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In this paper, we undertake a feasibility study of improving the one-and-a-half-centered expansion
(OHCE) method of Reading, Ford, and Becker [J.Phys. B 14, 1995 (1981);15, 3257 (1982)]. We have ex-

plored the efficacy of an alternative method to evaluate the charge-transfer matrix elements and im-

proved the estimated time dependence of the charge-transfer scattering amplitudes. More projectile
states have been included in the calculations than used hitherto. A unitary matrix, U matrix, which can
propagate the wave functions from —(xJ to t, where t denotes time, has been constructed using the
single-centered expansion (SCE) method. A complex basis set of nine radial s states and nine radial p
states has been used in the expansion of trial wave functions for the target. Charge-transfer matrix ele-
ments have been evaluated by a Feynman integral technique; one numerical integral using Gaussian
quadrature is needed. The radial parts of the matrix elements are stored on circles and used for all the
impact parameters. In a OHCE calculation, we have to choose a function P (z) to modulate the
charge-transfer amplitudes. The only constraints on P (z) are P (

—ao)=0 and P (~)=1. In this pa-
per, P (z) has been obtained from a SCE calculation. This P (z) function increases gradually in the
whole collision region. It offers an improvement over the step function used in previous work. A com-
puter code has been developed to include s and p states for the target and projectile. The calculations
have been performed in the proton energy range from 30 to 250 keV. The charge transfer to the 1s state
has been calculated and gives good agreement with the experimental data. The proton energy ranges
have been extended from the 100 keV used in previous work to 250 keV. The charge-transfer cross sec-
tions to the 2p state fit the experimental data at 30 keV and are almost the same as those calculated using
the four-state, two-centered expansion method proposed by Cheshire and Gallaher [J. Phys. B 3, 813
(1970)] and Shakeshaft [Phys. Rev. A 14, 1626 (1976)]. The results of the charge exchange to the 2s state
are also in fairly good agreement with the measurements of Ryding [listed in Tawara, Kato, and Nakar,
At. Data Nucl. Data Tables 32, 235 (1985)].

PACS number(s): 34.70.+e, 82.30.Fi, 34.50.—s, 34.80.—i

I. INTRODUCTION

Electron-capture processes in ion-atom collisions play
important roles in astrophysics, atmospheric physics, and
plasma physics. For many years, charge transfer in the
reactions of protons and hydrogen atoms has received a
great deal of attention, both theoretical and experimental.
Several theoretical methods such as Born series [1—4],
distortion approximation [5,6], impulse approximation
[7—9], molecular-state expansion [10—12], and atomic-
state expansion [13—21] have been used to evaluate the
cross sections of electron exchange. A two-state atomic-
expansion method was invented by Bates [22]. His
theory has been applied in the symmetrical resonance
process [13] and nonresonance processes [6,14]. Bates
and Boyd [20] have shown that except at very low ener-
gies, the relative velocity vector of the colliding systems
can be assumed to be constant. For proton-hydrogen col-
lisions the assumption is valid down to a 100 eV of pro-
ton energies. The problem is thus simplified to that of
finding the solutions of the time-dependent Schrodinger
equation for an electron with appropriate initial condi-
tions.

McElroy [6] calculated charge-exchange cross sections
for 1s-2s, ls-2p in proton-hydrogen collisions using a dis-

tortion approximation. McCarroll [13] and Lovell and
McElroy [14] did calculations of ls-ls and ls-2s charge
transfer using two-center, two-state expansions. Wilets
and Gallaher [15] performed coupled-channel calcula-
tions with 1s, 2s, and 2p states centered around either
proton. The energy range covered by them was from 1 to
100 keV. The charge-transfer matrix elements were eval-
uated by two-dimensional numerical integral Cheshire
and Gallaher [16] calculated the same reaction in the en-
ergy range from 1 to 1000 keV. They used a differential-
equation method [21] to determine the matrix elements.
Rapp, Dinwiddie, and Storm [17,18] and Shakeshaft [19]
also performed close-coupling calculations. The results
of Shakeshaft and Cheshire and Gallaher more or less
agree with each other, but are somewhat different from
those obtained by Wilets and Gallaher. The discrepancy
may be attributed to the inaccuracy in numerical calcula-
tion. These two-centered expansions (TCE) consume
much computing time.

Reading, Ford, and Becker [23—25] have invented a set
of one-and-a-half-centered expansion (OHCE) methods.
These methods allow a shorter computational time and
systematic improvement in its accuracy. However, previ-
ous OHCE calculations were restricted to only the 1s
electron state on the projectile and an unphysical step
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function was used to modulate the charge-transfer ampli-
tudes. The charge-transfer matrix elements were evalu-
ated by a partial-wave expansion method [23]. This
method is expected to be inaccurate at high energies. In
this paper we have explored the efficacy of an alternative
method to evaluate the charge-transfer matrix elements
and improved the estimated time dependence of the
charge-transfer scattering amplitudes of proton-hydrogen
scattering in OHCE calculations. We allow s and p states
for the projectile. As limited by the memory space most
of the calculations are performed with bases that include
four states (ls, 2s, 2p0, 2p, ) on the projectile and nine ra-
dial s states (2s to 9s) and nine radial p states (2po to 10po
and 2p, to 10p, ) for the target. The charge transfer to
the 1s states has been calculated and gives good agree-
ment with the experimental data. The proton energy
ranges have been extended from 100 keV in previous
work to 250 keV. The charge-transfer cross sections to
the 2p state fit the experimental data at 30 keV and are
almost the same as those calculated using TCE method
by Cheshire and Shakeshaft in the energy ranges from 30
to 250 keV. Charge transfer to the 2s state is also in fair-
ly good agreement with Ryding's experimental data [27).

II. THEORY AND NUMERICAL METHOD

Consider a proton incident on a target hydrogen atom
in which the nucleus is fixed at the origin of the coordi-
nate system during the collision process. The coordinate
system is described in Fig. 1. R and r are the position
vector of the projectile (mass M) and target electron
(mass m). In the semiclassical model a straight-line tra-
jectory which is distinguished by an impact parameter B
and a velocity v has been defined for the motion of the
proton. The electronic motion is obtained by solving the
time-dependent Schrodinger equation, in atomic units,

—R

Ir-RI
1 —eV= ——+

r R

(2.2)

(2.3)

Details of such pseudostate expansion and diagonaliza-
tion are stated in Ref. [26]. As an example the wave
functions of s states in Eq. (2.4) can be expressed by

g„(r,z)=V1/4mgg, ,e ' e

Xexp i— z
V —oo R

(r, z) =V1/4mgq;, e ' e ' e'"'

(2.5)

In the OHCE method, the trial wave functions are taken
as

N M
%(OHCE)= g a„(z)g„(r,z)+ g b P (z)P (r,z),

n=1

(2.4)

where y„(r,z) and P (r, z) are the target wave functions
and projectile wave functions, respectively. They can be
obtained from the diagonalization of the Hamiltonian on
a basis [( Y& + Y&' )/+(2)]r'e ' (mAO) and—a,.r
FI pr e ' otherwise. The a; are listed:

a& = 1.0000+0.0000i, a~=0. 1708+0.0000i,

a3=02476 —0. 1241i, a4=0.4041 —0.3544i,

a5=0.6751—0.6581i, a6=0. 1328—0.8799i,

a& =0.1328+0.8799i, as=0. 6751+0.6581i,

a9=0.4041+0.3544i, a&p=0. 2476+0. 1241i .

iv 4= ( ——,
' 7,+ V~ + V, )4,

z
(2.1)

where the time-varying potential arises through R (t).
The interactive potentials V~ and V, include two terms.

The second terms will guarantee that the potentials go to
zero faster than just keeping the first term and make
scattering amplitudes to be constants when R ~ 00

projectQe

e
—R

Xexp i— z', 2.6
V —oo

where R =(Z,B) and g;, q;, are the coefficients from the
diagonalization of the Hamiltonian of hydrogen atom.
To account for the second term of Vz and Vz, a phase
factor e p[xi(1/v) f ' [(1—e )/R ]dz'j has been intro-

duced in the wave functions of the target and the projec-
tile. By introducing a z, x, or z —Z, etc., the wave func-
tions of the p state can be expressed in a similar way. In
Eq. (2.4) a„are the excitation amplitudes. The condition

impact

&eetron

(2.7)

gives the a„

a„=c„—(i/v ) g U„„.(z, —00 )

iv fS %(OHCE)l=0—
Bz

Hydrogen atom

FIG. 1. Collision and coordinate systems.

+ oo
X dz'U„„-(z', —00 )

Xd„„ (z')b (2.8)
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where

BP~ (z)
d„- ( )=&y„-lv, ly &P ( ) —&y.-lg

The b are the constants. The only constraints on the
chosen functions P (z) are the boundary conditions

This P (z) function increases smoothly from 0 at —oo to
1 at ~. It offers an improvement over the step function
used in previous work. In OHCE b and P (z) are no
longer the time-dependent variational parameters. In Eq.
(2.8), U„„.(z, —oo ) is a U matrix in the single-centered ex-
pansion (SCE). The U matrix, which propagates the
wave function from z0 to z, can be obtained by

P ( —~)=0, P (~)=i . g Z

U„„.(z,zo) =exp —— V„„.(z')dz'
Zp

(2.11)

In our OHCE calculations the P (z) are chosen as

f' dz'&P IV IV(SCE)&

f dz'&P
I V, IV(SCE}&

(z)=

therefore

(2.9)

f dz(p iy —rr ir(QHcE)) =0 . (2.12)

where V„„.(z') is the excitation matrix element. The c„ in
Eq. (2.8) are the first column of U.

The perturbative constraint is

ap. (.)
Bz

&y lv, lq(SCE)&

f + dz'& Q I V, I%'(SCE) &

(2.10) Substituting a„, Eqs. (2.9) and (2.10) into Eq. (2.12), we
obtain the scattering amplitude for state m ',

b. = ' f—'—"dzy&y. I V, IX„&c„i —f dz&p IV, IX. & g U„„,(z, —~)f+"dz'U„.„-(z', oo)—d„. (z')b„
n

——' f "dzy&y. I V, ly. &P„(z)b. .
m

(2.13)

has to be taken to introduce z, x, xz, etc. in the integrand.
The one-dimensional integral of Eq. (2.15) is finally evalu-
ated using the Gaussian quadrature method.

III. RESULTS

The results of charge transfer calculated in OHCE are
plotted in Figs. 2—4. The data of Cheshire and Gallaher
I16] and Shakeshaft I19] and experimental results I'27] are
also given in the figures. The total charge-transfer sec-

f fir
—Rl e

—ar
e

—iv.r e

Ir —Rl r

Le
—er fR ar —iv R]——

'ir (U +a f —2iv VR}R—

Finally, the scattering amplitudes are obtained by solving
a set of equations of Eq. (2.13).

Before solving Eq. (2.13), we have to evaluate the exci-
tation matrix elements, charge transfer, and overlap ma-
trix elements. A three-dimensional integral (2.14) has
been used to evaluate the excitation matrix elements

(2.14)

To calculate the excitation matrix elements of s-p and p-p,
a factor of z, x, xz, etc. has to be introduced in the in-
tegrand by differentiating with respect to —iv„—iv„, etc.
of Eq. (2.14). To calculate charge transfer and overlap
matrix elements the three-dimensional integral has been
reduced to one-dimensional integral in Eq. (2.1S) using a
Feynman integral technique,

+ —fir —Rl —iv.r
e " dr

lr —Rl
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where v is the velocity of the incoming proton and f and
o. are the coefficients related with the initial and final
states. M = v x (1—x)+ (f —a )x +a . To calculate
charge-transfer matrix elements of s-p and p-p, a
differentiation with respect to —f, —a, iu„or i—u—

FIG. 2. Charge-transfer cross sections of 1s-1s in proton-
hydrogen scattering. Solid line, OHCE calculation; dotted line,
four-state Cheshire; dashed line, Shakeshaft; long thick-dashed
line, two-state Chen; long thin-dashed line, four-state Chen. Ex-
perimental data are measured by Bayfield, Gilbody, Fite,
McClure, and Wittkower.
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FIG. 3. Charge-transfer cross sections of ls-2s in proton-
hydrogen scattering. Indications of the curves are the same as
those in Fig. 2. Experimental results are taken from Hill, Ryd-
ing, Bayfield, Morgan, and Chong.
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FIG. 4. Charge-transfer cross sections of 1s-2p in proton-
hydrogen collision. Curves are indicated in the same manner as
in Fig. 2. Experimental data are given by Kondow, Morgan,
and Stebbings.

tions were measured by Bayfield, Gilbody, Fite, McClure,
and Wittkower. The ratio of Shakeshaft's total to the 1s
state transfer is used to obtain the 1s-1s charge-transfer
cross sections. The data of 1s-2s charge transfer were
taken from the results of the experiments of Hill, Ryding,
Morgan, and Chong. The cross sections of 1s-2p ex-
change were the results of Kondow, Morgan, and Steb-
bings. All the experimental data are listed in Ref. [27].

In Fig. 2 the charge-transfer cross sections from the
ground state to the projectile 1s state are plotted. The
charge transfer to the 1s state on projectile is large at low
energies because the change of binding energy is zero.

However, as proton energy increases the cross section
drops rapidly. This is caused by the difficulty that the
electron has in acquiring the necessary kinetic energy.
The curves designated as two-state Chen [28] and four-
state Chen [28] in Fig. 2 are calculated in present work
using our matrix elements. By comparison of these curves
the 1s-1s charge transfer appears to be converged by in-
cluding only the 1s states in the wave expansion when en-
ergies are low. This is because at low energies the large
impact parameters determine the magnitude of the
charge-exchange cross sections. At these impact parame-
ters the probabilities for excitations to other states are
small. When the energies increase the probabilities for
excitations are comparable to the charge transfer to the
1s state. Therefore, to get convergence more states are
needed in the expansions of wave function. By including
nine radial s states, nine radial p states for the target the
OHCE method gives better results than those of two-
state Chen and four-state Chen curves in our calculation.
It shows that the pseudostates in high excited energies re-
gion also contribute to the charge transfer to the 1s state
on projectile. The agreement of OHCE and experiments
is excellent in the entire energies range of 30 to 250 keV.
At low energies our data agree with the results obtained
in previous work of partial wave expansion method [23].
When proton energy is above 100 keV the charge-transfer
matrix elements calculated in partial wave expansion
method gives a significant error. The Feynman integral
technique is satisfactorily accurate.

The charge-transfer cross sections to the 2s state are
displayed in Fig. 3. The charge-transfer curve exhibits a
maximum near 30 keV. This is the energy where the pro-
ton velocity equals the electron velocity in 1s state. The
OHCE curve fits the experimental data of Ryding fairly
well. However, our results are consistently lower than
the data of Cheshire and Shakeshaft. This may be due to
the fact that the 2s state was represented only approxi-
mately in our wave expansions.

Figure 4 gives the 2p exchange cross sections. Shown
also in the figure are the experimental data of Kondow,
Morgan, and Stebbings and the theoretical results of the
calculation by Cheshire and Shakeshaft. Our results can
fit the experimental data at 30 keV. For the proton ener-
gies above 30 keV, the OHCE curve is almost the same as
the curve of Cheshire and Shakeshaft.

IV. CONCLUSION

In this paper the one-and-a-half-centered expansion
has been established as a feasible method by which to cal-
culate charge-transfer cross sections for proton-hydrogen
scattering. A code has been developed to allow all s and
p states on the projectile to be occupied by the electron.

The Feynman integral technique has been used as an
alternative method to evaluate the charge-transfer matrix
elements. The one-dimensional integrals have been de-
rived and evaluated using a Gaussian quadrature method.
In practical calculations these charge-transfer matrix ele-
ments can be used up to several hundred keV of the pro-
ton energy.

A smooth P (z) function which is calculated from the
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SCE has been successfully used to modulate the charge-
transfer amplitudes. The P (z) function increases gradu-
ally from 0 at —00 to 1 at 00. It overs an improvement
over the step function used in previous work.

The charge transfer to the 1s state has been calculated
and gives good agreement with the experimental data. It
proves the existence of the contribution of the high excit-
ed energy level on target to the 1s charge transfer when
proton energies are high. The proton energy ranges have
been extended from 100 keV in previous work to 250
keV. This is possible as the present matrix elements are
much more accurate than those evaluated using a trun-
cated partial wave expansion, especially in the high-
energy region. The charge-transfer cross sections to the
2p state fit the experimental data at 30 keV and are al-

most the same as those calculated using the four-state
TCE method by Cheshire in the energy range from 30 to
250 keV. Charge transfer to the 2s state is also in fairly
good agreement with Ryding's experimental data. The
computing time is competitive with other methods, but a
large memory space is needed.
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