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We describe a technique for simultaneously treating the dynamics of electrons and ions. The key
features are a generalized Hellmann-Feynman theorem, a standard time-dependent self-consistent-field
(TDSCF) description, and use of the interaction picture to separate fast electronic oscillations from
slower processes. The technique can be used in tight-binding or first-principles simulations, with either a
ground-state or TDSCF Hamiltonian.

Classical, ' tight-binding, ' and first-
principles' molecular-dynamics simulations have
been used to address a wide variety of problems in chem-
istry and materials science. Here we introduce a much
more general technique which can be used to treat the
dynamics of electrons and ions simultaneously. Possible
applications include absorption and emission of radia-
tion, collisions of energetic atoms, carrier dynamics, and
excited-state chemistry. The essential idea is to solve the
time-dependent Schrodinger equation for the electrons,
together with an effective Newton's equation for the ions.
Three key features of the technique allow this to be ac-
complished in feasible numerical simulations.

(a) A generalized Hellmann-Feynman theorem ~kt)=pc„(t)e """
~n&, (5)

Each occupation number nk is equal to zero or 1 and is
constant in time. When the ion coordinates are treated
classically, the angular brackets may be removed in (4)
and on the left-hand side of (1).

(c) Use of the interaction picture in treating the
effective time-dependent Schrodinger equation (2). Since
electrons can move much faster than ions (on a fem-
tosecond rather than picosecond time scale), direct solu-
tion of (2) in a simulation would require a very short time
step. Instead we represent %1,(r, t) by the eigenstates of
some time-independent reference Hamiltonian Ho: in
Dirac notation,

H, ~n)=a„~n) . (6)

where X and M are any ion coordinate and mass. The ex-
pectation value is taken in the time-dependent state of the
system, with the electrons in excited states and undergo-
ing transitions.

(b) A time-dependent self-consistent-field description,
with an equation of motion

i'm „)at=H(t)q „ (2)

obtained by writing the electron field operator in the ap-
proximate form

This separates the fast oscillations of exp( is„tlfi) from-
the slower time evolution c„(t) associated with electronic
transitions. We can then analytically integrate the fast
oscillations over each time step ht.

We will first establish a framework that is suitable for
ab initio calculations in the coordinate representation,
and then obtain the corresponding results for tight-
binding calculations with a nonorthogonal basis.

Let us begin by proving the generalized Hellmann-
Feynman theorem, which is also the generalization of
Ehrenfest's theorem to a system of ions and electrons.
The proof employs the Heisenberg equation of motion

In this description, the generalized Hellmann-Feynman
theorem (1}reduces to

d2
(X)= —gn„ f d r '+k(r, t) 0'k(r, t)

+F;;+F,„, .

iA =[A,%]

together with the identities

[X,F]=i%, [P,G]= iA-()F BG
az '
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where X is any ion coordinate and P is the conjugate
momentum. 3, F, and G are Heisenberg operators, and
% is the full Hamiltonian of the system:

the alternative form

p2 p2
+g +%;;+A„+%'„+A,„, ,

2M( . 2m
(9)

M (X)= — +F;;+F,„, ,
BX

A;;= g u//(R( —R/ ),
I & I'

A„= g u(r, —r, ),

(10)

A„=gu/(r, —R, ),
jl

(12)

d'X
dt' (13)

This is an operator equation, and we can now take the ex-
pectation value of both sides of the equation to obtain (1).
Since expectation values are the same in any picture, (1)
can also be interpreted in the Schrodinger picture, with
time-independent operators and a time-dependent state.

Only three terms in (9) actually depend on X, so (1) has

with &,„, representing the interaction of electrons and
ions with externa1 fields. Also, l and j respectively label
ions and electrons, and each coordinate and momentum
is regarded as a Heisenberg operator. The two equations
in (8) give X=P/M and P= Wf/dX, —or

where I';; and I',„, are the forces due to other ions and
external fields. In the simplest case, all the interactions of
(10)—(12) are just Coulomb interactions: v» (r)

Z—
/ u/(r) =Z/. Z/u(r), u(r) =e //r~. Then the

term in (14) is just the Coulomb attraction between elec-
trons and ions, and I';; is the ion-ion Coulomb repulsion.
Expressed this way, our generalized Hellmann-Feynman
theorem is just as "obvious" as the original theorem for
the ground state and other eigenstates.

The standard time-dependent self-consistent-field
(TDSCF) approximation can be derived from a variation-
al principle, ' but with the ions included it is con-
venient to use a less conventional derivation, which in-
volves substituting (3) into the Heisenberg equation of
motion (7). This approach is similar to a well-known
derivation of static Hartree-Fock, except that the
coefficients 4'/, are time dependent (and the a/, are
Schrodinger operators). One can in fact follow the
derivation on pp. 80—82 of Ref. 30, down to Eq. (50), but
with two changes: Eq. (3) is used [rather than Eq. (36) of
Ref. 30] and the time dependence is retained. The result
1S

(15)

V +gu/(r R, )+f d r—'n(r', t)v(r' —r)+H, „, ,
2P7l

n(r, t) =yn/, 4/', (r, t)q//, (r, t),
k

Since the expectation value (18) is to be evaluated in a
time-independent Heisenberg state, nk is constant. Up to
this point the states k have not yet been specified. We
can then require that they be defined in such a way that
each state is exactly empty or filled by one electron at
some time to (e.g., in the remote past). It follows that

flk =0 Or 1

at all times t. The 4k are required to be orthonormal at
to, with (15) enforcing this condition at all other times.

We now have the same simple picture as in a static
self-consistent-field calculation: Only the "filled" states
need be considered in the SCF equations (15)—(17), and
one can imagine each electron as having its own state '0k.
Notice, however, that 4k is an arbitrary time-dependent
state, rather than an eigenstate of the Hamiltonian H(t)
The self-consistent potential must, of course, be updated
as often as is necessary during a simulation. This should

not be a major diSculty in simple cases—for example,
when a single electron is promoted from a bonding to an

antibonding state, changing the local charge density and
potential.

In static calculations, it is conventional to replace the
Hartree-Fock exchange term by a local potential

v„,(n(r)} representing exchange and correlation effects.
In the same spirit, one can replace the last term of the
time-dependent Hartree-Pock equation (15) by a potential

u„,(n(r, t)} which is local in both space and time:

H=H+U„, . Let us separate H into a time-independent
reference Hamiltonian Ho and time-dependent perturba-
tion

V(t)=H(t) Ho . —

Substitution of (5) into (2) then yields the standard equa-
tion of motion in the interaction picture:
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i% c„(t)=Q V„(t}c (t)exp(i to„ t},d
dt "

V„(t)=(n~ V(t)~m ),
a)„—=(e„—s )/irt .

(21)

(22)

(23)

stationary with respect to variations 5X&, 54k(o), and

54k(a}, obtaining

aH . as a aU„,
Xla la t la

ECO =CO~m CO (25}

This result is relevant, e.g., to an electromagnetic field or
plasma oscillation with %co-fico„—1 eV. On the other
hand, a V(t) associated with slow ionic motion corre-
sponds to the special case co=0, and will be ineffective in
producing transitions because of the rapid oscillations
when co„%0.

During a simulation, the reference Hamiltonian may
be updated as often as is necessary. Suppose that at time
t we switch from Ho with states ~n ) to Ho with states
~n'). Then the two versions of (5) with ~n ), e„,and ~n'),
c.'„can be set equal in order to obtain the coefficients

c„'(t}=pc (t)e " (n'~m ) . (26}

Equation (21) thus provides a feasible numerical pro-
cedure for treating the electron dynamics. To calculate
the forces on the ions, however, we need to adapt (14) to
the TDSCF description. This can be achieved by writing
%„in its second-quantized form

%„=f d r alt(r, t)ql(r, t)gv&(r —R&) .
l

(27)

When (3) is substituted for 4', the generalized Hellmann-
Feynman theorem (14) is transformed into the TDSCF
version (4) that was promised earlier.

The above formulation is suitable for first-principles
calculations. In the simplest formulation for tight-
binding calculations, we postulate a semiempirical La-
grangian

aL =Q ,'M&X &~
—U„p+gn—k%' k

~ itis —H—
la k at

(28)

On a long time scale, the rapidly oscillating factor
exp(iso„ t) gives rise to energy conservation in time-
dependent perturbation theory and Fermi's golden rule.
However, (21) is exact on any time scale, and here this
factor plays a somewhat different role: It may be in-
tegrated analytically over each time step ht of a simula-
tion. For example, suppose that V(t)= V(t)e ' ', with
V(t) a slowly varying function of time. If V is not too
strong, (21}implies that c„(t}will also be slowly varying.
Integration of (21}over one time step then gives

c„(t,+b t) =c„(t,) QV—„(t,)c (t, )
m

Xe '(e' " '—1)/iit'b, to, (24)

a+k
iA =H' % k, H'=—S '-H .

at

(29)

(30}

This time-dependent Schrodinger equation can again be
solved using the interaction picture (5) and (21), and the
ion motion can be calculated from the generalized
Hellmann-Feynman theorem

~ t aH a Urep
MX = —gn„%'k aX axk

S 'Hax'

(31)

where X is any ion coordinate. In an orthogonal tight-
binding model, with S=1, the second term vanishes.
Equation (31) is very similar to the Hellmann-Feynman
theorem for ground-state tight-binding molecular dynam-
ics. ' The only difference is that the wave functions
%k(t} can correspond to electrons in excited states or un-

dergoing transitions. This is, however, a very big
difference, since excited-state chemistry is very different
from ground-state chemistry. ' For example, when an
electron in a molecule is promoted from a bonding to an
antibonding state, the interatomic forces can change from
attractive to repulsive, and the molecule may dissociate.
Absorption and stimulated emission of radiation can be
included in a tight-binding simulation by adding a term
H,„, to (30). In the dipole approximation, H,„, involves
matrix elements (a~x~b ), and these can be treated as pa-
rameters like H, b and S,b.

A classical description of the radiation field and ion
motion does not include spontaneous emission of photons
and phonons. Perhaps one can also simulate the quan-
tum fluctuations that give rise to spontaneous emission,
by adding appropriate stochastic perturbations.

In summary, we have introduced a technique for simul-
taneously treating the dynamics of electrons and ions.
There are actually three versions: The simplest assumes a
tight-binding model, in which the electron Hamiltonian
depends only on the ion positions and applied fields.
Then our approach differs from ground-state tight-
binding molecular dynamics ' only in that the elec-
trons are in excited states and undergoing transitions,
and this is reflected in the generalized Hellmann-
Feynman theorem (31}. The next level is first-principles
calculations with a ground-state Hamiltonian, but with
the electrons in excited states. Finally, there is the level
at which the Hamiltonian is computed self-consistently
with the electrons in excited states. The present tech-
nique thus provides several choices for simulating the
excited-state properties of molecules and materials.

with the Hamiltonian matrix H and overlap matrix S as-
sumed to depend only on the ion coordinates X& (and
a=x,y, z). We also require that the action I = J L dt be
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