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A two-mode single-atom laser is considered, with the aim of generating entanglement in macroscopic light.
Two transitions in the four-level gain medium atom independently interact with the two cavity modes, while
two other transitions are driven by control laser fields. Atomic relaxation as well as cavity losses are taken into
account. We show that this system is a source of macroscopic entangled light over a wide range of control
parameters and initial states of the cavity field.
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I. INTRODUCTION

Quantum entanglement is known to be the key resource in
many applications of quantum information and quantum
computing �1�. These phenomena range from quantum tele-
portation �2,3� and quantum cryptography �4� to quantum
implementation of Shor’s algorithm �5� and quantum search
�6�. It is therefore not surprising that there has been a great
deal of interest in the generation and measurement of en-
tanglement in recent years.

Entangled states have been considered traditionally be-
tween individual qubits. However, it has been shown that
continuous-variable entanglement can offer an advantage in
some situations in quantum-information science �7�. One
reason for this is that continuous-variable entanglement often
can be prepared unconditionally, whereas the preparation of
discrete entanglement usually relies on an event selection via
coincidence measurements. The classic scheme for the gen-
eration of continuous-variable entanglement is parametric
down-conversion. Starting with the first demonstration by
Ou et al. �8�, the generation of entanglement in such systems
has been achieved in several experiments �7�. It still remains,
however, a challenge to generate entanglement in macro-
scopic light rather than on the few-photon level. Promising
candidates for the generation of macroscopic light entangle-
ment are optical amplifiers �9–13�. For example, it was
shown recently that a two-mode correlated spontaneous
emission laser �14,15� can lead to two-mode entanglement
even when the average photon number in the field modes is
very large �12,13�. In this setup, the gain medium can be
thought of as a stream of suitably prepared atoms.

From a conceptual point of view, a much simpler system
relates to a single-atom laser, where the gain medium is re-
placed by a single trapped atom. Such a laser has recently
been experimentally demonstrated by Kimble and co-
workers �16�, where a single atom interacts with a single
cavity mode. Thus the interesting question arises as to

whether a two-mode generalization of the single-atom laser
also enables one to generate entanglement in macroscopic
light.

Therefore, here we consider a single atom that interacts
with two quantized modes of a doubly resonant cavity via
two lasing transitions. In our model, the atomic level scheme
is based on the single-atom laser experiment performed by
Kimble and co-workers �16�, where dipole transitions be-
tween four hyperfine levels of atomic cesium were consid-
ered. In contrast to their experiment, we do not work in the
strong-coupling regime since we are interested in the genera-
tion of large photon numbers. We show that, under certain
realizable conditions, a two-mode single-atom laser can
serve as a source of macroscopic entangled light. Macro-
scopic entanglement can be achieved over a wide range of
control parameters and initial states of the cavity field.

An important technical question in the generation of
continuous-variable entanglement in quantum optical sys-
tems is the way such entanglement can be measured experi-
mentally. This has been a hotly discussed subject in recent
years. Several inequalities involving the correlation of the
field operators have been derived that are based on the sepa-
rability condition of the field modes �17–24�. A violation of
these inequalities provides evidence of entanglement. These
inequalities can, in general, provide only a sufficient condi-
tion for entanglement and only, in some very specific in-
stances, lead to sufficient and necessary conditions for en-
tanglement. In this paper we use an inequality based on
quadrature measurement of the field variables for the test of
entanglement.

II. MASTER EQUATION FOR THE DENSITY OPERATOR
OF THE CAVITY MODES

We consider a single four-level atom trapped in a doubly
resonant cavity �see Fig. 1�. The atom interacts with two
�nondegenerate� cavity modes and two classical laser fields.
The intensities and frequencies of the two laser fields can be
adjusted independently. The aim of this section is to derive
an equation of motion for the reduced density operator �F of
the two cavity modes.

We begin with a detailed description of the system shown
in Fig. 1. The first cavity mode with frequency �1 couples to
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the atomic transition �a�↔ �c�, and the second mode with
frequency �2 interacts with the atom on the �b�↔ �d� transi-
tion. In the rotating-wave approximation, the interaction of
the atom with the cavity modes is described by the Hamil-
tonian

HC = �g1a1�a��c� + �g2a2�b��d� + H.c. �1�

Here aj �aj
†� is the annihilation �creation� operator of the

cavity mode with frequency � j and coupling constant gj �j
� �1,2	�. The detuning of the first cavity mode from the
�a�↔ �c� transition is denoted by �1, and �2 is the detuning
of the second mode from the �b�↔ �d� transition,

�1 = �1 − �ac, �2 = �2 − �bd. �2�

The resonance frequencies on the �a�↔ �c� and �b�↔ �d� tran-
sitions have been labeled by �ac and �bd, respectively. In

addition, the atom interacts with two classical laser fields.
The first laser field with frequency �3 and Rabi frequency �3
couples to the �a�↔ �d� transition, and the second field with
frequency �4 and Rabi frequency �4 coherently drives the
�b�↔ �c� transition. In the rotating-wave approximation, the
atom-laser interaction reads

HL = − ��3�a��d�e−i�3t − ��4�b��c�e−i�4t + H.c. �3�

Note that the Rabi frequencies �3= ��3 �exp�i�3� and �4

= ��4 �exp�i�4� are complex numbers, and �3 and �4 are de-
termined by the phase of the laser fields. The detunings of
the laser fields from the corresponding atomic transitions are

�3 = �3 − �ad, �4 = �4 − �bc, �4�

where �ad and �bc are the resonance frequencies on the
�a�↔ �d� and �b�↔ �c� transitions, respectively.

The free time evolution of the cavity modes is governed
by

HR = ��1a1
†a1 + ��2a2

†a2, �5�

and HA is the free Hamiltonian of the atomic degrees of
freedom,

HA = ��a�a��a� + ��b�b��b� + ��c�c��c� + ��d�d��d� . �6�

With these definitions, we arrive at the master equation for
the combined system of the atomic degrees of freedom and
the two cavity modes,

�̇ = −
i

�
�HR + HA + HL + HC,�� + L�� . �7�

The last term in Eq. �7� accounts for spontaneous emission
and is given by

L�� = −
1

2

i=1

4

�i�Si
+Si

−� + �Si
+Si

− − 2Si
−�Si

+� , �8�

where the atomic transition operators are defined as

S1
+ = �a��d�, S2

+ = �a��c� ,

S3
+ = �b��c�, S4

+ = �b��d�, Si
− = �Si

+�†. �9�

The parameters �i are the decay rates of the various atomic
transitions �see Fig. 1�.

In the next step, we derive from Eq. �7� the master equa-
tion for the density operator �F of the cavity modes,

�F = TrA� = �aa + �bb + �cc + �dd, �10�

and ��� denotes �������. To this end, we apply a unitary
transformation W=WR � WA to Eq. �7�, where WR
=exp�iHRt /�� acts only on the cavity modes, and

WA = exp�i�HA + ��3�a��a� + ��4�b��b��t/�� �11�

acts only on the atomic degrees of freedom. As indicated in
Fig. 1, we assume that the condition of two-photon reso-
nance is satisfied, i.e.,
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|c〉
|d〉

Γ1
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FIG. 1. �Color online� A single four-level atom is trapped in a
doubly resonant cavity and interacts with two cavity modes and two
classical laser fields. The inset shows the atomic level scheme. The
laser field with frequency �3 and Rabi frequency �3 couples to the
�a�↔ �d� transition, and the cavity mode with frequency �1 and
coupling constant g1 interacts with the �a�↔ �c� transition. �a is the
detuning of the fields �3 and g1 from state �a�. The laser field with
frequency �4 and Rabi frequency �4 drives the �b�↔ �c� transition,
and the second cavity mode with frequency �2 and coupling con-
stant g2 interacts with the �b�↔ �d� transition. �b is the detuning of
the fields �4 and g2 from state �b�. Spontaneous emission is denoted
by dashed arrows, and the parameters �i are the decay rates of the
various transitions.
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�a = �1 = �3, �b = �2 = �4. �12�

The density operator in the new frame is denoted by �̃
=W�W† and obeys the equation of motion

�̇̃ = −
i

�
�H0 + HC,�̃� + L��̃ , �13�

where

H0 = − ��a�a��a� − ��b�b��b� − ���3�a��d� + �4�b��c� + H.c.� .

�14�

The two-photon condition Eq. �12� ensures that the Hamil-
tonian H0+HC in Eq. �13� is time independent. The master
equation for the transformed density operator �̃F of the cav-
ity modes is obtained if we trace over the atomic degrees of
freedom in Eq. �13�,

�̇̃F = − ig1�a1
†,�̃ac� − ig2�a2

†,�̃bd� + H.c. �15�

In order to eliminate the coherences �̃ac and �̃bd from Eq.
�15�, we apply the standard methods of laser theory �see,
e.g., Chapter 14 in �25��. We restrict the analysis to the linear
theory and solve Eq. �13� to first order in the coupling con-
stants g1 and g2. To this end, we expand the density operator
�̃F in Eq. �13� as �̃=�0+�C and retain only terms up to first
order with respect to HC. This procedure yields two un-
coupled equations for �0 and �C,

�̇0 = L0�0, �16�

�Ċ = L0�C −
i

�
�HC,�0� , �17�

and the superoperator L0 is defined as

L0�·� = −
i

�
�H0, · � + L��·� . �18�

Here the centered dot denotes the position of the argument of
L0. The zeroth-order equation �16� describes the interaction
of the atom with the classical laser fields to all orders, and
Eq. �17� is the first-order equation. The steady-state solution
for �̃ac and �̃bd can be obtained if the steady-state solution
for �0 is plugged in Eq. �17�. We find

ig1�̃ac = 	11a1�̃F + 	12a2
†�̃F + 
11�̃Fa1 + 
12�̃Fa2

†,

ig2�̃bd = 	22a2�̃F + 	21a1
†�̃F + 
22�̃Fa2 + 
21�̃Fa1

†, �19�

and the coefficients 	ij and 
ij are defined in Appendix A.
Next we substitute Eq. �19� in Eq. �15� to obtain the equation
of motion for �̃F. Finally, we transform �̃F back with respect
to WR and obtain the equation of motion for the density
operator �F of the cavity modes,

�F
˙ = − i�1�a1

†a1,�F� − i�2�a2
†a2,�F� − �	11a1

†a1�F + 	11
* �Fa1

†a1 − �	11 + 	11
* �a1�Fa1

† − 
11
* a1a1

†�F − 
11�Fa1a1
†

+ �
11 + 
11
* �a1

†�Fa1� − �	22a2
†a2�F + 	22

* �Fa2
†a2 − �	22 + 	22

* �a2�Fa2
† − 
22

* a2a2
†�F − 
22�Fa2a2

† + �
22 + 
22
* �a2

†�Fa2�

− ��	12 + 	21�a1
†a2

†�F − �
12 + 
21��Fa1
†a2

† − �	21 − 
12�a1
†�Fa2

† − �	12 − 
21�a2
†�Fa1

†�exp�− i��1 + �2�t�

− ��	12
* + 	21

* ��Fa1a2 − �
12
* + 
21

* �a1a2�F − �	21
* − 
12

* �a2�Fa1 − �	12
* − 
21

* �a1�Fa2�exp�i��1 + �2�t�

− �1�a1
†a1�F + �Fa1

†a1 − 2a1�Fa1
†� − �2�a2

†a2�F + �Fa2
†a2 − 2a2�Fa2

†� . �20�

In the last line of Eq. �20�, we included the damping of the
cavity field. The damping constants of the cavity modes are
denoted by �1 and �2, respectively.

In the master equation �20�, the two classical laser fields
are taken into account to all orders in the Rabi frequencies
�3 and �4. On the contrary, the two quantum fields inside
the cavity are only treated to second order in the coupling
constants g1 and g2. This approximation means that we ig-
nore saturation effects and operate in the regime of linear
amplification. It is justified if the Rabi frequencies associated
with the quantum fields are small as compared to other sys-
tem parameters which dominate the time evolution.

III. ENTANGLEMENT OF THE CAVITY FIELD

In this section we show that the system depicted in Fig. 1
can serve as a source of macroscopic entangled light. We

employ the sufficient inseparability criterion derived in �18�
to provide evidence for the entanglement of the two field
modes.

By definition, the quantum state �F of the cavity field is
said to be entangled if and only if it is nonseparable, and �F
is separable if and only if it can be written as

�F = 

j

pj� j
�1�

� � j
�2�. �21�

Here � j
�1� and � j

�2� are normalized states of the modes 1 and
2, respectively, and the parameters pj �0 comply with 
 jpj
=1. The criterion derived in �18� states that the system is in
an entangled quantum state if the total variance of two
Einstein-Podolsky-Rosen �EPR� type operators û and v̂ of
the two modes satisfies the inequality
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���û�2 + ��v̂�2� 
 2, �22�

where

û = x̂1 + x̂2, v̂ = p̂1 − p̂2. �23�

Here x̂k and p̂k are local operators which correspond to the
mode k with frequency �k. They must obey the commutation
relation

�x̂k, p̂l� = i�kl, �24�

but are otherwise arbitrary. For the physical system consid-
ered here, it turns out that the quadrature operators

x̂k = �bk + bk
†�/�2 and p̂k = �bk − bk

†�/��2i� �25�

are the best choice, where

bk�t� = ak exp�i�kt� and bk
†�t� = ak

† exp�− i�kt� . �26�

With the help of Eqs. �23� and �26�, we express the total
variance of the operators û and v̂ in terms of the operators bk
and bk

†,

���û�2 + ��v̂�2� = 2�1 + �b1
†b1� + �b2

†b2� + �b1b2� + �b1
†b2

†�

− �b1��b1
†� − �b2��b2

†� − �b1��b2� − �b1
†��b2

†�� .

�27�

In Appendix B, we outline the calculation of the mean values
that enter Eq. �27�.

Next we classify several parameter regimes for which the
inequality �22� is satisfied. In the first step, we consider
the case where the Rabi frequency ��3� and the detuning �b
are much larger than the parameters ��a � , ��4 � , �i
�i� �1,2 ,3 ,4	�, i.e.,

��3�, ��b� � ��a�, ��4�, �i. �28�

If these conditions are satisfied, the parameters 	ij and 
ij in
Eqs. �A1�–�A8� of Appendix A reduce to

	11 � 0, 	22 � 0, 
11 � 0, 
22 � 0,

	21 � 0, 
12 � 0, 	12 � 
21 � − i	 exp�i��3 + �4�t� ,

	 = g1g2
��4�

��3��b
. �29�

In these equations, �3 and �4 are the phases of the classical
laser fields with Rabi frequencies �3= ��3 �exp�i�3� and
��4 �exp�i�4�, respectively �see Sec. II�. If the approximate
parameters in Eq. �29� are plugged into Eq. �20�, we obtain
the equation of motion for the density operator �F of the
cavity modes in the limit �28�,

�̇F = − i�1�a1
†a1,�F� − i�2�a2

†a2,�F� + i�HP,�F� − ��a1
†a1�F

+ �Fa1
†a1 − 2a1�Fa1

† + a2
†a2�F + �Fa2

†a2 − 2a2�Fa2
†� ,

�30�

where

HP = 	a1
†a2

† exp�i��3 + �4�t�exp�− i��1 + �2�t�

+ 	a1a2 exp�− i��3 + �4�t�exp�i��1 + �2�t� . �31�

Here we assumed for the sake of simplicity that the decay
rates of the cavity modes are equal, �1=�2=�. We identify
Eq. �30� as the master equation for a nondegenerate paramet-
ric oscillator in the parametric approximation �25�. Note that
this parametric limit was also obtained in the case of a two-
mode correlated spontaneous emission laser discussed in
�12�. Next we evaluate the total variance of the operators û

and v̂ in Eq. �27� and the mean number of photons �N̂�
= �a1

†a1+a2
†a2�= �b1

†b1+b2
†b2� with the approximate density

operator �F in Eq. �30�. If the sum of the laser phases obeys
�3+�4=� /2, we obtain �12�

���û�2 + ��v̂�2��t�

= 
���û�2 + ��v̂�2��0� −
2�

	 + �
�e−2�	+��t +

2�

	 + �
,

�32�

�N̂��t� = 
�N̂��0� −
	2

�2 − 	2� cosh�2	t�e−2�t

− 
 	�

�2 − 	2 + �a1a2 + a1
†a2

†��0�� sinh�2	t�e−2�t

+
	2

�2 − 	2 . �33�

It follows from Eq. �32� that the entanglement criterion in
Eq. �22� is satisfied for any initial state of the cavity field if
�	+��t�1 and 	�0 �12�. The time evolution of the total
variance of the operators û and v̂ is shown in Fig. 2�a�. The
dashed curve shows ���û�2+ ��v̂�2� according to Eq. �32�,
and the solid line corresponds to the general case where the
mean values in Eq. �27� are evaluated with the full density
operator �F in Eq. �20�. The cavity modes are assumed to be
in the vacuum state initially, and the parameters comply with
condition �28�. It follows from Fig. 2 that the approximate
result in Eq. �32� is in good agreement with the exact solu-
tion only if gt
300. While the light field remains in an
entangled state in the parametric case, the exact solution
demonstrates that the entanglement of the cavity field exists
only for a finite period of time.

Next we discuss the time evolution of the mean number of

photons �N̂�. According to Eq. �33�, �N̂� grows exponentially
with time for any initial state of the cavity field, provided

that �	−��t�1 and 	�� �12�. The time evolution of �N̂� is
shown in Fig. 2�b� on a logarithmic scale. In contrast to

���û�2+ ��v̂�2�, the result for �N̂� in the parametric approxi-
mation �dashed line� is in good agreement with the exact
solution �solid line� even for gt�300. Moreover, Fig. 2�b�
shows that the mean number of photons grows exponentially
if the scaled time gt is sufficiently large.

According to Fig. 2, the entangled state of the cavity field

contains up to �N̂��110 photons on average. It follows that
the single-atom laser depicted in Fig. 1 can give rise to an
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entangled quantum state of the two cavity modes if the pa-
rameters are in agreement with condition �28�. If this condi-
tion holds, level �b� is almost unexcited due to the large
detuning �b, and states �c� and �d� are coupled via a two-
photon process. In contrast, the transitions �d�↔ �a� and
�c�↔ �a� are driven resonantly. In this situation, the structure
of the Hamiltonian HP in Eq. �31� implies that the system
can emit photons into the cavity fields only in pairs, where
one photon is emitted in mode 1 and the other photon in
mode 2. If the cavity field is initially in the vacuum state
�0,0�, it will evolve under the influence of HP into the en-
tangled state

a�0,0� + b�1,1� + c�2,2� + ¯ , �34�

where a, b, and c are complex coefficients. If the compli-
cated master equation �20� can be reduced under certain con-

ditions to the parametric equation �30�, it is thus clear that a
macroscopic entangled state is generated.

Due to the symmetry in the atomic level scheme, it is
possible to reverse the role of the transitions �d�↔ �a�↔ �c�
and �c�↔ �b�↔ �d�. In this case, the detuning �a is large and
the transitions �d�↔ �b� and �c�↔ �b� are driven resonantly.
Condition �28� then has to be replaced by

��4�, ��a� � ��b�, ��3�, �i, �35�

and the only nonvanishing coefficients in Eq. �20� are now
determined by 	21�
12�−i	� exp�i��3+�4�t�, where 	�
=g1g2 ��3 � / ���4 ��a�. It follows that the results in Eqs. �30�,
�32�, and �33� are also valid if condition �35� holds, provided
that 	 is replaced by 	�.

We now demonstrate that it can be advantageous to con-
sider parameters which do not comply with condition �28� or
�35�. Since the approximate results in Eqs. �32� and �33� do
not apply in this case, we evaluate the mean values ���û�2

+ ��v̂�2� and �N̂� only with the exact density operator �F in
Eq. �20�. The time evolution of ���û�2+ ��v̂�2� is shown in
Fig. 3�a� for two sets of parameters. As compared to the
parameters chosen for Fig. 2, the magnitude of the Rabi fre-
quency �4 has been increased such that ��3� is still larger,
but not much larger than ��4�. It follows from Fig. 3�a� that
the entanglement criterion in Eq. �22� is satisfied for shorter
times as compared to the solid line in Fig. 2�a�. On the other
hand, Fig. 3�b� shows that the mean number of photons can
be much larger as compared to Fig. 2�b�. For curve I of Fig.
3�a�, the maximum mean number of photons for which the

entanglement criterion �22� is still satisfied is �N̂��10.2
�104. The same number for the parameters of curve II reads

�N̂��6100. As compared to Fig. 2, the maximum mean num-
ber of photons can be enhanced by several orders of magni-
tude.

Finally, we consider the case where the quantum state of
the cavity field is initially the coherent state �100,−100�. The

time evolution of ���û�2+ ��v̂�2� and �N̂� is shown in Fig. 4
for two sets of parameters. All mean values were evaluated
with the exact density operator in Eq. �20�. For curve I, the
magnitude of the Rabi frequency �4 is larger as compared to
curve II. All other parameters are the same for curve I and II.
It can be seen from Fig. 4�a� that the entanglement criterion
is satisfied for shorter times if ��4� is increased. In contrast,
the mean number of photons can be greatly enhanced if the
value of ��4� is increased, as can be seen from Fig. 4�b�.
Similar conclusions can be drawn from Fig. 3, where the
initial state of the cavity field is the vacuum. The comparison
of Figs. 3 and 4 shows that the mean number of photons can
be much larger than in Fig. 3 if the cavity field is initially
prepared in a coherent state. Due to the large mean number
of photons in the cavity modes, the system may leave the
regime of linear amplification such that saturation effects
modify the curve progression in Fig. 4. These effects are
described by terms that go beyond the second-order expan-
sion of the atom-cavity coupling and are neglected here. Ac-
cording to the linear theory, the maximum mean number of
photons for which the entanglement criterion �22� is still
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FIG. 2. �a� Time evolution of ���û�2+ ��v̂�2�. The mean value of

the total number of photons �N̂� is shown in �b� on a logarithmic
scale. At t=0, the cavity field is assumed to be in the vacuum state.
The dashed curves were obtained with the density operator of the
parametric oscillator in Eq. �30�, and the solid curves correspond to
the full density operator in Eq. �20�. The parameters are g1=g2=g,
��3 � =25g, ��4 � =2g, �1=�2=�3=�4=5g, �a=0, �b=40g, �1=�2

=10−3g, and �3+�4=� /2.
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satisfied is �N̂��6.5�105 in the case of curve II of Fig. 4,
and in the case of curve I the entangled cavity field contains

up to �N̂��5.4�107 photons.

IV. CONCLUSION

We have shown that a two-mode single-atom laser can
serve as a source of macroscopic entangled light. We identi-
fied two parameter regimes for which the quantum state of
the cavity field is entangled for a long period of time. For
these parameters, the master equation for the density opera-
tor of the two cavity modes can be approximately reduced to
the master equation for a nondegenerate parametric oscillator
in the parametric approximation.

The mean number of photons in the cavity field can be
strongly increased if parameters beyond the parametric limit
are chosen. This enhancement of the mean photon numbers
is accompanied by a shortening of the time slice for which
the entanglement criterion is satisfied. As the initial state of

the cavity field, we chose either the vacuum or a coherent
state. We demonstrated that the mean number of photons of
the entangled cavity field can increase by several orders of
magnitude if a coherent state instead of the vacuum is chosen
as the initial state.

APPENDIX A: COEFFICIENTS

Here we give the explicit definitions of the coefficients 	ij
and 
ij which enter the master equation �20� for the density
operator �F of the two cavity modes:

	11 = 2g1
2�2��3�2��4�2�4�P2

* + 4i�b���4�2 + P1
*�4��3�2

+ P1�P1 + P2
*��	/�P3P4� , �A1�


11 = − 2g1
2�4��3�2��4�2�4P1��4�2 + P2

*�4��3�2

+ P1�P1 + P2
*��	/�P3P4� , �A2�
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FIG. 3. �Color online� �a� Time evolution of ���û�2+ ��v̂�2�.
The mean value of the total number of photons �N̂� is shown in �b�
on a logarithmic scale. At t=0, the cavity field is assumed to be in
the vacuum state, and we set �1=�2=�3=�4=5g, g1=g2=g, �1

=�2=10−3g and �3+�4=� /2. The parameters for the curves la-
beled I are ��3 � =25g, ��4 � =9.8g, �a=0, �b=43g, and for II we
have ��3 � =15g, ��4 � =6g, �a=0, �b=32.5g.
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FIG. 4. �Color online� �a� Time evolution of ���û�2+ ��v̂�2�.
The mean value of the total number of photons �N̂� is shown in �b�
on a logarithmic scale. At t=0, the cavity field is assumed to be in
the coherent state �100,−100�, and we set �1=�2=�3=�4=2g, g1

=g2=g, �1=�2=10−2g, and �3+�4=� /2. The parameters for the
curves labeled I are ��3�=10g, ��4�=5g, �a=0, �b=15g, and for II
we have ��3�=10g, ��4�=2g, �a=0, �b=15g.
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	12 = − 2g1g2�2�3�4��3�2�4P1��3�2 + P1
2�P1 + P2

*�

− 4��4�2�2P1 + P2
*��/�P3P4� , �A3�


12 = − 2g1g2�4�3�4��4�2��P1 + P2
*��P2�2 + 4��4�2P2

+ 4��3�2�P1 − 4i�a��/�P3P4� , �A4�

	22 = 2g2
2�4��3�2��4�2�4�P1

* + 4i�a���3�2 + P2
*�4��4�2

+ P2�P2 + P1
*��	/�P3P5� , �A5�


22 = − 2g2
2�2��3�2��4�2�4P2��3�2 + P1

*�4��4�2

+ P2�P2 + P1
*��	/�P3P5� , �A6�

	21 = − 2g1g2�4�3�4��4�2�4P2��4�2 + P2
2�P2 + P1

*�

− 4��3�2�2P2 + P1
*��/�P3P5� , �A7�


21 = − 2g1g2�2�3�4��3�2��P2 + P1
*��P1�2 + 4��3�2P1

+ 4��4�2�P2 − 4i�b��/�P3P5� . �A8�

The parameters P1, P2, P3, P4, and P5 in Eqs. �A1�–�A8� are
defined as

P1 = �3 + �4 + 2i�b, �A9�

P2 = �1 + �2 + 2i�a, �A10�

P3 = �2�P1�2��3�2 + �4�P2�2��4�2 + 8��3�2��4�2��2 + �4� ,

�A11�

P4 = 4���3�2 − ��4�2�2 + P1�P1 + P2
*���3�2 + P2

*�P1 + P2
*���4�2,

�A12�

P5 = 4���3�2 − ��4�2�2 + P1
*�P2 + P1

*���3�2 + P2�P2 + P1
*���4�2.

�A13�

APPENDIX B: CALCULATION OF THE MEAN
VALUES

In the following, we outline the calculation of the mean
values that enter the total variance of the operators û and v̂ in
Eq. �27�. We begin with the mean values of the quadrature
operators defined in Eq. �25� with respect to the density op-
erator �F of the two cavity modes. With the help of Eq. �20�,
we derive the following system of differential equations for
the mean values �b1� and �b2

†�:

�t
�b1�
�b2

†�
� = − 
C11 + �1 C12

C21
* C22

* + �2
�
�b1�

�b2
†�
� , �B1�

and Cij =	ij +
ij. The solution to this set of coupled equa-
tions is

�b1� = ew2t
cosh�w1t��b1�0 +
1

2w1

���b1�0�C22
* − C11 − �1 + �2� − 2�b2

†�0C12�sinh�w1t�� ,

�B2�

�b2
†� = ew2t
cosh�w1t��b2

†�0 +
1

2w1

���b2
†�0�C11 − C22

* + �1 − �2� − 2�b1�0C21
* �sinh�w1t�� ,

�B3�

where

w1 =
1

2
�4C12C21

* + �C11 − C22
* + �1 − �2�2,

w2 = −
1

2
�C11 + C22

* + �1 + �2� , �B4�

and �·�0= �·��t=0� denotes the initial mean value at t=0. Note
that the mean values �b1

†� and �b2� can be obtained from �b1�
and �b2

†� by complex conjugation, i.e., �b1
†�= �b1�* and �b2�

= �b2
†�*.

The remaining mean values in Eq. �27� involve products
of the operators bi and bi

†. With the aid of Eq. �20�, we obtain
the following set of differential equations:

�tR = MR + I , �B5�

where R= ��b1
†b1� , �b2

†b2� , �b1b2� , �b1
†b2

†�� and

M = −�
D11 0 C12

* C12

0 D22 C21
* C21

C21 C12 D12 0

C21
* C12

* 0 D12
*
�, I = −�


11 + 
11
*


22 + 
22
*

	12 + 	21

	12
* + 	21

*
� .

�B6�

The elements of the matrix M are defined as

Cij = 	ij + 
ij, Dii = 	ii + 	ii
* + 
ii + 
ii

* + 2�i,

D12 = C11 + C22 + �1 + �2. �B7�

The differential equation �B5� can be solved numerically
without difficulties. An analytical solution can be obtained,
for example, by means of the Laplace transform method,
which yields the following results for the components Ri of
the vector R:

Ri = 

k=1

4

�Res�f i,�k� + Res�gi,�k��e�kt + Res�gi,0� . �B8�

In this equation, expressions of the type Res�h ,z� denote the
residue of the function h evaluated at z, and the functions f
= �f1 , f2 , f3 , f4� and g= �g1 ,g2 ,g3 ,g4� are determined by
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f�s� = �s1̂4 − M�−1R0 and g�s� = �s1̂4 − M�−1�I/s� ,

�B9�

respectively. Here 1̂4 denotes the 4�4 identity matrix, and
the vector R0 is the initial value of R at t=0, R0
= ��b1

†b1�0 , �b2
†b2�0 , �b1b2�0 , �b1

†b2
†�0�. Finally, the parameters

�k are the four �complex� eigenvalues of the matrix M which
is defined in Eq. �B6�. The eigenvalues �k can be obtained as
the roots of the following equation:

s4 + �D11 + D22 + D12 + D12
* �s3 + ��D12�2 − 2C21C12

* − 2C12C21
*

+ D11D22 + �D11 + D22��D12 + D12
* ��s2

+ ��D11 + D22��D12�2 − �C21C12
* + C12C21

* ��D11 + D22

+ D12 + D12
* � + D11D22�D12 + D12

* ��s + C21
2 �C12

* �2

− �2C12C21
* + D11D12 + D22D12

* �C21C12
* + �C12C21

*

− D22D12��C12C21
* − D11D12

* � = 0. �B10�
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