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The subwavelength localization of an ensemble of atoms concentrated to a small volume in space is inves-
tigated. The localization relies on the interaction of the ensemble with a standing wave laser field. The light
scattered in the interaction of the standing wave field and the atom ensemble depends on the position of the
ensemble relative to the standing wave nodes. This relation can be described by a fluorescence intensity profile,
which depends on the standing wave field parameters and the ensemble properties and which is modified due
to collective effects in the ensemble of nearby particles. We demonstrate that the intensity profile can be
tailored to suit different localization setups. Finally, we apply these results to two localization schemes. First,
we show how to localize an ensemble fixed at a certain position in the standing wave field. Second, we discuss
localization of an ensemble passing through the standing wave field.

DOI: 10.1103/PhysRevA.75.033801 PACS number�s�: 42.50.Fx, 32.50.�d, 32.80.�t

I. INTRODUCTION

Nanotechnology requires an accurate control of the inter-
acting components, in terms of both detection and prepara-
tion. This is a major motivation for the considerable attention
that was devoted recently to subwavelength localization of
single particles. Several remarkable schemes were proposed
to achieve this goal �1–8�. In these schemes, typically the
interaction of the object with the measurement fields serves
two purposes. First, if the unknown initial position probabil-
ity distribution of the object is phase coherent, then the in-
teraction with the measurement fields localizes the object in
the quantum mechanical sense, rather than providing a
simple classical position measurement �8�. Second, after the
localization, the measurement provides a signature of the po-
sition of the particle. Of related interest is the problem of
localizing and distinguishing two nearby particles. Optical
resolution of two molecules at the nanometer scale and ma-
nipulation of their degree of entanglement was experimen-
tally demonstrated in �9�, and the collective interaction be-
tween pairs of oriented nanostructures was considered in
�10�. Also the measurement of the relative position of two
atoms assisted by spontaneous emission �11� and the mea-
surements of interparticle separations on a scale smaller than
the emission wavelength �12� were investigated in detail.
Somewhat related, considerable effort is devoted to quantum
lithography �13,14�. The above localization schemes, how-
ever, have in common that they apply to the localization of a

single particle or to the measurement of relative position of
two individual particles. In many cases of interest, however,
an ensemble of particles is concentrated to a small region in
space such that the ensemble properties become relevant,
while the properties of the individual ensemble constituents
cannot be resolved or are rapidly fluctuating in time.

Therefore, here we describe a scheme capable of localiz-
ing an ensemble of two-level atoms which are bunched to-
gether in a volume much smaller than an emission wave-
length. Possible realizations include small clusters, few-atom
impurities, or atoms trapped, e.g., in optical lattices. The lo-
calization relies on the coherent interaction with a standing
wave electromagnetic field. Since the interatomic distances
are small, the atoms interact collectively via the environmen-
tal vacuum modes. One consequence of this is the appear-
ance of superfluorescence; i.e., the scattered light intensity
scales with the number of atoms, N, squared �I�N2�. We find
that the fluorescence light emitted collectively by the en-
semble is a function of the ensemble position in the standing
wave. In particular, for suitable standing wave parameters
and for ensemble positions around the nodes of the standing
wave field, the emitted fluorescence intensity sharply drops
to a minimum over a narrow spatial region. The narrow
width of the dip in the spatial intensity profile is a direct
consequence of the collectivity. Our scheme is different from
localization schemes discussed previously, as here the local-
ization relies on the absence of the fluorescence light, rather
than its properties. The spatial resolution is determined by
the width of the dip in the intensity profile. Since this col-
lective fluorescence intensity profile is our main observable,
we discuss the profile in detail in terms of the available free
parameters and show that the profile can be tailored to suit a
given localization setup. Based on these results, we then pro-
pose two schemes which exploit this spatial fluorescence in-
tensity profile to localize an ensemble of atoms. First, we
assume the sample to be fixed within the standing wave field.
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In this case, the spatial fluorescence intensity profile can be
scanned along the standing wave axis by changing the rela-
tive phase of the laser fields forming the standing wave. A
continuous measurement of the intensity of the scattered
light throughout this scan reveals the position of the sample
on a subwavelength scale. We further show that this setup
also enables one to measure the distance between two
samples, the number of atoms in a sample, or the linear di-
mension of the sample. Second, we consider an atom cluster
flying through the standing wave field. Here a scanning is not
possible due to the short interaction time of ensemble and
standing wave field. Rather, the absolute intensity of the scat-
tered light can be used to recover the crossing position of the
ensemble.

The article is organized as follows. In Sec. II, we present
our theoretical model for the ensemble interaction with the
standing wave field and derive the intensity profile as our
main observable. Section III consists of three parts. In the
first part, Sec. III A, we in detail study the collective fluores-
cence profile numerically. In Sec. III B, the results are ap-
plied to the localization of an ensemble fixed in the standing
wave field. The last part, Sec. III C, discusses the localization
of an ensemble flying through the standing wave field. Fi-
nally, Sec. IV discusses and summarizes the results.

II. THEORY

In the usual mean-field, dipole, and rotating wave ap-
proximations the interaction of such an atomic sample with
an external laser field and the surrounding vacuum modes, in
a frame rotating with laser frequency �L, is described by the
Hamiltonian H=H0+HL+HI where

H0 = �
k

� ��k − �L�ak
†ak + �

j=1

N

� ��0j − �L�Szj ,

HL = �
j=1

N

� ���r� j�Sj
+ + �*�r� j�Sj

−� ,

HI = i�
k

�
j=1

N

�g�k · d� j�ak
†Sj

−e−ik�·r�j + H.c. �1�

Here Sj
± are the raising and lowering operators for the jth

atom, positioned at r� j and obeying the commutation relations
�Sj

+ ,Sl
−�=2Szj� jl and �Szj ,Sl

±�= ±Sj
±� jl with Szj being the in-

version operator. a† and a are the radiation creation and an-
nihilation operators satisfying the commutation relations
�ak ,ak�

† �=�kk� and �ak ,ak��= �ak
† ,ak�

† �=0.
In Eq. �1�, H0 represents the free electromagnetic field

�EMF� and free atomic Hamiltonians, respectively. The sec-
ond term—i.e., HL—describes the interaction of the atomic
system with an external standing wave coherent field. In gen-
eral, the Rabi frequencies of the atoms in a standing wave are
position dependent since

��r� j� = � jcos�k�L · r� j� ,

where � j = �d� j ·E� L� /� while EL= �E� L� is the amplitude of the

electromagnetic field intensity with a wave vector k�L and d� j

is the dipole moments of the atoms. Note that the scheme
described here can also be generalized to multiphoton tran-
sitions. Then, the Rabi frequency can be written as

��r� j� = � j
�n�cos�nk�L · r� j� , �2�

where � j
�n� is a multiphoton Rabi frequency arising from an

adiabatic elimination of intermediate states and n denotes the
number of photons involved in the multiphoton process. In
this way, the wavelength �=2	 /k can be reduced to the
effective wavelength � /n, thus increasing the spatial resolu-
tion �14�. The last term in Eq. �1�, HI, takes into account the
interaction of all atoms with the environmental vacuum
modes.

In the Born-Markov approximations the quantum dynam-
ics of the driven multiatom sample �each atom having iden-
tical transition frequency �0� is governed by the master
equation �15–18�

d

dt

�t� +

i

�
�H̃0,
� = − �

i,j=1

N

��ij��0��Sj
+,Sl

−
� + H.c.� , �3�

H̃0 = � �
j

��Szj/2 + ��r� j�Sj
+ + H.c.� . �4�

Here, �=�0−�L is the detuning of atomic levels from the
frequency of the driving field. Further,

� jl��0� = 
 jl��0� + i� jl��0� , �5�

where the collective parameters describing the mutual inter-
actions among any atomic pair in the sample are given, re-
spectively, by �15,16�


 jl��� =
3�

2
	�1 − cos2� jl�

sin��rjl/c�
�rjl/c

+ �1 − 3 cos2� jl�

� 
 cos��rjl/c�
��rjl/c�2 −

sin��rjl/c�
��rjl/c�3 �� ,

� jl��� =
3�

4
	�cos2� jl − 1�

cos��rjl/c�
�rjl/c

+ �1 − 3 cos2� jl�

� 
 sin��rjl/c�
��rjl/c�2 +

cos��rjl/c�
��rjl/c�3 �� , �6�

with 2�=4�0
3d0

2 / �3�c3� being the single-atom spontaneous
decay rate. Here, we have assumed that all the dipole mo-
ments are identical and parallel—i.e., dj =dl¯ 
d0—and

then � jl is the angle between the dipole moments d�0 and r� jl
=r� j −r�l.

Inspecting the master equation �3� one can easily distin-
guish the part of it describing the coherent evolution of at-
oms under the influence of the laser field—i.e., the term con-

taining the Hamiltonian H̃0—from that characterizing the
collective spontaneous emission due to the vacuum modes—
that is, the terms proportional to Re�� jl��0��. The dipole-
dipole interactions between the two-level atoms are de-
scribed by the terms proportional to Im�� jl��0��. If the
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interparticle separations are small enough—that is, �rjl /c

krjl→0 �j� l�—then to second order in this parameter,
Eqs. �6� reduce to


 jl�k� = �	1 −
1

5
�krjl�2
1 −

1

2
cos2� jl�� ,

� jl�k� = 3���cos2� jl − 1��2/krjl − krjl� + �1 − 3 cos2� jl�

���krjl�−1 − krjl/4 + 2�krjl�−3��/8. �7�

It is easy to realize that in this case 
 jl→� while � jl reduces
to the static dipole-dipole interaction potential—i.e.,

� jl =
3�

4�krjl�3 �1 − 3 cos2� jl� . �8�

For lower atomic densities the collective parameters 
 jl and
� jl vanish because the atoms react independently from each
other in this particular case. Finally, the master equation �3�
describes adequately driven atomic samples of any shapes
providing that retardation effects are negligible.

When dealing with smaller atomic systems of an arbitrary
irregular shape it is hard to specify the orientation of dipole
moments relative to the interparticle separations. That is to
say, we do not have a privileged angular distribution of pho-
tons as they are emitted equally in all directions. Since there
is no information on the dipole orientations, we average the
dipole-dipole interaction potential over all directions. Inter-
estingly, the static dipole-dipole interaction given by Eq. �8�
vanishes in this case. Then, according to the second term in
Eq. �7�, the averaged dipole-dipole interactions among the
two-level emitters are given by the expression

� jl
�av� = −

�

2krjl
. �9�

Thus, the dipole-dipole potential reduces from a short-range
to a long-range interaction, although the radiators are close
to each other. Moreover, the influence of the dipole-dipole
interactions, in a two-atom system, was shown to be negli-
gible in practice for interparticle separations such that krjl
�	 /10 �19�.

In what follows we shall apply Eqs. �3�–�9� to the local-
ization of a small atomic system within an emission wave-
length. Suppose that the linear dimension of the atomic
sample is much less than the emission wavelength �say, for
instance, smaller than 0.1��. Under this assumption the two-
level emitters are almost in an equivalent position relative to
the driving standing wave laser and we can omit the atomic
indices from the expression characterizing the Rabi
frequency—i.e., ��rj����r�
��x�. The master equation
�3� transforms then into

d

dt

�t� + i��̃Sz + ��x��S+ + S−� − �dS+S−,
�

= − ���S+,S−
� + �
S+,S−�� . �10�

Here �̃=�+�d and �S± ,Sz� are collective atomic operators
satisfying the standard commutation relations of su�2� alge-
bra �15–18� while �d is the dipole-dipole interaction poten-

tial considered identical for all radiators. Note that Eq. �10�
describes a small driven atomic system that involves symme-
trized multiparticle states only. The antisymmetric states are
decoupled from the dynamics within our current framework,
and in the following we assume that they are not populated
initially. The dipole-dipole interaction �d considerably shifts
the symmetric states from the field resonance if the interpar-
ticle separations are very small �20�. Even though the hy-
pothesis of identical dipole-dipole interactions is, in general,
not fulfilled, it admits to solve analytically the above master
equation in the long-time limit. Thus, in order to get some
insight into how the dipole-dipole interactions affect the lo-
calization processes of a small system as a whole we shall
accept the hypothesis of identical dipole-dipole interactions
between any pair in the sample.

The solving procedure of Eq. �10� was described in
�17,18� for running wave lasers. Adopting it to the case of a
standing wave field, one arrives at the steady-state solution


s = Z−1 �
n,m=0

N

Cnm�x��S−�n�S+�m, �11�

where

Cnm�x� = �− 1�n+m�−n��*�−manm,

anm =
��1 + n + ����1 + m + �*�
n ! m ! ��1 + ����1 + �*�

,

with �= i��x� / ��+ i�d� and �= i�̃ / ��+ i�d�. The normaliza-
tion constant Z is chosen such that Tr�
s�=1—i.e.,

Z = �
n,m=0

N

�− 1�n+m�−n��*�−manmTr��S−�n�S+�m� .

The trace can be performed using the relations

S+�s,l� = ��s − l��s + l + 1��s,l + 1� ,

S−�s,l� = ��s + l��s − l + 1��s,l − 1� , �12�

where the collective Dicke states �s , l�, with s=N /2 and −s
� l�s, are the eigenstates for the operator Sz and the opera-
tor of the total “spin” S2 �18�:

Sz�s,l� = l�s,l� ,

S2�s,l� = s�s + 1��s,l� .

Thus,

Tr��S−�n�S+�m� = �
l=−s

s

�l,s��S−�n�S+�m�l,s�

= �n,m �
l=−s

s

�l,s��S−�n�S+�n�l,s� �13�

and, then,
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Z = �
n=0

N

ann���−2n �N + n + 1� ! �n ! �2

�N − n� ! �2n + 1�!
. �14�

The intensity of the collective resonance fluorescence emit-
ted by driving the multiparticle system is calculated taking
into account that this quantity is proportional to the first-
order atomic correlator—i.e., I� �S+S−�. Then, using Eq.
�11�–�14�, one obtains

I�x� = Z−1�
k=1

N

Ck−1k−1�x�
�N + k + 1� ! �k ! �2

�N − k� ! �2k + 1�!
. �15�

III. RESULTS

We now turn to the discussion of Eq. �15�. First, we study
the dependence of the collective fluorescence intensity on the
various external parameters. Second, we show how the col-
lective fluorescence intensity can be used to precisely locate
a sample of particles which is fixed in space inside the stand-
ing wave field. Third, we discuss the localization of a collec-
tion of particles flying through the cavity field.

A. Collective fluorescence intensity

Figure 1 shows the collective fluorescence intensity ver-
sus the position of the multiparticle collection in the standing
wave field. Note that kx=	 /2 corresponds to a node of the
standing wave field, and thus the fluorescence intensity van-
ishes for particles located at this point in space. The param-
eters in Fig. 1 are the number of atoms, N=100, dipole-
dipole coupling constant �d /�=−10, and detuning � / �N��
=0.5. The solid line shows a standing wave Rabi frequency
� / �N��=100, the dashed line is for � / �N��=50, and the
dotted one is for � / �N��=25. It can be seen that with de-
creasing Rabi frequency, the width of the dip in the fluores-
cence intensity around the node at kx=	 /2 increases. Thus a
strong driving field allows for a narrow region in space that
leads to vanishing fluorescence intensity, while a weaker
field gives rise to fluorescence intensity over a wider range of
positions.

The second free parameter is the detuning � between the
driving field frequency and the bare transition frequency �0
of the individual atoms in the sample. Figure 2 shows the

dependence of the collective fluorescence intensity versus
the position of the sample on this detuning. Note that the y

axis of this figure is a scaled detuning �̄=� / �N��. Thus, �̄

=0 corresponds to the resonance case �=0, whereas �̄�0
indicates ��0 and thus �L��0. A qualitative understanding
of this figure can be gained from the case of a two-atom
sample, as shown in Fig. 3. In a collective-state basis, the
two-atom sample corresponds to a collective ground state
�ga ,gb� at energy 0, where each of the two atoms a and b is
in its respective ground state, an excited collective state
�ea ,eb� at energy 2��0, and a symmetric �antisymmetric�
collective state at energy ���0+�d� ����0−�d��:

�S� =
1
�2

��ga,eb� + �ea,gb�� , �16a�

�A� =
1
�2

��ga,eb� − �ea,gb�� . �16b�

In the limit of small interparticle distance chosen in our
analysis, the asymmetric state decouples from the dynamics,
such that we are essentially left with a three-state ladder

system. In Fig. 3, the symmetric state is located at �̄=5,
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FIG. 1. �Color online� The dependence of the collective steady-
state resonance fluorescence intensity I /N2 as a function of kx. The
solid, dashed, and dotted curves are for � / �N��=100, 50, and 25,
respectively. Other parameters are �d /�=−10, � / �N��=0.5, and
N=100.
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FIG. 2. �Color online� The steady-state collective resonance

fluorescence intensity I /N2 as a function of kx and �̄=� / �N��.
Here N=100, � / �N��=50, and �d /�=−10. The black line on top

of the surface plot indicates the position �̄= ��d � /�=10.
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FIG. 3. �Color online� The steady-state collective resonance

fluorescence intensity I /N2 as a function of kx and �̄=� / �N��.
Here N=2, � / �N��=50, and �d /�=−5. The black line on top of

the surface plot indicates the position �̄=5 around which the two-
atom symmetric collective state is located.
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since the dipole-dipole coupling is chosen as �d=−5�. It can
be seen that the width of the intensity dip is minimal if the
driving field frequency is in resonance with the symmetric
state and becomes wider in moving away from the reso-

nance. No additional structure is visible around �̄=−5,
where the asymmetric state is located, since it is decoupled.
Note that for vanishing dipole-dipole interaction, �d=0,
Figs. 2 and 3 would exhibit features symmetric with respect

to both the planes given by �̄=0 and kx=	 /2.
These results from the two-atom case directly carry over

to the many-particle sample. The minimum width of the in-
tensity dip is close to the position where symmetric-state
combinations can be expected, whereas no structure can be
found towards asymmetric collective states. A direct identi-
fication of the position of the detuning with minimum dip
width is difficult, however, since the collective-state basis of
a multiparticle sample includes many symmetric collective
states. In the example of Fig. 2, in a very small range around

the node kx=	 /2 the dip at �̄=10 is narrowest, but its width
increases faster in moving away from the node than it does

for slightly lower values of �̄. The many-particle case also

shows an additional structure at �̄=0 �see Fig. 2�, which,
however, is not of interest for our current localization
scheme.

Finally, in Fig. 4, we show the dependence of the collec-
tive intensity on the number of particles in the sample. This
is different from the previous results, since by changing the
number of atoms, both the scaled Rabi frequency � / �N��
and the scaled detuning � / �N�� are changed at the same
time. It can be seen from Fig. 4 that for a given standing
wave intensity and a given detuning, varying the number of
atoms in the ensemble changes the width of the intensity dip
at the nodes. This can be understood by noting that a change
of the number of atoms effectively shifts the position of the
symmetric state resonance. Since the laser field frequencies
are kept fixed in Fig. 4, this corresponds to moving along the

�̄ axis in Figs. 2 and 3. Therefore, different widths of the
intensity dip can be observed. The maximum intensity
changes with N in Fig. 4, since in this figure the unscaled
Rabi frequency � is kept fixed. It should be noted that the
parameters in Fig. 4 are such that for any shown number of
atoms, the scaled Rabi frequency � / �N�� dominates the dy-
namics. A further increase of the number of atoms which

leads to ��d � /��� / �N�� shifts the relevant collective
states out of the laser field resonance such that the total fluo-
rescence intensity vanishes.

B. Scanning-dip spectroscopy

After the discussion of the collective fluorescence inten-
sity as our main observable, we now turn to the application
of this observable to the localization of a collection of atoms.
As the first setup, we consider a collection of atoms which is
fixed inside the standing wave field at an unknown position.
In order to detect the position of the sample, the total collec-
tive fluorescence intensity is continuously monitored, which
may already provide a coarse position measurement. Then
the relative phase of the two counterpropagating fields form-
ing the standing wave is changed, such that the nodal struc-
ture of the field shifts along the standing wave propagation
axis. Throughout this shift, the detected intensity is modu-
lated in time with the collective fluorescence intensity pro-
file, as depicted in Fig. 5. If the intensity profile is located
such that its dip does not coincide with the actual position of
the sample, then the intensity is near its maximum value; see
Fig. 5�a�. But if the two positions coincide, then the intensity
vanishes; see Fig. 5�b�. Obviously, for this scheme it is de-
sirable to have the intensity dip as narrow as possible in
order to achieve a localization well below the usual diffrac-
tion limit. According to our results of Sec. III A, this can be
achieved by using a strong standing wave field and by tuning
it close to the symmetric collective state resonance. For in-
stance, the solid curve in Fig. 1 has a width of about ��kx�
=0.02	, corresponding to �x=0.01�. Note, however, that
the obtained accuracy is also limited by the spatial size of the

0.4 0.5 0.6
0

0.1

0.2

0.3

kx (units of π)

I
/N

2

FIG. 4. �Color online� Collective fluorescence versus atom en-
semble position in the standing wave field for different sizes of the
ensemble. The parameters are �d /�=−5, � /�=10, and � /�=100.
The solid line is for the number of atoms, N=2, the dashed line
shows the case N=4, and the dotted line is for N=8.

FIG. 5. �Color online� Scanning-dip scheme. The figure depicts
a possible experimental implementation of our scheme. An atom
ensemble �green dot� is assumed fixed inside the standing wave
field. A detector measures the scattered fluorescence light, while the
phase of the standing wave field is varied. The black curve symbol-
izes the fluorescence intensity profile as, e.g., shown in Fig. 1. If the
intensity dip does not coincide with the ensemble position, then a
high intensity of fluorescence is detected. But if the dip sweeps
across the ensemble position, then the measured intensity drops to a
minimum over a narrow spatial range, thus providing a subwave-
length localization.
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ensemble if the dip width is smaller than the linear dimen-
sion of the sample.

The localization thus relies on the absence of the fluores-
cence intensity at the narrow intensity profile dip, as com-
pared to previous localization schemes, which focused on the
properties of the fluorescence light �1–12�. This has the ad-
vantage that if the ensemble is localized, few residual pho-
tons are scattered off the atoms and the perturbing effects of
the light fields are small. Also, for a many-particle ensemble,
the dipole-dipole interaction between the constituents is
rather complicated, which renders the derivation of spatial
information from the fluorescence light difficult. In our ap-
proach, no detailed knowledge of the dipole-dipole potential
is required.

The present scheme can also be used to measure the dis-
tance between the center of masses of two ensembles by
relating the required phase shifts between two positions with
vanishing intensity to the measured intensity profile. Further,
since the width of the intensity dip depends on the number of
atoms in the ensemble if all other parameters remain fixed
�see Fig. 4�, this scheme can also be used to obtain the num-
ber of atoms in the ensemble located in the standing wave
field by measuring the width of the intensity dip via the
sweep of the standing wave phase. Finally, the spatial dimen-
sion of the sample can be measured from the width of the
intensity dip if the other parameters are known. It should be
noted that, in contrast to the precision position detection,
these measurements relying on the determination of the
width of the intensity dip are relative measurements in the
sense that they do not require a reference to obtain the abso-
lute standing wave phase. Only the change of the phase is
relevant, and thus also knowledge of the actual position of
the sample within the standing wave field is not required for
these relative measurements. The maximum attenuation of
the fluorescence intensity depends on the width of the col-
lection relative to the width of the dip in the intensity profile.
If the profile dip is narrower than the sample, then the dip
only affects part of the sample. Still, this will result in a
sudden reduction of the fluorescence intensity, which is suf-
ficient to determine the onset of the overlap of intensity dip
and atom sample. Also, a continuous scan of the standing
wave phase results in repeated intensity dips over time which
can be used to suppress statistical errors in the measurement.

C. Single-pass localization

In this section, we discuss a different experimental setup.
We now assume that a collection of atoms �atomic cluster�
flies through a standing wave field at an unknown position
on the standing wave field axis. The aim is to gain as much
information on the position as possible by measuring the
collective resonance fluorescence. Obviously, the scanning-
dip scheme described in Sec. III B is not suitable for this
kind of setup, since the change of the standing wave phase is
too slow as compared to the interaction time of field and
atom ensemble. In the present scheme, we only have to re-
quire that the time of flight � f through the standing wave
field is much larger than the time �s needed to evolve into the
steady state. For example, for a thermal beam with velocity

300 m/s and a standing wave field width of 1 mm, the flight
time is about � f =3�10−6 s. The steady-state time �s is of the
order �N��−1. For �=10 MHz and N=10, one obtains �s

=10−8 s and thus �s�� f �21�. Note that the preparation of
atom clusters has been discussed in �22�.

We now make use of the fact that position information
can be gained from the absolute value of the scattered light
intensity during the flight of the ensemble through the field.
The schematic setup is shown in Fig. 6�a�. The measured
intensity allows one to fix a horizontal section in a collective
fluorescence intensity plot versus ensemble position as
shown in Fig. 6�b�. Ideally, this section provides a set of few
discrete points where the intensity profile crosses the mea-
sured intensity. These points correspond to the potential po-
sitions of the ensemble. From the two examples in Fig. 6�b�
it is clear that the localization for a given intensity measure-
ment with a measurement uncertainty becomes better with
increasing slope of the intensity profile. A high slope, how-
ever, leads to a pronounced plateau with almost constant in-
tensity in between the dips. This means that, in the case of a
narrow dip, for large parts of the single wavelength width
only a rather inaccurate localization is possible. Therefore, in
contrast to the sweep scheme in Sec. III B, in this setup a
wide intensity dip is desirable in order to achieve subwave-
length localization for all possible positions. The reason is
that for a wide intensity dip, wide plateaus in the intensity
profile are avoided. A wide intensity dip can be achieved, for
example, by working with weaker standing wave fields or far
away from the symmetric collective-state resonance.

FIG. 6. �Color online� Single-pass localization. �a� shows the
schematic setup. An ensemble indicated by the green dot passes
through a standing wave field. The intensity of the scattered fluo-
rescence light is measured. �b� Via the fluorescence intensity profile,
the measured intensity can be related to the subwavelength particle
position. The higher the slope of the intensity profile, the better is
the accuracy of the localization. In this figure, the horizontal bars
indicate two measurement outcomes with a certain uncertainty. The
vertical bars show the corresponding potential positions. The black
curve is a fluorescence intensity profile as, e.g., shown in Fig. 1.
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IV. DISCUSSION AND SUMMARY

We have described a scheme to localize small atomic
samples with subwavelength accuracy. The scheme relies on
measuring the superfluorescence radiation scattered in a
standing wave field. We have demonstrated that external pa-
rameters such as the strength of the applied lasers or the
detuning from the atomic resonance are convenient tools to
tailor the localization region for a given experimental setup.
Based on these results, two possible experimental situations
have been considered. First, for fixed samples, a scanning-

dip spectroscopy was proposed. Here, the standing wave
field phase is changed in order to scan the fluorescence in-
tensity profile along the cavity axis in order to reveal the
actual position of the sample. This setup also allows for a
number of relative measurements: for example, of distance
between two collections, of the number of atoms in a sample,
or of the linear dimension of the sample. Second, for samples
passing through the standing wave field only once, a single-
pass scheme was discussed, which relates the maximum in-
tensity measured to the passing position of the sample. Our
scheme can be generalized to the multiphoton case.
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