Masses of ⁷⁷Kr and ⁷⁵Kr

D. M. Moltz

Nuclear Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

A. C. Betker, J. P. Sullivan, R. H. Burch, C. A. Gagliardi, and R. E. Tribble Cyclotron Institute, Texas A&M University, College Station, Texas 77843

K. S. Toth

Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

F. T. Avignone III

Department of Physics, University of South Carolina, Columbia, South Carolina 29208 (Received 18 August 1986)

The masses of 77 Kr and 75 Kr were determined by measuring the Q values of the 80 Kr(3 He, 6 He) 77 Kr, 78 Kr(d,t) 77 Kr, and 78 Kr(3 He, 6 He) 75 Kr reactions. We find that the 77 Kr and 75 Kr mass excesses are -70.160(10) and -64.231(16) MeV, respectively. These new results are integrated into the total scheme of mass measurements in the light rubidium and krypton isotopes. Comparisons with several mass formulae are presented.

I. INTRODUCTION

Accurate mass determinations of neutron deficient nuclei between the $1f_{7/2}$ and $1g_{9/2}$ shells are hampered by low production cross sections and complex decay schemes. The direct mass measurements¹ of the rubidium isotopes have provided a substantial base for other experiments. Unfortunately, the large uncertainties in the masses of the more neutron deficient isotopes make detailed theoretical comparisons difficult. A program was initiated several years ago to measure mass differences between light rubidium and krypton isotopes by utilizing beta-endpoint energy determinations.² Interpretation of these results is complicated by difficulties typical in such measurements, one of which is the lack of detailed knowledge of the decay schemes. For example, recent work³ on ⁷⁶Rb decay has demonstrated that the previously accepted decay scheme was incorrect. These mass difference measurements resulted from the introduction of a simple but effective method^{4,5} for precise beta-endpoint determina-tions. However, the 76 Rb- 76 Kr mass difference yielded a mass excess for ⁷⁶Rb only when the mass of ⁷⁶Kr was determined⁶ by a measurement of the Q value of the ⁷⁸Kr(⁴He, ⁶He)⁷⁶Kr reaction. The resulting ⁷⁶Rb mass was anomalous when compared to the predictions of most mass formulae. The extra stability implied for this N = 39 nucleus led us to investigate the mass of ⁷⁵Kr via the ⁷⁸Kr(³He, ⁶He)⁷⁵Kr reaction, in order to determine whether or not this extra stability is a general feature of proton-rich N = 39 nuclei.

In the same experiment, we measured the Q values of the 80 Kr(3 He, 6 He) 77 Kr and 82 Kr(3 He, 6 He) 79 Kr reactions. The 77 Kr measurement was intended to clarify the mass excess of 77 Kr, since recent β - γ coincidence studies² have called the accepted value⁷⁻⁹ into question. The 79 Kr measurement was intended to verify our experimental tech-

nique. During the data analysis, we found that the ⁷⁷Kr mass excess derived from our *Q*-value determination disagreed with all the previous β -decay results, casting doubt on our interpretation of the observed (³He,⁶He) spectra. This interpretation required a detailed knowledge both of the level diagrams of the daughter nuclei and of the systematics of the levels populated by the (³He,⁶He) reaction in this mass region. In a subsequent experiment, we redetermined the ⁷⁷Kr mass excess by measuring the *Q* value of the ⁷⁸Kr(d,t)⁷⁷Kr reaction. This alternate measurement both confirmed the interpretation of the (³He,⁶He) results and reduced the uncertainty in the ⁷⁷Kr mass excess.

Section II of this paper describes the 78,80,82 Kr(3 He, 6 He) 75,77,79 Kr reaction studies. Section III describes the 78 Kr(d,t) 77 Kr reaction study. Section IV provides some conclusions.

II. THE Kr(³He,⁶He) MEASUREMENTS

A. Experimental techniques

The ^{78,80,82}Kr(³He,⁶He)^{75,77,79}Kr reactions were all investigated with a 70-MeV ³He beam from the Texas A&M University 224-cm cyclotron. Isotopically enriched gases (>99% enriched ⁷⁸Kr, >90% enriched ⁸⁰Kr, and >90% enriched ⁸²Kr) at pressures ranging from 35 to 60 Torr were held in a gas target cell having $\simeq 2 \text{ mg/cm}^2$ Havar entrance and exit windows. Well-collimated reaction products at a scattering angle of $\theta_{\text{lab}}=7.25^\circ$ were detected at the focal plane of an Enge split-pole spectrograph by a 10 cm long resistive-wire proportional counter, used as the ΔE detector, backed by a 1.0 cm \times 5.0 cm \times 600 μ m thick silicon surface barrier detector, serving as the *E* detector. A 20 μ m thick Kapton degrader placed between the ΔE and *E* detectors improved the ⁶He energy resolution in the

E detector. Four parameters [position, ΔE , *E*, and time of flight (TOF) relative to the cyclotron rf pulse] were recorded on magnetic tape for each event. ⁶He particles were identified by their characteristic ΔE , *E* and TOF signals. Additional experimental details may be found in Refs. 6 and 10.

The bombarding energy and scattering angle were chosen with the benefit of prior experience with (³He,⁶He) measurements in this mass region.¹¹ The (³He,⁶He) reaction cross section is only $\approx 2\%$ of the (⁴He,⁶He) cross section on any given Kr isotope. Therefore, we calibrated the spectrograph with ⁶He particles from the ¹⁸O(³He, ⁶He)¹⁵O reaction. We chose this calibration reaction because the ⁶He particles from this reaction populating the 5.2 MeV doublet and the 6.18 MeV third excited state in ¹⁵O bracket those from the ⁷⁸Kr(³He,⁶He)⁷⁵Kr reaction, while the 6 He particle rigidity in the ${}^{18}O({}^{3}$ He, 6 He) ${}^{15}O$ (g.s.) reaction differs from that in the 82 Kr(3 He, 6 He) 79 Kr reaction by less than 1%. After the initial calibration, the enriched isotope samples of ⁸²Kr, ⁸⁰Kr, and ⁷⁸Kr were successively introduced into the gas target cell and bombarded by 21.8, 30.0, and 34.0 mC of ³He²⁺ beam, respectively. An additional calibration study was performed after the Kr measurements. Finally, the evacuated gas target was irradiated by 10.0 mC of ³He²⁺ beam to determine the background level due to imperfect collimation of reaction products from the Havar entrance and exit windows. Typical beam currents were between 500 and 1200 e nA.

B. The ⁸²Kr(³He,⁶He)⁷⁹Kr reaction

In this mass region, one might expect the angular momentum mismatch to selectively populate L = 2 and 3 states. The level density is already quite high in these even-odd nuclei, as demonstrated by the known β -decay schemes of ^{77,79}Rb and ⁷⁵Rb (Refs. 12 and 13, respective-

FIG. 1. The position spectrum observed in the $^{82}Kr(^{3}He,^{6}He)^{79}Kr$ reaction. The labeled peaks are discussed in the text.

ly). It is, therefore, quite fortuitous that we observe primarily the negative party, L = 2,3 states in ^{79,77,75}Kr, because these number only a few embedded in a dense region of positive parity states. The observed ⁶He position spectrum from the ⁸²Kr(³He, ⁶He)⁷⁹Kr reaction is shown in Fig. 1. The peak labeled (1) belongs to a $\frac{3}{2}^{-}$ state¹² at 0.810 MeV, and the peak labeled (2) belongs to a $\frac{3}{2}$ state at 0.183 MeV. The lower excitation energy (higher channel numbers) should on peak (2) belongs to a $\frac{5}{2}$ state at 0.147 MeV. When the measured Q values for these two peaks are corrected to account for the excitation energies and then combined, we find the ⁸²Kr(³He,⁶He)⁷⁹Kr ground state Q value to be -8.822(31) MeV. From this, we determine the 79 Kr mass excess to be -74.441(31)MeV, in excellent agreement with the accepted value⁹ of -74.442(6) MeV.

C. The ⁸⁰Kr(³He,⁶He)⁷⁷Kr reaction

Figure 2 shows the spectrum obtained from the 80 Kr(3 He, 6 He) 7 Kr reaction. The peaks labeled (1) and (2) belong to the $\frac{5}{2}^{-}$ state at 0.245 MeV and the $\frac{3}{2}^{-}$ state at 0.066 MeV, respectively. The four lowest levels in ⁷⁷Kr are at excitation energies (J^{π}) of 0 $(\frac{5}{2}^{+})$, 66 $(\frac{3}{2}^{-})$, 150 $(\frac{7}{2}^+)$, and 245 $(\frac{5}{2}^-)$ keV, respectively. The Q-value difference between peaks (1) and (2) in Fig. 2 is 192 keV making our assignment clear. The spectrum obtained with the gas cell evacuated verified that the events in channels higher than peak (2) arise in small part from imperfect collimation of reaction products from the gas cell windows and in major part from ⁷⁹Kr (7% ⁸²Kr isotopic contamination). Fortunately, no interferences with the 77 Kr peaks were observed. When the measured Q values for these peaks are combined, we find the 80 Kr(³He, ⁶He)⁷⁷Kr ground state Q value to be

FIG. 2. The position spectrum observed in the 80 Kr(3 He, 6 He) 77 Kr reaction. The labeled peaks are discussed in the text.

FIG. 3. The position spectrum observed in the 79 Kr(3 He, 6 He) 75 Kr reaction. The labeled peaks are discussed in the text.

-10.398(24) MeV. From this result, we determine the ⁷⁷Kr mass excess to be -70.155(25) MeV.

This result disagrees with the accepted value9 of -70.227(29) MeV obtained by combining data from two ⁷⁷Kr magnetic spectrometer β -decay endpoint measurements^{7,8} with the ⁷⁷Br mass excess. In fact, our result agrees with one magnetic spectrometer measurement⁸ of -70.210(40) MeV, but it disagrees with an early measurement⁷ of -70.255(30) MeV. Both of these beta-endpoint measurements were recently called into question by β - γ coincidence studies² utilizing germanium detectors, which found a 77 Kr mass excess of -70.477(42) MeV. This latter result was rejected by Wapstra and Audi⁹ in the most recent mass compilation because it deviates significantly from the systematic trends in the mass region. These discrepancies motivated our subsequent investigation of the 78 Kr(d,t) 77 Kr reaction, which is described in Sec. III. There, we determine the mass excess of ⁷⁷Kr to be -70.161(11) MeV, in excellent agreement with our studies; it implies that the spectroscopy of the sequential

 β decays ${}^{77}\text{Rb} \rightarrow {}^{77}\text{Kr} \rightarrow {}^{77}\text{Br}$ is not as well understood as previously believed.

D. The ⁷⁸Kr(³He, ⁶He)⁷⁵Kr reaction

Figure 3 shows the background-subtracted spectrum obtained from the ${}^{78}\text{Kr}({}^{3}\text{He},{}^{6}\text{He}){}^{75}\text{Kr}$ reaction. Again, detailed spectroscopic information has been utilized to identify the observed peaks. The peaks labeled (1), (2), and (3) in the ${}^{75}\text{Kr}$ spectrum represent population of the $\frac{7}{2}$ state at 0.611 MeV, the $\frac{5}{2}$ state at 0.358 MeV, and the $\frac{5}{2}$ the ground state, respectively, where the levels were identified according to Ref. 13. From the weighted Q values determined for these three states, we find the ${}^{78}\text{Kr}({}^{3}\text{He},{}^{6}\text{He}){}^{75}\text{Kr}$ ground state Q value to be -12.581(14) MeV. This result implies that the mass excess of ${}^{75}\text{Kr}$ is -64.231(16) MeV.

The only prior measurement¹⁴ of the mass of ⁷⁵Kr was from a plastic scintillator β -decay endpoint measurement. The measured 75 Kr $-{}^{75}$ Br mass difference of 4.40(20) MeV, when combined with the mass of 75 Br, yields a 75 Kr mass excess of -64.76(20) MeV. This measurement is very different from the one we report and has a large uncertainty. Furthermore, it is subject to similar systematic uncertainties as arise in the ⁷⁷Kr case discussed above. The value quoted by Wapstra and Audi⁹ was incorrectly transcribed from a preliminary report¹⁵ of this work. Therefore, we have no comparative value available. The excellent agreement we obtained between our measured ⁷⁹Kr mass excess and the accepted value, and between our two measurements of the ⁷⁷Kr mass excess, gives us confidence in our data analysis. Therefore, we quote -64.231(16) MeV as the best available value for the mass excess of ⁷⁵Kr.

III. THE ⁷⁸Kr(d,t)⁷⁷Kr MEASUREMENT

The ⁷⁸Kr(d,t)⁷⁷Kr reaction was investigated with a 29.1 MeV deuteron beam from the Texas A&M University cyclotron. For this measurement, 49 Torr of 99% enriched ⁷⁸Kr was introduced into a gas cell similar to the one utilized for the (³He, ⁶He) studies, but with a 3.4 mg/cm² Al entrance window. The split-pole spectrograph focused

FIG. 4. The position spectrum observed in the 78 Kr(d,t) 77 Kr reaction. The smooth curves show the best fit to the triton groups populating the 77 Kr ground and first excited states. The fit is discussed in the text.

	⁷⁹ Kr	⁷⁷ Kr	⁷⁵ Kr
Average corrected Q value			
(³ He, ⁶ He) reaction	-8.811(31)	-10.398(24)	-12.581(14
(d,t) reaction		- 5.804(7)	
Average mass excess	-74.441(31)	-70.160(10)	-64.231(16
Literature	$-74.442(6)^{a}$	$-70.227(29)^{a}$	-64.16 ^b
Adopted mass excess	-74.442(6)	-70.160(10)	-64.231(16

TABLE I. A summary of the Kr mass measurements. See text for details. All values are in MeV.

^aReference 9.

^bReference 17. This result is based upon systematics.

outgoing particles at $\theta_{lab} = 9.6^{\circ}$ onto a 20 cm long resistive-wire proportional counter backed by a scintillator. Scattered deuterons and tritons were identified by their characteristic pulse heights in the two counters. The beam energy was determined by observing the crossover of the ${}^{16}O(d,d){}^{16}O$ and ${}^{16}O(d,t){}^{15}O$ reactions, using natural O_2 as the target gas, and the scattering angle was determined by simultaneously observing elastically scattered deuterons from H and C, using natural C_3H_8 as the target gas. The spectrograph focal plane was calibrated by observing tritons from the ²²Ne(d,t)²¹Ne* (0.351 MeV) reactions, using 99.9% enriched 22 Ne, and from the 40 Ar(d,t) 39 Ar* (1.267, 1.517, and 2.358 MeV) reactions, using natural Ar. The ²²Ne, ⁷⁸Kr, and ⁴⁰Ar measurements were preformed sequentially, without changing the spectrograph magnetic field. The ${}^{40}Ar(d,t)$ reaction proved to be a particularly valuable calibration because tritons populating the 2.358 MeV $J^{\pi} = 1/2^+$ state differed in energy from those populating the ⁷⁷Kr 66 keV $J^{\pi} = 3/2^{-}$ state by only 225 keV.

FIG. 5. Beta-decay energy systematics for light strontium, rubidium, krypton, and bromine isotopes. Predictions are taken from Ref. 9.

Figure 4 shows the triton position spectrum obtained in the ⁷⁸Kr(d,t)⁷⁷Kr reaction. The smooth curves are the best Gaussian fit to the triton groups populating the unresolved ground and the first excited states. This fit required the two peaks to have the correct 66 keV separation energy and the same width. the 65 keV full width at half maximum (FWHM) resolution extracted from this fit is consistent with the ²²Ne and ⁴⁰Ar studies, where all peaks are cleanly resolved, and the 10:1 relative yield of the first excited state to the ground state is consistent with that seen in a previous 16 MeV ⁷⁸Kr(\vec{d} ,t)⁷⁷Kr reaction study.¹⁶ From this fit, we find that the ground state Qvalue for the ⁷⁸Kr(d,t)⁷⁷Kr reactions is -5.804(7) MeV, and that the ⁷⁷Kr mass excess is -70.161(11) MeV. It should be noted that the dominant contributions to the

FIG. 6. Mass formulae comparisons for several rubidium and krypton isotopes. All predictions are taken from Ref. 18 unless noted, and correspond to (1) Myers, (2) Groote *et al.*, (3) Seeger and Howard, (4) Liran and Zeldes, (5) Janecke and Garvey-Kelson, (6) Comay and Kelson, (7) Janecke and Eynon, (8) Möller and Nix (Ref. 19), and (9) Monohan and Serduke (Ref. 20).

uncertainty in this result come from the 5 and 8 keV uncertainties in the accepted ${}^{39}Ar$ and ${}^{78}Kr$ mass excesses, respectively.

This result is in excellent agreement with our result from the 80 Kr(3 He, 6 He) 77 Kr reaction. Therefore, we combine the two results to obtain -70.160(10) MeV for the 77 Kr mass excess. This new 77 Kr mass excess permits us to recalculate the 77 Rb mass excess, using the previously reported 277 Rb $-{}^{77}$ Kr mass difference. We find the 77 Rb mass excess is -64.888(28) MeV. This result is 200 keV more negative than the result¹ of a direct mass measurement [-65.100(105) MeV]. At this time, it is not clear whether or not this two standard deviation discrepancy is related to our lack of understanding of the mass-77 sequential β -decays discussed in Sec. II C.

IV. CONCLUSIONS

Table I contains a summary of our results. The quoted Q values have been corrected for different recoil energy losses and include, where applicable, results from reactions leading to multiple states as discussed previously. Reference 17 has been utilized for reasons discussed in the ⁷⁸Kr(³He,⁶He)⁷⁵Kr section. These results have been integrated into the beta-decay energy systems depicted in Fig. 5. If one compares some of these Rb and Kr masses used in Fig. 5 with the theoretical predictions^{18–21} illustrated in Fig. 6, we observe that the recursive mass formulae (numbers 5, 6, and 7 in Fig. 6) give values consistently closer to the measured value if the ⁷⁶Rb mass is disregarded. Most of the mass formulae predict the Kr masses

- ¹G. Audi, M. Epherre, C. Thibault, A. H. Wapstra, and K. Bos, Nucl. Phys. A378, 443 (1982).
- ²D. M. Moltz, K. S. Toth, F. T. Avignone III, H. Noma, B. G. Ritchie, and B. D. Kern, Phys. Lett. **113B**, 16 (1982).
- ³D. M. Moltz, K. S. Toth, F. T. Avignone III, H. Noma, B. D. Kern, R. E. Tribble, and J. P. Sullivan, Nucl. Phys. A427, 317 (1984).
- ⁴F. T. Avignone III H. Noma, D. M. Moltz, and K. S. Toth, Nucl. Instrum. Methods 189, 453 (1981).
- ⁵F. T. Avignone III, L. P. Hopkins, and Z. D. Greenwood, Nucl. Sci. Eng. **72**, 216 (1979).
- ⁶D. M. Moltz, K. S. Toth, R. E. Tribble, R. E. Neese, and J. P. Sullivan, Phys. Rev. C 26, 1914 (1982).
- ⁷S. Thulin, Ark. Fys. 9, 137 (1955).
- ⁸K. A. Baskova, S. S. Vasil'ev, M. A. Mokhsen, T. V. Chugai, and L. Ya. Shavtvalov, Izv. Akad. Nauk SSR (Ser. Fiz.) 37, 73 (1973).
- ⁹A. H. Wapstra and G. Audi, Nucl. Phys. A432, 1 (1985).
- ¹⁰C. J. Woodward, R. E. Tribble, and D. M. Tanner, Phys. Rev. C 27, 27 (1983).
- ¹¹R. C. Pardo, E. Kashy, W. Benenson, and L. W. Robinson, Phys. Rev. C 18, 1249 (1978).
- ¹²Table of Isotopes, 7th ed., edited by C. M. Lederer and V. S.

rather well, but tend to miss the Rb masses.

Since the ⁷⁵Kr mass is consistent with the other Kr isotopes, we must conclude that the N = 39 configuration is not especially favored and that ⁷⁶Rb must represent an unusual case. It is now recognized^{3,22} that ⁷⁶Rb is one of the most deformed nuclei known. If one considers the mass predictions depicted in Fig. 6 in a sequential manner from ⁷⁷Rb to ⁷⁵Rb, the formula which comes closest to the experimental results is that of Möller-Nix.²¹ We attribute this to their inclusion of the effects of strong prolate deformation. There may exist, however, other effects which serve to make ⁷⁶Rb a unique case perhaps warranting additional study. This could include remeasurement of the β^+ spectrum coincident with the dominant 2571 keV transition.

Although our understanding of the rudimentary nuclear physics has been furthered by these mass determinations, probably more questions have been raised than have been answered.

ACKNOWLEDGMENTS

We wish to thank the staff at the Texas A&M University cyclotron for their help in this work. The work at Texas A&M is supported in part by the U.S. Department of Energy and the Robert A. Welch Foundation. Oak Ridge National Laboratory is operated by Martin Marietta Energy Systems, Inc. for the U.S. Department of Energy under Contract DE-AC05-840R21400. This work was supported in part by the U.S. Department of Energy under Contract DE-AC03-76SF00098.

Shirley (Wiley, New York, 1978).

- ¹³B. D. Kern, K. S. Toth, D. M. Moltz, J. Lin, F. T. Avignone III, H. Noma, and G. A. Leander, Phys. Rev. C 28, 2168 (1983).
- ¹⁴E. Roeckl, D. Lode, and W. Pessara, Z. Phys. 266, 123 (1974).
- ¹⁵D. M. Moltz, J. P. Sullivan, C. A. Gagliardi, R. E. Tribble, K. S. Toth, and F. T. Avignon III, Proceedings of the 7th International Conference on Atomic Masses and Fundamental Constants (AMCO-7), Darmstadt-Seeheim, FRG, 1984, p. 112 (unpublished).
- ¹⁶R. R. Cadmus, Jr., T. B. Clegg, E. J. Ludwig, and S. A. Wender, Nucl. Phys. A319, 165 (1979).
- ¹⁷A. H. Wapstra and K. Bos, At. Data Nucl. Data Tables 19, 177 (1977).
- ¹⁸S. Maripuu, special ed., At. Data Nucl. Data Tables 17, 411 (1976).
- ¹⁹P. Möller and J. R. Nix, At. Data Nucl. Data Tables 26, 165 (1981).
- ²⁰P. E. Haustein (unpublished).
- ²¹P. Möller and J. R. Nix, Nucl. Phys. A361, 117 (1981).
- ²²C. J. Lister, B. J. Varley, H. G. Price, and J. W. Olness, Phys. Rev. Lett. 49, 308 (1982).