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Recently Rammal et aI. investigated the upper critical field H, 2 for various superconducting
networks and proposed the formula H,*q = —,

'
dbbu/ttg (T)l =dH, ($"'"1 (with d the spatial dimension

of the network) as the universal limiting behavior of H,*2(T) as T T,u, H 2 0. We demon-
strate with several examples that this is not true for networks with low point-group symmetry.
We then propose that the above universal formula be changed to an inequality H,*2)2H,($"'"i,

which reduces to an equality for two-dimensional networks with an n-fold rotational symmetry
with n) 3. For three-dimensional networks H 2/H, ~$"'"i 3 if the network has a cubic symmetry.
Otherwise we find that the ratio can be larger or smaller than 3.

Recently, Rammal, Lubensky, and Toulouse' investi-
gated the upper critical field H,'2 as a function of the tem-
perature T [or, equivalently, the inverse function T,*2(H)]
for many finite and infinite superconducting networks; in
particular, for infinite periodic networks, they proposed the
formula

(7.) dH (bulk) (7-) (1)
2 tr&'(T)

as the universal behavior of H, 2(T) in the continuum lim-
it, i.e., as T T,o and H, 2 0. In the above, d is the di-
mension of the network, g(T) is the temperature-
dependent Ginzburg-Landau coherence length of the su-
perconducting wires forming the network, H, 2"'" is the
upper critical field of the corresponding bulk material [i.e. ,
of the same g(T) l, and T,u is the superconducting transi-
tion temperature of the material at zero applied field.
They checked Eq. (1) against two-dimensional square, tri-
angular, and honeycomb lattices and three-dimensional
simple cubic and centered cubic lattices, and then suggest-
ed that Eq. (1) is universally valid.

H 2 (7 ) ) 2H (2b" ")(T) (2)

which reduces to an equality for two-dimensional networks
with an n-fold rotational symmetry with n ~ 3. For
three-dimensional networks we find H,'q/H, 2"'" =3 if the
network has a cubic symmetry. Otherwise, we find that
this ratio can be larger or smaller than 3 (but still not less
than 2).

The first example we will discuss is a two-dimensional
rectangular network with side lengths a and b (along the x
and y directions, respectively, by definition) for each unit
cell. Denoting the value of the superconducting order pa-
rameter at the node located at r„~ —=nae„+mbe~ as h„~,
we obtain the following diA'erence equation by the same
procedure as used in Refs. 1 and 2:

The purposes of this report are (1) to demonstrate with
several examples (each containing at least one free param-
eter and therefore actually corresponding to a family of
examples) that Eq. (1) is not true for networks with low
point-group symmetry and (2) to propose that this equa-
tion be replaced by an inequality

A„~~ie' " '+6„—ie
' " ' —2h„~cos[b/g(T)] 6„+i +d,„—i

—2h„icos[a/g(T)]
g(T) sin [b/g(T) ] g (T)sin [a/&(T) ]

(3)

where @0—=hc/2e is the flux quantum, +=Hah is the flux through each unit cell, and we have assumed the Landau gauge
A=(O, Hx, O). Taking the continuum limit T T„,H 0, when &«&p and (a and b)«[g(T) and (H=(2eH/
hc) '/ ], Eq. (3) reduces to the dilTerential equation

82 2

a 5+b +i 5+ 8=0 . (4)
tly (H2 g~(T)

This equation may be solved with the transformation x = (a/b) '/ x',y = (b/a) '/ y ', giving
r

(5)
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i2~(2n+ m+ 1/2)+/+p+
~n, m+1e +~n, m-1e

g(T) sin [b/((T) ]
i2n(2n+m —l/2)+/+u+ i 2—n(2n+m + l/2)%/u)u

~n —1,m+1e ~n+1,m —1e ~n, m cos&

((T)sin [b/( (T)]
+a„ i

—2a„cos[a/&(T) l+ 0. 6
g(T)sin[a/((T)]

—i n n m — 2 &bbu 2~ [b/((T)]

In the continuum limit it reduces to the differential equation
IF 2 2

8 6
b

8 . (bcos8 —g'sin8)sin8
b

r) . ())cos8 —rl'sin8)sin8 a+2b
(7)

4k 877 4k g'(T)
where b =xcos8+ysin8, ('= —xsin8+ycos8, rl= —xcos8+ysin8, and rl'=xsin8+ycos8. After expressing |I/8( and
|)/Br) in terms of tl/Bx and (1/8y, this equation becomes

2
' 2

cos8(1+cos8) 2d+sin 8 +t8 . 2 p) . x (s)
BX tly 4k

+ 1+cosO
g'(T)

I

crossing at the centers of the squares), and found that Eq.
(1) holds for this case.

Our third example is a square lattice with the cross-
sectional areas of the horizontal strands Sl being, in gen-
eral, different from those of the vertical strands S2. For
such networks the de Gennes boundary condition [i.e., Eq
(2) of Ref. 1; cf. also, Eq. (2.6) of Ref. 2] must be general-
ized to

The solution of this equation gives

H,'2/HA"'" [cos8(1 —cos8) ]

which again ranges between 2 and ~. Of particular in-
terest are the following special cases: (i) 8-60', corre-
sponding to a equilateral triangular lattice, for which the
right-hand side of Eq. (9) becomes 2, and (ii) 8-45', cor-
responding to a square lattice with one set of parallel diag-
onals (say, all from a lower left corner to an upper right
corner) added in. For this case the right-hand side of Eq.
(9) is equal to [2(42+ I)]'/ =2.197. This case may also
be verified directly without introducing the ( and rl vari-
ables. We have also worked out the case when both sets of
parallel diagonals are added to a square lattice (without

l

S2[h„~le '+4„—le ' —2d,„cos[a/g(T)]J

gs, i, + ~(I) e, (I)~, .=o
I ep

(io)

(in the notation of Ref. 1). We thus obtain the difference
equation

+S,[h„, +d,„, —2h„cos[a/((T)]l =0 . (11)

Thus the ratio H,'2/H, 2"'" can take any value between 2 and ~ with the lower bound reached when a -b, i.e., when the
rectangular lattice reduces to a square lattice.

Our second example is a triangular lattice uniaxially compressed (or elongated) along one of the strand directions so
that each triangular cell has two side lengths b and one side length a. Let the angle between a b side and an a side be
denoted as 8, then a 2b cos8. Choosing a coordinate system such that the a sides are along the x axis
and the nodes are located at r„=nae, +mbe~ with e~—=cos8e„+sin8e~, we obtain the difference equation

2

/). +b + '

BX' &y

(12)

In the continuum limit, this equation reduces to essentially
the same equation as Eq. (4) except for the replacement of
a by Sl and b by S2. Thus the solution is just Eq. (5) with
the same replacements, which again satisfies Eq. (2) with
the equality case corresponding to S1 =S2.

In all three examples discussed above we find the system
to behave in the continuum limit like an anisotropic super-
conductor unless the network has an n-fold rotational sym-
metry with n ~ 3, and Eq. (2) reduces to an equality only
when such a symmetry is present.

Finally, we consider one three-dimensional network,
viz. , a three-dimensional simple rectangular network with
side lengths a, b, and c for each unit cell. The applied field
0 is assumed to be along the c sides. The diA'erential
equation in the continuum limit for this case is

2 28 + a+b+c
8z 2 g2(T)

H,* =c2

and the solution is

H (bulk) (i 3)
, Jb Ja v'ab,

which again satisfies Eq. (2). For a b =c, corresponding
to a cubic lattice, the proportionality coefficient reduces to
3, but otherwise it can be larger or smaller than 3.

We have not yet studied any other two- or three-
dimensional periodic networks. However, we believe that
the essential truth in association with the asymptotic be-
havior of H,*2(T) in the limit T T,p has been revealed
by the examples studied; namely, Eq. (1) holds only if the
network has sufficient symmetry to ensure that it behaves
as an isotropic superconductor in the continuum limit. In
two-dimensional networks this requires the existence of
two equivalent directions that are not collinear. In three-
dimensional networks, this requires the existence of three
equivalent directions that are not coplanar. Otherwise, the
system acts as an anisotropic superconductor in the contin-
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uum limit, and Eq. (1) must be replaced by a proper in-
equality, viz. , Eq. (2) without the equal sign.

In conclusion, we have shown in this work that infinite
two- (or three-) dimensional periodic superconducting net-
works in the "continuum limit, " i.e., when the longest
strand in the network becomes much shorter than the
Ginzburg-Landau coherence length, do not simply reduce
to a genuinely continuous superconducting film (or bulk).
In particular, a continuous superconducting film or bulk
will automaticaly be isotropic if the underlying supercon-
ducting material is isotropic, whereas a superconducting
network made with isotropic material will, according to
the results of this analysis, be generally anisotropic unless
there is sufficient symmetry in the network geometry to
dictate otherwise. Of course, this whole analysis is based
on a mean-field approach and the de Gennes boundary

condition [i.e., Eq. (10)], so if there is anything wrong
with the use of this approach, our results would be ques-
tionable. This possibility, however, is deemed unlikely
since the approach has already enjoyed enormous success
in explaining the rather complex features in the upper crit-
ical field measurements on superconducting networks in
Ref. 3. It is therefore urged that experimentalists put our
results to critical tests in order to ultimately confirm (or
deny) our prediction. If it is confirmed, we would have a
controllable way of tailoring the anisotropy properties of a
superconductor which could have some practical useful-
ness.
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