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Nuclear symmetry potential in the relativistic impulse approximation
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Using the relativistic impulse approximation with the Love-Franey NN scattering amplitude developed by
Murdock and Horowitz, we investigate the low-energy (100 � Ekin � 400 MeV) behavior of the nucleon Dirac
optical potential, the Schrödinger-equivalent potential, and the nuclear symmetry potential in isospin asymmetric
nuclear matter. We find that the nuclear symmetry potential at fixed baryon density decreases with increasing
nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to
negative values at nucleon kinetic energy of about 200 MeV. Furthermore, the obtained energy and density
dependence of the nuclear symmetry potential is consistent with those of the isospin- and momentum-dependent
MDI interaction with x = 0, which has been found to describe reasonably well both the isospin diffusion data
from heavy-ion collisions and the empirical neutron-skin thickness of 208Pb.
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I. INTRODUCTION

The energy dependence of the nuclear symmetry potential,
i.e., the isovector part of nucleon mean-field potential in
asymmetric nuclear matter, has recently attracted much at-
tention [1–19]. Its knowledge together with that of the density
dependence of the nuclear symmetry energy are important
for understanding not only the structure of radioactive nuclei
and the reaction dynamics induced by rare isotopes but also
many critical issues in astrophysics [20,21]. Various micro-
scopic and phenomenological models, such as the relativistic
Dirac-Brueckner-Hartree-Fock (DBHF) [2,8,9,14,16,17,19]
and the non-relativistic Brueckner-Hartree-Fock (BHF) [1,15]
approach, the relativistic mean-field theory based on nucleon-
meson interactions [13], and the nonrelativistic mean-field
theory based on Skyrme-like interactions [3,12], have been
used to study the nuclear symmetry potential, but the predicted
results have varied widely. While most models predict a de-
creasing nuclear symmetry potential with increasing nucleon
momentum, albeit at different rates, a few nuclear effective
interactions used in some of the models lead to an opposite
conclusion.

Using the relativistic Dirac optical potential obtained from
the relativistic impulse approximation (RIA) [22–33] with
the empirical nucleon-nucleon (NN) amplitude calculated by
McNeil, Ray, and Wallace (MRW) [22–24], which works well
for elastic nucleon-nucleus scattering at medium and high
energies (above 500 MeV), three of the present authors [34]
have recently studied the high-energy behavior of the nuclear
symmetry potential in asymmetric nuclear matter. It was found
that for nucleons at high energies, the symmetry potential
at fixed baryon density is essentially constant and slightly
negative below nuclear densities of about ρ = 0.22 fm−3, but
it increases almost linearly to positive values at high densities.

A nice feature of RIA is that it permits very little
phenomenological freedom in deriving the nucleon Dirac
optical potential in nuclear matter. The basic ingredients in

this method are the free NN invariant scattering amplitude and
the nuclear scalar and vector densities in nuclear matter. This is
in contrast to the relativistic DBHF approach, where different
approximation schemes and methods have been introduced for
determining the Lorentz and isovector structure of the nucleon
self-energy [2,8,9,14,16,17,19]. However, the original RIA of
MRW failed to describe spin observables at laboratory energies
lower than 500 MeV [35], and its predicted oscillations in
the analyzing power in proton-Pb scattering at large angles
were also in sharp disagreement with experimental data [36].
These shortcomings are largely due to the implicit dynamical
assumptions about the relativistic NN interaction in the form
of the Lorentz covariance [37] and the somewhat awkward
behavior under the interchange of two particles [28] as well
as the omitted medium modification due to the Pauli blocking
effect. To solve these theoretical limitations at lower energies,
Murdock and Horowitz (MH) [28,29] extended the original
RIA to take into account the following three improvements:
(i) an explicit exchange contribution was introduced by fitting
to the relativistic NN scattering amplitude, (ii) a pseudovector
coupling rather than a pseudoscalar coupling was used for the
pion, and (iii) a medium modification from the Pauli blocking
was included. With these improvements, the RIA with free NN
scattering amplitude was then able to successfully reproduce
the measured analyzing power and spin rotation function for
all considered closed-shell nuclei in proton scattering near
200 MeV. Particularly, the medium modification due to the
Pauli blocking effect was found to be essential in describing
the spin rotation function for 208Pb at the proton energy of
290 MeV [29].

Extending our previous work by using the generalized RIA
of MH and the nuclear scalar and vector densities from the
relativistic mean-field theory, we study in the present paper the
low-energy (100 � Ekin � 400 MeV) behavior of the nucleon
Dirac optical potential, the Schrödinger-equivalent potential,
and the nuclear symmetry potential in isospin asymmetric
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nuclear matter. We find that for low-energy nucleons, the
nuclear symmetry potential at fixed nuclear density decreases
with increasing nucleon energy. In particular, the nuclear
symmetry potential at saturation density changes from positive
to negative values at a nucleon kinetic energy of around
200 MeV. The resulting energy and density dependence
of the nuclear symmetry potential is further found to be
consistent with the isospin- and momentum-dependent MDI
interaction with x = 0 [3,10], which has been constrained
by the isospin diffusion data in heavy-ion collisions and
the empirical neutron-skin thickness of 208Pb [10,11,38,39].
Our results thus provide an important consistency check for
the energy dependence of the nuclear symmetry potential in
asymmetric nuclear matter.

The paper is organized as follows. In Sec. II, we briefly
review the generalized relativistic impulse approximation
for the nuclear optical potential. Results on the relativistic
nuclear optical potential, the resulting Schrödinger-equivalent
potential, and the nuclear symmetry potential in asymmetric
nuclear matter are presented in Sec. III. A summary is given
in Sec. IV.

II. THE THEORETICAL METHOD

A. The relativistic impulse approximation to the
Dirac optical potential

In the RIA, the momentum-space optical potential in a spin
saturated nucleus is given by

Ũ (q) = −4πiplab

M
[FS(q)ρ̃S(q) + γ0FV (q)ρ̃V (q)], (1)

where FS and FV are, respectively, the scalar and the zeroth
component of the vector NN scattering amplitude; ρ̃S(q) and
ρ̃V (q) are corresponding momentum-space nuclear densities;
plab and M are, respectively, the laboratory momentum and
mass of an incident nucleon; γ0 is a Dirac γ matrix; and
q is the momentum transfer. The optical potential in the
coordinator space is given by the Fourier transformation of
Ũ (q). In infinite nuclear matter, the nuclear coordinate-space
Dirac optical potential takes the simple form [23,34]

U = −4πiplab

M
[FS0ρS + γ0FV 0ρV ], (2)

where FS0 ≡ FS(q = 0) and FV 0 ≡ FV (q = 0) are the NN for-
ward scattering amplitudes, while ρS and ρV are, respectively,
the spatial scalar and vector densities of an infinite nuclear
matter.

The Dirac optical potential in Eq. (2) is valid for nucleons at
high energies. With decreasing nucleon energy, medium mod-
ification due to the Pauli blocking effect becomes important.
As described in detail in Ref. [29], the Dirac optical potential
including the Pauli blocking effect can be written as

Uopt =
[

1 − ai(Ekin)

(
ρB

ρ0

)2/3
]

U, (3)

where ρB is the nuclear baryon density and ρ0 = 0.1934 fm−3.
The parameters ai(Ekin) denote the Pauli blocking factors
for each energy Ekin and are given in Table II of Ref. [29].
Although there are still many open questions on the role

of medium modification [29], the ρ
2/3
B density dependence

of the Pauli blocking factor is consistent with the phase-
space consideration for isotropic scattering [40]. For nucleon
scattering in isospin asymmetric nuclear matter, the Pauli
blocking effect becomes different for protons and neutrons.
Following Ref. [40], we introduce an isospin-dependent Pauli
blocking factor and obtain the following different Dirac optical
potentials for protons and neutrons:

U
n(p)
opt =

{
1 − ai(Ekin)

[
(2ρn(p))2/3 + 0.4(2ρp(n))2/3

1.4ρ
2/3
0

]}
Un(p).

(4)

Obviously, Eq. (4) reduces to Eq. (3) in symmetric nuclear
matter with ρn = ρp.

B. Nuclear scalar densities

To evaluate the Dirac optical potential for nucleons in RIA,
we need to know the nuclear scalar and vector densities. They
can be determined from the relativistic mean-field (RMF)
model [41]. Currently, there are many different versions for the
RMF model, including mainly the nonlinear models [41–43],
models with density-dependent meson-nucleon couplings
[44–47], and point-coupling models [48–52]. As in Ref. [34],
we use in the present work the nonlinear RMF model with
a Lagrangian density that includes the nucleon field ψ , the
isoscalar-scalar meson field σ , the isoscalar-vector meson field
ω, the isovector-vector meson field ρ, and the isovector-scalar
meson field δ, i.e.,

L(ψ, σ, ω, ρ, δ) = ψ̄[γµ(i∂µ − gωωµ) − (M − gσσ )]ψ

+ 1
2

(
∂µσ∂µσ − m2

σ σ 2
) − 1

4ωµνω
µν

+ 1
2m2

ωωµωµ − 1
3bσ M(gσσ )3

− 1
4cσ (gσσ )4 + 1

4cω

(
g2

ωωµωµ
)2

+ 1
2

(
∂µδ∂µδ − m2

δδ
2
) + 1

2m2
ρρµ.ρµ

− 1
4ρµν.ρ

µν + 1
2

(
g2

ρρµ.ρµ
)

× (

Sg

2
σ σ 2 + 
V g2

ωωµωµ
)

− gρρµψ̄γ µτψ + gδδψ̄τψ, (5)

where the antisymmetric field tensors ωµν and ρµν are given by
ωµν ≡ ∂νωµ − ∂µων and ρµν ≡ ∂νρµ − ∂µρν , respectively,
and the symbols used in Eq. (5) have their usual meanings.
The above Lagrangian density is quite general in the nonlinear
RMF model and allows us to use many presently popular
parameter sets.

In Ref. [34], three typical parameter sets were used to
evaluate the scalar densities of neutrons and protons in
asymmetric nuclear matter, and they are the very successful
NL3 model [53], the Z271v model, and the HA model. The
Z271v model has been used to study the neutron skin of
heavy nuclei and the properties of neutron stars [54], while
the HA model includes the isovector-scalar meson field δ

and fits successfully some results calculated with the more
microscopic DBHF approach [55]. As shown in Ref. [34], the
scalar densities of neutrons and protons in asymmetric nuclear
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matter obtained from these three parameter sets are similar at
low baryon densities but become different for ρB >∼ 0.25 fm−3,
with Z271v giving a larger and NL3 a smaller scalar density
than that from the parameter set HA. For ρB <∼ 0.25 fm−3,
the proton and neutron scalar densities from these three RMF
models are also consistent with those from the RMF model
with density-dependent meson-nucleon couplings [47]. The
real and imaginary parts of the scalar potential at higher
densities (ρB >∼ 0.25 fm−3) thus depend on the interactions
used in evaluating the nuclear scalar density and have,
therefore, large uncertainties. In the present work, we only use
the HA parameter set and focus on nuclear densities smaller
than ρB <∼ 0.25 fm−3 where the scalar densities of neutrons
and protons in asymmetric nuclear matter are essentially
independent of the model parameters.

C. Nuclear symmetry potential

In the Dirac spinor space of the projectile nucleon, the
optical potential Uopt is a 4 × 4 matrix and can be expressed
in terms of a scalar U tot

S and a vector U tot
0 piece:

Uopt = U tot
S + γ0U

tot
0 . (6)

Expressing U tot
S and U tot

0 in terms of their real and imaginary
parts, i.e.,

U tot
S = US + iWS, U tot

0 = U0 + iW0, (7)

a Schrödinger-equivalent potential (SEP) can be obtained from
the Dirac optical potential [56,57]:

USEP = U tot
S + U tot

0 + 1

2M

(
U tot 2

S − U tot 2
0

) + U tot
0

M
Ekin. (8)

We note that solving the Schrödinger equation with the SEP
gives the same bound-state energy eigenvalues and elastic
phase shifts as the solution of the upper component of the
Dirac spinor in the Dirac equation using the corresponding
Dirac optical potential.

The real part of SEP is then given by

Re(USEP) = US + U0 + 1

2M

[
U 2

S − W 2
S − (

U 2
0 − W 2

0

)]
+ U0

M
Ekin. (9)

The above equation corresponds to the nuclear mean-field
potential in nonrelativistic models [16,58] and allows us to
obtain the following nuclear symmetry potential, i.e., the
so-called Lane potential [59],

Usym = Re(USEP)n − Re(USEP)p
2α

, (10)

where Re(USEP)n and Re(USEP)p are, respectively, the real part
of SEP for neutrons and protons. The isospin asymmetry α is
defined as α = ρn−ρp

ρn+ρp
with ρn and ρp denoting the neutron and

proton densities, respectively.

FIG. 1. (Color online) The scalar and vector parts of the free NN
forward scattering amplitudes F

pp

S0 , F
np

S0 , F
pp

V 0 , and F
np

V 0 at nucleon
kinetic energies Ekin = 135, 200, 300, and 400 MeV (open squares)
from the RIA of MH. Dashed lines show polynomial fits to the energy
dependence of the NN scattering amplitude. Corresponding results
from the original RIA of MRW are shown by solid squares and lines.

III. RESULTS

A. Relativistic NN scattering amplitude

Based on the generalized RIA of MH with the Love-Franey
NN scattering amplitudes [60], we have evaluated the scalar
and vector parts of the NN forward scattering amplitudes
F

pp

S0 , F
np

S0 , F
pp

V 0 , and F
np

V 0 at nucleon kinetic energies Ekin =
135, 200, 300, and 400 MeV for which the parameters can
be found explicitly in Refs. [28,29]; the resulting values are
shown by open squares in Fig. 1. To obtain continuous and
smooth results for the NN scattering amplitude and other
quantities in the following, we made polynomial fits to the
energy dependence of the NN scattering amplitude, and the
results are shown by dashed lines in Fig. 1. For comparison,
we also include corresponding results from the original RIA of
MRW. It is seen that for both proton-proton and proton-neutron
scattering, the real parts of corresponding amplitudes in the two
approaches are in good agreement with each other. However,
for the imaginary parts of the amplitudes, the strength of the
scalar and vector amplitudes from the RIA of MH displays
much weaker energy dependence for both proton-proton and
proton-neutron scattering at the energies Ekin � 300 MeV.
Since the imaginary part of the amplitude just corresponds
to the real part of the Dirac optical potential as shown in
Eq. (2), the above differences between the original RIA of
MRW and the generalized RIA of MH thus lead to different
behavior of the Dirac optical potential at low energies.

B. Relativistic Dirac optical potential

With free NN forward scattering amplitudes of MH and
MRW as well as the neutron and proton scalar and vector
densities obtained from the RMF theory with the parameter
set HA, we have investigated the real and imaginary parts of
the scalar and vector Dirac optical potentials for nucleons in
symmetric nuclear matter as functions of nucleon energy. In
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(a) (b) (c)

FIG. 2. (Color online) Energy dependence of the real and imag-
inary parts of the scalar and vector optical potentials in symmetric
nuclear matter for different baryon densities ρB , with MH and MRW
scattering amplitudes.

Fig. 2, the energy dependence of the Dirac optical potential
is depicted at three nucleon densities ρB = 0.08, 0.16, and
0.24 fm−3. In each panel, we give the scalar and vector optical
potentials based on the generalized amplitudes of MH and the
original amplitudes of MRW. In calculating the Dirac optical
potential from the RIA of MH, we included the Pauli blocking
effect as well as the modifications from using the pseudovector
coupling for pion and the exchange term contribution. For all
considered densities, the energy dependence of the scalar and
vector optical potentials from the RIA of MH are significantly
reduced compared with those from the original RIA of MRW,
especially for the real part at low energies. Furthermore, the
difference between the two becomes larger with increasing
density. These results thus demonstrate clearly the importance
of the medium modifications introduced in the RIA of MH
for nucleons at low energies. We also note that for all three
considered densities, the RIA of MH generates, on the other
hand, a similar systematic difference or isospin splitting
in the Dirac optical potentials for protons and neutrons in
asymmetric nuclear matter as in the original RIA of MRW [34].
In particular, the neutron exhibits stronger real but weaker
imaginary scalar and vector potentials in neutron-rich nuclear
matter.

C. Schrödinger-equivalent optical potential

Before discussing the nuclear symmetry potential, we first
show in Fig. 3 the real part of the nucleon Schrödinger-
equivalent potential in symmetric nuclear matter at normal
density obtained from the above Dirac optical potential.
Because of uncertainties in the medium modification due to
the Pauli blocking effect at low energies, results both with
and without Pauli blocking corrections based on the MH
free NN scattering amplitudes are shown. For comparison, we
also show the real part of the nucleon Schrödinger-equivalent
potential from the original RIA of MRW, which is seen
to be always positive at the considered energy range of
Ekin = 100 ∼ 400 MeV. Including the pseudovector coupling

FIG. 3. (Color online) Energy dependence of the real part for
the nucleon Schrödinger-equivalent potential at normal density in
symmetric nuclear matter, from the original RIA of MRW and from
the RIA of MH with and without Pauli blocking correction.

and exchange term corrections in the RIA of MH (dashed
line), the behavior of the resulting Schrödinger-equivalent
potential as a function of energy is significantly improved,
varying from −27 MeV at Ekin = 100 MeV to 0 MeV at
Ekin ≈ 200 MeV and then continues to increase monotonously
as the nucleon energy increases. This improvement is due to
the fact that the pseudovector coupling and exchange term
corrections lead to a smaller strength of the imaginary scalar
and vector NN forward scattering amplitudes while keeping
their sum roughly unchanged as shown in Fig. 1. From
Eq. (2), therefore, the term US + U0 does not change while
the last two terms in Eq. (9) are reduced strongly and thus
a smaller Schrödinger-equivalent potential is obtained. When
the Pauli blocking effect is further taken into account, the
resulting Schrödinger-equivalent potential is seen to be more
attractive at the whole energy range considered here. At high
enough energy, the Schrödinger-equivalent potentials from the
above three approaches become similar as expected since
effects from both Pauli blocking and exchange contribution
play minor roles at high energies.

We note that with momentum/energy-independent scalar
and vector potentials from the RMF calculation, the nucleon
Schrödinger-equivalent potential in symmetric nuclear matter
at normal nuclear density already exhibits a linear energy
dependence according to Eq. (9), with a change from negative
to positive values typically at kinetic energies between about
200 and 500 MeV depending on the model parameters [61].
Experimental data from the global relativistic optical-model
analysis also indicate that the nucleon Schrödinger-equivalent
potential in symmetric nuclear matter at normal nuclear density
changes from negative to positive values around 200 MeV,
although with large uncertainties, as mentioned in Ref. [61].

D. Nuclear symmetry potential

For the nuclear symmetry potential based on the scattering
amplitudes of MH, we show in Fig. 4 its energy dependence
for both cases of using isospin-dependent [Eq. (4)] and
isospin-independent Pauli blocking [Eq. (3)] corrections at
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(a)

(b)

(c)

FIG. 4. (Color online) Energy dependence of the nuclear sym-
metry potential from the RIA of MH with isospin-dependent (open
squares) and isospin-independent (solid squares) Pauli blocking
corrections, as well as the phenomenological MDI interaction with
x = 1, 0, and −1 at three fixed baryon densities.

fixed baryon densities of ρB = 0.08, 0.16, and 0.24 fm−3. Also
shown are results from the phenomenological parametrization
of the isospin- and momentum-dependent nuclear mean-field
potential, i.e., the MDI interaction with x = −1, 0, and 1,
which has recently been extensively used in the transport
model for studying isospin effects in intermediate-energy
heavy-ion collisions induced by neutron-rich nuclei [5,6,10,11,
62–65]. In the MDI interaction, the single nucleon potential
in asymmetric nuclear matter with isospin asymmetry α is
expressed by [3,5,6,10,11]

U (ρ, α, p, τ, r) =
(

−95.98 − x
2B

σ + 1

)
ρτ ′

ρ0

+
(

−120.57 + x
2B

σ + 1

)
ρτ

ρ0

+B

(
ρ

ρ0

)σ

(1 − xα2)

− 8τx
B

σ + 1

ρσ−1

ρσ
0

αρτ ′ + 2Cτ,τ

ρ0

×
∫

d3p′ fτ (r, p′)
1 + (p − p′)2/
2

+ 2Cτ,τ ′

ρ0

×
∫

d3p′ fτ ′(r, p′)
1 + (p − p′)2/
2

. (11)

In this equation, τ = 1/2 (−1/2) for neutrons (protons)
and τ �= τ ′; σ = 4/3; and fτ (r, p) is the phase-space dis-
tribution function at coordinate r and momentum p. The
parameters B,Cτ,τ , Cτ,τ ′ , and 
 are determined by fitting the
momentum dependence of U (ρ, α, p, τ, r) to that predicted

by the Gogny-Hartree-Fock and/or the Brueckner-Hartree-
Fock (BHF) calculations [1], the saturation properties of
symmetric nuclear matter, and the symmetry energy of
31.6 MeV at normal nuclear matter density ρ0 = 0.16 fm−3

[3]. The incompressibility K0 of symmetric nuclear matter at
ρ0 is set to be 211 MeV. The different x values in the MDI
interaction are introduced to vary the density dependence of
the nuclear symmetry energy while keeping other properties
of the nuclear equation of state fixed [10]. We note that the
energy dependence of the symmetry potential from the MDI
interaction is consistent with the empirical Lane potential at
normal nuclear matter density and low nucleon energies [4].

It is seen from Fig. 4 that at fixed baryon density,
the nuclear symmetry potential generally decreases with
increasing nucleon energy. At low nuclear density (ρB = 0.08
fm−3), the symmetry potentials from the RIA of MH with
isospin-dependent and isospin-independent Pauli blocking
corrections are almost the same, especially at energies higher
than Ekin � 300 MeV, where the Pauli blocking correction
is expected to be unimportant. The isospin dependence of
the Pauli blocking effect, however, becomes stronger as
nuclear density increases, and an appreciable difference in
the resulting symmetry potentials is seen. The difference
disappears, though, for high-energy nucleons when the Pauli
blocking effect becomes negligible. It is interesting to note that
at normal density (ρB = 0.16 fm−3), the nuclear symmetry
potential changes from positive to negative values at nucleon
kinetic energy around 200 MeV, with the one using the
isospin-dependent Pauli blocking correction at a somewhat
lower energy than that using the isospin-independent Pauli
blocking correction. Comparing with results from the MDI
interaction, the one with x = 0 is seen in surprisingly good
agreement with the results of RIA by MH in the region of
nuclear densities and energies considered here. Although the
MDI interaction with different x values give by construction
the same symmetry potential at normal nuclear matter density
as shown in Fig. 4(b), the one with x = 0 has been found to give
reasonable descriptions of the data on the isospin diffusion in
intermediate energy heavy-ion collisions and the neutron-skin
thickness of 208Pb [10,11,38,39].

The density dependence of the nuclear symmetry
potential with isospin-dependent and isospin-independent
Pauli blocking corrections at nucleon kinetic energies of
100, 200, 300, 400 MeV are shown in Fig. 5 together with cor-
responding results from the MDI interaction with x = −1, 0,
and 1. It is clearly seen that the nuclear symmetry potentials
are always positive at lower nucleon kinetic energy of
Ekin = 100 MeV while it may become positive or negative
at Ekin = 200 MeV depending on whether the Pauli block-
ing effect is isospin dependent or not. At higher energies
(Ekin = 300 and 400 MeV), the nuclear symmetry potential
is always negative in the density region considered here.
These features are consistent with the results shown in
Fig. 4. Compared with results from the MDI interaction,
it is seen that the nuclear symmetry potential from the
generalized RIA of MH reproduces nicely the results obtained
from the MDI interaction with x = 0 when ρB <∼ 0.2 fm−3

even for nucleon kinetic energy as high as 400 MeV. Moreover,
in the energy region of Ekin = 100 ∼ 300 MeV, the nuclear
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FIG. 5. (Color online) Density dependence of the nuclear sym-
metry potential using RIA with isospin-dependent and isospin-
independent Pauli blocking, as well as the results from the phe-
nomenological interaction MDI with x = −1, 0, and 1 at four nucleon
kinetic energies.

symmetry potential from MDI interaction with x = 0 always
lies between the results from the RIA of MH with isospin-
dependent and isospin-independent Pauli blocking corrections.
On the other hand, the MDI interaction with both x = −1 and
1 display very different density dependence from the results
using the RIA of MH.

IV. SUMMARY

Based on the generalized relativistic impulse approximation
of MH and the scalar and vector densities from the relativistic
mean-field theory with the parameter set HA, we have studied
the low-energy behavior of the nuclear symmetry potential
in asymmetric nuclear matter. In the relativistic impulse
approximation of MH, the low-energy behavior of the Dirac
optical potential has been significantly improved by including
the pseudovector coupling for pion, exchange contribution, and
medium modification caused by the Pauli blocking effect. We
find that compared with results from the original RIA of MRW,
the generalized RIA of MH gives essentially identical real parts
of the scalar and vector amplitudes for both proton-proton and
neutron-proton scattering but significantly reduced strength in
their imaginary parts at low energies Ekin � 300 MeV. These
improvements in the RIA of MH modify the real scalar and
vector Dirac optical potentials at lower energies and make
the resulting energy dependence of the Schrödinger-equivalent
potential and nuclear symmetry potential more reasonable.

At saturation density, the nuclear symmetry potential
is found to change from positive to negative values at a
nucleon kinetic energy of about 200 MeV. This is a very
interesting result as it implies that the proton (neutron) feels an
attractive (repulsive) symmetry potential at lower energies but
a repulsive (attractive) symmetry potential at higher energies in
asymmetric nuclear matter. Adding also the repulsive Coulomb
potential, a high-energy proton in asymmetric nuclear matter
thus feels a very stronger repulsive potential. This behavior of
the nuclear symmetry potential can be studied in intermediate-
and high-energy heavy-ion collisions that are induced by
radioactive nuclei, e.g., by measuring two-nucleon correlation
functions [66] and light cluster production [67] in these
collisions.

Comparing the energy and density dependence of the
nuclear symmetry potential from the RIA of MH with that
from the MDI interaction indicates that results from the MDI
interaction with x = 0 are in good agreement with those from
the RIA of MH. For baryon density less than 0.25 fm−3 and
nucleon energy less than 400 MeV as considered in the present
work, the nuclear symmetry potential from the MDI interaction
with x = 0 lies approximately between the two results from the
RIA of MH with isospin-dependent and isospin-independent
Pauli blocking corrections. This provides strong evidence for
the validity of the MDI interaction with x = 0 in describing
both the isospin diffusion data in intermediate-energy heavy-
ion collisions and the neutron-skin thickness data for 208Pb.

The results presented in the present work thus provide
an important consistency check for the energy/momentum
dependence of the nuclear symmetry potential in asymmetric
nuclear matter, particularly the MDI interaction with x = 0,
which is an essential input to the isospin-dependent transport
model [5,11,13] in studying heavy-ion collisions induced by
radioactive nuclei at intermediate energies. They will also
be useful in future studies that extend the Lorentz-covariant
transport model [68,69] to include explicitly the isospin
degrees of freedom.
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