Mass of ⁵⁷Cu

C. A. Gagliardi, D. R. Semon, R. E. Tribble, and L. A. Van Ausdeln Cyclotron Institute, Texas A&M University, College Station, Texas 77843 (Received 28 July 1986)

The ground state Q value of the reaction 58 Ni(⁷Li, 8 He) 57 Cu has been measured and found to be -29.613(17) MeV. This corresponds to a 57 Cu atomic mass excess of -47.303(15) MeV. At a beam energy of 76.5 MeV and a scattering angle of 7°, the observed cross section was 17 nb/sr. The implications of these results are discussed.

I. INTRODUCTION

The shell model predicts that the ground states of ⁵⁷Cu and ⁵⁷Ni consist of a single nucleon outside a ⁵⁶Ni closed core. This simple structure facilitates calculations for these nuclei and increases the importance of precise experimental data regarding them. In particular, knowledge of the masses of the mirror nuclei ⁵⁷Cu and ⁵⁷Ni may yield important information regarding the Nolen-Schiffer anomaly.¹ The discrepancy between the experimental and theoretical Coulomb displacement energies for similar cases in A = 17 and 41 has been attributed² to ground state correlations in the nuclear wave functions. It is interesting to examine the mass 57 mirror nuclei to investigate the extension of these systematics to higher Z. If the A = 57 nuclei have true single particle low-lying states, the ⁵⁷Cu beta decay rates determine the $2p_{3/2} \rightarrow 2p_{3/2}$ and $2p_{3/2} \rightarrow 2p_{1/2}$ Gamow-Teller matrix elements, providing a measure of Gamow-Teller "quenching" in this mass region. On the other hand, matrix elements substantially smaller than one would anticipate for single particle transitions would indicate a breakdown of the simple shell model interpretation of these nuclei. The ⁵⁷Cu mass and level structure are also important in calculations of the astrophysical rp process. Relatively small changes in binding and excitation energies result in significant modifications of the predictions for synthesis of proton-rich isotopes with A > 56 (Ref. 3) and possibly for the time evolution of cosmic x-ray bursts.4

⁵⁷Cu has been observed in the ⁵⁷Cu \rightarrow ⁵⁷Ni + e⁺ + ν_e and ⁵⁸Ni(⁷Li,⁸He)⁵⁷Cu reactions. The former study⁵ found the ⁵⁷Cu mass excess to be -47.34(13) MeV and determined its beta decay rates. The latter study⁶ determined its mass excess to be -47.35(5) MeV and identified an excited state at 1.04(4) MeV. We have reinvestigated the ⁵⁸Ni(⁷Li,⁸He)⁵⁷Cu reaction in order to reduce the uncertainty in the ⁵⁷Cu mass excess.

II. EXPERIMENTAL PROCEDURES AND RESULTS

A 76.5 MeV ${}^{7}\text{Li}^{2+}$ beam from the Texas A&M cyclotron irradiated a target consisting of 1.52 mg/cm² ${}^{58}\text{Ni}$ (99.98% purity), backed by 1.10 mg/cm² of Al. Outgoing ejectiles at 7.0 deg were detected with an Enge split-pole

spectrometer. The beam energy and scattering angle were chosen to permit ⁸He's from both the ⁵⁸Ni(⁷Li, ⁸He)⁵⁷Cu reaction and the ²⁷Al(⁷Li, ⁸He)²⁶Si reaction, plus alpha particles from the ${}^{27}Al({}^{7}Li,\alpha){}^{30}Si$ reaction, to appear on the focal plane simultaneously. The focal plane detector consisted of a 10 cm long resistive wire proportional counter, which provided both position and energy loss measurements, backed by a 1 cm \times 5 cm \times 600 μ m thick Si solid state detector. Four parameters were recorded on magnetic tape for each event—position, energy loss through the gas in the wire counter (ΔE), energy deposited in the solid state detector (E), and time-of-flight (TOF) relative to the cyclotron rf. Tritons and ⁶He's were the two most intense particle groups on the counter. In order to minimize deadtime, the ΔE and E thresholds were set above the triton group, and a single channel analyzer set to trigger on the mass 6 group in the TOF spectrum was used as a veto. A 28 μ m thick Kapton absorber was inserted between the wire counter and the Si detector to eliminate background due to α^+ and ⁷Li²⁺ particles. With this absorber in place, the TOF spectrum was very clean and provided reliable particle identification. Figure 1 shows a typical TOF spectrum with the ⁸He group clearly identified. The ΔE and E information provided redundant checks against misidentification.

Figure 2 shows typical ⁸He and alpha particle position spectra. The reactions ²⁷Al(⁷Li,⁸He)²⁶Si (1.796 MeV) and 2^{7} Al(⁷Li, α)³⁰Si (g.s., 2.40 MeV) were used for calibration purposes. By using the Ni-Al "sandwich" target, the calibration reactions appeared on the same spectrum as the desired reaction, thereby minimizing the contributions to the uncertainty in the measured Q value due to changes in the beam energy and the magnetic field in the spectrometer. Data were taken with the target oriented both with the ⁵⁸Ni facing the beam and with the Al facing the beam. The change in the observed ${}^{27}Al({}^{7}Li,\alpha){}^{30}Si$ alpha particle energies in the two orientations provided a precise inbeam determination of the ⁵⁸Ni target thickness, which agreed with the thickness determined by weighing to within 5%. This reduced the contribution to the Q-value uncertainty due to the ⁵⁸Ni target thickness to a negligible level. The calibration reactions were also studied with a 1.5 mg/cm^2 Al target. The latter data were analyzed to determine the beam energy and the focal plane calibration.

FIG. 1. A typical time-of-flight spectrum used for particle identification. The mass 4, 6, and 8 groups are indicated. The gap in the mass 6 group was caused by the veto discussed in the text. Data taken without the Kapton absorber between the ΔE and E counters included an intense group between the mass 6 and 8 peaks due to ⁷Li²⁺.

The difference in the measured alpha particle energies for the two targets determined the difference in their thicknesses precisely. Only one independent target thickness uncertainty, the average thickness of the two Al targets, contributed to the uncertainty in the measured Qvalue. Furthermore, the uncertainty in this target thick-

FIG. 2. Spectra (a) and (b) show typical focal plane position spectra after gating on ΔE , E, and TOF for α and ⁸He particles, respectively. In each case, the observed peaks are identified. These spectra were taken simultaneously with the Ni-Al target described in the text.

ness is equivalent to an uncertainty in the beam energy. Since we used the same reaction for the calibration as for the Q-value measurement, the Q-value determination was relatively insensitive to this target thickness.

The ⁵⁸Ni(⁷Li,⁸He)⁵⁷Cu Q value was found to be -29.613(17) MeV. This corresponds to a ⁵⁷Cu atomic mass excess of -47.303(15) MeV. The major contribution to the overall uncertainty was the 12 keV statistical uncertainty in the measured ⁸He position centroids. Beam energy, target thickness, scattering angle, and the masses used in calculating the Q value all made smaller contributions. It should be noted that the present 7 keV uncertainty in our knowledge of the ⁸He mass⁷ contributed to the uncertainty in the reaction Q value, but that it dropped out in computing the ⁵⁷Cu mass excess, since this was done by comparing two different (⁷Li,⁸He) reactions. Our result is in excellent agreement with, but more precise than, the previous measurements.^{5,6} The agreement between our measured ⁵⁷Cu mass excess and the previous beta-decay study⁵ confirms that the state we observed was the ground state. The measured (⁷Li,⁸He) reaction cross sections populating the ⁵⁷Cu ground state and the ²⁶Si 1.796 MeV first excited state were 17 nb/sr and 41 nb/sr, respectively.

III. DISCUSSION

We compare the present results to several recent mass calculations in Table I. To reduce the systematic differences between the calculations due to different treatments of shell effects, we also present the calculated $Q_{\rm EC}$ values. The deviations found for the various models are similar to those found for the other Cu isotopes. In particular, the shell model prediction of Liran and Zeldes and the recursive prediction of Jänecke and Garvey-Kelson are in excellent agreement with the measurements, demonstrating that the ⁵⁷Cu mass excess is consistent with the systematics in this region. The prediction of Sherrill *et al.*⁶ requires special mention. This represents a calculation of

TABLE I. The ⁵⁷Cu mass excess and $Q_{\rm EC}$ are compared to several recent predictions. All energies are in MeV.

	Mass		
Model ^a	excess	$\mathcal{Q}_{ ext{EC}}$	
Myers	-51.47	7.59	
Groote-Hilf-Takahashi	-47.73	8.43	
Seeger-Howard	47.7	9.0	
Liran-Zeldes	-47.20	8.81	
Beiner-Lombard-Mas	44.9	8.9	
Jänecke-Garvey-Kelson	-47.43	8.69	
Möller-Nix ^b	46.42	9.42	
Wapstra-Audi ^c	-47.38	8.70	
Sherrill et al. ^d		7.87	
Experimental result ^e	-47.303(15)	8.774(15)	

^aFrom Ref. 8 unless otherwise indicated.

^bReference 9.

^cReference 7.

^dReference 6.

This work.

the A=57 Coulomb displacement energy, using radial wave functions obtained in a spherical Hartree-Fock calculation, assuming a closed ⁵⁶Ni core, and including the effects of core polarization. The 10% difference between the predicted and measured Coulomb displacement energies is consistent with that found by these calculations⁶ throughout the *f-p* shell. It has recently been suggested² that this anomaly may be explained for the A=17 and 41 single particle nuclei by ground state correlations in the nuclear wave functions. It would be quite interesting to extend these systematics to this higher-Z case to determine whether the anomaly persists or not. If so, it must represent either the influence of additional corrections which have not yet been included in the calculations or the effect of a charge symmetry breaking force.

If we consider the ⁵⁷Cu ground state and the ⁵⁷Ni low lying states to be pure single particle states, we may combine the measured ⁵⁷Cu mass excess with beta decay lifetime measurements⁵ to extract ft values and matrix elements for the corresponding single-particle decays. Following the prescription of Wilkinson and Macefield,¹⁰ we find that the phase space factors are f = 21432(194) and 10329(108) for decays to the ⁵⁷Ni ground state and the 1.113 MeV state, respectively. The ft values are 5187(367) sec and $65\,000 + \frac{56\,000}{-21\,000}$ sec. The uncertainties in the two results are dominated by the ⁵⁷Cu lifetime and branching ratio uncertainties, respectively. The corre-Gamow-Teller sponding matrix elements are $\langle \sigma \rangle = 0.35 \pm 0.08$ for the $2p_{3/2} \rightarrow 2p_{3/2}$ transition and $\langle \sigma \rangle = 0.24 \pm 0.06$ for the $2p_{3/2} \rightarrow 2p_{1/2}$ transition, where we have used the formula of Wilkinson,¹¹ but with updated values for g_V (Ref. 12) and g_A/g_V (Ref. 13). Each of these matrix elements is only $\approx 25\%$ of the corresponding single particle matrix element. This strength reduction is much greater than one would anticipate from the standard Gamow-Teller "quenching" mechanisms. By contrast, the measured matrix elements in the A = 17 and 41 cases are 87% and 75% of the single particle values, respectively. This strongly suggests that core excitation plays an important role in the A = 57 system. Calculations which explicitly include this degree of freedom are necessary. The impact that this would have on the Coulomb displacement calculations described above is not clear.

The ⁵⁶Ni(p, γ)⁵⁷Cu reaction is an important link in the astrophysical rp process³ which may play an important role in the dynamics of collapsing supermassive stars³ and in the delayed radiation observed following x-ray bursts.⁴ The rp process is the proton analog of the classic r process. At temperatures of $T_9 = 0.2$ to 2 (T_9 is the temperature in units of 10⁹ K), hydrogen-rich matter burns through a series of (p,γ) and (α,p) reactions and positron decays, eventually converting He and C-N-O seed nuclei into ⁵⁶Ni. At this point, the process stagnates. The long ⁵⁶Ni half-life means that heavier nuclei may be formed only after proton capture. The stellar ${}^{56}Ni(p,\gamma){}^{57}Cu$ reaction rate is quite sensitive to the proton resonance energies. Meanwhile, the small reaction Q value permits ⁵⁷Cu photodisintegration to compete favorably with beta decay at relatively low temperatures. The competition between these two effects implies that a relatively narrow temperature window exists for conversion of substantial amounts

of ⁵⁶Ni into heavier nuclei. The nuclei which are produced are proton-rich and include a number of extremely rare isotopes, so it is important to understand their yields.

In their studies, Wallace and Woosley^{3,4} assumed that the ⁵⁶Ni(p, γ)⁵⁷Cu Q value is 0.691 MeV, and that l=1and 3 resonances occur at proton energies of 0.422 and 1.752 MeV, respectively. These states would be the analogs of the $\frac{1}{2}^{-1}$ and $\frac{5}{2}^{-1}$ states in ⁵⁷Ni at 1.113 and 2.443 MeV.¹⁴ The analog of the ⁵⁷Ni 0.769 MeV $\frac{5}{2}$ state makes a negligible contribution because of the additional angular momentum barrier. Given our new value for the ⁵⁷Cu mass excess, we find that the ⁵⁶Ni(p, γ)⁵⁷Cu Q value is 0.690(19) MeV. Sherrill et al.⁶ chose to treat the ⁵⁷Cu excited state which they observed at 1.04(4) MeV as the analog of both the $\frac{5}{2}$ and $\frac{1}{2}$ states for purposes of analysis. This was justified by the fact that the Coulomb displacement energy calculations predict these states to be essentially degenerate. This assumption combined with their more positive (p,γ) Q value implied a substantial reduction in the ⁵⁶Ni(p, γ) reaction rate for the temperature region of primary interest. In Fig. 3(a), we have recalculated the ⁵⁶Ni(p, γ) reaction rate as a function of temperature under two different hypotheses. The solid curve assumes that the $\frac{1}{2}$ proton resonance energy is 350 keV, consistent with $E_x = 1.04$ MeV and our revised Q value. The dashed curve assumes that the state observed previously was, in fact, the $\frac{5}{2}$ state, and that the $\frac{1}{2}$ state is at an excitation energy of 1.11 MeV, as given by Coulomb displacement energy calculations. In both cases, we have included the additional proton resonance at 1.753 MeV from the original rp calculations. The latter hypothesis essentially reproduces the original results. By contrast, the former hypothesis substantially reduces the (p,γ) reaction rate, especially in the temperature region $T_9 = 0.5$ to 0.9. In order to estimate the impact that this change might have upon A > 56 nucleosynthesis, we note that most of the supermassive star models utilized by Wallace

FIG. 3. Panel (a) shows the calculated ${}^{56}Ni(p,\gamma){}^{57}Cu$ reaction rate in cm³/(mole sec). Panel (b) shows the ratio of the calculated ${}^{57}Cu$ photodisintegration rate to the known beta decay rate. In each case, the solid curve assumes that the $2p_{1/2}$ proton resonance is at 350 keV and the dashed curve assumes that it is at 420 keV.

and Woosley included hydrogen densities of $\approx 100 \text{ g/cm}^3$ and characteristic explosion times of 100-1000 sec. Under these conditions, a ${}^{56}Ni(p,\gamma)$ rate of 10^{-6} $cm^3/(molesec)$ would imply a 1–10% proton capture probability. This rate occurs at temperatures of $T_9 = 0.47$ and 0.70 with the two hypotheses. In Fig. 3(b), we show the calculated ratio of the ⁵⁷Cu photodisintegration rate to its beta-decay rate as a function of temperature, again according to our two hypotheses. When this ratio is much less than 1, essentially all ⁵⁶Ni nuclei which capture protons proceed to form heavier isotopes. By contrast, when this ratio is much greater than 1, most ⁵⁷Cu which is formed returns to ⁵⁶Ni via photodisintegration. This quantity is primarily determined by the ${}^{56}Ni(p,\gamma){}^{57}Cu Q$ value, so the difference between the two hypotheses is not great in this case. The critical temperature when $\lambda_{(p,\gamma)}/\lambda_{\beta}=1$ shifts from $T_9=0.77$ to 0.92 under the two hypotheses. We see that substantial heavy element synthesis will occur at different temperatures, depending upon the actual excitation energy of the 57 Cu $\frac{1}{2}^{-}$ state. Clearly, more detailed spectroscopic information is needed.

Finally, it should be noted that our measured (${}^{7}Li,{}^{8}He$) cross section at 76.5 MeV was only $\approx 13\%$ of that found⁶ in the same reaction at 174 MeV. If this exotic reaction is to be used in further mass measurements, there is a sub-

stantial advantage to be gained by running at higher beam energies.

IV. CONCLUSIONS

We have remeasured the Q value of the ⁵⁸Ni(⁷Li,⁸He)⁵⁷Cu reaction, and from this, we have deduced the ⁵⁷Cu mass excess. Our results are in excellent agreement with, but substantially more precise than, the previous measurements. The ⁵⁷Cu mass is consistent with the systematics for this region. In particular, the experimental A = 57 Coulomb displacement energy is $\approx 10\%$ larger than predicted⁶ by a detailed Hartree-Fock calculation. This discrepancy indicates either that important nuclear effects have been neglected in the calculation or that a charge symmetry breaking force may be present. The ⁵⁷Cu Gamow-Teller matrix elements suggest that the A = 57 nuclear wave functions include substantial multiparticle, multihole components. More detailed spectroscopic information for ⁵⁷Cu is required before the importance of the rp process in heavy element synthesis may be determined.

This work was supported in part by the U.S. Department of Energy and by the Robert A. Welch Foundation.

- ¹J. A. Nolen and J. P. Schiffer, Phys. Lett. 29B, 396 (1969).
- ²S. Shlomo (unpublished).
- ³R. K. Wallace and S. E. Woosley, Astrophys. J. Suppl. 45, 389 (1981).
- ⁴R. K. Wallace and S. E. Woosley, in *High Energy Transients in Astrophysics*, Proceedings of the Conference on High Energy Transients in Astrophysics, Santa Cruz, AIP Conf. Proc. No. 115, edited by S. E. Woosley (AIP, New York, 1984), p. 319.
- ⁵T. Shinozuka et al., Phys. Rev. C 30, 2111 (1984).
- ⁶B. Sherrill et al., Phys. Rev. C 31, 875 (1985).
- ⁷A. H. Wapstra and G. Audi, Nucl. Phys. A432, 1 (1985).

- ⁸S. Maripuu (special editor), At. Data Nucl. Data Tables 17, 411 (1976).
- ⁹P. Möller and J. R. Nix, At. Data Nucl. Data Tables 26, 165 (1981).
- ¹⁰D. H. Wilkinson and B. E. F. Macefield, Nucl. Phys. A232, 58 (1974).
- ¹¹D. H. Wilkinson, Nucl. Phys. A209, 470 (1973).
- ¹²D. H. Wilkinson, Nucl. Phys. A377, 474 (1982).
- ¹³P. Bopp et al., Phys. Rev. Lett. 56, 919 (1986).
- ¹⁴T. W. Burrows and M. R. Bhat, Nucl. Data Sheets 47, 1 (1986).