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The time-dependent equation

i' By(y, A} = exp(iH~Z/Kv) V(x, 8) exp(-iH~Z/Kv) y(v, 8) t =Z/v

describing a fast particle perturbing a bound system was solved by Glauber in the diabatic ap-
proximation of setting H, equal to zero. The nonlocal potential exp(iH, Z/I'v) V(~, A)
x exp(-iH~Z/Kv) is thus approximated by a local or diagonal form V(x, A). In this paper the
local approximation is retained. The bound system is assumed to consist of a single electron
attached to a fixed point with wave function exp(- z/ap). It is then shown how the diabatic ap-
proximation can be relaxed by modifying V to include the effect of H, to order v . In particular
in the impulse approximation, scattering is described by a static local potential Vl.(x, 8)
=1/8 —[erf(i' e+e)]/I R —rll, where n =

l R —r t /(2cZ), and c=S/(mvao}. An analytic form
is given for y(y; 8, ~). The binding of the electron neglected in the impulse approximation can
be taken into account by changing V& to V&(y'+x, R), where z =e' —1. The scattering problem
is thus reduced to quadratures.

I. INTRODUCTION and derive

It is the purpose of this paper to show the mod-
ification to the local potential necessary to relax
the diabatic approximation' for scattering from
hydrogenlike systems. The main result is that
we are able to do this to order v ' in a local ap-
proximation.

We consider the problem of a fast projectile
(energy E, mass mk, coordinate 5) incident on an
electron (mass m„coordinate r) bound to a
fixed positively charged point located at the origin
of our coordinate system. This problem contains
the essential difficulties of electron-, muon-, or
proton-hydrogen scattering at high energies. The
wave equation describing the motion is

[- (8/2m, )~„'+H, + V(r, H)] g =EN,

where H, = —(5'/2m, )&'„-e /r- IVO

and V(r, 8)= e'[(I/H) I/I R —r

The complete set of eigenfunctions of H, satisfies
the equation

&eXn = &nXn~ &eXO= o

and the electron is initially in its 1s ground state
XQ ~

At sufficiently high energies the projectile can
be considered to provide a time-dependent poten-
tial which perturbs the bound system from which
it is scattering. The projectile is considered
initially to be moving along the Z axis at some
impact parameter 8; we define y, as

e iks~

where k= (2mkE/h )

fan@' e
V — —+H + V(r H) p =P.

p2~ ~ m ezP

If we are in the region of parameters where

kR, »1, E»V, (2)

where Ho is some measure of the range of V(r, R),
we can neglect the "Vs" term in Eq. (1) and de-
rive the approximate equation

(3)

In Eq. (3) v is the initial velocity of the projectile.
If we write R as R = (B,Z) = (B, vt), we see that
Eq. (2) is the time-dependent Schrodinger equa-
tion. Glauber pointed out that if we are in the
region of parameters given by Eq. (2), all the
scattering takes place in the forward direction.
The recoil energy H, of the bound particle is then
presumably negligibly small. If we set H, equal
to zero, i.e., make the diabatic approximation,
Eq. (3) is soluble, and we obtain

p, =exp- — Vr;B, Z'dZ y, r .
This argument given by Glauber with the nuclear

problem in mind might be misleading in an atomic
collision. In the nuclear case the mass of the
projectile is equal to or less than the mass of the
struck target particle and the range of the two-
body force is less than the dimensions of the bound
system. These conditions do not necessarily hold
in an atomic collision, and it is not true that being
in a situation where one can apply the high-energy
approximation to two-body force generally implies
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If we intend to calculate direct exeitations of the
bound system, we will be concerned with ampli-
tudes such as

f„,(k, k}=— ™JId'rd'Ry (r)V(r, R)y,

&( exp( —i k~' R+ ikz) (7

km= [2m@(E Wm)/8 ] ~ (8where

For large E we can expand the square root in Eq.
(8). For small angle scattering we may then re-
write Eq. (8) as

f c(zz) —
k ~fderd, /Rx (r)p(rd()///,

xexp( —zk„'B+ iW /ZI)zv

27ri
d'R exp (- zk. B)—(X„~ y(B, Z))8g

that one is in a situation where the diabatic ap-
proximation will be good.

In this paper we show how to include the effect
of II, to first order in v '. The "obvious" way to
proceed is to substitute the approximate solution
of Eq. (4) into Eq. (3) and iterate on the II, term. 3

This unfortunately leads immediately to difficul-
ties. (i) The term&„V produces a 5 function at
r=R. (ii) The term VX VV produces a divergence
in the "potential" at large Z.

We have been able to get rid of the former dif-
ficulty but only to circumvent the latter by a choice
of a cutoff which is not unique.

Before proceeding to the problem, it is well to
consider what we need to calculate. One always
has a choice in a time-dependent problem of work-
ing with p, or nowhere

(z) = exp(ilf, Z/hv) y, .
The equation for p is

ifzv —= exp ~

' V(r, 8) exp &' p. (8)ay &za.z —iH, Z
k @v Sv

where p = g, (r)S = e-&S

H=- qV —Vbzxp V = —~V +2 0

x exp(- —,
' zcz~z) . (13)

In the impulse approximation we assume the
struck target particle recoils freely which means
we only keep the last exponential in Eq. (13). We
are thus led to study the equation

BS . icZ— =-ic exp — &„V(r,B) exp kP„S.zcZ 2

2

We solve this equation approximately by an ex-
pansion in terms of the nonlocality of the trans-
formed potential. This differs from other authors'
treatment of the impulse approximation. '

In a plane-wave representation we have

c = m3/(m, ka, )

The condition for the diabatic approximation to
hold is that FICZ«1, which implies that

(m /m, )[O(1/kR )+ O(V/E)+ O(1/ka )]«1. (12)

To derive Eq. (12) we have assumed S varies ap-
preciably over some range Bp Clearly the ine-
quality of Eq. (12) is not guaranteed by Eq. (2).

We see that P in Eq. (11) splits naturally into
two terms. We shall call the first the freely re-
coiling term (ft) and the latter the binding term
(bt). This nomenclature expresses the fact that
in the limit of zero binding energy bt is zero. It
is the great simplification of the hydrogen system
that bt is a constant times "a/ar. " Exponentiated,
this is just a shift operator.

%e consider ourselves to be in a region of par-
ameters where c is small, and we want to cal-
culate the correction to the diabatic approximation
to first order in c. %'e write'

a (icz)' a (icz)'
exp((/7cZ)=exp icZ—+ —+ vv, +'' )

dB exp -zR~ B y~ yB~ -6~0. 9

Thus for direct excitations we need p(r; B, ~). Dn
the other hand, for exchange processes we need

In the following we shall work with y giving
the conversion to y, where necessary.

II. LOCAL IMPULSE APPROXIMATION

In a system of units where lengths are measured
in units of the Bohr radius ap we may rewrite Eq.
(8}as

BS . 1 1
az
—= —ic exp(- Pcz) —— exp(- Hcz}, (10)

R R —r

aZ 2 2
—(X,kk) = —ic d'k, exp (k', —k,'))

x v(k, —k„R)s(k„R)

d r3

where e(h/, R)= fexp( —ih/ r)Z(r, R) e/2

v(q, k()=f exp( —ih, r)P(r Z)
( )3/e

a(q} e- z(k R

R 2mq

Returning to configuration space we obtain

as(r„R) ic d3k d3k d3r
as (2v)'

(14)
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&&exp[—,
' icZ(k g

—k 2)+5k, rg —ik~. r2]

xv(ki —k2, R)S(ra, R)

Changing coordinates

q =k, —k„2Q=k, +k,

and integrating on Q gives

&S(r„R)
BZ

=-ic d qd ~25 r, —r, +Zq

x exp[2 i q ~ (r, + r, ))V(q, R)S( r„R)
=-ic V» r»raSr»R d r2

Therefore

S(r, R)=exp( —ic f dZ' fd'~'S-'(r, 8, Z')

&&V„z(r, r')S(r';B, Z')) . (15)

As c is assumed small, we see that V„z,(r, F')
is nearly local. This is accentuated by the
long-range nature of.the interaction which means
v(q, R) is peaked atg=0. We therefore start an
expansion for S(r ', R) in Eq. (15) about r and ig-
nore the higher-order derivatives. Then V» can
be replaced by an approximate local form V~(x)
where

erf i"'o.+(
vz(r) f'dr v=zN(r, r'') = —— . (l8)

IR —r I

In (16) o. = IR —r I /2cZ and e is a positive number
to be taken in the limit to zero. The integration
is performed in Appendix A.

As erf(0) is zero, there is no singularity as-
sociated with the potential at r = R, so we have
removed the 5-function-type singularities noted
above.

The potential V~(x) has a particularly simple
physical interpretation. A unit charge distributed
with a density p(0) exp( —r /a ) gives a static po-
tential erf(r/a)/r. So the effect of allowing the
electron to freely recoil is to smear out the point
charge.

S is now given by

S(r; B, Z)=exp( -ic f „Vz, (r; B, Z ')dZ')

and in particular (see Appendix B)

(B—b) iu' io.
1nS(~;B, ~)= —ic ln, +E, E,

J3 C C

(»)
where n' = + [(B —b)2+ g~ ]'~~ —g

For large argument, the exponential integral E,(g)
has the form E,(z) - e'/e. Thus, for small c, the

E~ terms in Eq. (17) tend to zero. We are left
with just the log terms in Eq. (17) which represent
the diabatic approximation solution to the prob-

By a similar method used above, we show

lnS, = —ic f „Vi(r; B, Z', Z)dZ'

erf(i"'n' +E)
where Vz'(r; B, Z', Z) = B+Z' —rl

and n"= B+Z' —r '/2c(Z' —Z)

(18)

In the local impulse approximation we have ne-
glected bt and its commutator with ft. In Sec. III
we show how to include bt to first order in c.

III. BINDING TERM

It is well known that the high-energy approxi-
mation of Glauber applied to scattering from a
Coulomb force gives the exact scattering ampli-
tude, including its phase. As the high-energy ap-
proximation, or the derivation of Eq. (3), involves
neglecting a "V~" term, it is not surprising that
the effect of neglecting a "V'„"term calculated
above is smaller than one might estimate from the
knowledge that it was proportional to c. In fact,
if one is considering electron-hydrogen scattering,
both terms are of the same order of magnitude
and should be treated together. This is not the
case with bt, however, which we can expect to
make a straightforward contribution proportional
to c. This is because bt is of the form [ao'(8/8r)]
and involves the long-range character of the force
only to an inverse power while ft involves this
range to an inverse-square power. So in general
we can expect bt to be more important than ft.
This is a peculiarity of the Coulomb force, and it

lem. e This could have been obtained directly from
Eq. (4). In fact, for small c,

E,(in'/c) (c-/i o.') exp(in. '/c)

so that not only does this term decrease linearly
with c, it also oscillates rapidly for small c. This
will significantly decrease the effect of the cor-
rection to the diabatic approximation when our
solution for S is used in Eq. (9) to calculate the
scattering. This is a reflection of the long-range
nature of the Coulomb force we are dealing with.

For small arguments of E,(z), E,(z) = lng —y, so
if IB —b I is small,

E&(in /c)=ln B —b /2zc —y

which completely cancels the contribution to the
phase coming from the electron in the diabatic
approximation. Thus for large-angle scattering
processes we may expect considerable differences
between the diabatic and impulse approximation.
This may also be true for exchange processes.

To calculate y, in this approximation, we apply
Eq. (5):

y, = exp( —iH, Z/@v)y = )(0(r) exp( —iHcZ)S = yo(r)S, .
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is fortunate that for scattering from a hydrogen-
like system we can treat bt exactly.

Returning to Eq. (13), we neglect ft and its com-
mutators with bt to give

(. B
exp(iHcz) = expi icz-

By

Hence the effective potential is V(r+icz; B, Z), and
S is given by

S = exp[ —ic f V(x +i cz'; 8, Z ') dZ '
]

For a potential bounded by an exponential at in-
finity, there is no difficulty with Eq. (19), but for
the force considered here, a divergency results at
large Z. In the limit we have

lim V(r+icz; B, Z)-1/Z —(1/D)(1/Z)

where

D=S —ic, D=(1 —i2c k —c )~, c=cx,
A

and k is a unit vector in the Z direction.
This Z ' behavior at large Z results in a log-

arithmic divergence for S. That our solution
should be wrong at large Z is not surprising, as
we can see from Eq. (13). Our expansion in small
c is also an expansion in Z, and the higher-order
terms which we have neglected will eventually be-
come large and important as Z increases.

If we cut off the potential at some large Z, i. e. ,

V(r, ff)=O, iZi)Z,
we find

(It + z)lnS= —i,c ln
(

[(B—r + DZ)']" + ( B —r +Dz) D/D

D [(B—r —DZ ) ]
i + (B —r —DZ )D/D

The Zo dependence of S is not merely that of a
harmless phase factor because the effect of bt has
been to rotate the Z axis into the complex plane.
However, S is only a slowly varying function of Zo.
Rather than leave an ambiguity in our solution, we
chose a cutoff procedure which minimizes the error
we have made in neglecting the higher-order com. —

mutators. This is not unique. We write

8 1 icZ
exp icZ —+— —+ ~ ~ ~

By

B, . 2B= exp icZ —+ 2 icZ —+ ~ ~ ~ = exp g —,
By By ) By '

which has no divergency problems.
To include bt and ft together is now straightfor-

ward to this order in c.
We have

S = exp (—ic 5 Vz, [x+x(z '); B, Z '] dz ' )
To find S„we replace r in Vi by x —x(z —Z ').

IV. CONCLUSIONS AND POSSIBLE FURTHER
DEVELOPMENTS

In Secs. I-III we have been able to show how to
modify the diabatic approximation to obtain the
impulse approximation and as a further refinement
include the binding term to order v ' in terms of
simple analytic expressions. The correction giving
the impulse approximation is not as important in
general as the binding term because it oscillates.
However, in certain exchange processes this may
be an important effect, as exchange integrals are
small just because they have an oscillatory be-
havior and a stationary phase may occur. This
will be left to later work. As far as the impulse
approximation is concerned, we are able to treat
the problem of scattering from a multielectron
system in an exactly analogous way to that de-
scribed above and developed by Glauber in the
diabatic approximation. The binding term is more
difficult but can always be treated in an approxi-
mate way by replacing

P; V;in[go(r&, xz, . . . , x„)]

by an appropriate constant vector.
The use of our formulas with electron scattering

is a little difficult to justify as the main equation
of the theory, Eq. (3), is only valid when we are
already able to throw away an "m&' Vz" term
which will be as important as ft if the target parti-
cle and projectile have equal masses. However,
bt may still contain an important contribution to
the scattering, even with electrons as projectiles.
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APPENDIX A

where x = x(z) = exp(icz) —1

making an error of O(c)' in the phase. We thus de-
rive a potential V(x+ x, 8) and an expression for S,

S=exp( —ic f V[x+z(z');B, Z']dZ')

We wish to derive Eq. (16). We have

Vi(~) = f d t'' qS( r —r '+ cz q)

x exp[-,'iq (r+r')] V(q, ft), (A1)
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1 2 1
V/(r) = —— exp(iqz) sin(2nq) dqtRl ~ lR —rt 0

q (A2)

where n = R —r /2cZ

The integral in Eq. (A2) exists for all real a. For
a='0,

If we write

g(p)= f exp( —r ts)d(r ) f F(e, r)d8

we note that f '/ E(8, r) d8 is the inverse Laplace
transform of g(P). Hence the inverse Laplace
transform of the integral we require is given by

V~(r) =1/ R —1/ R —r

Writing in E(1. (2)

sin(q2n) 2n cos(x2nq) dx
0

(AS) ( )
. -„exp(—x'p -y'p+2iy'z/c)"

0
"'

o
"y (y2+c'm&/4)

xJ'0(yx B -b 2/c)

gives on reversing the order of integration that

1 2 1
V/(r) = ——— n dx exp( —ix') dx

~ [R-rl 0

(.exp(in /40t)
exp( —t') dt8 v'm IR —r I g,

1 erf(i "'n+ z)
IR-rI

We have introduced the &, a small positive number
to be taken to zero in the limit, in order that we
regain E(1. (As) at large n

APPENDIX B

To prove E(1. (17) we write

S(r; B, ~) =—,dZd'q

exp( —i j R) —exp( —i q 8+i(1 r+ Bi«q')
X 2

q

To perform the integration, it is convenient to
break the integral into two parts. However, this
produces a divergency at q = 0, so we replace "q "
by q +m " in the denominator and take the limit
that m goes to zero at the end.

For the first integral we have

S,(r; B, ) = —
2 dZd qexp(i(1 R)(q +m )

22 ep
4

-y

(B -b)'
x ip — +

ic (cm (z imcz (B—B) m

)p )( 4 2 4p

c 'm'P im' cz ( B—b)' m'

4p

In the limit m is zero this gives

g(&) = ——y- hI — +ic /c'm'p im'cz (B—b)'m'

p ( 4 2 4p

The Laplace transform of the exponential integral
E,(z),

( )
exp( —zx)

X

is given by

e~(p) = f exp( pt) E,(n+ t) dt= p-[ln(n+P) —inn]
0

The Laplace transfer of (y+lnt) is similarly shown
to be ( —p 'in').

Hence the inverse Laplace transform of g(P) is
given by

f (t) = ic —2y —2 ln —,
' m + E~

in't &

= —ic2ZO(m B)

In the limit that m is zero,

S~(r; B,~)- —ic2( —ln B mB —y)

For the second integral we have

(
~

)
zc g S( —qcose+Bcq )

Sz Br, =cad q
( z z)

&& exp[ —i q ~ (B —b) sine cosy —i qz cos 8]

~/2 de sin8 cos= 2zc 2g+ 1 c2 2 0

/2
&&

(

—sine cose
~
B —b( I exp[(i2z/c) sin 8].(c )

fin t
+

~

—lnt(B —b)c

where n'=+[(B —b)'+z']"' —z

[(B b)3 + z 2j(/z

We need f(t) where

f(t)= f s(e, Kt)de

where t is unity. Hence,

S(c;B, )= —ic )c, +B,
) ) +)B

(B-b)' in' ) (in
B2
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A general method for calculating the cross sections for single-quantum. annihilation (SQA)
of positrons in various atomic shells, valid to second order in the G. Z expansion (one order
beyond the leading term), is presented with the help of the modified Sommerfeld-Maue wave
function for incoming positrons and the relativistic wave functions for the bound electrons in
any atomic shells. It is shown in this approximation that the differential cross sections are
of the form 0&&(k, q) = C„&0„»(k, q), where no= l+1, and k and q are the photon energy and the
magnitude of momentum transfer to a nucleus, respectively. The factor C„& is evaluated in
general. The SQA cross sections are calculated for the 1s~g2, 2p~~2, and 2p3~2 states to 2nd
order in the Q.Z expansion and for the 3d3~2 and 3d5~2 states to lowest order in the nZ expan-
sion, and are in closed form. The relationship between the SQA cross section for any state
and the corresponding cross section for the atomic photoeffect is discussed. The leading
term for the SQA cross section is closely related to that for the photoeffect, but there is a
distinct difference between the correction terms for the former and the latter. The com-
parison of the results of the present work for the K and I-~ shells with a recent numerical
calculation done by others shows that for low and intermediate energies, the above factoriza-
tion rule is valid within 1.4% for Z=47 and 3.8% for Z=90. However, the 1s~~2 cross section
for Z= 82 is negative for any energy below 2.264 Mev.

I. INTRODUCTION

The purposes of this paper are twofold: first, to
calculate in closed analytical form the second-or-
der cross sections for the single-quantum annihi-
lation (SQA) of positrons with bound atomic elec-
trons in several atomic shells, with the help of the
modified Sommerfeld-Maue wave functions' for the
ingoing positrons; second, to study the relation-
ship between the above cross sections and those
for the atomic photoeffect. '

The numerical calculations of the SQA cross
sections for the K shell were done first by Jaeger

and Hulme, later by Johnson, Buss and Carrol,
and more recently by Johnson. Sheth and Swamy
used numerical techniques to calculate the SQA
cross section for the L j shell. The third-order
calculation of the SQA cross section for the K shell
was carried by Carroll and O' Connell. This last
result for the SQA cross section, however, was
not in a closed form.

One can, however, calculate the second-order
SQA cross sections for arbitrary shells in closed
analytical form (polynomials in momenta and en-
ergy). It is, therefore, instructive to obtain the


