
the principal axes of the symmetric part of the tensor p;~.
(We expect these axes to coincide with the principal axes
of a tetragonal high-T, crystal. ) In this system of coordi-
nates the expression for p;~ is "antisymmetric, " by which
we mean p,~

= —p~; for i g j, but the diagonal elements
p,, g 0. [As can be shown, if p;~ is "antisymmetric, " so
must be o;~ (in the same coordinates system) and vice
versa. ] In this representation only the diagonal elements
of p;~ are dissipative while all the off-diagonal ones (the
Hall elements) are nondissipative.

We focus on the longitudinal resistivity (referred to
simply as "resistivity" in this paper). We may ignore
all the Hall elements of the tensor p;~, since they are
usually smaller than the smallest of the diagonal ones by
0(10 s) . Then Eq. (5) becomes

p11J1 B1 + p22 J2 B2 + p33 J3 B3T T T (6)

For the purpose to explain the LFI of the in-plane resis-
tivity in HTSC's, consider the situation where JT is in
the xixs plane, and B is in the (8, $) direction. Then
(Bi,B2, Bs) = B(sin 8 cos P, sin 8 sin P, cos 8). Using
Eq. (6), one can easily show that

E ~ J pss cos2 8 + pii sin 8 cos

ps& cos2 8 + p2ii sin 8 cos2 P

At the same time, one can show that J is in the direction
which is at an angle 8g with the xi axis [i.e. , the unit
vector along J is (cos8g, 0, —sin8g)], where 8g satisfies

tan8g ———Js / Ji ——(pii/p33) tan 8 cos P. (8)

For P = m/2, we have 8g = 0 independent of the ratio
pi]/p33 and the angle 8 (if g n'/2), and the dissipative
transport current is always flowing in the x1 direction.
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For this case Eq. (7) reduces simply to

P —@i/ Jl —Pll.T

For p g a/2, 8g for an anisotropic system with p33 & pll
is always closer to zero than its corresponding value for
an isotropic system; i.e., JT always tends to flow in a
direction closer to the easy axis (of which the resistivity is
smaller). For the extremely anisotropic case, p33/pll »
1, if 8 is not very close to vr/2, we have tan 8g « 1, so
that J is practically also flowing in the xz direction. For
this case Eq. (7) becomes

P Pll [1 + O(pll/P33)] ~ (10)

p'*(»8 &)Ip,".= f(BIH.2(8 &)). (12)

(a) It has been directly verified for B J J
(b) Theoretically within the TDGL framework, it has
been shown that Eq. (12) is true in the high-field limit
(i.e. , H, 3 —H « H, 2) for all 8 and rt. (c) Freimuth has
argued intuitively why Eq. (12) should be true: Flux-flow
dissipation should depend the size of the vortex cores,
which is 4'o/2mH, 3 (where Co is the flux quantum).

If one neglects the weak anisotropy of HTSC's in the
ab plane, H 3(8, P) is independent of &P. We then obtain
that p(B, 8, P) = pll(B, 8) is independent of P for the
situation analyzed, if p33/pli » 1, except in the limit
8 + m/2. Note that at a fixed 8, the angle between J
and B is P dependent, and so the Lorentz force is not a
constant. We have thus explained the LFI of the in-plane
resistivity in HTSC's except when 8 is very close to 7r/2.

Measurements are frequently done in the configuration
in which both J " and B are in the ab (xlxz) plane of
HTSC's, ~ l', but with the angle P between J'" and B
continuously varied through a large range covering both
P = 0 and P = vr/2. If one neglects in-plane anisotropy,
one can assume that J " is in the xq direction without
loss of generality. Then the polar angles of B in this case
are just (8 = vr/2, P). But if one lets 8 -+ vr/2 in Eq. (6),
one finds simply J+ J B for systems for which in-plane
anisotropy can be neglected. Thus one sees that except

The condition p33/pil » 1 is generally satisfied for
HTSC's. For example, in the normal state p33 /pll
is of O(103) for YBCO (Refs. 17, 18) and O(10 ) for
Bi2212, and usually the ratio becomes even larger as
T decreases. For Bi2212 with p33/pll O(10 ), the
error in the approximation of Eq. (10) becomes greater
than 5%%uo at P = 0 only for 8 & 89.5'. Thus in the experi-
ments performed on HTSC's where J'" is applied in the
xl direction and B is applied in the (8, P) direction, we
can essentially identify J with JT, and the measured
resistivity

expt E Jext/ Jext

with the theoretical resistivity given in Eqs. (7) and (10).
In general, pqq can still depend on B; i.e. , pqq

pll (B,8, P). In the normal state the field dependence of
p;; is weak and negligible. In the superconducting state
there are several reasons to believe that, for H &) H, q,
p,; depends on B via the ratio BIH,3(8, P) only, i.e. ,

Such a nondissipative component of current, J, which
corresponds to a uniform translation of the whole "su-
perfluid" along B, is not included in Eq (5.), since only
the dissipative part of the current, J, is related to E by
Eq. (2), or its inverse Eq. (3).

Experimentally the longitudinal and transverse resis-
tivities in this case are defined by ~ ~

(14)

Using the present analysis one can easily obtain that (still
neglecting in-plane anisotropy )

P(~
= Pll Sill p~ = —p„sinP cos P, (15)

where pll = pll(B, vr/2, vr/2). That is, in this case our
analysis based on the standard theory of flux flow does
not predict LFI, in agreement with the conclusion of Iye
et al. ~ ~ In their work

p~~
and p~ are measured as func-

tions of P on thin film samples of Bi2212, YBCO, and
amorphous MoGe alloy. The results for MoGe agree
reasonably well with Eq. (15). In YBCO

p~~
has a P-

independent coinponent in addition to a P-dependent
component, which more or less follows Eq. (15). [The P-
dependent parts of

p~~
and p~ in YBCO show additional

P dependences which can be attributed to the presence
of twinning. ~ l] In Bi2212

p~~
is found to be practically

P independent. Thus it appears that for 8 = n/2 the
partial or full in-plane LFI observed in HTSC s is incon-
sistent with the standard theory of flux flow. However,
we note that the nondissipative supercurrent J along B
also present in the system when P g n/2 can induce a
helical instability of the vortex lines, causing the local
direction of B to be not even in the ab plane everywhere.
Whether taking into account this additional point in the
standard theory of flux-flow can explain the observed LFI
in HTSC's remains to be investigated, but we note that
in the case of a uniform B even a tilt of B by a few
tenths of a degree away from the ab plane is enough to
give practically complete P independence of p~~ in Bi- and
Tl-based samples [of which p33/pll O(10 ) or larger].
Thus ofKhand one cannot rule out the possibility of rec-
onciling the standard theory of flux How with the partial
or full in-plane LFI observed in HTSC's at 8 m/2, but
we concede that invoking the helical instability of the
vortex lines to account for the observed LFI in this case
is not very difFerent from the postulate of the creation
of pancake vortices (cf. Iye et al. i~de). In any case it
is worth pointing out that the experiments performed at
8 = vr/2 but P g m/2 are not standard flux-flow exper-
iments, since the component J along B that exists in
such cases can distort the vortex lines, which can have

for P = vr/2 one can no longer identify J'"' with J+. In
other words, if only the assumptions behind the standard
flux-flow theory are valid (i.e. , a lattice of straight flux
lines in uniform translation), and if J'" is uniform inside
the sample, then one must identify J " as the vector sum
of a dissipative transport-current component J 3 B and
a nondissipative supercurrent component Js

]~ B, i.e. ,
Jext, JT + Js
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very different consequences in isotropic and extremely
anisotropic superconductors.

A type of out-of-plane LFI has also been observed in
the sense that an almost equally broad resistive transi-
tion has been observed for H ]] c whether J'"' is along
a or along c (in both cases the width of the transition
is broader for larger H), but a downward shift with es-
sentially no broadening was observed for H ]] a whether
J' is along a or along c. Prom the point of view of the
standard theory of flux fiow, the case of H ]] c, J'"'

]] a,
is a standard flux-flow experiment with p'"I' measur-
ing pII(B, e = 0), and he case of H ]] a, J'"

]] c, is
also a standard flux-flow experiment with p & measur-
ing pss(B, 8 = Ir/2, P = 0), but the other two cases are
not standard flux-flow experiments, with J " not iden-
tifiable with J . For H ]]

J'"
]] c, the entire J'" must

be identified with J . It can then also induce a helical
distortion of the flux lines. Whether this distortion can
account for the observed out-of-plane LFI is even less
clear than the case of in-plane LFI at 0 vr/2, but it is
appropriate to say that further theoretical attempts to
understand the behavior of the out-of-plane resistivity in
HTSC's within the flux flow framework must include as-
sumptions which allow local orientations of the flux and
current densities to be coordinates and (possibly) time
dependent.

In summary, we have contrasted the experimentally
observed LFI of the resistive transition in HTSC's with
the predictions of the standard theory of fiux fiow (in
which a uniform translation of the usual Abrikosov flux-

line lattice is assumed). We find that two simple general
properties of a uniform flux flow; i.e. , the properties (i)
and (ii) listed above can already account for the LFI of
the in-plane resistivity for almost all directions of B ex-
cept when it is very close to being parallel to the ab plane.
For the case when both B and J' are in the ab plane but
B is not perpendicular to J, the present analysis indi-
cates that J' has a nondissipative component along B,
which can induce a helical distortion of the flux lines. We
suggest that the standard theory of flux flow, if general-
ized to include this flux-line distortion, may be sufhcient
to account for the observed partial or full LFI observed
in various HTSC's in this configuration, but we have not
yet made a detailed study of this idea. At the present
time we can say even less on whether the standard theory
of flux flow can in any way be reconciled with the out-
of-plane LFI, but the latter appears to be not very well
characterized experimentally either. (For example, it has
not been presented as an independence of p with respect
to the angle between J'" and B). We only note that
it also involves nonstandard flux-flow experiments where
a nondissipative component of current exists to distort
the flux lines. The most important conclusion of this
work is that the observation of LFI in HTSC's does not
necessarily invalidate the standard theory of flux flow.
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