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Based on the phase-space information obtained from a multiphase transport model within the string-melting
scenario for strange and antistrange quarks, we study the yields and transverse-momentum spectra of φ mesons
and � (�− + �̄+) baryons and their anisotropic flows in Au + Au collisions at RHIC using a dynamical quark
coalescence model that includes the effect from quark phase-space distributions inside hadrons. With current
quark masses and fixing the φ and � radii from fitting measured yields, we first study the ratio of the yield of
� baryons to that of φ mesons as well as their elliptic and fourth-order flows as functions of their transverse
momentum. How the elliptic and fourth-order flows of φ mesons and � baryons are related to those of strange
and antistrange quarks is then examined. The dependence of these results on φ and � radii as well as on the
strange quark mass is also studied.
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I. INTRODUCTION

Recently, there has been a lot of interest in using the
quark coalescence or recombination model to understand the
experimental data from heavy-ion collisions at the Relativistic
Heavy Ion Collider (RHIC). As shown in Refs. [1–4], the quark
coalescence model can explain successfully the observed
anomalously large enhancement of baryon to meson ratio at
intermediate transverse momenta and scaling of the elliptic
flow of identified hadrons according to their valence quark
numbers. Most of these applications of the quark coalescence
model were based on a simple momentum-space coalescence
in which only quarks with the same momentum can coalesce
into hadrons. Also, the phase-space information of quarks
in the partonic matter produced in relativistic heavy-ion
collisions is usually taken from a schematic fireball model.
Although the fireball model was still used in Ref. [1], the effect
from quark momentum spread and spatial distribution inside
hadrons was included in calculating the probabilities for quarks
to coalesce to hadrons. Only in Ref. [5] was the coalescence
probability calculated also with quark phase-space information
from a dynamical parton cascade model. Results from such a
dynamical quark coalescence model indicate that the phase-
space structure of quarks at freeze-out plays an important role
in hadron production from the quark-gluon plasma (QGP).
These studies were mainly concerned with hadrons that
consist of light quarks and/or heavy charm quarks. In the
present study, we use the dynamical quark coalescence model,
which is based on the quark phase-space information from a
multiphase transport (AMPT) model within the string-melting
scenario and includes the quark structure of hadrons, to study
instead the production and anisotropic flow of φ mesons and
� (�− + �̄+) baryons that consist of strange quarks in
Au + Au collisions at RHIC.

The study of φ meson and � baryon production in relativis-
tic heavy-ion collisions is a topic of great interest since one of
the signatures for the QGP produced in relativistic heavy-ion

collisions is enhanced production of hadrons consisting of
strange and/or antistrange quarks. The enhancement occurs
because masses of strange quarks are comparable to the
temperature of the QGP and are thus expected to be abundantly
produced from quark and gluon inelastic scattering once the
QGP is formed in the collisions [6,7]. Since the φ meson carries
hidden strangeness (ss̄) and the � baryon consists of three
valence strange quarks (sss) or antistrange quarks (s̄ s̄ s̄), their
production in heavy-ion collisions would also be enhanced if
the QGP is formed.

Furthermore, anisotropic flows of φ mesons and � baryons
in relativistic heavy-ion collisions are useful for understanding
the collective dynamics of strange quarks in the produced
QGP [8,9]. It is known that anisotropic flows are sensitive to
the properties of dense matter formed during the early stage of
heavy-ion collisions [10–13]. This sensitivity exists not only
in the elliptic flow v2 [14–21] but also in the smaller higher
order anisotropic flows, such as the fourth-order anisotropic
flow v4 [22–29]. Moreover, observed hadron elliptic flows in
heavy-ion collisions at RHIC were found to satisfy the valence
quark number scaling; that is, the elliptic flow per quark is
the same at the same transverse momentum per quark. As
shown in Refs. [1,3,4], such a scaling of hadron elliptic flows
according to their valence quark numbers can be understood
in the quark recombination/coalescence model. Other scaling
relations among hadron anisotropic flows, such as v4(pT ) ∼
v2

2(pT ), have also been observed in experimental data [26,27],
and they have been shown in the quark coalescence model
to relate to similar scaling relations among quark anisotropic
flows [28,29]. Because of their small scattering cross sections
with other hadrons [30–36], φ mesons and � baryons are
little affected by rescattering effects in later hadronic stage
of the collision and are thus expected to provide more direct
information on the properties of the QGP and how they are
produced during hadronization [37–40].

Our study shows that in heavy-ion collisions at RHIC
the ratio of the yield of � baryons to that of φ mesons at
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intermediate transverse momenta is strongly enhanced relative
to that at low transverse momenta, similar to that observed in
the data for the proton to pion ratio. Also, the elliptic flows
v2(pT ) of φ mesons and � baryons follow approximately the
valence quark number scaling. Their valence quark number
scaled elliptic flows deviate, however, strongly from the elliptic
flow of strange and antistrange quarks. For the fourth-order
anisotropic flow v4(pT ), it scales with the square of the elliptic
flow for both φ mesons and � baryons. We have also studied
the dependence of these results on the radii of φ meson and
� baryon as well as on the strange quark mass. For physically
reasonable radii, yields of both φ mesons and � baryons
increase with increasing radii. Their yields eventually decrease
as the radii become unrealistically large. The scaled elliptic
flows of both φ mesons and � baryons increase with increasing
radii and approach that of strange and antistrange quarks
for very large radii as in the naive momentum-space quark
coalescence model. Changing strange and antistrange quark
masses to their constituent quark masses affects significantly
the yields of φ mesons and � baryons but has little effect
on their anisotropic flows. Our results therefore suggest that
both the dynamical phase-space information of partons at
freeze-out and quark structure of hadrons are important for
φ meson and � baryon production in relativistic heavy-ion
collisions. We note that our study based on the dynamical
quark coalescence model for φ meson production and elliptic
flow in relativistic heavy-ion collisions differs from that of
Ref. [8], where φ mesons were reconstructed from the invariant
mass distributions of kaons and antikaons from the AMPT

model.
The paper is organized as follows. In Sec. II, we briefly

review the AMPT model and present detailed information on
the dynamics of quarks and antiquarks (also called partons) in
heavy-ion collisions at RHIC. In Sec. III, the dynamical quark
coalescence model based on parton phase-space distributions
at freeze-out is described for φ meson and � baryon produc-
tion. This also includes the construction of the quark Wigner
phase-space functions inside the φ meson and the � baryon.
The dynamical quark coalescence model is then used in Sec. IV
to study the yields and transverse-momentum spectra as well
as the anisotropic flows of φ mesons and � baryons in Au +
Au collisions at RHIC. In Sec. V, the dependence of these
results on the radii of the φ meson and � baryon is studied.
The effect of change in the strange quark mass is studied in
Sec. VI. Finally, we conclude with a summary in Sec. VII.

II. PARTONIC DYNAMICS IN HEAVY-ION COLLISIONS
AT RHIC

The dynamical quark coalescence model used in the present
study requires the space-time and momentum information of
quarks and antiquarks during hadronization of the produced
QGP in relativistic heavy-ion collisions. In particular, the
dynamics of strange and antistrange quarks are needed for
describing the production of φ mesons and � baryons as well
as their anisotropic flows, and they are taken from the AMPT

model within the string-melting scenario [41].

A. The AMPT model

The AMPT model is a hybrid model that uses minijet
partons from hard processes and strings from soft processes in
the Heavy Ion Jet Interaction Generator (HIJING) model [42]
as the initial conditions for modeling heavy-ion collisions
at ultrarelativistic energies. The time evolution of resulting
minijet partons, which are mostly gluons, is described by
Zhang’s parton cascade (ZPC) [43] model. At present, this
model includes only parton-parton elastic scatterings with
in-medium cross sections derived from the lowest order Born
diagrams and having magnitude and angular distribution fixed
by treating the gluon screening mass as a parameter. After
minijet partons stop interacting, they are combined with their
parent strings, as in the HIJING model with jet quenching, to
fragment into hadrons using the Lund string fragmentation
model as implemented in the PYTHIA program [44]. The
final-state hadronic scatterings are modeled by a relativistic
transport (ART) model [45].

Since the initial energy density in heavy-ion collisions
at RHIC is much larger than the critical energy density at
which the hadronic matter to QGP transition would occur
[46–48], the AMPT model has been extended by converting
initial excited strings into partons [18]. In this string-melting
scenario, hadrons that would have been produced from string
fragmentation are converted instead to their valence quarks
and/or antiquarks. Interactions among these quarks are again
described by the ZPC parton cascade model. Since inelastic
scatterings are at present not included, the resulting partonic
matter consists of only quarks and antiquarks from melted
strings. To take into account the effect of stronger scattering
among gluons if they were present, the scattering cross sections
between quarks and antiquarks are taken to be the same as
those for gluons. These quarks and antiquarks are converted
to hadrons when they stop scattering with other partons. For
a parton cross section of 10 mb, which is used in the present
study, this criterion for hadronization is not too different from
the one based on the condition that the local energy density of
hadronizing partons is at the critical energy density given by
lattice QCD calculations. The transition from partonic matter
to hadronic matter is achieved using a simple coalescence
model, which combines the two nearest quark and antiquark
into mesons and three nearest quarks or antiquarks into
baryons or antibaryons that are close to the invariant mass
of these partons. Details of the AMPT model can be found in
Ref. [41].

In the present study, we use the AMPT model in the
string-melting scenario with the default current quark mass
of 9.9 MeV for the d quark, 5.6 MeV for the u quark, and
199 MeV for the s quark and a constant parton scattering cross
section of 10 mb. We note that using parton scattering cross
sections of 6–10 mb, the AMPT model with string melting
was able to reproduce both the centrality and transverse-
momentum (below 2 GeV/c) dependence of the elliptic flow
[18] and pion interferometry [49] measured in Au + Au
collisions at

√
sNN = 130 GeV at RHIC [50,51] as well as

the measured pT dependence of both v2 and v4 of midrapidity
charged hadrons in the same collision at

√
sNN = 200 GeV

[28].
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FIG. 1. (Color online) Rapidity distributions of strange and
antistrange quarks (s + s̄) as well as light quarks and antiquarks
(u + ū + d + d̄) at freeze-out in Au + Au collisions at

√
sNN =

200 GeV and b = 8 fm.

B. Spectrum of strange and antistrange quarks

We first show in Fig. 1 the rapidity distributions of strange
quarks and antiquarks (s + s̄) as well as light quarks and
antiquarks (u + ū + d + d̄) at freeze-out (i.e., the point when
scattering with other partons stops) in Au + Au collisions at√

sNN = 200 GeV and b = 8 fm. It is seen that the rapidity
density dN/dy at midrapidity is about 94 for strange quarks
and antiquarks and about 770 for light quarks and antiquarks.
Since inelastic partonic scatterings are absent in the present
model, all these quarks and antiquarks are from melted strings
during the initial stage of the collisions.

The transverse-momentum distributions of midrapidity
strange and antistrange quarks as well as light quarks and
antiquarks at freeze-out in the same collision are shown in
Fig. 2. The figure clearly shows a quark mass effect as strange

FIG. 2. (Color online) Transverse-momentum distributions of
midrapidity strange and antistrange quarks (s + s̄) as well as light
quarks and antiquarks (u + ū + d + d̄) at freeze-out in Au + Au
collisions at

√
sNN = 200 GeV and b = 8 fm.

and antistrange quarks display a stiffer transverse-momentum
distribution at low pT compared to that of light quarks and
antiquarks. Fitting the transverse-momentum spectrum by a
Boltzmann distribution, we find that the effective temperature
of the partonic matter at freeze-out is about 161 MeV,
which is consistent with the predicted critical temperature
Tc ≈ 150–180 MeV from the lattice QCD for the QGP to
hadronic matter phase transition [52,53].

C. Space-time structure of strange and antistrange
quarks at freeze-out

The spatial distribution of midrapidity strange and anti-
strange quarks at freeze-out in this collision is shown in
Fig. 3, with the upper panel displaying their number density
distribution in the transverse plane and the lower panel giving
the corresponding contour plot. Here, the transverse plain
refers to the x-y plane with the x axis pointing in the direction
of the impact parameter and the y axis perpendicular to the
x axis as well as the beam direction. It is seen that the number
density of strange and antistrange quarks at freeze-out peaks
approximately at a circle with a radius of about 4 fm in the
transverse plane, implying that these partons mainly freeze out
from the surface of an expanding fireball where the number
density is roughly between 1.2 and 1.4 fm−2 in the transverse
plane.

FIG. 3. (Color online) Number density distribution in the trans-
verse plane for midrapidity strange and antistrange quarks at freeze-
out in Au + Au collisions at

√
sNN = 200 GeV and b = 8 fm (upper

panel) and corresponding contour plot (lower panel).
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FIG. 4. (Color online) Space-time structure of midrapidity
strange and antistrange quarks at freeze-out in Au + Au collisions at√

sNN = 200 GeV and b = 8 fm.

The space-time structure of z-t correlations for midrapidity
strange and antistrange quarks at freeze-out in this collision is
shown in Fig. 4. Instead of a sudden freeze-out, these partons
are seen to freeze out continuously in the proper time τ , with
most between τ = 4 and 6 fm/c. This can be more clearly seen
from their freeze-out rate as a function of proper time τ or the
time t in the nucleus-nucleus center-of-mass system as shown
in Fig. 5. It shows that the freeze-out rate of midrapidity strange
and antistrange quarks peaks at τ = 5 fm/c or t = 5.5 fm/c.

The AMPT model also provides information on the time
evolution of parton energy density. This is shown in Fig. 6 for
the central cell of the partonic matter in the collision discussed.
As in Refs. [46,47], the central cell is taken to have a transverse
radius of 1 fm and a longitudinal dimension of 5% of the time t
after the two nuclei have fully overlapped in the longitudinal
direction. It is seen that the central energy density is about

FIG. 5. (Color online) Freeze-out rate of midrapidity strange and
antistrange quarks as a function of proper time τ as well as the time
t in the nucleus-nucleus center-of-mass system.

FIG. 6. (Color online) Time evolution of the energy density in
the central cell of partonic matter in Au + Au collisions at

√
sNN =

200 GeV and b = 8 fm.

0.6 GeV/fm3 at t = 5.5 fm/c when most of partons freeze
out. This energy density is consistent with the critical energy
density of about 0.66 GeV/fm3 predicted by the lattice QCD
for the QGP to hadronic matter transition [52,53].

D. Anisotropic flow of strange and antistrange quarks

Anisotropy in the transverse-momentum distribution of
particles in noncentral heavy-ion collisions is generated by the
pressure anisotropy in the initial compressed matter [54,55]
and thus depends on the geometry and energy density as
well as the properties of produced matter during the early
stage of these collisions. For φ mesons and � baryons,
their anisotropic flows are essentially determined by those
of strange and antistrange quarks at freeze-out and their
hadronization mechanism. As discussed previously, the effect
of later hadronic scattering is small because the interactions of
φ mesons and � baryons in the hadronic matter are relatively
weak and also the pressure becomes more isotropic during the
hadronic stage of the collisions.

From the momentum distribution of strange and antistrange
quarks at freeze-out, their elliptic and fourth-order anisotropic
flows can be evaluated according to the following single-
particle averages:

v2(pT ) =
〈

p2
x − p2

y

p2
T

〉
, (1)

v4(pT ) =
〈

p4
x − 6p2

xp
2
y + p4

y

p4
T

〉
, (2)

where px and py are, respectively, projections of their mo-
mentum in and perpendicular to the reaction plane, defined by
the beam and impact parameter axes, and pT = (p2

x + p2
y)1/2

is the transverse momentum.
In Fig. 7, we show the pT dependence of v2 and v4 of

midrapidity strange and antistrange quarks (s + s̄) at freeze-
out in Au + Au collisions at

√
sNN = 200 GeV and b = 8 fm.

It is seen that strange and antistrange quarks exhibit not only a

044903-4



φ AND � PRODUCTION IN RELATIVISTIC HEAVY-ION COLLISIONS IN A . . . PHYSICAL REVIEW C 73, 044903 (2006)

FIG. 7. (Color online) Transverse-momentum dependence of
elliptic flow v2 (solid squares) and forth-order anisotropic flow
v4 (open squares) of midrapidity strange and antistrange quarks
(s + s̄) at freeze-out in Au + Au collisions at

√
sNN = 200 GeV

and b = 8 fm. The thick solid line represents 0.85v2
2 of strange and

antistrange quarks, and open triangles are v2 of midrapidity light up
and antiup quarks (u + ū).

strong v2 but also a non-negligible v4 that approximately scales
with v2

2 with a scaling coefficient of 0.85 (i.e, v4 ∼ 0.85v2
2 as

shown by the thick solid line in Fig. 7). Compared to the v2

of midrapidity light up and antiup quarks (u + ū), shown by
triangles in Fig. 7, the v2 of heavier strange and antistrange
quarks has a smaller value at low pT but a larger value at
high pT , similar to the mass ordering of hadron elliptic flows
in the hydrodynamic model in which the produced matter is
assumed to be in local thermal equilibrium and thus develops
a large collective radial flow. However, instead of a continuing
increase of v2 with respect to pT as in the hydrodynamic
model, the v2 of partons in the transport model saturates at
a maximum value when their pT becomes large, indicating
that high-momentum partons do not reach thermal equilibrium
with the bulk of the partonic matter.

III. A DYNAMICAL QUARK COALESCENCE MODEL
FOR φ AND � PRODUCTION

In the coalescence model, the probability for forming a
bound cluster from a many-particle system is determined by
the overlap of the wave functions of coalescing particles
with the internal wave function of the cluster. Its validity
is based on the assumption that coalescing particles are
statistically independent and the binding energy of formed
cluster and the quantum dynamics of the coalescing process
play only minor roles [56]. In the present study, we assume that
correlations among partons at freeze-out are weak and binding
energies of formed hadrons can be neglected. Furthermore, the
coalescence model is considered as a perturbative approach,
valid only if the number of partons coalesced into hadrons
is small compared with the total number of partons in the
system. This condition is satisfied for φ mesons and � baryons
produced in relativistic heavy-ion collisions as their numbers

measured in experiments are indeed significantly smaller than
that of kaons and thus that of strange and antistrange quarks.

A. The dynamical coalescence model

In the dynamical quark coalescence model, the probability
for producing a hadron from partons in the QGP is given by the
overlap of parton phase-space distributions at freeze-out with
the parton Wigner phase-space function inside the hadron. For
a QGP containing A partons, the momentum distribution of a
M-parton hadron can be expressed as [56,57]

dNM

d3K
= G

(
A

M

)
1

AM

∫ M∏
i=1

fi(ri , ki)

× ρW
(
ri1 , ki1 · · · riM−1 , kiM−1

)
× δ[K − (k1 + · · · + kM )]dr1dk1 · · · drMdkM, (3)

where fi is the parton phase-space distribution functions at
freeze-out; ρW is the M-parton Wigner phase-space function
inside the hadron; ri1 , . . . , riM−1 and ki1 , . . . , kiM−1 are, respec-
tively, the M − 1 relative coordinates and momenta taken at
equal time in the M-parton rest frame (K = 0); and G is the
statistical factor for the M partons to form the hadron.

In transport model simulations of heavy-ion collisions,
the multiplicity of a M-parton hadron produced from the
dynamical quark coalescence model is then given by [56,57]

NM = G

∫ ∑
i1>i2>···>iM

dri1dki1 · · · driM−1dkiM−1

× 〈
ρW

i

(
ri1 , ki1 · · · riM−1 , kiM−1

)〉
, (4)

where 〈· · ·〉 denotes event averaging and the sum runs over all
possible combinations of M partons.

To determine the statistical factor G for the φ meson, we
note that its quark wave function in the color-spin-isospin
space can be expressed as a linear combination of all possible
orthogonal flavor, color, and spin basis states [1,58]. The
probability for a strange quark s and an antistrange quark
s̄ to form a hadron with quantum numbers corresponding
to a φ meson with the z component of its spin equal to
1 is simply given by the probability of finding the two s
and s̄ in any one of these color-spin-isospin basis states
(i.e., 1/32 × 1/22 = 1/36). Including also the possibility of
forming a φ meson with the z component of its spin equal
to −1 and 0 triples the probability. As a result, the statistical
factor G for the φ meson is 1/12. A similar consideration leads
to a statistical factor G = 1/54 for the �− and �̄+ baryons.

B. Parton phase-space distributions

The M-parton phase-space distribution function
�M

i=1f (ri , ki) in Eq. (3) refers to partons with spatial
coordinates and momenta at equal time in the rest frame of the
M-parton cluster. Since parton momenta in the AMPT model
are given in the nucleus-nucleus center-of-mass system, a
Lorentz transformation is performed to obtain their momenta
in the rest frame of the M-parton cluster. Furthermore, partons
freeze out at different times as shown in Figs. 4 and 5. The
same Lorentz transformation is thus used in obtaining their
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space-time coordinates in the rest frame of the M-parton
cluster. To determine the spatial coordinates of these partons
at equal time in their rest frame, partons in the cluster that
freeze out earlier are allowed to propagate freely, that is, with
constant velocities given by the ratio of their momenta and
energies in the rest frame of the cluster, until the time when
the last parton in the cluster freezes out.

C. Quark Wigner phase-space functions inside φ and �

To determine the quark Wigner phase-space functions in-
side hadrons requires knowledge of their quark wave functions.
For the φ meson, we take its quark wave function to be that of
a spherical harmonic oscillator, that is,

ψ(r1, r2) = 1
/(

πσ 2
φ

)3/4
exp

[−r2
/(

2σ 2
φ

)]
, (5)

in terms of the relative coordinate r = r1 − r2 and the size
parameter σφ . This normalized wave function leads to a
root mean-square radius Rφ = 〈r2〉1/2 = (3/8)1/2σφ for the
φ meson.

The quark Wigner phase-space function inside the φ meson
is obtained from its quark wave function by

ρW
φ (r, k) =

∫
ψ

(
r + R

2

)
ψ∗

(
r − R

2

)
exp (−ik · R)d3R

= 8 exp

(
− r2

σ 2
φ

− σ 2
φk2

)
, (6)

where k = (k1 − k2)/2 is the relative momentum between s
and s̄ quarks.

For �− and �̄+ baryons, their quark wave functions are
taken to be the same and are given by that of a spherical
harmonic oscillator as well [59,60], that is,

ψ(r1, r2, r3) = (
3π2σ 4

�

)−3/4
exp

(
−ρ2 + λ2

2σ 2
�

)
, (7)

in terms of the relative coordinates ρ and λ and the size
parameter σ�. Here, we have used the usual Jacobi coordinates
for a three-particle system [57], that is,


R

ρ

λ


 =




1
3

1
3

1
3

1√
2

− 1√
2

0
1√
6

1√
6

− 2√
6





r1

r2

r3


, (8)

where R is the center-of-mass coordinate of the three quarks
or antiquarks.

Using dr1dr2dr3 = 33/2dRdρdλ, it is easy to check that
the wave function given by Eq. (7) is normalized to one. From
the relation (r1 − R)2 + (r2 − R)2 + (r3 − R)2 = ρ2 + λ2, the
root mean-square radius R� of the � baryon is given by

R� =
[∫

ρ2 + λ2

3
|ψ(r1, r2, r3)|233/2dρdλ

]1/2

= σ�. (9)

The quark Wigner phase-space function inside the � baryon
is obtained from its quark wave function via

ρW
� (ρ, λ, kρ, kλ)

=
∫

ψ

(
ρ+R1

2
, λ+R2

2

)
ψ∗

(
ρ−R1

2
, λ−R2

2

)

× exp (−ikρ · R1) exp (−ikλ · R2)33/2dR1dR2

= 82 exp

(
−ρ2 + λ2

σ 2
�

)
exp

[ − (
k2

ρ + k2
λ

)
σ 2

�

]
, (10)

where kρ and kλ are relative momenta, which together with
the total momentum K are defined by [57]

K
kρ

kλ


 =




1 1 1
1√
2

− 1√
2

0
1√
6

1√
6

− 2√
6





k1

k2

k3


 , (11)

with k1, k2, and k3 being the momenta of the three quarks.

D. φ and � size parameters

The two parameters σφ and σ� in the quark Wigner phase-
space functions inside the φ meson and � baryon are related
to their root-mean-square radii. Since the latter are not known
empirically, we take them as adjustable parameters and fix
them by fitting measured yields of φ mesons and � baryons
in relativistic heavy-ion collisions.

For φ mesons, experimental data on their rapidity density
dN/dy at midrapidity and its centrality dependence are
available for Au + Au collisions at

√
sNN = 200 GeV [38,39].

There is, however, a significant difference between the STAR
and PHENIX data for the φ meson yield. For instance, the
φ meson dN/dy at midrapidity is about 7.7 in the STAR
data but is 4.5 in the PHENIX data for Au + Au collisions
at

√
sNN = 200 GeV with a centrality of 0%−5%. Using the

dynamical quark coalescence model described here, we find
that the STAR (PHENIX) data can be approximately repro-
duced with a φ meson size parameter σφ ≈ 1.06 (0.77) fm,
which gives a reasonable φ meson root-mean-square radius
of about Rφ = 0.65 (0.47) fm. For the impact parameter
b = 8 fm as mainly considered in the present study, the AMPT

model gives the number of participant nucleons Npart ≈ 160,
which corresponds to a centrality of about 31%. The resulting
φ meson rapidity density dN/dy at midrapidity obtained
with the φ meson radius Rφ = 0.65 (0.47) fm is about 3.3
(2.0), which is also in good agreement with experimental
data [38,39].

For � baryons, there are only preliminary experimental data
on their dN/dy at midrapidity in central collisions of Au + Au
at

√
sNN = 200 GeV, and its value is about 0.64 [40]. Fitting

the result from the dynamical quark coalescence model for the
same collision at b = 0 fm leads to an � baryon size parameter
σ� ≈ 1.2 fm, corresponding to an � baryon root-mean-square
radius of about R� ≈ 1.2 fm, which is somewhat large but not
unrealistic. For more peripheral collisions at impact parameter
b = 8 fm, an � radius of R� = 1.2 fm leads to a rapidity
density dN/dy of about 0.26 at midrapidity.

In the following, we use these φ and � root-mean-square
radii, that is, Rφ = 0.65 or 0.47 fm for the φ meson and R� =
1.2 fm for the � baryon unless stated otherwise.

IV. φ AND � PRODUCTION IN AU + AU COLLISIONS AT√
SN N = 200 GeV

Using the phase-space information and the dynamical
coalescence model described here, we can now study the
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transverse-momentum spectra of φ mesons and � baryons
as well as their anisotropic flows in relativistic heavy-ion
collisions.

A. Transverse-momentum spectra of φ and �

Figure 8 shows the transverse-momentum spectra of midra-
pidity φ mesons and � baryons, as well as their ratio in
Au + Au collisions at

√
sNN = 200 GeV with b = 0 fm (left

panels) and b = 8 fm (right panels), and Rφ = 0.65 or 0.47 fm
and R� = 1.2 fm. For comparison, we also include in the
upper left panel of Fig. 8 the experimental data for φ mesons
in the 0%−5% centrality bin from the STAR Collaboration
[38] (solid stars) and in the 0%−10% centrality bin from
the PHENIX Collaboration [39] (open stars) as well as the
preliminary data for � baryons in the 0%−10% centrality
bin from the STAR Collaboration [40] (solid triangles). Also
shown in the lower left panel by open triangles are data on
the �/φ ratio in the 0%−10% centrality bin, obtained from a
linear interpolation of the φ meson data in the upper left panel.

It is seen from the upper left panel of Fig. 8 that the
calculated transverse-momentum spectrum of � baryons is
stiffer than that of φ mesons, as expected from their dif-
ferent masses. The calculated transverse-momentum spectra
of both φ mesons and � baryons are, however, signifi-
cantly softer than the data. With Rφ = 0.65 (0.47) fm, the
mean transverse-momentum calculated from the φ meson
transverse-momentum spectrum is about 0.72 (0.73) and

FIG. 8. (Color online) Transverse-momentum dependence of
midrapidity φ mesons and � (�− + �̄+) baryons (upper panels) and
their ratio (lower panels) in Au + Au collisions at

√
sNN = 200 GeV

with b = 0 fm (left panels) and b = 8 fm (right panels). Data for
φ mesons in the 0%−5% centrality bin from the STAR Collaboration
[38] (solid stars) and in the 0%–10% centrality bin from the PHENIX
Collaboration [39] (open stars) as well as preliminary data for �

baryons in 0%–10% centrality bin from the STAR Collaboration [40]
(solid triangles) are shown in the upper left panel; those for the �/φ

ratio in the 0%−10% centrality bin are shown in the lower left panel.

0.68 (0.70) GeV/c for b = 0 fm and b = 8 fm, respec-
tively, compared with the experimental value of about
0.85−1.1 GeV/c [38,39]. For � baryons, their mean transverse
momentum is about 0.93 and 0.83 GeV/c for b = 0 fm and
b = 8 fm, respectively, and are larger than those of φ mesons.

We note that hadron transverse-momentum spectra ob-
tained from the AMPT model with string melting are generally
softer than those measured in experiments [61]. Since hadron
spectra reflect those of partons in the parton coalescence
model, soft hadron spectra are due to soft parton spectra during
the partonic stage. As discussed in Ref. [61], the latter is a result
of the small current quark masses used in the parton cascade
of the AMPT model with string melting, which make their
transverse-momentum spectra less affected by radial collective
flow than hadrons in the default AMPT model. Since anisotropic
flows are given by ratios of hadron transverse-momentum
spectra, predictions of anisotropic flows as well as the ratio of
hadron transverse-momentum spectra from the present AMPT

model are expected to be more reliable [18,61].
The ratio of midrapidity � baryons to φ mesons shown

in the lower panels of Fig. 8 is seen to increase appreciably
from low pT to intermediate pT of about 2.5 GeV/c. The
enhancement factor is about 7 and 4 for b = 0 fm and
b = 8 fm, respectively. This enhancement is a result of parton
coalescence as in the case of observed anomalously large
antiproton to pion ratios of about 0.8 and 0.4 at pT

>∼ 2.5 GeV/c
in central and midperipheral (centrality of about 30%)
Au + Au collisions at

√
sNN = 200 GeV, respectively [62].

As explained in Refs. [1–3], in the coalescence model baryons
with transverse momentum pT are mainly formed from
quarks with transverse momenta ∼pT /3, whereas mesons
with the same transverse momentum are mainly produced
from partons with transverse momenta ∼pT /2. Since quark
transverse-momentum spectra decrease with pT , it is more
favorable to produce high-transverse-momentum baryons than
mesons if hadrons are produced from the QGP through the
coalescence of quarks. However, the �̄+/φ ratio is only about
0.23 and 0.17 at pT ≈ 2.5 GeV/c for b = 0 fm and b = 8 fm,
respectively, and is significantly smaller than the anti-proton
to pion ratio observed in experiments. For b = 0 fm, our result
with Rφ = 0.65 fm reproduces reasonably the measured �/φ
ratio as shown in the lower left panel of Fig. 8.

In Fig. 9, we show the pT dependence of the ratio of
midrapidity φ meson or � baryon yield in central (b = 0 fm)
to the corresponding midperipheral (b = 8 fm) collisions
of Au + Au at

√
sNN = 200 GeV. It is seen that the pT

dependence is very different for φ mesons and � baryons
with the latter having a smaller value at low pT while a larger
value at high pT than for φ mesons. Our results thus indicate
that nuclear suppression at intermediate momenta is weaker
for � baryons than for φ mesons. This feature is consistent
with the measured pT dependence of so-called RCP (the ratio
of binary-collision-scaled pT spectra in central and peripheral
collisions) for p + p̄ and pions [62].

B. Anisotropic flows of φ and �

In heavy-ion collisions at RHIC, experimental data have
indicated that there exist not only strong elliptic flow but also
a clear fourth-order anisotropic flow v4 for charged hadrons
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FIG. 9. (Color online) Transverse-momentum dependence of the
ratio of midrapidity φ meson and � baryon yields in central (b =
0 fm) to that in midperipheral (b = 8 fm) Au + Au collisions at√

sNN = 200 GeV.

[26,27]. An interesting finding about v4 is that it scales with
the square of v2 [i.e., v4(pT ) ∼ v2

2(pT )]. In the present section,
both elliptic and fourth-order anisotropic flows of φ mesons
and � baryons are studied to see if they also show similar
features.

In the left panel of Fig. 10, we show the pT dependence of
anisotropic flows v2 and v4 of midrapidity φ mesons produced
in Au + Au collisions at

√
sNN = 200 GeV and b = 8 fm.

Solid and open squares are, respectively, the φ meson v2

and v4 for a φ meson radius Rφ = 0.65 fm; solid and open
triangles are, respectively, those for Rφ = 0.47 fm. It is seen
that the scaling relation v4(pT ) ∼ v2

2(pT ) is satisfied in both
cases, as shown by the solid (1.1v2

2) and dashed (1.2v2
2) lines

in the same figure. It is interesting to see that the scaling

FIG. 10. (Color online) Transverse-momentum dependence of
anisotropic flows v2 and v4 of midrapidity φ mesons (left panel)
and � baryons (right panel) produced in Au + Au collisions at√

sNN = 200 GeV and b = 8 fm. Solid and dashed lines in the left
panel are, respectively, 1.1v2

2 and 1.2v2
2 for φ mesons; the solid line

in the right panel is 0.7v2
2 for � baryons.

coefficient of 1.1 or 1.2 is the same as that extracted from
the data for charged hadrons [26,27]. Similar results for �

baryons using the radius R� = 1.2 fm are shown in the right
panel of Fig. 10. The scaling relation v4(pT ) ∼ v2

2(pT ) is again
satisfied for � baryons but with a smaller scaling coefficient
than that for φ mesons, as shown by the solid line (0.7v2

2) in the
right panel.

Based on the naive momentum-space quark coalescence
model that only allows quarks with equal momentum to form
hadrons [4], this scaling relation between hadron v2(pT ) and
v4(pt ) has been attributed to a similar scaling relation between
those of quarks [28,29]. By neglecting the small contribution
of higher order anisotropic flows (higher than fourth order),
this model gives for midrapidity hadrons

v4,M (2pT )

v2
2,M (2pT )

≈ 1

4
+ 1

2

v4,q(pT )

v2
2,q(pT )

,

(12)
v4,B(3pT )

v2
2,B(3pT )

≈ 1

3

(
1 + v4,q(pT )

v2
2,q(pT )

)
,

where vn,M (pT ), vn,B (pT ), and vn,q(pT ) denote, respectively,
the meson, baryon, and quark anisotropic flows. The hadron
anisotropic flows thus satisfy the scaling relation v4(pT ) ∼
v2

2(pT ) if a similar scaling relation is satisfied by quark
anisotropic flows.

We have already shown in Fig. 7 that the scaling relation
v4(pT ) ∼ v2

2(pT ) is satisfied by midrapidity strange and anti-
strange quarks (s + s̄) with a scaling coefficient of about 0.85
[i.e., v4,q(pT )/v2

2,q(pT ) ≈ 0.85]. Equations (12) then lead to a
scaling coefficient of v4,φ(pT )/v2

2,φ(pT ) ≈ 0.68 for φ mesons
and v4,�(pT )/v2

2,�(pT ) ≈ 0.62 for � baryons. Compared with
the scaling coefficients of 1.1 or 1.2 for φ mesons and 0.7
for � baryons from the dynamical quark coalescence model,
the predicted value from the naive momentum-space quark
coalescence model for the φ meson scaling coefficient is sig-
nificantly smaller. However, the dynamical quark coalescence
model does give a larger scaling coefficient for φ mesons than
for � baryons, as expected from the naive momentum-space
coalescence model.

Another interesting and important finding in heavy-ion
collisions at RHIC is the valence quark number scaling of
the elliptic flow of identified hadrons. That is, the elliptic flow
per valence quark in a hadron is the same at the same trans-
verse momentum per valence quark [i.e., v2,H (pT /nq)/nq =
v2,q(pT ) with v2,H and nq denoting, respectively, the hadron v2

and the number of valence quarks or antiquarks in a hadron].
In the naive momentum-space quark coalescence model, this
scaling has been shown to be satisfied if high-order anisotropic
flows are small [4,29]. The scaling is, however, broken in
more general quark coalescence models that take into account
the quark momentum distribution [63–65] and higher parton
Fock states [66] in hadrons as well as the effect of resonance
decays [63]. It is thus of interest to see if the elliptic flows of
φ mesons and � baryons from the present dynamical quark
coalescence model also satisfy the valence quark number
scaling.

In Fig. 11, we show the valence quark number scaled elliptic
flow v2/nq as a function of scaled transverse momentum
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FIG. 11. (Color online) Valence quark number scaled elliptic
flow v2/nq as a function of scaled transverse momentum pT /nq

for midrapidity φ mesons and � baryons produced in Au + Au
collisions at

√
sNN = 200 GeV and b = 8 fm with Rφ = 0.65 fm

(solid squares) and 0.47 fm (open squares) as well as R� = 1.2 fm
(solid line). Results for midrapidity strange and antistrange quarks
(s + s̄ ) at freeze-out are shown by solid stars.

pT /nq for midrapidity φ mesons and � baryons produced
in Au + Au collisions at

√
sNN = 200 GeV and b = 8 fm

with Rφ = 0.47 or 0.65 fm and R� = 1.2 fm. For comparison,
we also include the elliptic flow of midrapidity strange and
antistrange quarks (s + s̄) at freeze-out. It is seen that the
elliptic flows of both midrapidity φ mesons and � baryons
from the dynamical quark coalescence model satisfy the
valence quark number scaling. The valence quark number
scaled elliptic flows of φ mesons and � baryons are, however,
significantly smaller than that of coalescing strange and
antistrange quarks. This feature is different from the prediction
of the naive momentum-space quark coalescence model where
the valence quark number scaled v2 of hadrons is equal to the
v2 of coalescing quarks. Our results therefore indicate that
both the dynamical phase-space information of quarks and the
quark phase-space distribution inside hadrons play important
roles in hadron anisotropic flows, and cautions are needed in
interpreting the elliptic flow of partons from that of hadrons
using the naive momentum-space parton coalescence model.
We note that our results are consistent with previous studies
on v2 of protons and pions based on the parton phase-space
information from Molnar’s parton cascade (MPC) model [5].

V. HADRON SIZE DEPENDENCE OF φ AND � YIELDS
AND ANISOTROPIC FLOWS

In all of our calculations, we have used φ meson and �

baryon size parameters that are fixed from fitting measured
yields in experiments. Ideally, we would like to use the
empirically and/or theoretically determined root-mean-square
radii of the φ meson and the � baryon in the dynamical quark
coalescence model. In the absence of such information, it is
of interest to study how our results depend on the sizes of the
φ meson and the � baryon.

FIG. 12. (Color online) Hadron size (root-mean-square radius)
dependence of rapidity density dN/dy of midrapidity φ mesons (solid
squares) and � (�− + �̄+ ) baryons (open squares) produced in
Au + Au collisions at

√
sNN = 200 GeV with b = 0 fm (upper panel)

and b = 8 fm (lower panel).

A. Hadron size dependence of φ and � yields

We show in Fig. 12 the rapidity density dN/dy of midrapid-
ity φ mesons and � baryons produced in Au + Au collisions at√

sNN = 200 GeV with b = 0 fm (upper panel) and b = 8 fm
(lower panel) as functions of their root-mean-square radii. It is
seen that both φ meson and � baryon yields are sensitive
to their sizes. For physically reasonable radii, both yields
increase with increasing radii but decrease eventually as the
radii become unrealistically large. For collisions at impact
parameter b = 0 fm, the yield exhibits maxima at Rφ = 2.2 fm
for φ mesons and at R� = 2.5 fm for � baryons. A similar
feature is observed in the case of b = 8 fm but the maximum
is at Rφ = 1.75 fm for φ mesons and at R� = 2 fm for
� baryons.

B. Hadron size dependence of φ and � elliptic flows and
the valence quark number scaling

We first show in the left panel of Fig. 13 the pT dependence
of the v2 of midrapidity φ mesons in Au + Au collisions
at

√
sNN = 200 GeV and b = 8 fm for different values of

root-mean-square radius Rφ . It is clearly seen that the v2 of
φ mesons depends strongly on the φ meson size. It becomes
larger with increasing Rφ but changes little when Rφ > 4.5 fm.
Similarly, we show in the right panel of Fig. 13 the pT

dependence of the v2 of midrapidity � baryons produced in the
same collision with different values of R�. Similarly to that of
φ mesons, the v2 of � baryons also increases with increasing
size of � baryon and saturates when R� > 4.5 fm. The
saturation of φ meson and � baryon v2 at large sizes observed
in Fig. 13 occurs essentially because the dynamical quark
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FIG. 13. (Color online) Transverse-momentum dependence of
the v2 of midrapidity φ mesons (left panel) and � baryons (right
panel) in Au + Au collisions at

√
sNN = 200 GeV and b = 8 fm with

different values of root-mean-square radii Rφ and R�.

coalescence model approaches the naive momentum-space
quark coalescence model (i.e, only partons with the same
momentum can coalesce into hadrons, when the hadron size is
large enough). This can be easily seen from Eqs. (6) and (10)
as the quark Wigner phase-space function becomes essentially
delta functions in the relative momenta of coalescing partons
when hadron sizes (i.e., the parameters σφ and σ�) are very
large. As a result, we expect that the valence quark number
scaled elliptic flows of φ mesons and � baryons should
approach the v2 of coalescing strange and antistrange quarks
as their sizes increase. This is shown in Fig. 14, where it
is seen that the pT /nq dependence of v2/nq for midrapidity
φ mesons and � baryons produced in Au + Au collisions at√

sNN = 200 GeV and b = 8 fm with Rφ = R� = 4.5 fm is
indeed similar to the elliptic flow of midrapidity strange and
antistrange quarks (s + s̄) at freeze out.

FIG. 14. (Color online) Same as Fig. 11 but with Rφ = R� =
4.5 fm.

FIG. 15. (Color online) Same as Fig. 10 but with Rφ = R� =
4.5 fm.

C. Fourth-order flows of φ and �

For the scaling relation v4(pT ) ∼ v2
2(pT ) among hadron

anisotropic flows, as discussed here and in Refs. [28,29], the
dynamical quark coalescence model leads to a deviation of
the scaling coefficient from that of the naive momentum-space
quark coalescence model as a result of finite hadron sizes
and nonzero parton relative momenta inside hadrons. The
deviation is expected to disappear for large enough hadron
sizes when the dynamical quark coalescence model approaches
the naive momentum-space quark coalescence model. This is
demonstrated in Fig. 15, where we show the pT dependence of
the anisotropic flows v2 (solid squares) and v4 (open squares) of
midrapidity φ mesons (left panel) and � baryons (right panel)
produced in Au + Au collisions at

√
sNN = 200 GeV and

b = 8 fm with large hadron sizes (i.e., Rφ = R� = 4.5 fm).
Also shown by solid lines are 0.68v2

2 for φ mesons in the left
panel and 0.62v2

2 for � baryons in the right panel. It is seen
that for such large hadron sizes the scaling coefficients indeed
approach the values expected from the naive momentum-space
quark coalescence model (i.e., about 0.68 for φ mesons and
0.62 for � baryons). We note that a larger hadron size generally
gives a smaller scaling coefficient in the dynamical quark
coalescence model.

VI. QUARK MASS DEPENDENCE OF φ AND �

TRANSVERSE-MOMENTUM SPECTRA AND
ANISOTROPIC FLOWS

The previous results were obtained with the current strange
quark mass of 199 MeV, which is the default value in the AMPT

model with string melting. Usually, the constituent quark mass
(about 500 MeV for the strange quark) is used in the quark
coalescence model [1–4], so the binding energy effect can
be neglected. In the following, we study the dependence of
φ meson and � baryon production and their anisotropic flows
on the strange quark mass. In particular, we use the constituent
strange quark mass of 500 MeV but the same strange quark
space-time coordinates and momenta at freeze-out as before.
The quark mass effect thus shows up through the Lorentz
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transformation that changes the strange quark space-time
coordinates and momenta in the rest frame of the φ meson
and the � baryon and therefore affects their overlap with the
quark Wigner phase-space functions inside hadrons.

A. Yields and transverse-momentum spectra of φ and �

Using a strange quark mass of 500 MeV, we find that yields
of both φ mesons and � baryons are enhanced significantly
compared to previous results with a strange quark mass of
199 MeV. For Au + Au collisions at

√
sNN = 200 GeV and

b = 0 (8) fm, the dN/dy at midrapidity for φ mesons with
Rφ = 0.65 fm changes from 8.0 (3.3) to 12.2 (4.8) whereas
that with Rφ = 0.47 fm changes from 4.7 (2.0) to 7.3 (3.0)
when the strange quark mass changes from 199 to 500 MeV.
To keep the dN/dy of φ mesons at midrapidity unchanged
requires a reduction of the φ meson size from Rφ = 0.65 to
0.5 fm or from Rφ = 0.47 to 0.35 fm when the strange quark
mass is increased to 500 MeV. For � baryons, the value of
dN/dy at midrapidity for b = 0 (8) fm with R� = 1.2 fm
changes from 0.65 (0.26) to 1.36 (0.49) when the strange quark
mass changes from 199 to 500 MeV. A somewhat smaller �

baryon size of R� = 0.9 fm is then needed to keep dN/dy of
� baryons at midrapidity unchanged when the strange quark
mass is increased to 500 MeV.

We also find that the larger strange quark mass of 500 MeV
leads to a slightly stiffer transverse-momentum spectra for
φ mesons and � baryons. For Rφ = 0.65 (0.47) fm, the mean
transverse momentum 〈pT 〉 for the φ meson changes from
about 0.72 (0.73) and 0.68 (0.70) GeV/c for b = 0 fm and b =
8 fm, respectively, to about 0.74 (0.76) and 0.69 (0.72) GeV/c
for b = 0 fm and b = 8 fm, respectively, when the strange
quark mass changes from 199 to 500 MeV. For � baryons, the
value of 〈pT 〉 with R� = 1.2 fm changes from about 0.93 and
0.83 GeV/c for b = 0 fm and b = 8 fm, respectively, to about
0.96 and 0.85 GeV/c for b = 0 fm and b = 8 fm, respectively,
when the strange quark mass changes from 199 to 500 MeV.

With the new parameters ms = 500 MeV, Rφ = 0.5 or
0.35 fm, and R� = 0.9 fm fixed from measured yields of
φ mesons and � baryons, the transverse-momentum spectra
of midrapidity φ mesons and � baryons and their ratio in the
same collision are shown in Fig. 16. As in Fig. 8, corresponding
experimental data are also included in the left panels of
Fig. 16. For Rφ = 0.5 (0.35) fm and ms = 500 MeV, the mean
φ meson transverse-momentum calculated from the φ meson
transverse-momentum spectrum is about 0.76 (0.77) and 0.72
(0.74) GeV/c for b = 0 fm and b = 8 fm, respectively, which
are still somewhat smaller than the experimental value of about
0.85−1.1 GeV/c [38,39]. For � baryons with R� = 0.9 fm,
their mean transverse momentum is about 1.05 and 0.94 GeV/c
for b = 0 fm and b = 8 fm, respectively.

The �/φ ratio obtained from these new parameters is shown
in the lower panels of Fig. 16. Compared with the case of
ms = 199 MeV, the �/φ ratio increases even more from
low pT to intermediate pT of about 2.5 GeV/c, leading to
a larger enhancement factor of about 14 and 9 for b = 0 fm
and b = 8 fm, respectively. The �̄+/φ at pT ≈ 2.5 GeV/c
is now about 0.30 and 0.22 for b = 0 fm and b = 8 fm,
respectively, which are still significantly smaller than that

FIG. 16. (Color online) Same as Fig. 8 but with ms = 500 MeV
and Rφ = 0.5 or 0.35 fm and R� = 0.9 fm.

of antiprotons to pions observed in experiments but remain
comparable to the measured �/φ ratio for the larger φ meson
size of Rφ = 0.5 fm.

B. Anisotropic flows of φ and �

Using the fitted hadron size parameters for ms = 500 MeV
(i.e., Rφ = 0.5 or 0.35 fm and R� = 0.9 fm), we show in the
left panel of Fig. 17 the pT dependence of the anisotropic
flows v2 (solid squares for Rφ = 0.5 fm and triangles for
Rφ = 0.35 fm) and v4 (open squares for Rφ = 0.5 fm and
triangles for Rφ = 0.35 fm) of midrapidity φ mesons produced
in Au + Au collisions at

√
sNN = 200 GeV and b = 8 fm.

Also shown in the left panel of Fig. 17 are 1.0v2
2 (solid line

for Rφ = 0.5 fm) and 1.1v2
2 (dashed line for Rφ = 0.35 fm).

Similar results for � baryons are shown in the right panel of
Fig. 17. Compared to those shown in Fig. 10 with a strange

FIG. 17. (Color online) Same as Fig. 10 but with ms = 500 MeV
and Rφ = 0.5 or 0.35 fm and R� = 0.9 fm.
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FIG. 18. (Color online) Same as Fig. 11 but with ms = 500 MeV
and Rφ = 0.5 and 0.35 fm and R� = 0.9 fm.

quark mass of 199 MeV, the hadron elliptic flow is seen to
depend only weakly on the strange quark mass, with the larger
strange quark mass of ms = 500 MeV giving a slightly smaller
v2 at lower pT while a slightly larger v2 at higher pT . Also,
the anisotropic flows of φ mesons and � baryons from the
dynamical quark coalescence model with the larger strange
quark mass of ms = 500 MeV still satisfy the scaling relation
v4(pT ) ∼ v2

2(pT ) with scaling coefficients similar to those for
the strange quark mass of 199 MeV.

The pT /nq dependence of v2 per valence quarks or
antiquarks for midrapidity φ mesons and � baryons produced
in Au + Au collisions at

√
sNN = 200 GeV and b = 8 fm,

obtained with the large strange quark mass of 500 MeV, Rφ =
0.5 or 0.35 fm, and R� = 0.9 fm, is shown in Fig. 18 together
with the elliptic flow of midrapidity strange and antistrange
quarks (s + s̄) at freeze-out. It is seen that the v2 of midrapidity
φ mesons and � baryons still satisfies approximately the
valence number scaling in the dynamical quark coalescence
model. However, the valence quark number scaled v2 remains
significantly smaller than the v2 of coalescing strange and
antistrange quarks.

VII. SUMMARY

Based on the parton phase-space information obtained
from a multiphase transport model within the string-melting
scenario, we have studied the production of φ mesons and
� baryons and their anisotropic flows in Au + Au collisions
at RHIC using a dynamical quark coalescence model, which
requires information on the radii of the φ meson and the
� baryon. Fixing their radii by fitting measured yields of
φ mesons and � baryons at midrapidity in central Au + Au
collisions at

√
sNN = 200 GeV, we have evaluated their

transverse-momentum spectra in the same collision at impact
parameter b = 0 and 8 fm and also their anisotropic flows in
the same collision at impact parameter b = 8 fm. Comparing
with its value at low transverse momenta, we have found that
the ratio of the yield of � baryons to that of φ mesons is
enhanced significantly at intermediate transverse momenta as
observed in experiments.

We have further found that the elliptic flows of φ mesons
and � baryons follow approximately the valence quark
number scaling. The valence quark number scaled elliptic
flows of φ mesons and � baryons deviate, however, strongly
from the underlying v2 of strange and antistrange quarks.
Moreover, we have also studied the fourth-order anisotropic
flow v4 and found that the scaling relation of v4(pT ) ∼ v2

2(pT )
observed experimentally for charged hadrons is satisfied by
φ mesons and � baryons as well. It will be very interesting
to compare these predictions with experimental data that are
being analyzed.

In addition, we have studied the dependence of these results
on the radii of the φ meson and the � baryon as well
as the strange quark mass. Both the yields and anisotropic
flows of φ mesons and � baryons are found to be sensitive
to their radii. For sufficient large radii, the valence quark
number scaled elliptic flows of φ mesons and � baryons
approach the v2 of strange and antistrange quarks as in the
naive momentum-space coalescence model. Also the scaling
coefficient v4(pT )/v2

2(pT ) is sensitive to hadron size. Although
the strange quark mass was found to affect significantly the
yields of φ mesons and � baryons, it does not change much
their anisotropic flows. Our results thus suggest that in using
the quark coalescence model to extract the parton dynamics in
relativistic heavy-ion collisions from hadron observables, it is
important to take into account the quark structure of hadrons.

Although results from the present study reproduce reason-
ably the observed transverse-momentum dependence of the
�/φ ratio, the transverse-momentum spectra of φ mesons and
� baryons are too soft compared with measured ones. This
has been attributed to the small current quark masses used in
the AMPT model. Recent studies have shown that the equation
of state of the QGP from lattice QCD calculations can only
be reproduced by partons with large masses [67,68]. It is thus
of great interest to improve the AMPT model by using massive
partons and to study how the resulting parton dynamics affects
the results obtained in the present study. Although we have
shown in the present study that the anisotropic flows of
φ mesons and � baryons are not sensitive to the strange quark
mass used in the dynamical coalescence model if the same
strange quark distribution is used, using massive partons in
the AMPT model not only is expected to affect the transverse-
momentum spectra of partons but also may influence their
anisotropic flow and thus that of produced hadrons. Also,
it is important to include in future studies the contribution
from high-momentum jets [69] as they are expected to affect
the production of φ mesons and � baryons as well as
their anisotropic flows at intermediate and high transverse
momenta.
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