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Relative sizes of ' Ca from the scattering of 79 MeV a particles
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The scattering of 79, 1 MeV a particles from ' "Ca has been measured with high relative accuracy and

analyzed with a folding model for the optical potential. The result for hR, the difference between the ' "Ca
rms matter radii, is hR = 0.05 ~ 0.04 fm. This result appears smaller than most previous measurements which

employed Woods-Saxon potentials or diffraction analyses. Most of the discrepancies are removed when the
definition of the matter radius used in each analysis is scrutinized. Combining b R with the results of
electromagnetic experiments yields the relative neutron-proton radius difference in Ca; R„(48}—R„(48)
= 0.03 ~ 0.08 fm. These results are compared with Hartree-Fock calculations which tend to produce

larger differences. Possible reasons for this discrepancy are discussed.

NUCLEAR REACTIONS 4 ' BCa(n, n) E =-79.1 MeV measured 0(0); 0
=-10-45', enriched targets. Microscopic optical model analysis; deduced

rDls matter x'adli.

I. INTRODUCTION

U(r. ) =(A„+iA,) p(r)V„,,„(r-rgd7 (la)

or

(((r, )=(X, —(5;~ p(r))'.„(r—|,)dv, ((b)
6'

where A„and A, (or 5;) are empirical functions of
1: (the n particle energy), p(r) is normalized to
A nucleons, and V„;(r—r ) is the effective o) par-
ticle bound nucleon interaction. V,«has been ob-
tained' ' by averaging a nucleon-nucleon interac-

The problem of the relative sizes of the doubly
closed shell nuclei " '"Ca is of considerable in-
terest. From electron scattering' and muonic
x-'ray studies' it was found that the relative rms
radii of the charge distributions is SR, =A, (48)
—R,(40) =-0.01 fm. Since AR, was interpreted as
equal to the difference of the rms proton radii
LR~=P~(48) —P~(40), this negative result was sur-
prising since both "Ca and "Ca have B,)A, (40).
Recently it has been noted' that because of certain
relativistic effects and because of the charge form
factor of the neutron AR, cAR~ and the value AA~
=+0.012 fm was obtained, thereby resolving the
'Ca anomaly.
It is also of interest to determine the relative

neutron or total density rms radii. To do this we
have utilized a particle scattering for which the
optical potential U(r„)has been approximately re-
lated to the density distribution of nucleons p(r)
b 49'

tion" which fits the low energy nucleon-nucleon
data over the empirical a particle size (as deter-
mined by electron scattering). This gives:

V~)f(r —r ) =- V, exp
Vp

where Vo=37 MeV and xp=-2. 0 fm. ''
The parameters A.„and A; (or |);)have been de-

termined from n particle scattering from the T =0
nucleus 4'Ca for which p„(r)—= p~(r) and p~(r) is ob-
tained f rom electron scattering. Theoretical angu-
lar distributions obtained using Eqs. (la) and (1b)
are compared to the measured angular distribution
in Fig. 1(a). . Values obtained for the parameters
were A„=1.018, A. ; =0.473 for Eq. (1a) and A„
=0.978, 5,. =0.383 for Eq. (1b). 1t has been pre-
viously shown" that A.„(A;)decreases (increases)
approximately linearly with increasing E„.

For each E, the parameters A.„and A; (f);) are
taken as fixed. Utilizing theoretical values for the
matter density one can predict the elastic scatter-
ing of n particles without any adjustable parame-
ters. An example of this is given in Fig. 1(b) for
"Ca using the Hartree-Fock (HF) calculations of
Negele" and Miller and Green. " It can be seen
that these HF calculations are in good agreement
with the data. This is not surprising since Miller
and Green" chose their parameters to give the
correct rms radius for "Ca and Negele's calcula-
tions" are in good agreement with electron scat-
tering.

It is important to realize that it is because of
the composite nature of the n particle that the
scattering is characterized by strong absorption.
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Consequently only the potential in the surface re-
gion is important for the forward diffraction re-
gion of scattering, and the data should be insensi-
tive to the details of t/, ff. These considerations
are presented quantitatively in Sec. IIID in a dis-
cussion of the systematic errors and are consid-
ered in detail in Ref. 6.

The relationship between V(x„)and p(r) [Eq. (1)]
has been tested by successfully predicting' o. par-
ticle scatte ring from the E= Z nuclei Si and ' O.
It has also been shown that +10% deviations in r„

the range of t/, «, do not alter the predictions using
Eq. (1) provided that the values of A.„and A,. (or 5;)
are readjusted. ' Using these results, matter dis-
tributions in the surface region for many N+ Z
nuclei have been obtained' ' from elastic scattering
data. Once p(r) is known, the neutron distribution
p„(r)= p(r) —pl, (x) is obtained by subtracting the
empirical proton distributions found in electron
sc attering experiments.

It has been estimated that nuclear sizes can be
measured to an accuracy of approximately 0.1 fm
by n particle scattering. ' Furthermore it is pos-
sible that the relative sizes of a series of isotopes
(or isotones) can be measured with even higher
relative accuracy. Because the size diff erence of
a pair of isotopes is small one must make careful
relative measurements (see Sec. II) and analyses
of the differences (Sec. III).

The relative sizes of " 'Ca have been previously
studied using protons, ' ' ' a particles, ' "*"and
' 0 ions. " Several authors determined empirical
optical potentials, defined a radius A~, of this po-
tential or a strong absorption (diff raction) radi-
us" "and obtained bR» =R~(48) -R„(40), Some
confusion has arisen because of the assumption" "
that hR~ =AR, the difference in the rms matter
radii of " "Ca. This assumption is incorrect due
to the different normalizations of the density dis-
tributions for the two nuclei [see Eq. (4)]. Be-
cause of this difference, even if hg =0, one would
have ~~ =- 0.15 fm. This is discussed in Sec. III
and a comparison with the previous experiments
is presented in Sec. IV.

Several methods have been proposed to measure
neutron or total density distributions. "'" Of
these only the method of Coulomb energy diffe-
rences" has been applied to " "Ca. A compari-
son with this method will be presented in Sec. IV.
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FIG. 1. Differential cross sections for the elastic
scattering of 79.1 MeV n particles from Ca plotted as
the ratio to Rutherford scattering. In part (a) the curves
are obtained from best fits to the data. The solid curve
uses Eq. (1a) and the dashed curve uses Eq. (1b). Part
(b) shows the predicted angular distributions using the
Hartree-Pock densities of Negele (Ref. 12) and Miller
and Green {Ref. 13). In all subsequent figures showing
cross sections the reaction will be the clast!c scattering
of 79.1 MeV o. particles unless otherwise stated.

II. DATA ACQVISITION

The differential .cross sections of elastically
scattered 79.1+0.1 MeV a particles from "Ca and
"Ca have been measured at the Texas ASM Uni-
versity Cyclotron Institute. The targets were
self- supporting foils (0.24 mg/cm' natural CaO
and 0.94 mg/cm' CaO enriched to 95% in 4'Ca).
The scattered n particles were detected with two
3 mm Si(Li) detectors separated by a 5.5' angle
in a single rotatable mount. Angular acceptance
was 0.3'for each detector and energy resolution
was about 150 keV [full width at half-maximum
(FWHM)]. Absolute cross sections were obtained
by reducing the beam energy to 24.2 MeV and
measuring differential cross sections between 5

and 15' (lab). Comparing these data which extend
into the Rutherford scattering region to optical
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model predictions yielded absolute cross sections
for the 79 MeV data believed accurate to 5%. In
addition, scattering from the natural "CaO target
was compared with that from a weighed Ca metal
standard. Relative cross section accuracy was
limited to approximately 1% by background sub-
traction errors and to 5% near deep minima in the
angular distributions due to statistics. Error bars
in the figures include statistical, background sub-
traction, and, where applicable, relative "Ca to
'Ca normalization errors.

Data were always taken on the two calcium tar-
gets before changing the laboratory angle. This
procedure insures that the relative angular ac-
curacy for the "Ca and "Ca measurements is very
high. Monitor detectors above the scattering plane
on either side of the beam were used to determine
drifts in beam position during the course of a
bombardment. Using these monitor data, the ang-
ular error between" "Ca measurements was
determined to be less than 0.1'. The absolute
laboratory angles and the Faraday cup efficiency
were determined by measuring small angle scat-
tering on both sides of the beam using a gold tar-
get of known thickness.

III. ANALYSIS OF RESULTS

A. Diffraction analysis

Since the radii of the Ca isotopes do not differ by
very much it is a,dvantageous to utilize difference
methods to analyze the data rather than analyze
each isotope independently. The first method of
analyzing the data is based on the diffraction mod-
el'" which predicts than an increase of radius
of 'Ca relative to ~'Ca would be manifested by the
diffraction pattern of the "Ca. angular distribution
shifting to smaller angles relative to "Ca.. As is
indicated in Fig. 2, we measured 66,~„the angu-
lar difference between the points at which each
cross section is half of its nearest maximum val-
ue, for the corresponding diffraction maxima, .

Theoretical curves using the potential of Eq.
(la) to calculate o(6) were obtained for a series
of assumed "Ca densities of varying radii and are
plotted in Fig. 3(a). Since o. particles interact in
the surface region' it is sufficient to characterize
p(x) by the Fermi form

IO

~ "Ca
--- + "OCa

0. 1 =
~ o~s

++

~ + ~

0.01 =

gO~~++

li

to give a close match to the empirical proton dis-
tribution, i.e., the empirical charge distribution"
with the finite size of the proton unfolded. Calcu-
lations for "Ca were performed by varying the pa-
rameters b. c = c(48) —c(40) and ha =a(48) —a(40).

It has been shown' that in the A = 40-48 mass
region it is only the rms radius R of p(r) and not
the individual pa. rameters c and a to which o(6) is
sensitive in the diff raction region. This was con-
firmed in the present study by adjusting Ac and
b, a and observing that the results depend only on
AR. The results presented in Fig. 3(a) indicate
a monotonic change in o„(6)with increasing hR.
It is important to note that the curves for "'"Ca
are quite different even for AA =0. It can be shown
that this difference i.s not a center of mass effect
but occurs because of the normalization of p(r)
[Eq. (4)]. Figure 3(b) shows p(r) for" "Ca, in
the region of the nuclear surface with Lg =b, c
=~a =0. The main contribution to elastic n par-
ticle scattering comes from the region where the
nuclear matter density is 5-15% of the central
density. ' The most sensitive region is near the
radius r, defined by the. condition' p(r =y ) —= 0.017
nucleons/fm' (see Fig. 14 and the discussion in
Sec. III D). Even with bR =0, the construction in
Fig. 3(b) shows that 4i =r(48) —r(40) =0.11 fm.
This consequence of the normalization of the nu-
clear matter density Eq. (4) is quite important in
understanding the results of previous analyses of
the 4'4'Ca differences (see Sec. IV).

To obtain hR from a diffraction analysis succes-
sive values of a6g, = 6,g, (40) —6,~,(48) are plotted
vs 6=-', [6,g, (40) + 6,~,(48)]. This is done with the
measured angular distributions and with predicted

r —c
p(r) =p, 1+exp

where p, is determined from the normalization
condition:

(3)

10

~pe
(

1 I

8 (deg)
40

p(x)d~ A (4)

nucleons. For ~'Ca the parameters were chosen

FIG. 2. Scattering cross sections from Ca. The
lines through the data have no theoretical significance.
The construction of Ad&~& for 0 = 30' is i1lustrated (see
text for discussion).
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Figure 5-7 illustrate the relationship between
D(8) and the density difference. The optical po-
tential was taken to have the form of Eq. (la) with

V,«given by Eq. (2). For both isotopes a, Fermi
matter distribution is assumed with c(40) = 1.2A, ' '
fm and a(40) =0.5 fm. The effect upon D(B) of
changing only c(48) is shown Fig. 5. Increasing
the size of "Ca relative to "Ca increases the max-
ima and minima of D(8) and shifts the pattern to
smaller angles. A similar result is obtained if
we set c(48) =c(40) and only adjust the diffuseness
for 'Ca as shown in Fig. 6. The conclusion that

D(8) is primarily sensitive to the difference in rms
radii not to Ac or 4a is illustrated in Fig. '7. The
solid curve was obtained w ith hc = 0.2 fm, ~ = 0,
and ~=0.13 fm whereas the dotted curve corres-
ponds to Ac = 0, Aa = 0.06 fm, and AR = 0.13 fm.
Thus bR is a meaningful parameter in fitting the
isotopic difference function.

Figure 8 illustrates the normalization effect for
the isotopic difference function (see discussion in
Sec. IIIA). The dashed line corresponds to an
identical shape p«(r) =(48/40)p~, (r) for the densi-
ties and the agreement with experiment is good.
This agreement indicates that AR is small. The
effect of the center of mass energy difference on
D(8) has been calculated by assuming that the opti-
cal potentials are the same for "'"Ca. This cal-
culation is shown as a solid line in Fig. 8 and the
effect is seen to be negligible.

In the discussion of Figs. 5-8 the emphasis was
on the qualitative aspects of D(B) The f.ollowing
discussion concentrates on fitting D(8) to the data.
To do this a Fermi form was assumed for the
density distribution of 'Ca. The parameters c(48)
and a(48) were then varied to produce a minimum
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FIG. 4. 48& ~& versus 8. Experimental points are
shown with error bars. The solid line represents the
best fit to the data and the dashed lines the error limits.
These curves are labeled with their respective ~ values
in fm. Part (a) contains the 79 MeV results and part
(b) is the 42 MeV data of Ref. 16.

FIG. 5. Isotopic difference function D(8) versus 8~,b.
The variation of the D(8) with ~c = e(48) —e(40} is shown.
In Figs. 5-9 and 11D(8} is shown for the elastic scatter-
ing of 79.1 MeV & particles from Ca, Experimental
points are shown with error bars and theoretical curves
are labeled.
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FIG. 7. Isotopic difference function for ~ =0.13 fm.
For the solid curve this is obtained by setting &c =0.2
fm and Aa=p; for the dashed curve by setting ~c=p and
b, a= 0.6 fm.

FIG. 8. Isotopic difference function. The solid curve
shows the center of mass effect and is labeled by V(48)
= V(40), i.e. , the optical potentials of 4 '4 Ca are the
same. The dashed curve shows the normalization effect
and corresponds to ~ =p, i.e. , p48(~) =(48/40)p40(r).
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where e,. is the error in D(6,) and was taken to be
the statistical error. As was previously shown

D(e) depends primarily on bR (the rms radius dif-
ference) and not b, c or aa separately. The best
fit occurs for DR=0.02 fm (X' =1.6). Figure 9

shows the fits for ~R =0.06 and -0.02 fm which
correspond to y'/y' = l.5. In general it is found

that for X'/X'. =1.5 it is difficult to distinguish
qualitatively the curves from the best fit (X',.„)so
that a measure of the fitting error can be obtained
when y'/y . =1.5. For the present case this gives
6R = 0.02 + 0.04 fm.

In general one can consider three sources of
errors: (1) a fitting error discussed above (as-
suming only statistical errors); (2) systematic er-
rors in the cross section of 'Ca relative to Ca
and; (3) inaccuracies in the assumed model [Eqs.
(1) and (2)]. The latter case will be discussed in

Sec. IIID. The first two types of error are in-
dicated in Fig. 10. The fitting error is shown in

Fig. 10(a) where X' is plotted versus bR.
The uncertainty in ~ caused by systematic er-

rors in the cross section of "Ca relative to 'Ca

is shown in Fig. 10(b). The systematic error is
estimated to be -5/~ which corresponds to a range
in bR from -0.1 to +0.05 fm and an uncertainty
in bR of +0.03 fm. This uncertainty is comparable
to the +0.04 fm fitting error.

Figure 11(a) compares the best fit value (y' =1.6,
aR =+0.02 fm) with predictions based upon the
Hartree-Fock calculations of Negele~ (y' = 12,
DR =0.20 fm) and of Miller-Green" (y'=4, bR,
=0.125 fm). It is clear that the Negele calculation
predicts too large an isotopic shift whereas the
Miller-Green" calculation is in good agreement
with the data (see Sec. IV). Figure 11(b) illustrates
the effects of using surface absorption [Eq. (1b)]
rather than volume absorption [Eq. (la)]. The dif-
ferences are negligible which indicates that the
interior of ImU(r ) is not important (see Sec.
III D). A complete analysis of the 79 MeV data
was done with both surface and volume imaginary
geometries. In no case were there statistically
significant differences and either geometry may be
used in what follows.

Figure 12 shows the analysis of the 41.8 MeV
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semble elongated ellipses; the long axis is called
the "soft direction. " In Fig. 14(a) r'bp is plotted
for five (c, a) values along the soft direction of the
error ellipse. From this figure it is seen that all
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e) b (deQ j
50 60

0.5—

FIG. 12. Isotopic difference function at 42 MeV using
the data of Ref. 16. The three curves are the best fit,
the Hartree-Fock predictions of Negele (Ref. 12), and
Miller and Green (Ref. 13). The Miller-Green predic-
tion is essentially indistinguishable from the best fit
curve.
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FIG. 13. Contours of constant y found in fitting the
isotopic difference function in the c,a plane [where c
anda are the parameters of p(~) for Ca]. These
curves were obtained by using the surface imaginary
potential [Eq. (1b)]. They are very similar to the ones
found using the volume imaginary potential [Eq. (1a)].
The curve for constant rms radius of Ca is also shown.
For this calculation the density parameters of Ca were
held constant.

FIG. 14. r Lhp(x) =x [p48(~) -p40(x)] versus r. Part (a)
is five points along the "soft direction" of the error el-
lipse of Fig. 13. The five points (labeled 1 through 5)
are indicated in the insert. The crossover point at x
=7 = 5.1 fm is indicated. The plot is shown for x~ 3
fm which is the region of sensitivity of n particle scat-
tering, Part (1b) shows the theoretical Hartree-Fock
predictions of Negele (Ref. 12) and Miller and Green
(Ref. 13). The dashed curve is generated using Fermi
densities with c=1.2A~ ~ anda =0.57 fm.
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TABLE II. Results from the D(6) analysis at 79.1 Mev for Ap(r) and AU(rg for ' Ca.
The critical radii are r=5.1 fm [Fig. 14(a)] and 7~=7.15 fm [Fig. 15(a)l. The quoted uncer-
tainties are obtained at the ends of the fitting error elipse having l( = 1.3$ . ,

Experiment Negele HF Miller HF

r26p(r) (nucleons/fm)
AU(r ) (MeV)

0.065 +0.015
0.83 + 0.07

0.165
1.80

0.090
0.95

of the r'Ap curves intersect at the point r =r=5. 1—

fm. Relative to the best fit curve (No. 3), if the
other curves are larger for z&r they are smaller
for r&r (or vice versa). This strong correlation
is what insures that AR is well measured. This
can be seen in Fig. 13 by the fact that the line for
constant rms radius is very close to the "soft
axis" of the ellipse.

Hartree-Fock predictions for y'6p are presented
in Fig. 14(b). The values at r=r are compared to
the ones obtained from n particle scattering in
Table II. It can be seen that the calculation of Mil-
ler and Green" is in reasonable agreement with
experiment but that of Negele" is not. This will
be discussed in Sec. V.

Corresponding to the point r for p(r) there is a
point r for U(r„). This point r„=7.15 fm is de-
termined by the location of the waist in the en-
velope of the curves in Fig. 15(a). As was antici-
pated, r is approximately 2.0 fm larger than p.
The theoretical predictions for AU(r ) have been
obtained by inserting the theoretical p(r) values
into Eq. (1) and are presented in Fig. 15(b) and in
Table II. As is the case for y'Ap, the calculations
of Miller and Green" are in reasonable agreement
with n particle scattering but those of Negele"
are not.

IO

I.O

--- lDF

D. Estimate of model-dependent errors

As discussed in Sec. I, the strongly absorbing
nature of the particle-nucleus interaction leads one
to anticipate that the results of the present analysis
should be insensitive to the details of the model as-
sumed. In this section quantitative evidence is pre-
sented to support that hypothesis and an estimate
of the model-induced error is made.

The first check concerns the form of the theore-
tically undefined imaginary part of U(r ) As in-.
dicated in Fig. 1(a) the best fit to the scattering
from "Ca is essentially the same with surface or
volume absorption. The best fits to the isotopic
difference function [Eq. (5) j are shown in Fig. 11.
Again there is essentially no difference in the
quality of the best fit using either surface or vol-

0.1

5 7
r(fm)

I

8

FIG. 15. Differences of the real part of the optical
potential for ' Ca. Part (a) is for five points along
the "soft direction" of the error ellipse of Fig. 13. The
five points are labeled in the insert. The crossover
point at r„=7.15 fm is shown. Part (b) shows the best
fit along with the Hartree-Pock predictions of Negele
(Ref. 12) and Miller and Green (Ref. 13).
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ume absorption and the value of BR=0.02 fm is
the same in both cases. These results are pre-
sented in Table III and it is concluded that the re-
sults of u particle scattering in the diffraction re-
gion are largely insensitive to the form of the
imaginary potential.

In order to check that the results do not depend
critically on the values of the empirical parameters
X„and A, they were varied by approximately 8/0
from their best values. With these values the scat-
tering from ~ Ca could not be even qualitatively
reproduced. However a good fit to the isotopic dif-
ference function was achieved (since it is less
sensitive to X„and X, ) with the result LA=0.04 fm,
which is within the error of the best fit value (see
Table III).

To check that the specific choice of V,« is not
critical the analysis was repeated using a range
ro [Eq. (2)] which was 10% smaller than the stan-
dard 2.0 fm case. The A. 's taken for this test were
generated using the empirical relationship"
X„,-x,'=constant. A good fit to the isotopic dif-
ference function was obtained with a result of ~R
=0.06 fm which is within the error of the best fit
value.

In order to check whether variations in the less
understood imaginary part of Eq. (1) were causing
a problem A. , was varied for "Ca only. It was
found that o(8) is fairly insensitive to X; for "Ca
but that the best fit is obtained with the same value
of A, as for Ca. These results indicate that the
difference in o(8) is dominated by the difference in

p(x) and the details of V,ff a,re not important. The
possible errors involved appear to be about the
same a.s the fitting errors (-0.04 fm).

It should be emphasized that there is one critical
assumption which is that V,« is the same in "~'Ca.
This requires that X„(orV, ) and x, be the same for

'"Ca. It may be instructive to inquire what
changes in X„orx, are required to obtain agree-
ment with the HF calculations of Negele~ who pre-
dicts AA = 0.20 fm whereas the value found here is

~ = 0.05 + 0.04 fm.
It is possible to fit the e particle scattering from

"Ca with densities of different rms radii provided
that compensating changes in the value of X„are
made. " For the values of A.„atE =79 MeV the
relationship is dA„/dA = -1.2 fm '. If we take dA
=0.15 fm this gives dA.„=-0.18 or dA.„/X„=-18%.
This is a rather substantial change in A.„between

' 'Ca and seems quite unlikely.
The change can also be parametrized in terms ofr„the range of V,« IEq. (2)]. Suppose that A„is

the same in '~ "Ca but that r, changes. It has been
previously shown" that changes in r, and A.„are
equivalent to each other if

dA. „/A,„=6cho/ro .

For the present case dA.„/A,„=—18%. One obtains
dr, /r, =-3/o. Since r, =2.0 fm this makes dr,
=-0.06 fm. These changes are based on changing
V,ff for all of the "Ca nucleons. If one assumes
that the interaction has been shown to be A-inde-
pendent for the N=Z core, ' then the interaction
can only differ for the eight valence nucleons in
'Ca. In order to obtain agreement with Negele's

calculation, " the value of Ch, for the valence nucle-
ons would have to be six times larger than dro for
the core dr, =r, (valence) —r, ( core) = 0.36 fm.

Although some A. dependence in either the
strength or the range of the effective interaction
cannot be arbitrarily ruled out, the required "rel-
ative" changes are quite large for two nuclei 8 amu
apart. Previous analyses of n scattering from
0, Sj, Ca, Zr, and Pb found no evidence

for an A-dependent interaction.

E. ~8Ca analysis

In the previous section ' '"Ca data were analyzed
on a relative basis with the result that AA =0.05
y0.04 fm. The rms radius of the charge distribu-
tion" of 40Ca is A, (40) =3.452 fm. Unfolding the
proton size gives a proton rms radius A~(40) =3.358

TABLE III. Sensitivity of DR =R(48) —R(40) to changes in the & particle-nucleus interaction.
The interaction is assumed to be the same in +' Ca.

yo (fm) Interaction X 4R (fm) Comments

2.0
2.0

2.0
1.8

Volume
Surface

Volume
Volume

1.045
0.978

0.96
1.87

0.483
0.383

0.52
0.86

1.6 0.02 +0.04
2.6 0.01

3.6 0.04
2.0 0.06

Best fit result
Check on the independence

of the form of the
imaginary potential

Arbitrary A, » A. ; values
10% change in the range

of the interaction

~ The range of the effective n particle-nucleon interaction IEq. (2)j.
"Equation (1a) or (1b) used as indicated by volume or surface.
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fm. Using the assumption that the rms matter ra-
dius R(40) =R~(40) with the measured ER, one ob-
tains R(48) = 3.41+ 0.04 fm. It is of interest to
check this result using only the cross section da. ta
for "Ca. In Fig. 16(a) the best fit on an absolute
basis is presented from which one obtains R(48)
=3.42+0.03 fm in agreement with the value ob-
tained from the isotopic difference function. In

Fig. 16(b) the curve calculated using the density
obtained from the isotopic difference function is
presented and is also in good agreement with the
data.

In Fig. 16 the HF predictions of Negele" and
Miller and Green" are presented. It can be seen

that the predictions of Miller a,nd Green are in
better agreement with the data than thpse of
Negele. These are the same conclusions reached
in the discussion of the isotopic difference func-
tion.

F. Neutron, proton differences in" Ca

Combining the rms radii of the matter R(48) and

proton R~(48) distributions of ~'Ca enable one to ob-
tain the rms neutron radius R„(48)and thus to see
if the neutrons extend beyond the protons. To do
this we use the formula for the rms radius of a
nucleus with A =2+¹

l0
(a) "Ca Fit

---- Miller HF

R =~Rp +~R„.
We define

R~(48) —R~(40) =- A~ = 0.01 fm,

R(48) -R(40) -=~,
R~(40) —R„(40)= 26,

R„(48) R~(48) -=6„~,

(7)

(8)

IO where 4~ has been obtained' from electromagnetic
experiments and AR is given in Table I. Substi-
tuting these definitions into Eq. (7) for ~ Ca. and

"Ca, and neglecting the squares of these diffe-
rences, which are negligible, one obta. ins:

l
0-2

b l0

10

(b)
I I

I I

Ca IDF
----- Negele HF

6„~= ~P, (b,R —6 —A~) .

One needs information about the unmeasured quan-

tity 6 in order to obtain 6„~.Assuming 6 =0 (ne-
glecting Coulomb effects in 4 Ca) and using the
measured quantities results in 5„~=0.07+0.07 fm.
Alternatively, 5 can be obtained from Hartree-Fock
calculations. This seems reasonable since 5 orig-
inates from the Coulomb interaction and the Har-
tree-Pock calculations yield very accurate rms
radii for Ca. In addition the values of 5 from dif-
ferent Hartree-Fock calculations are in good
agreement with each other (see Table V in Sec. V).
We therefore assume a value of 6 =0.02 fm from
Hartree-Fock theory and obtain

5„&—-0.03+0.08 fm.

IO
10

I

20'
I I

50 40' 50 60'

This value is consistent with zero and is sma. lier
than the Hartree-Fock predictions. It will be dis-
cussed further in Sec. V.

.f71.

FIG. 16. Cross sections for 4 Ca. Part (a) shows the
best fit to the 4 Ca data long with the Hartree-Fock pre-
dictions of Miller (Ref. 13). Part (b) shows the fit ob-
tained with p (x) determined using the isotopic difference
function along with the Hartree-Fock prediction of
Negele (Ref. 12).

IV. COMPARISON WITH OTHER EXPERIMENTS

The " 'Ca sizes have been studied with the scat-
tering of protons, ' '" z particles, ' "'"and 'M
ions." The results of these measurements are
presented in Table IV. Most earlier studies de-
termined empirical optical potentials and charac-
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TA,BLE IV. Summary of measurements of the ' Ca density and optical potential differences and of the Ca neutron-
proton rms radii difference.

Projectile
(Method)

Projectile
energy
(Mev) Reference

AR~
(fm)

~nP
b

(fm)

v'
(fm) Definition of Rv

160

79 (42)
166
42

20 to 40

10.8 to 16.3
25 to 40

0.11 to
0.24
0.15

Various definitions of strong
absorption {diffraction) radii
Radius parameter of Woods-

Saxon potential
Maximum of nuclear plus Coulomb

potentials
rms radius of optical potential
Radius parameter of Woods-

Saxon potential

18 0.41+0.01

0.22+ 0.09 0.39 + 0.10 0.24+0.09
0.15

14
15

This paper 0.05+ 0.04 0.03 + 0.08 0.18 +0.04 Diffraction radius
7 0.21 + 0.07 0.38+0.12

16

Coulomb
energy
difference

19 0.06

' rms radius difference of 'Ca.
Difference of neutron and proton rms radii in Ca.
Difference of characteristic radii in 4 ' Ca associated with the optical potential (see text).
The 42 MeV data of Ref. 16 were also analyzed.

terize their results in terms of a radius parame-
ter associated with the potential, denoted by Bv in
this paper. Rv has been taken to be: the radius of
a Woods-Saxon potential"' "with the assumption
that the surface diffuseness a is the same in

' 'Ca; the maximum of the nuclear plus Coulomb
potential barriers'; the rms radius of the real
part of the nuclear potential" (denoted by A~ in
this paper); the strong absorption or diffraction

radii" which are determined from the phase shifts
or from the real part of the optical potential (de-
noted by AD in this paper).

Several authors"' "have claimed on intuitive
grounds that 4R v= ~ is equal to the rms radius
difference between ' '"Ca. This is not true since~ v is a model-dependent quantity whereas R is
not. Therefore it is important to present the re-
sults of this experiment in a way which can be

(b)

0.4—

03—
E

0.2—

O. I

0.0

7 8
r~ (fm)

+O. l

-0.2 -O. l 0.0 +O. I +0.2
b, R(fm)

FIG. 17. Part (a) is the real part of the optical potential for ' Ca for the case of ~ =0. This shows the normaliza-
tion effect on the optical potential. The construction for D~~=RD, the diffraction radius difference, is shown as the dif-
ference of these optical potentials at the value of -4.0 MeV. Part (b) shows ARv versus AR where b Rv is taken to be
ARD, Ax, or QBv (see text for discussion).
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more readily compared with previous papers.
The real part of the optical potential for ~=0

is presented in Fig. 17(a). As discussed in Sec.
III C, there is a point F„such that r =r+~p (where
rp is the range of V,«). It is possible to identify

with the diffraction radius R~. For "Ca r
=Rp=7. 1 fm and ReU(& ) =-4.0 MeV. One can
therefore define 4r =~RD for "'"Ca to be the
difference between the radii where the real part
of the optical potentials equals -4 MeV. This con-
struction is shown in Fig. 17(a) for the case ~
= 0 and it is seen that Ar =~D

= 0.14 fm.
One can calculate hr and Ar„for various as-

sumed values of bR and the results are presented
in Fig. 17(b). The results of 68$, the difference
in the rms radius of the potential, versus ~ is
also presented. The results are approximately
straight lines with the most interesting point being
that when ~=0 neither hr or Ar are zero al-
though ~~=0. For the best value ~ =0.05 y0.04
fm the corresponding value of Ar = ~D is 0.18
+ 0.04 fm.

A comparison of the results in Table IV shows
that the results of the present experiment are in
agreement with those obtained with n particles at
42 ' and 31 MeV and in disagreement with the
results of three experiments. '''4' " The agree-
ment with the 42 MeV e particle results was pre-
viously shown in Sec. III (see Table I) by making
the same analysis for that data as for the 79 MeV
data obtained in the present experiment.

The results obtained with 166 MeV e particles'
are the only other ones which have been analyzed
with a microscopic analysis. Since these results
a,re in disagreement with those found at three other
a particle energies it is natural to assume that the
problem is in the data and not in the analysis. It is
likely that the problem is in the fact that the angu-
lar resolution was 0.7' in the 166 MeV experiment'
and it can be seen from Figs. 2 and 4 that the angu-
lar differences are of that magnitude at 79 MeV
and will be even smaller at 166 MeV. A more
serious difficulty with the 166 MeV experiment is
that the different targets were measured indepen-
dently and not sequentially as in the present ex-
periment. It is concluded that the 166 MeV experi-
ment' was not accura. te enough to measure the

' 'Ca difference correctly.
An experiment using "0 ions between 20 and 40

MeV, "which is in the Coulomb-nuclear inter-
ference region, has been performed. In this case
the data were analyzed in terms of the radius r~
at which the Coulomb plus nuclear potential has a
maximum. The value of hrR ——0.41 fm which was
obtained is very large. Although rR is an attrac-
tive quantity to obtain from such data, it is not
clear how this radius is related to the density.

Since "O scattering is in a very preliminary stage
it seems clear that more work has to be done on
this subject.

Nuclear size information in '"Ca, has been ob-
tained from the elastic scattering cross sections
and analyzing power measurements with polarized
protons from 10.8 to 16.3 MeV." The results
were analyzed by use of an empirical Woods-Saxon
optical potential with nine adjustable parameters.
The rms radius of the real part of the potential
was then related to the rms radii of the neutron
and proton distributions. The results are pre-
sented in Table IV and can be seen to be signifi-
cantly larger than those found in the present ex-
periment. As can be seen from Fig. 17(b) one ex-
pects ~~—= ~ and the data in Table IV show that
this is the case. Therefore the source of discrep-
ancy between the proton results and this paper
must be found from more fundamental reasons.
We believe that there are four basic reasons for
discounting the results of the proton experiment.
First the energy of the experiment is low and the
interpretation is really valid only at high ener-
gies." For the case of n particle scattering it has
been shown" that the microscopic approach is valid
for bombarding energies ~50 MeV. The proton
scattering results from 25 to 40 MeV" are in
agreement with the present experiment.

The second reason to suspect the results of Ref.
14 is that the experiment was not performed on the

' 'Ca targets sequentially. In fact, the experi-
ments were not performed at the same energy for
both targets and because of the low energies in-
volved this could lead to large errors.

Third, there is the effect of the six empirical
parameters of the imaginary and spin-orbit wells
which were allowed to be different in "'"Ca,. No
discussion of the effect of this type of parametri-
zation is given. In particular no estimates of the
error matrix between the spin-orbit and imaginary
parts of the potential and the real part of the po-
tential are presented. In view of this one ca,n con-
clude that the stated errors are lower limits only
and that all of the uncertainties of the model ha, ve
been placed in the rms radii.

Fourth, there is the possibility that the rms
radius of the potential is not uniquely determined
by experiment. In a recent study of "'"'"Owith
65 MeV protons' it was found that different optical
model fits to the "0 data differed in the rms radius
of the real part of the optical potential by as much
as 10%. (This paper" contains a, general critique
of the methods employed in deriving R„from pro-
ton scattering from another point of view. )

Fina, lly, there is the lack of tests for the range
of the effective interaction between the proton and
the target neutrons and protons. In this respect
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the advantage of the a particle as a projectile is
clear because there is only one effective interac-
tion (isoscalar) which can be found from the scat-
tering from T =0 nuclei (e.g., "Ca). For protons
(or neutrons) as a projectile there are two effec-
tive interactions (isoscalar and isovector) and
therefore in order to test the effective interaction
one would have to scatter from an isoscalar nu-
cleus and an isovector nucleus (N &Z) for which
one knows both p~(r) and p„(r). It has been the
practice to assume that the effective interaction is
known and then to extract A„from the data. ' It
would seem that the range of the effective isovector
interaction is not as well known as R„and that this
procedure should be reversed.

It is concluded that o. scattering is more reliable
than nucleon scattering in determining R and A„
for two basic reasons. First, the interaction is
isoscalar and can be determined with 7". =0 nuclei.
Also, because n particles are strongly absorbed
the elastic channel probes only the nuclear surface
where it seems reasonable that the relation be-
tween the nuclear density and the optical poten-
tial [Eq. (I)] is independent of the specific target
nucleus. A high degree of experimental precision
is required, however, to extract these quantities
from the data. In contrast to the other scattering
results, the value of 5„~obtained from Coulomb
energy differences" is in good agreement with the
present result.

V. COMPARISON V(1TH HARTREE-POCK THEORY

AND CONCLUSIONS

It is of interest to compare the results of this
experiment with the predictions of Hartree-Pock
(HF) theory. "'"'"'" These calcula, tions have

matured to the state where absolute rms charge
radii are in excellent agreement with experiment.
For example, the calculations of Negele" are in
good agreement with electron scattering cross sec-
tions. The best experimental value for the rms
proton radius of 'Ca (i.e., the charge radius with
the proton size unfolded) taking into account the
electron scattering" and muonic x-ray data' is
R~ =3.38+0.02 fm. The prediction of Negele" is
R~ =3.40 fm and that of Miller and Green" is R~
=3.37 fm. The agreement is excellent, and it is
not surprising that the density distributions of
Negele and Miller and Green gave excellent agree-
ment with the n particle scattering results for
"Ca (see Fig. 1).

In Table V a comparison of various rms radii
differences are compared with experiment, when-
ever possible. The quantity 5 = —,'[R~(40) —R„(40)]
has not been measured and was used in our previ-
ous analysis (see Sec. IIIF). It is encouraging that

for all of the quantities in the table there is good
agreement between the different theoretical calcu-
lations.

The quantity 5~=R~(48) —R~(40) has been the sub-
ject of several experimental investigations. ' ' '
The lastest result, ' taking the charge form factor
of the neutron and certain relativistic effects into
account is +0.01 fm. ' Most of the HF calculations
predict larger values, from 0.04 to 0.07 fm. The

only dissenters are Miller and Green" who picked
their parameters to obtain the previous result' of
-0.01 fm which is really the difference of charge
radii and not the difference of proton radii. '

The quantities of most direct concern to this
experiment nR =R(48) —R(40) and 5„~=R„(48)
—R~(48) are plotted in Fig. 18. It can be seen that

TABLE V. Comparison of Hartree-Fock predictions of rms radii of 4 '4 Ca with experiment.

Reference
u (fm)

—,
' [R,(4O) —R„(40)]

AR (fm)
R{48)—R(40)

Ap (fm)
R,(48) —R, (4O)

6„p(fm)
R„(48)—Rp(48)

Notation
in Fig. 18

Negele (Ref. 12)
Miller and Green

(Ref. 13)
Vautherin and Brink,

Interaction I
(Ref. 25)

Vautherin and Brink,
Interaction II
(Ref. 25)

Ehlers and Moszkowski
(Ref. 26)

Average of Hartree-
Fock Calc.

Exp.

0.021
0.024

0.02

0.025

0.03

0.024 +0.004

0.190
0.125

0.14

0.17

0.21

0.17+ 0.03
0.05 + 0.04

0.042
-0.013

0.05

0.05

0.07

0.04 + 0.03
O.01'

0.227
0.192

0.12

0.18

0.19

0.18 +0.04
0.03+0.08 '

Vg

V2

This experiment.
b Reference 3.
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0.30

0.25

0.20
C}

~ 0.15
I

tS

O. I 0
lX

0.05

0.00

O. IO O.I5

R(48) —R(+o) (f~)
0.20

FIG. 18. 6„&——R„{48)—R&(48) versus AR. The result
of this experiment is shown with its error bar. The
theoretical points are labeled as explained in Table V.

the value obtained for 5„~in this experiment is
significantly smaller than those predicted by HF
theory with the exception of the calculation of
Vautherin and Brink interaction I."

On the other hand, for ~ this exper iment is
marginally in agreement with the predictions of
Miller and Green" and Vautherin and Brink inter-
action I" for which AA—= 0.1 fm. The calculations
of Negele, ~ Ehlers and Moszkowski, "Vautherin
and Brink interaction II"for which ~—= 0.2 fm
are not in agreement with this experiment. This
has been shown in Figs. 11, 12, and 16 using the
calculations of Miller and Green" and Negele"
as representative of these two groups. From these
figures it can be seen that any calculation which
predicts le!=—0.2 fm is in significant disagree-
ment with this experiment, if the sensitivity of the

method is reasonably represented by the quoted
errors in the experiment. The fact that the pre-
diction of Miller and Green" is in better agree-
ment with the present results does not necessarily
mean that theirs is the superior calculation. In-
deed, for purely theoretical reasons the calcula-
tions of Negele" are on a firmer foundation, and
also are in better agreement with electron scat-
tering data.

The average of the five HF results was computed
and presented in Table V. The quoted errors are
the rms deviations from the mean which are
gratifyingly small. This average is in disagree-
ment with the results of this experiment for both~ and 6„p.

The discrepancy between the results of this ex-
periment and HF theory is hard to understand.
As was stated earlier, the HF theory gives good
predictions" for electron scattering for nuclei
from "0 to ' Pb and it is difficult to believe that
the proton distributions could be properly pre-
dicted while the neutron distributions were in
error. Furthermore it has been shown that the
HF calculations of Negele predict density distribu-
tions which are in excellent agreement with cy par-
ticle scattering for "O, ~ Ca, ' Zr, and ' 'Pb for
particle energies of 79 and 104 MeV ' (the two en-
ergies for which data on a number of elements are
available). This tests the neutron distribution as
predicted by Negele. Alternatively, if one chooses
to believe the HF calculations because they agree
with electron scattering, then this can be thought
of as checking the n scattering theory presented
here.

In light of these arguments why should there be
a discrepancy for ~Ca and not "0, Ca, ' Zr,
or ' 'Pb? The data have been carefully checked.
One notes that the 79, 42, and 31 MeV data are in
agreement (they were obtained in three different
laboratories). It is true that the HF theory does
not conserve isospin and neglects configuration
mixing and it could be that one of these effects is
particularly significant in "Ca. Possibly some of
the simplifications made in the n particle scatter-
ing analysis (e.g. , neglect of exchange) are par-
ticularly significant in obtaining the small ' '"Ca
differences.
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John Schiffer, John Negele, and J.Heisenberg.
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