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ABSTRACT

GPS Receiver Self Survey and Attitude

Determination Using Pseudolite Signals. (August 2004)

Keun Joo Park, B.S., Inha University;

M.S., Inha University

Co–Chairs of Advisory Committee: Dr. John L. Crassidis
Dr. Daniele Mortari

This dissertation explores both the estimation of various parameters from a

multiple antenna GPS receiver, which is used as an attitude sensor, and attitude

determination using GPS-like Pseudolite signals. To use a multiple antenna GPS

receiver as an attitude sensor, parameters such as baselines, integer ambiguities, line

biases, and attitude, should be resolved beforehand. Also, due to a cycle slip prob-

lem a subsystem to correct this problem should be implemented. All of these tasks

are called a self survey. A new algorithm to estimate these parameters from a GPS

receiver is developed using nonlinear batch filtering methods. For convergence issues,

both the nolinear least squares (NLS) and Levenberg-Marquardt (LM) methods are

applied in the estimation. A comparison of the NLS and LM methods shows that the

convergence of the LM method for the large initial errors is more robust than that of

the NLS. In the proximity of the International Space Station (ISS), Pseudolite sig-

nals replace the GPS signals since almost all signals are blocked. Since the Pseudolite

signals have spherical wavefronts, a new observation model should be applied. A

nonlinear predictive filter, an extended Kalman filter (EKF), and an unscented filter

(UF) are developed and compared using Pseudolite signals. A nonlinear predictive
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filter can provide a deterministic solution; however, it cannot be used for the moving

case. Instead, the EKF or the UF can be used with the angular rate measurements.

A comparison of EKF and UF shows that the convergence of the UF for the large

initial errors is more robust than that of the EKF. Also, an alternative global navi-

gation constellation is presented by using the Flower Constellation (FC) scheme. A

comparison of FC global navigation constellation and other GPS constellations, U.S.

GPS, Galileo, and GLONASS, shows that position and attitude errors of the FC

constellation are smaller that those of the others.
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CHAPTER I

INTRODUCTION

The definition of attitude determination is to estimate the attitude parameters of a

body fixed coordinate frame, which is fixed to a vehicle body, relative to a reference

coordinate frame, such as the Earth Centered Inertial (ECI) reference coordinates

system. Due to the sensor type, attitude determination algorithms are largely divided

into two approaches: static methods and filtering methods. Static methods give a

point-by-point attitude solution, while filtering methods combine dynamic and/or

kinematic models. Both methods use the measurements of the attitude sensors, such

as a sun sensor, earth sensor, Three-Axis Magnetometer (TAM), and/or star sensor.

Vector observation methods usually use Line-Of-Sight (LOS) vectors as measure-

ments. All static methods provide an attitude information without a priori informa-

tion when at least two sets of unparallel LOS vector measurements are available.1–6

These methods are divided into two sub-approaches. The simple and deterministic

method is the TRIAD method that determines the attitude matrix by discarding

part of the measurement information.1–3,5, 7 The main drawback of the TRIAD al-

gorithm is that it cannot handle multiple measurement sets. However, a spacecraft

usually has more than two attitude sensors for redundancy. An optimal problem using

more than two sensor measurements was first proposed by Wahba in 1965.8 Wahba’s

problem needs to determine the attitude matrix that minimizes a cost function. In

1968 Davenport posed the q-Method to solve Wahba’s problem that determines the

optimal quaternion by computing the maximum eigenvalue and its corresponding

eigenvector of the K matrix.1,3 However, this approach requires a large computa-

tion burden because the computation of the eigenvectors requires complex matrix

factorization methods such as a QR factorization or a Singular Value Decomposition

This dissertation follows the style and format of the Journal of Guidance, Con-
trol, and Dynamics.
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(SVD). In 1981 Shuster and Oh presented the QUEST algorithm that determines the

maximum eigenvalue using one or two Newton-Raphson iterations to the K matrix

characteristic equation and, then, the optimal quaternion is estimated by applying

the Cayley-Hamilton theorem together with the Gibbs vector.2,3 Since the use of the

Gibbs vector introduces a singularity for the principal angle close to π, the technique

of sequential rotations is also proposed.2,3 In 1992 Markley proposed the Fast Opti-

mal Attitude Matrix (FOAM) algorithm that directly determines the attitude matrix

minimizing Wahba’s cost function.4 In 2000 Mortari developed the second EStimator

of the Optimal Quaternion (ESOQ2) that is a faster attitude estimation method fully

complying with Wahba’s optimality criterion.3,9, 10

In case of eclipse or existing bright objects in the Field-Of-View (FOV) of the

attitude sensors, static methods can often not determine an attitude solution, while

other approaches combining dynamic and/or kinematic models with attitude sensor

data can still predict attitude information.11–16 These filtering algorithms can deter-

mine the attitude using even only one set of attitude sensor observation if the LOS

vector has significant motion, such like a TAM.17 Among methods using dynamics

and/or kinematic models, the most common technique for attitude estimation is the

Kalman filtering. These are also divided into two sub-approaches. One uses the gyro

measurements with kinematic models.7,12, 13, 16–28 The other algorithms use a dynamic

model instead of angular rate measurements.29–33 In general, the dynamic model is

inaccurate since perfect information of moments of inertia, external torques, and dis-

turbances cannot be obtained. Also, the angular rate measurements using gyros have

either systematic or random errors.11,13, 15 Thus, other attitude sensors should be used

to compensate the prediction errors. The estimation techniques that determine the

state of a stochastic differential equations representing system dynamics from noisy

observations have been investigated. Kalman and Bucy studied the problem for linear

systems and showed that Kalman filter provides the optimal solution for maintaining

a consistent estimate of the first two moments of the state distribution.11,13, 15, 34–36

However, linear filtering theory cannot be applied directly to the attitude determina-

tion problem since the system model and the observation model are nonlinear. The

Extended Kalman Filter (EKF) based on the linearized model is widely used in at-
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titude estimation. Several parameterizations can be used to represent the attitude,

such as Euler angles, quaternions, and Modified Rodrigues Parameters (MRP).37,38

Among those quaternions are especially appealing since no singularities are present

and the kinematics equation is bilinear.37,38 However, the quaternion must obey a

normalization constraint, which can be violated by the linear measurement updates

associated with the standard EKF approach.26 The most common approach to over-

come this shortfall involves using a multiplicative error quaternion summarized by

Lefferts, Markley, and Shuster.18,26, 27 Crassidis developed an EKF using MRPs.17

Although the EKF has become a standard for nonlinear estimation, it has several

drawbacks. The EKF uses a Gaussian approximation on the process and observation

error. Also, it may be unstable for large initial errors since the EKF uses a first

order linearization approximation. Also, the Jacobians of process and observation

model should exist. Julier, Uhlmann, and Durrant-Whyte have developed an alter-

native to EKF, which is called the Unscented Filter (UF).35,39 The UF involves more

computations than the EKF, however, it has several advantages. Mainly, the UF is

more robust for large initial errors than EKF and knowledge of Jacobian matrices

can be avoided.20,34–36, 39–42 In the attitude determination applications, however, the

quaternion based UF will fail because the sigma points will violate the quaternion nor-

malization constraint. Crassidis and Markley developed the USQUE algorithm that

is based on the UF.34 The USQUE is proven to be more robust for large initial atti-

tude errors than EKF. However, the UF still uses Gaussian assumption with known

covariance in the process and observation model error. Crassidis et al. proposed

a predictive filter that determines the model error during the estimation process,43

which can estimate for non-Gaussian errors.

The Global Positioning System (GPS) was originally developed for the pur-

pose of navigation. With the pseudorange measurements of the GPS receiver the

instantaneous positions and velocities are determined as well as the precise time. No

other instrument can provide this information with both the accuracy and bandwidth

achievable with GPS. In addition to orbit determination, the capability of GPS to

provide attitude information makes it increasingly applied in the attitude subsystem

of modern spacecraft.23,24, 29, 44–59 Since GPS receivers can also measure the signal
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carrier phases, GPS receivers have been applied as attitude sensors with multiple an-

tenna sets. However, when using the phase measurements the solution becomes more

complicated since the phase measurements contain integer ambiguities.42,45, 53, 60–67

Furthermore, to utilize a GPS receiver as an attitude sensor, the system pa-

rameters such as baselines and line biases need to be determined, as well as integer

ambiguities.53,68 This operation is called the self survey. In general, the self survey

requires 6 to 8 hours of data to estimate baselines, line biases, integer ambiguities,

and attitude because the sightlines, i.e., the LOS vector between the GPS satellites

and the receiver, are moving slowly.47,53, 69 The orbit period of GPS satellites is ap-

proximately 12 sidereal hours. Since the GPS satellites are moving, the connections

between GPS satellites and receiver will be on and off repeatedly. When a new GPS

satellite signal is available, the integer ambiguities should be resolved first. Also, the

GPS signals are often blocked and jammed for up to ten minutes. This causes cycle

slips or jumps in the phase measurements since the receiver accumulates the cycles of

the carrier phase.67 For the correct estimation, cycle slip free measurements should

be obtained. Altmayer enhanced the integrity of an integrated GPS/INS system by

cycle slip detection and correction.70 Since the phases change slowly, cycle slips can be

successfully detected and repaired by using a low-order polynomial fitting method.53

As a result, several subsystem aspects such as an integer ambiguity resolution routine

to determine the integer number wavelengths in the phase measurements and cycle

slip detection and repair algorithm are needed for correct estimation. Once a self

survey is accomplished, the attitude determination problem then can be solved.

Integer ambiguities are determined two approaches.61,63, 71 One is the instanta-

neous method that finds integer sets that minimizes a loss function by searching all

possible integer sets.66,69 Since the searching requires much time, Lightsey et al. pro-

posed a geometric constraint that reduces the search space.63 Also, they determined

integer ambiguities when the baselines are coplanar. However, the minimum residual

does not guarantee correct integers due to the measurement noise. Dynamic tech-

niques that are more robust than instantaneous methods have also been developed.

Cohen developed quasi-static integer resolution algorithm that uses a linearization

approximation of observation model,71 but requires a priori attitude information. An
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attitude independent algorithm is developed by Crassidis.61,72 Lightsey and Crassidis

developed a real-time algorithm for attitude independent integer ambiguity resolu-

tion.42

In the key application by Cohen and Trimble Navigation, Ltd. in the late 1980’s

the GPS receivers, TANS Vector and TANS Quadrex, are designed primarily for

airborne applications, tracking up to six satellites on four separate antennas.47 Cohen

has developed an iterative nonlinear least squares using Euler angles. When three non-

coplanar baselines exist, Cohen showed that the solution based on Wahba’s problem

is almost an order faster than a nonlinear least squares algorithm. Still, an SVD that

is computationally expensive should be performed. Bar-Itzhack et al. show another

analytical conversion of the GPS phase difference measurements into unit vectors to be

used in QUEST algorithm.46 However, it only used two baselines sets. Crassidis and

Markley have developed a generalized deterministic attitude solution using GPS phase

difference measurements.50,51 Crassidis et al. have proposed an efficient and optimal

algorithm based on nonlinear predictive filter scheme first introduced by Crassidis

and Markley.48,49 This algorithm, called Attitude-Lean-Loping-Estimator using GPS

Recursive Operations (ALLEGRO), has several advantages: 1) the ALLEGRO is non-

iterative, 2) an optimal attitude is provided even for coplanar baseline configurations,

and 3) it guarantees convergence even for poor initial conditions.52

Estimator-based filtering methods such as the EKF have also been developed for

GPS attitude determination applications. The main advantage of using filtering tech-

niques is that the three-axis attitude solution can be achieved using less than three

baseline sets as long as there is sufficient vehicle motion. Also, line biases can be es-

timated concurrently with the attitude. Fujikawa and Zimbelman developed an EKF

using GPS signal phase differences to estimate the attitude and line biases using one

baseline.73 Crassidis et al. have proposed a new filter based on nonlinear predictive

filter scheme.48,49, 52 This filter does not assume that the external torque is modeled

by a zero-mean Gaussian process. Instead, it is determined during the estimation pro-

cess. In the GPS receiver data defined by a RINEX format the Signal-to-Noise Ratio

(SNR) of GPS signal is also measured. Axelrad and Behre have developed an atti-

tude determination algorithm using GPS SNR measurements.44 Lightsey and Madsen
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developed an EKF algorithm using canted antenna SNR measurements.56 However,

the attitude errors of the SNR measurements methods are larger than those of using

carrier phase measurements.

All of the various attitude determination approaches have been tested on a num-

ber of actual spacecraft.74–78 Currently, the International Space Station (ISS) uses

GPS for both orbit and attitude determination. However, significant GPS signal out-

ages occur due to various structures near the ISS. Gaylor et al. showed that GPS

signals below 10 meters from the ISS are blocked 99.99%.54 Therefore, Pseudolite

techniques are being developing by the Navigation Systems and Technology Labora-

tory (NSTL) in NASA Johnson Space Center (JSC) and Texas A&M university to

replace GPS signals near the proximity of the ISS.53 The Pseudolite Transceivers (PL

TX) are used to transmit GPS-like signals. However, this leads to more complicated

solutions because the pseudolite signals have spherical wavefronts. These non-planar

(or spherical) wavefronts effects were investigated for the rendezvous problem by

Zimmerman.79,80 In the attitude determination algorithms, these effects should be

resolved.

Therefore, in this dissertation two tasks are presented. First, the self survey algo-

rithm using GPS signals is considered because the attitude determination using GPS

receivers is not possible without knowing baselines, line biases, and integer ambiguity

information. Optimal algorithms that are more efficient and reliable than conven-

tional approaches are presented. The algorithms are implemented using MATLAB81

and extensive simulations are executed for various simulation conditions. Further-

more, a comparison of the self-survey results with the commercial receiver results

is presented. Then, optimal attitude determination algorithms using pseudolite sig-

nals are investigated. Nonlinear least squares, predictive filter, EKF, and UF based

algorithms are derived and analyzed with realistic simulations.
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CHAPTER II

ESTIMATION TECHNIQUES

Even for a simple spacecraft control system, angular rate information is needed to

determine the control. We can use a system model, numerical derivatives, and gyro

outputs for angular velocity. However, a model is often inaccurate, although some

properties are known well. Also, gyro measurements contain either systematic or

random errors. The estimation problem is to obtain the optimal state that minimizes

a cost function constructed by the residual error between the true state and the

estimated state.12 Since the true state is unknown in the real world, it is replaced

by the residual between the estimate and the measurement.14 Once this residual is

minimized, the residual between the true and the estimate is also considered to be

minimized.14 This chapter reviews some common estimation techniques.

2.1 Least Squares

Assume that the measurement model and the estimated output of a linear system are

given by

ỹ = Hx + ν (2.1a)

ŷ = Hx̂ (2.1b)

where the (̃·) represents the measurement, the (̂·) denotes the estimate, and ν is the

measurement error. Define the residual error as

er ≡ ỹ − ŷ (2.2)

Then, the least squares by Gauss determines the optimal x̂ that minimizes the sum

square of the residual errors,14 given by

J =
1

2
eT

r er (2.3)

where the constant J is the loss function. An optimal x̂ satisfies

∂J

∂x
= HTHx̂−HTỹ = 0 (2.4a)
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∂2J

∂x∂xT
= HTH > 0 (2.4b)

where Eq. (2.4a) is the necessary conditions and Eq. (2.4b) is the sufficient conditions.

For a minimum of J , the matrix HTH must be positive definite. Then, the necessary

conditions of Eq. (2.4a) yield the normal equations

(
HTH

)
x̂ = HTỹ (2.5)

By using the direct inversion we obtain

x̂ =
(
HTH

)−1
HTỹ (2.6)

For the overdetermined case that the dimension of the measurements is larger than

that of the state, and the numerical methods to solve the least squares are well

explained in Ref. [82]. As for speed and accuracy, the QR factorization approach is

the best algorithm to compute the least squares solution. If the measurements are

fewer than the state dimension, a minimum norm solution can still be obtained by

applying a Lagrange multiplier.82

2.1.1 Weighted Least Squares

Since the measurements might be made with unequal precision, the weights of the

reciprocal of the measurement error variance in Eq. (2.3) are considered to yield a

statistically optimal solution.12,14 Then, the new loss function to be minimized is

given by

J =
1

2
eT

r Wer (2.7)

where the matrix W is symmetric and positive definite of which components are given

by

wij = σ−2
ij (2.8)

where σ2
ij(i = j) are the variances, and σ2

ij(i 6= j) are the cross-correlation terms.

Then, from the necessary conditions, the optimal estimate is given by

x̂ =
(
HTWH

)−1
HTWỹ (2.9)
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2.1.2 Sequential Least Squares

Assume two subsets of measurement data are given by

ỹ1 = H1x + ν1 (2.10a)

ỹ2 = H2x + ν2 (2.10b)

The least squares solution using the data subset in Eq. (2.10a) yields the estimate

x̂1 =
(
HT

1 W1H1

)−1
HT

1 W1ỹ1 (2.11)

Then, by using this information, the update estimate using the data subset in Eq.

(2.10b) can be expressed by

x̂2 = x̂1 + P2H
T

2 W2 (ỹ2 −H2x̂1) (2.12)

Therefore, a large matrix inversion can be avoided. The general form, known as the

Kalman update, is given by

x̂k+1 = x̂k + Kk+1

(
ỹk+1 −Hk+1x̂k

)
(2.13a)

Kk+1 = Pk+1H
T

k+1Wk+1 (2.13b)

P−1
k+1 = P−1

k + HT

k+1Wk+1Hk+1 (2.13c)

If the dimension of measurement is less than that of the state, an alternative form

can be used to reduce the computation of the matrix inverses,12,14 given by

x̂k+1 = x̂k + Kk+1

(
ỹk+1 −Hk+1x̂k

)
(2.14a)

Kk+1 = PkH
T

k+1

(
Hk+1PkH

T

k+1 + W−1
k+1

)−1
(2.14b)

Pk+1 = (I−Kk+1Hk+1)Pk (2.14c)

2.1.3 Nonlinear Least Squares

Although the optimal solutions for the linear system are available, many real esti-

mation problems are generally nonlinear. To solve a nonlinear estimation problem, a

successive approximation procedure, such as a least square differential correction, de-

veloped by Gauss can be used.12 However, the convergence of the multi-dimensional
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case is guaranteed only under requirements on the functions that the first two partial

derivatives should exist and the initial guesses are close to the true values.12,14

The nonlinear least squares algorithm using Newton’s method is shown here.

Assume the output model is

y = f (x) (2.15)

where f is the model function whose first partial derivatives should be single-valued,

continuous, and at least once differentiable. Then, the measurement and the estimate

are given by

ỹ = f (x) + ν (2.16a)

ŷ = f (x̂) (2.16b)

Let the residual error be er = ỹ− ŷ. Then, the loss function to be minimized is given

by

J =
1

2
eT

r Wer =
1

2
[ỹ − f (x̂)]T W [ỹ − f (x̂)] (2.17)

Since it is difficult to find the solution of the nonlinear function f (x̂) explicitly, assume

the estimate of the unknown is given by

x̂ = xc + ∆x (2.18)

where xc is the nominal state and ∆x is the correction. Then, by linearizing the

model f (x̂) the correction can be obtained if the correction is sufficiently small.14 A

1st-order Taylor series expansion of the model about xc is given by

f (x̂) ≈ f (xc) + H∆x (2.19)

where the Jacobian matrix is

H ≡ ∂f

∂x

∣∣∣∣
xc

(2.20)

The measurement residual can be rewritten as

er = ỹ − f (x̂) ≈ ỹ − f (xc)−H∆x = ∆y −H∆x (2.21)

where

∆y ≡ ỹ − f (xc) (2.22)
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To seek the optimal ∆x, a loss function to be minimized is given by

∆J =
1

2
(∆y −H∆x)T

W (∆y −H∆x) (2.23)

Therefore,

∆x =
(
HTWH

)−1
HTW∆y (2.24)

Then, the new nominal state is updated as

xc = xc + ∆x (2.25)

This procedure repeats until a certain stopping condition is met. A stopping condition

with an accuracy dependent tolerance for minimization of J is given by

∆J

J
<

ε

||W|| (2.26)

where ε is predetermined tolerance and || · || denotes a matrix norm. The procedure

of nonlinear least squares is shown in Fig. 2.1.
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Maximum
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No
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No
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Fig. 2.1. Procedure of Nonlinear Least Squares
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2.2 Levenberg-Marquardt Algorithm

For some nonlinear problems the nonlinear least squares may not converge to correct

solutions unless the initial guess is close to a minimum in the loss function. The

method of steepest descent may help to avoid this problem, however, the convergence

is very poor close to the solution.83 These difficulties can be overcome by Levenberg-

Marquardt(LM) method.12,84 In the LM method, the normal equations in Eq. (2.24)

are modified as

∆x =
(
HTWH + ηH

)−1
HTW∆y (2.27)

where η is a scaling factor, and H is a diagonal matrix with entries given by the

diagonal elements of HTWH. By using Eq. (2.27) the search direction is intermediate

between the steepest descent and the differential correction direction. As η → 0, Eq.

(2.27) is equivalent to the differential correction method, however, as η → ∞ Eq.

(2.27) becomes a steepest descent search along the negative gradient of J . Thus, the

LM algorithm is as follows:

1. Do an update using Eq. (2.27).

2. Evaluate the loss function in Eq. (2.17) using new parameters.

3. If the cost has increased, then reset the update and increase η by a factor of f ,

where f is a specified integer. Then go back to 1. and try an update again.

4. If the cost has decreased, then accept new parameters as an update and decrease

η by a factor of f .

2.3 Maximum Likelihood Estimation

The objective of Maximum Likelihood Estimation (MLE) is to maximize the proba-

bility of obtaining an observed set of data. Let the likelihood function given by

L (ỹ,x) =
N∏

i=1

fi (ỹ,x) (2.28)

where N is the total number of probability density functions (p.d.f.). Generally, many

p.d.f. involve exponential terms. Since the natural logarithm function is monotonic,
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maximizing lnL is equivalent to maximizing L. Thus, the necessary and sufficient

conditions are
∂

∂x

{
lnL (ỹ,x)

}∣∣∣∣
x=x̂

= 0 (2.29a)

∂2

∂x∂xT

{
lnL (ỹ,x)

}∣∣∣∣
x=x̂

≤ 0 (2.29b)

It is known that MLE can produce biased estimates, however, if a large number of

data is used then the MLE is approximately unbiased and has the same variance that

approaches the smallest that can be achieved by any estimator. Also, the estimation

errors in a maximum likelihood estimate is asymptotically Gaussian no matter what

p.d.f. is used. For a zero-mean, Gaussian noise process, both the MLE and minimum

variance estimate yield the same result.

2.4 The Cramér-Rao Inequality

The Cramér-Rao Inequality is used to represent the lower bound of the estimation

errors. For an unbiased estimate, the Cramér-Rao Inequality is given by

P ≡ E
{

(x̂− x) (x̂− x)T

}
≥ F−1 (2.30)

where P is the covariance matrix and F is the Fisher information matrix, which is

given by

F ≡ E

{[
∂

∂x
lnL (ỹ,x)

] [
∂

∂x
lnL (ỹ,x)

]
T
}

(2.31)

Any estimator is said optimal if P = F−1.

2.5 Extended Kalman Filtering

For a linear system, the optimality of the Kalman filter is well proven.11 For the case

of a nonlinear system, by using a linearized model of the nonlinear system, we can

still use the Kalman filter if the errors are assumed small. Let the model be

ẋ = f (x) + g (x)w (2.32a)

ỹk = h (xk) + vk (2.32b)
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where f (x) ∈ Rn → Rn is the assumed model vector, x ∈ Rn is the true state vector,

g ∈ Rn×p is the process noise distribution matrix, ỹk ∈ Rm is the measurement

vector, h (xk) ∈ Rn → Rm is the observation model vector, and w and vk are zero-

mean Gaussian noise processes with the properties given by

w = N (0,Q) (2.33a)

vk = N (0,Rk) (2.33b)

where Q and Rk are the covariance matrices. The prediction between measurements

is given by

˙̂x = f (x̂) (2.34a)

Ṗ = fxP + PfT

x + gxQgT

x (2.34b)

where x̂ ∈ Rn is the estimated state vector, P is the error covariance matrix, and fx

and gx are Jacobian matrices. The updates are

x̂+
k = x̂−

k + Kk

[
ỹk − h

(
x̂−

k

)]
(2.35a)

P+
k = [I−KkHk]P

−
k (2.35b)

Kk = P−
k HT

k

[
HkP

−
k HT

k + Rk

]−1
(2.35c)

where the ‘+’ sign denotes the updated state, the ‘-’ sign represents the propagated

state, and the observation sensitivity matrix Hk is given by

Hk =
∂h

∂x

∣∣∣∣
xk=x̂−

k

(2.36)

2.6 Nonlinear Predictive Filtering

The major advantage of the predictive filter is that the model error is not assumed

to be represented by a zero-mean Gaussian noise process with known covariance, but

instead is determined during the estimation process.43 Crassidis et al. have proposed

the nonlinear predictive filter by simultaneously solving system optimality conditions

and an output error constraint. Since the multipath GPS signal error is known to

have non-Gaussian components, this approach is fit for Pseudolite case because the

multipath effect of using Pseudolite is more severe than those of using GPS signals.
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In the predictive filter, the state and output estimates are given by a preliminary

model and a to-be-determined model error vector,30 which are given by

˙̂x (t) = f [x̂ (t) , t] + G [x̂ (t)]d (t) (2.37a)

ŷ (t) = c [x̂ (t) , t] (2.37b)

where f ∈ Rn → Rn is sufficiently differentiable, x̂ (t) ∈ Rn is the state estimate

vector, d (t) ∈ Rq is the model error vector, G [x̂ (t)] ∈ Rn → Rn×q is the model-error

distribution matrix, c [x̂ (t) , t] ∈ Rn → Rm is the measurement vector, and ŷ ∈ Rm

is the output estimate vector. The Taylor series expansion of the output estimate in

Eq. (2.37b) is given by

ŷ (t+ ∆t) ≈ ŷ (t) + z [x̂ (t) , t] + Λ (∆t)S [x̂ (t)]d (t) (2.38)

where ∆t is the measurement sampling interval, and the matrix S [x̂ (t)] is a general-

ized sensitivity matrix, and Λ(∆t) ∈ Rm×m is a diagonal matrix with elements given

by

λii = ∆tpi / pi! i = 1, 2, . . . , m (2.39)

where pi, i = 1, 2, . . . , m is the lowest order of the derivative of ci [x̂ (t)] in which any

component of d (t) first appears due to successive differentiation and substitution for

˙̂x (t) on the right side of Eq. (2.37a). The i-th component of vector z [x̂ (t) , t] is

given by

zi (x̂,∆t) =

pi∑

k=1

∆tk
k!

Lk
f (ci) (2.40)

where Lk
f (ci) is the k-th Lie derivative.

A cost function consisting of the weighted sum square of the measurement-minus-

estimate residual plus the weighted sum square of the model correction term is given

by43,49

J [d (t)] =
1

2
[ỹ (t+ ∆t)− ŷ (t+ ∆t)]T R−1 [ỹ (t+ ∆t)− ŷ (t+ ∆t)]+

1

2
dT (t)Wd (t)

(2.41)
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where W ∈ Rq×q is positive semi-definite. The optimal model error can be obtained

by minimizing Equation (2.41) with respect to d (t), given by

d (t) = −
{

[Λ (∆t)S (x̂)]T R−1Λ (∆t)S (x̂) + W
}−1

[Λ (∆t)S (x̂)]T R−1

[z (x̂,∆t)− ỹ (t+ ∆t) + ŷ (t)]

(2.42)

where d (t) in Eq. (2.42) is used to perform a nonlinear propagation of the state

estimates in Eq. (2.37a) to time tk. Then, the measurement is processed at time tk+1

to find the new d (t) in [tk, tk+1 ], and then the state estimates are propagated to time

tk+1. As W decreases, more model error is added to correct the model, so that the

estimates more closely follow the measurements. As W increases, less model error is

added, so that the estimates more closely follow the propagated model.

2.7 Unscented Filtering

The EKF may fail to estimate the correct estimates because it uses a linearization of

the nonlinear system. Therefore, errors in truncating the Taylor series to first order

should be small. Also, a zero-mean Gaussian random process is assumed. Therefore,

the mean and covariance used in EKF are propagated by using only the first-order

truncated linearization of the nonlinear system. The third and higher order moments

are thus all zero. Therefore, the EKF has an error in the covariance expression when

the fourth-order moments of the Gaussian distribution (kurtosis) is not zero.

A better mean and covariance expression can be obtained by using the Unscented

Filter (UF) developed by Julier, Uhlmann and Durrant-Whyte.35,36, 39, 85, 86 The UF

uses the same structure as the EKF, however, the mean and covariance propagations

are different. The main idea of UF is that with a fixed number of parameters it should

be easier to approximate a Gaussian distribution than to approximate an arbitrary

nonlinear function. Although the UF needs more computations than the EKF, it has

several advantages; 1) the expected error is lower than the EKF and 2) the UF avoids

the derivation of Jacobian matrices. In fact, the UF is accurate to third order for

Gaussian inputs for all nonlinearities and at least to second order for non-Gaussian

inputs.36
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Let the system model be given by

xk+1 = f (xk,wk+1, k + 1) (2.43a)

ỹk+1 = h (xk+1,vk+1, k + 1) (2.43b)

where wk+1 and vk+1 are assumed zero-mean Gaussian noise processes with covari-

ances given by Qk+1 and Rk+1, respectively. The update equations are rewritten as

x̂+
k+1 = x̂−

k+1 + Kk+1νk+1 (2.44a)

P+
k+1 = P−

k+1 −Kk+1P
νν
k+1K

T

k+1 (2.44b)

where νk+1 is the innovations process, given by

ν+
k+1 ≡ ỹk+1 − ŷ−

k+1 = ỹk+1 − h
(
x̂−

k+1, k + 1
)

(2.45)

The covariance of νk+1 is defined by Pνν
k+1. The gain Kk+1 is computed by

Kk+1 = P
xy
k+1

(
Pνν

k+1

)−1
(2.46)

where P
xy
k+1 is the cross-correlation matrix between x̂−

k+1 and ŷ−
k+1.

As can be seen the structure is the same as the EKF, however, the UF uses a

different propagation of covariance matrix. Given a covariance matrix P, a set of order

n points can be generated form the columns (or rows) of the matrices ±
√

(n + κ)P,

given by

σk ← 2n columns from±
√

(n+ λ)Pk (2.47a)

χk (0) = x̂k (2.47b)

χk (i) = σk (i) + x̂k (2.47c)

where n is the dimension of the state and λ = {α2 (n+ κ)− n} is a scaling parameter.

The parameter κ is a secondary scaling parameter which is usually set to 0. The

parameter α is usually set to a small positive value, and β is used to compensate

the higher-order moments. Setting β = 2 is optimal for Gaussian distributions.

Efficiently methods to compute the matrix square root can be found by using the

Cholesky decomposition. If an orthogonal matrix square root is used, then the sigma

points lie along the eigenvectors of the covariance matrix. Note that there are a
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total of 2n values for σk (the positive and negative square roots). The mean and

covariance of these points are known.39 Since this set of points is symmetric, its odd

central moments are zero, so its first three moments are the same as the original

Gaussian distribution.

The transformed set of sigma points are evaluated for each of the points by

χk+1 (i) = f (χk (i) , k) (2.48)

The predicted mean for the state estimate is calculated by

x̂−
k+1 =

1

n+ λ

[
λχk (0) +

1

2

2n∑

i=1

χk+1 (i)

]
(2.49)

The predicted covariance is given by

P−
k+1 = 1

n+λ

{
[λ+ (1− α2 + β) (n+ λ)]

[
χk+1 (0)− x̂−

k+1

] [
χk+1 (0)− x̂−

k+1

]
T

+1
2

2n∑
i=1

[
χk+1 (i)− x̂−

k+1

] [
χk+1 (i)− x̂−

k+1

]T

}

(2.50)

By using these equations, third-order estimation errors (at the very least) of the state

and process noise can be obtained.

The mean observation is given by

ŷ−
k+1 =

1

n + λ

[
λγk+1 (0) +

1

2

2n∑

i=1

γk+1 (i)

]
(2.51)

where

γk+1 (i) = h
(
χk+1 (i) , k + 1

)
(2.52)

The output covariance is given by

P
yy
k+1 = 1

n+λ

{
[λ+ (1− α2 + β) (n + λ)]

[
γk+1 (0)− ŷ−

k+1

] [
γk+1 (0)− ŷ−

k+1

]T

+1
2

2n∑
i=1

[
γk+1 (i)− ŷ−

k+1

] [
γk+1 (i)− ŷ−

k+1

]T

}

(2.53)

Then the innovations covariance is given by

Pνν
k+1 = P

yy
k+1 + Rk+1 (2.54)
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The cross covariance matrix is determined using

P
xy
k+1 = 1

n+λ

{
[λ+ (1− α2 + β) (n+ λ)]

[
χk+1 (0)− x̂−

k+1

] [
γk+1 (0)− ŷ−

k+1

]T

+1
2

2n∑
i=1

[
χk+1 (i)− x̂−

k+1

] [
γk+1 (i)− ŷ−

k+1

]T

}

(2.55)

The filter gain is then computed using Eq. (2.46), and the state vector can now be

updated using Eq. (2.44).

2.8 Summary

Some common estimation techniques are reviewed in this chapter. Both batch and

recursive algorithms are described for either linear or nonlinear systems.
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CHAPTER III

ATTITUDE DETERMINATION PROBLEM

3.1 Attitude Parameters

Many parameters can be used to represent the attitude. Each has its own relative

merits and demerits. Among them the quaternions and the modified Rodrigues pa-

rameters (MRP) are used in this dissertation to describe the system model. Also,

Euler angles are used to represent the attitude errors. The four component quater-

nion seems to be the best selection since it is singularity free and has a quasi-linear

representation of the attitude, although it is not a minimum parameter representa-

tion. As for MRP, it is a minimum parameter representation. Therefore, it has a

singularity at 360◦, but we can switch to a “shadow” image to avoid the singularity.38

The MRP is used in the self survey and quaternion is used for EKF and predictive

filtering. Both the MRP and quaternion are used in the UF.

3.1.1 Euler Angles

Euler angles describe the attitude of a reference frame B relative to the frame N
through three successive rotation angles about the sequentially displaced body fixed

axes. A direction cosine matrix, which is called an attitude matrix, in terms of the

(3-2-1) Euler angles (ψ, θ, φ) is defined by

A =




cosψ cos θ sinψ cos θ − sin θ
cosψ sin θ sinφ− sinψ cosφ sinψ sin θ sinφ+ cosψ cosφ cos θ sinφ
cosψ sin θ cosφ+ sinψ cosφ sinψ sin θ cosφ− cosψ sinφ cos θ cosφ


 (3.1)

Euler angles can be determined from the attitude matrix by

φ = tan−1

(
A23

A33

)
(3.2a)

θ = sin−1 (−A13) (3.2b)

ψ = tan−1

(
A12

A11

)
(3.2c)
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Although Euler angles have a singularity and contain trigonometric functions to ex-

press attitude matrix, they can be used to visualize the attitude errors for small angle

rotations.

3.1.2 Quaternions

The attitude matrix is parameterized by quaternions, defined by

q =


q13

q4


 (3.3)

with

q13 ≡ [q1 , q2 , q3]
T = ê sin (ϕ/2) (3.4a)

q4 = cos (ϕ/2) (3.4b)

where ê is the principal axis, a unit vector corresponding to the axis of rotation, and

ϕ is the principal angle, the angle of rotation. The quaternions satisfy the constraint

given by

qTq = qT

13q13 + q2
4 = 1 (3.5)

The attitude matrix is related to the quaternion by

A (q) = ΞT (q)Ψ (q) (3.6)

where

Ξ (q) ≡



q4I3×3 + [q13×]
. . . . . . . . . . . . . . .

−qT

13


 (3.7a)

Ψ (q) ≡



q4I3×3 − [q13×]
. . . . . . . . . . . . . . .

−qT

13


 (3.7b)

with

[q13×] =




0 −q3 q2

q3 0 −q1
−q2 q1 0




(3.8)
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The transformation from attitude matrix to quaternion is obtained by the Stanley

algorithm.87 First, the largest qi is chosen by computing the following equations:

q2
1 = 1

4
(1 + 2A11 − trace [A])

q2
2 = 1

4
(1 + 2A22 − trace [A])

q2
3 = 1

4
(1 + 2A33 − trace [A])

q2
4 = 1

4
(1 + trace [A])

(3.9)

The sign of the largest qi is set to positive and then the other three quaternion

parameters are determined using the relation given by

q4q1 = (A23 −A32) /4

q4q2 = (A31 −A13) /4

q4q3 = (A12 −A21) /4

q2q3 = (A23 + A32) /4

q3q1 = (A31 + A13) /4

q1q2 = (A12 + A21) /4

(3.10)

Successive rotations can be accomplished using quaternion multiplication in the same

order as the attitude matrix multiplication, given by

A (q′)A (q) = A (q′ ⊗ q) (3.11)

where the composition of the quaternions is bilinear, with

q′ ⊗ q =

[
Ψ (q′) ... q′

]
q =

[
Ξ (q)

... q

]
q′ (3.12)

The attitude kinematics in terms of quaternions is given by

q̇ =
1

2
Ω (ω)q (3.13)

where ω is the 3 × 1 angular velocity vector and

Ω (ω) ≡



− [ω×]

... ω
. . . . . . . . . . . . . . . .

−ωT
... 0


 (3.14)
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The angular velocity can be considered constant during the integration. Therefore,

the discrete-form kinematics equation is given by88

qk+1 = exp

(
1
2
Ω (ω)∆t

)
qk

=

[
cos

(
1
2
ω∆t

)
I + sin

(
1
2
ω∆t

)
ω−1Ω (ω)

]
qk

(3.15)

where ω = |ω| and ∆t is the sampling interval.

3.1.3 Modified Rodrigues Parameters

The modified Rodrigues parameter is defined by37,38

p = ê tan
(ϕ

4

)
(3.16)

where ê is the principal axis and ϕ is the principal angle. The MRPs can be obtained

from quaternions, which are given by

pi =
qi

1 + q4
, for i = 1, 2, 3 (3.17)

Inversely, the quaternions can be obtained from MRPs, given by

q13 =
2p

1 + p2
(3.18a)

q4 =
1− p2

1 + p2
(3.18b)

where p2 = pTp. As can be seen from the definition of the MRP in Eq. (3.16),

the MRPs have a geometric singularity at ϕ = ±2π. However, this problem can be

resolved by using the shadow image MRPs, given by

ps =
−q13

1− q4
=
−p

p2
(3.19)

The shadow image MRP can be written in terms of the principal axis and angle as

ps = ê tan

(
ϕ− 2π

4

)
(3.20)

Also, the mapping between an MRP time derivative and its shadow image counterpart

is be given by

ṗs = − ṗ

p2
+

1

2

(
1 + p2

p4

)
ppTω (3.21)
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Thus, the singularity can be avoided by switching the MRPs at ϕ = ±π. The

kinematics equation of the MRPs is given by

ṗ =
1

4

[ (
1− p2

)
I + 2 [p×] + 2ppT

]
ω (3.22)

The attitude matrix representation by using MRPs is given by

A (p) = I +
8 [p×]2 − 4 (1− p2) [p×]

(1 + p2)2 (3.23)

The overall MRP of two successive rotations having MRPs p′ and p′′ is defined by

p =
(1− p′ · p′)p′′ + (1− p′′ · p′′)p′ − 2p′′ × p′

1 + p′′ · p′′p′ · p′ − 2p′′ · p′ (3.24)

3.2 Process Error Covariance

For the attitude estimation problem using gyro measurements, the estimated attitude

contains an error originated by the drift rate and zero-mean additive Gaussian white

noise w. The process error covariance is related to the attitude and gyro drift rate

estimation errors.

The gyro-measured angular velocity is modeled by

ω̃ = ω + β + ηv (3.25a)

β̇ = ηu (3.25b)

where ω is the true angular velocity, β is the gyro drift vector, ηv and ηu are zero-

mean Gaussian white-noise processes with covariances given by σ2
uI and σ2

vI, respec-

tively. With the approximation of ||ω|| � 1, the state transition matrix can be

approximated by

Φ (∆t) =




I3×3 −∆tI3×3

03×3 I3×3


 (3.26)

Then, the discrete process noise covariance is given by89

Qk =




(
σ2

v∆t+ 1
3
σ2

u∆t
3
)
I3×3 −1

2
σ2

u∆t
2I3×3

−1
2
σ2

u∆t
2I3×3 σ2

u∆tI3×3


 (3.27)
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For the application of the UF, Crassidis proposed a modified covariance matrix which

is given by34

Qk =
∆t

2




(
σ2

v − 1
6
σ2

u∆t
2
)
I3×3 03×3

03×3 σ2
uI3×3


 (3.28)

This matrix is achieved by applying a trapezoidal approximation in the covariance

propagation.

3.3 Solutions of Wahba Problem

Wahba’s problem finds a proper orthogonal matrix that minimizes the scalar weighted

norm-squared residual between sets of 3× 1 observed LOS vectors in the body frame

and 3 × 1 ephemerides in the reference frame. However, the GPS carrier phase

measurements is not in the form of a LOS vector, so finding attitude using GPS

signals is more difficult.

The general loss function which was used by Cohen is given by71

J (A) =
1

2

M∑

i=1

N∑

j=1

wij

(
∆φij − bT

i Asj

)2
(3.29)

where M represents the number of baselines, N represents the number of observed

GPS spacecraft, and the parameter wij serves to weight each individual phase mea-

surement. In Cohen’s method, the integer ambiguities are assumed to be resolved

beforehand. Cohen proposed a linearized least squares technique that is numerically

efficient, but is sensitive to initial guesses.71

A new method using vectorized phase measurements was proposed by Crassidis

et al.51,53 The vectorized measurement problem involves determining the sightline

vector in the body frame, denoted by s̃j ≡ Asj, or the baseline in a reference frame,

denoted by b̄i ≡ ATbi. For the sightline case, the following loss function is minimized

Jj (s̃j) =
1

2

M∑

i=1

1

w̄2
ij

(
∆φij − bT

i s̃j

)2
for j = 1, 2, . . . , N (3.30)

where w̄ij is the standard deviation of noise. The minimization of Eq. (3.30) is

straightforward and leads to

s̃j = M−1
j yj (3.31)
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where

Mj =
M∑

i=1

1

w̄2
ij

bib
T

i for j = 1, 2, . . . , N (3.32a)

yj =
M∑

i=1

1

w̄2
ij

∆φijbi for j = 1, 2, . . . , N (3.32b)

As can be seen in Eq. (3.31), at least three non–coplanar baselines are required to

determine the sightlines in the body frame. However, when only two non–coplanar

baselines exist, a solution is again possible as long as three non–coplanar sightlines

exist. This approach determines the baselines in the reference frame by minimizing

the following loss function given by

Ji

(
b̄i

)
=

1

2

N∑

j=1

1

w̄2
ij

(
∆φij − b̄T

i sj

)2
for i = 1, 2, . . . ,M (3.33)

The minimization of Eq. (3.33) is again straightforward and leads to

b̄i = N−1
i zi (3.34)

where

Ni =
N∑

j=1

1

w̄2
ij

sjs
T

j for j = 1, 2, . . . , N (3.35a)

zi =

N∑

j=1

1

w̄2
ij

∆φijsj for j = 1, 2, . . . , N (3.35b)

Then, the attitude can be determined by minimizing the following loss function:

J (A) =
1

2

N∑

j=1

(s̃j −Asj)
T
Mj (s̃j −Asj) (3.36)

Determining the attitude using sightlines in the body frame is very similar to that

using reference baselines, so the former case is considered here. To compare with

Wahba’s problem, this loss function is not identical to Wahba’s problem since the

quartic dependency in the quaternions does not cancel, unless the baselines form an

orthogonal basis so that Mj is given by a scalar times the identity matrix, Mj = mjI.
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The loss function in Eq. (3.36) is in fact equivalent to the general loss function in

Eq. (3.29). However, the loss function of Wahba’s problem is

J (A) =

N∑

i=1

wi

∣∣ui
B −Aui

R

∣∣2 (3.37)

where ui
R is the i-th vector in the reference frame, ui

B is in the body frame, and wi

is a scalar weight.1 Crassidis et al. convert the loss function in Eq. (3.36) into Eq.

(3.37) by assigning the sightline vectors in Eq. (3.31) as

u
j
B = s̃j , u

j
R = sj for j = 1, 2, · · · , N (3.38)

If 3 sightlines are available, we assign the baseline vectors in Eq. (3.34) as

ui
B = bi , ui

R = b̄i for i = 1, 2, · · · ,M (3.39)

After a number of simulations, it was shown that when 2 sightlines and 3 baselines

are used, the initial attitude obtained by minimizing Eq. (3.29) and assigning vectors

as in Eq. (3.38) is fairly close to the true value.51,53

3.4 Summary

Attitude parameters, Euler angles, quaternion, and MRP, are reviewed. Kinematic

equations and transformation between them are described. For the case of using

gyro measurements, the process covariance matrix is presented. Finally, an attitude

determination algorithm, similar to the solution of Wahba’s problem, is described for

either coplanar or non-coplanar baselines.
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CHAPTER IV

THE GLOBAL POSITIONING SYSTEM

The Global Positioning System (GPS) is an application of Earth satellites for nav-

igation around Earth surface. The GPS was developed by the U.S. Department of

Defense to support capabilities of U.S. military forces, however, it is now in widespread

use for public and commercial applications as well.

4.1 GPS Overview

The first GPS satellite, named NAVSTAR, was launched in 1978. With ten more

satellites after it, they consist of the Block I. The Block II satellites were launched from

1989 and composed of 9 satellites. The slightly improved 15 satellites, named Block

IIA, are also in orbit. The full 24-satellite operation constellation was completed on

March 9th 1994. Since the lifetime of Block II and IIA satellites is 7 years, Block IIRs

began replacing older Block II/IIAs on 22 July 1997. Block II, IIA and IIR satellites

make up the current constellation. Block IIR satellites boast dramatic improvements

over the previous blocks. Eight Block IIR satellites are being modified to radiate the

new military (M-Code) signal on both the L1 and L2 channels as well as the more

robust civil signal (L2C) on the L2 channel. The M-Code signal is a more robust and

capable signal architecture. The first modified Block IIR (designated as the IIR-M) is

planned for launch in 2004. Block IIF satellites are the next generation of GPS Space

Vehicles. Block IIF provides all the capabilities of the previous blocks with some

additional benefits as well. Improvements include an extended design life of 12 years,

faster processors with more memory, and a new civil signal on a third frequency. The

first Block IIF satellite is scheduled to launch in 2006. As of March 22nd 2004, 28

satellites are operational and the current status of GPS is shown in Fig. 4.1.90
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GPS OPERATIONAL ADVISORY 082.OA1

SUBJ: GPS STATUS 22 MAR 2004

1. SATELLITES, PLANES, AND CLOCKS (CS=CESIUM RB=RUBIDIUM):

A. BLOCK I : NONE

B. BLOCK II: PRNS 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15

PLANE : SLOT F4, B5, C2, D4, B4, C1, C4, A3, A1, E3, D2, F3, F1, D5

CLOCK : CS, CS, CS, RB, CS, RB, RB, RB, CS, CS, RB, RB, RB, CS

BLOCK II: PRNS 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31

PLANE : SLOT B1, D6, E4, E1, D3, E2, D1, A2, F2, A4, B3, F5, B2, C3

CLOCK : RB, RB, RB, RB, RB, RB, CS, CS, RB, RB, RB, RB, RB, RB

2. CURRENT ADVISORIES AND FORECASTS :

A. FORECASTS: FOR SEVEN DAYS AFTER EVENT CONCLUDES.

NANU MSG DATE/TIME PRN TYPE SUMMARY (JDAY/ZULU TIME START - STOP)

2004026 262248Z FEB 2004 27 FCSTMX 064/0500-064/1700

2004027 031914Z MAR 2004 30 FCSTMX 069/1430-070/0230

2004029 040457Z MAR 2004 27 FCSTRESCD 069/0445-069/1645

2004030 040508Z MAR 2004 30 FCSTCANC 069/1430-/

2004032 091115Z MAR 2004 27 FCSTSUMM 069/0514-069/1111

2004033 121717Z MAR 2004 05 FCSTDV 077/1430-078/0230

2004035 180027Z MAR 2004 05 FCSTSUMM 077/1452-078/0023

B. ADVISORIES:

NANU MSG DATE/TIME PRN TYPE SUMMARY (JDAY/ZULU TIME START - STOP)

2004025 221045Z FEB 2004 02 UNUSUFN 053/1037-/

2004028 040101Z MAR 2004 31 UNUSUFN 064/0014-/

2004031 051817Z MAR 2004 31 UNUSABLE 064/0014-065/1818

2004034 171530Z MAR 2004 06 UNUSUFN 077/1531-/

C. GENERAL:

NANU MSG DATE/TIME PRN TYPE SUMMARY (JDAY/ZULU TIME START - STOP)

2004036 221843Z MAR 2004 GENERAL /-/

3. REMARKS:

A. THE POINT OF CONTACT FOR GPS MILITARY OPERATIONAL SUPPORT IS THE GPS

SUPPORT CENTER AT (719)567-2541 OR DSN 560-2541.

B. CIVILIAN: FOR INFORMATION, CONTACT US COAST GUARD NAVCEN AT

COMMERCIAL (703)313-5900 24 HOURS DAILY AND INTERNET

HTTP://WWW.NAVCEN.USCG.GOV

C. MILITARY SUPPORT WEBPAGES CAN BE FOUND AT THE FOLLOWING

HTTP://WWW.SCHRIEVER.AF.MIL/GPS OR HTTP://WWW.SCHRIEVER.AF.MIL/GPSSUPPORTCENTER

Fig. 4.1. Example of GPS Status Data

These 28 satellites are placed in 6 orbital planes and guarantee a minimum of 4 satel-

lites anywhere on Earth. The information of position and time can be obtained by

using 4 satellite positions and time information as well as 4 pseudo-range measure-

ments. Although the primary use of GPS signals is for navigation purposes, they can

be used for attitude estimation. By using multiple sets of antennas and GPS signal

carrier phase measurements the attitude can be obtained as well as the navigation

information.
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4.2 GPS Data Format

GPS receiver collects data using the RINEX data format.91 An example of the GPS

observation data in RINEX 2.10 format is shown in Fig. 4.2.

Fig. 4.2. GPS Observation Data Example

The pseudo-range, L1 carrier phase, and the doppler frequency measurements are

shown as well as the navigation data. Among them the dotted boxed data shown

in Fig. 4.2 represents the L1 carrier phase measurements of both MA and SA. For

attitude applications the original software was changed for crosstalk. The differences

of phase measurements between MA and SA correspond the single differenced phase

measurements which are used in the attitude estimation. Also, an example of GPS

navigation message is shown in Fig. 4.3.91 The navigation message of the satellites,

PRN6 and PRN13, are displayed in RINEX format. These include each GPS satellite

orbit ephemeris, clock corrections, and other parameters.

4.3 GPS Signals

All GPS satellites including the Block IIR satellites broadcast two microwave car-

rier signals with timing based on two rubidium and two cesium atomic clocks. The

first is called L1 frequency, 1,575.42MHz, and the second is called L2 frequency,

1,227.60MHz. Only L1 frequency is used for civilian use and is known as the Coarse
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Acquisition (C/A) signal. This signal carries a 1,023-bit PRN code for the identifica-

tion of each satellite.

2.10 N: GPS NAV DATA RINEX VERSION / TYPE

XXRINEXN V2.10 AIUB 3-SEP-99 15:22 PGM / RUN BY / DATE

EXAMPLE OF VERSION 2.10 FORMAT COMMENT

.1676D-07 .2235D-07 -.1192D-06 -.1192D-06 ION ALPHA

.1208D+06 .1310D+06 -.1310D+06 -.1966D+06 ION BETA

.133179128170D-06 .107469588780D-12 552960 1025 DELTA-UTC: A0,A1,T,W

13 LEAP SECONDS

END OF HEADER

6 99 9 2 17 51 44.0 -.839701388031D-03 -.165982783074D-10 .000000000000D+00

.910000000000D+02 .934062500000D+02 .116040547840D-08 .162092304801D+00

.484101474285D-05 .626740418375D-02 .652112066746D-05 .515365489006D+04

.409904000000D+06 -.242143869400D-07 .329237003460D+00 -.596046447754D-07

.111541663136D+01 .326593750000D+03 .206958726335D+01 -.638312302555D-08

.307155651409D-09 .000000000000D+00 .102500000000D+04 .000000000000D+00

.000000000000D+00 .000000000000D+00 .000000000000D+00 .910000000000D+02

.406800000000D+06 .000000000000D+00

13 99 9 2 19 0 0.0 .490025617182D-03 .204636307899D-11 .000000000000D+00

.133000000000D+03 -.963125000000D+02 .146970407622D-08 .292961152146D+01

-.498816370964D-05 .200239347760D-02 .928156077862D-05 .515328476143D+04

.414000000000D+06 -.279396772385D-07 .243031939942D+01 -.558793544769D-07

.110192796930D+01 .271187500000D+03 -.232757915425D+01 -.619632953057D-08

-.785747015231D-11 .000000000000D+00 .102500000000D+04 .000000000000D+00

.000000000000D+00 .000000000000D+00 .000000000000D+00 .389000000000D+03

.410400000000D+06 .000000000000D+00

Fig. 4.3. Example of GPS Navigation Data

4.4 GPS Errors

Major GPS error sources for attitude estimation are described in the following.

4.4.1 Multipath Error

Although a majority of the GPS signal travels directly to the antenna, some signals

can reflect off nearby objects and reach the antenna via a longer path. Multipath

is the dominant error source in many spacecraft applications, accounting for more

than 90% of the total error budget in the carrier phase measurement. Empirically,

the carrier phase error for complex reflective surface spacecraft caused by multipath

is approximately 5 mm rms.
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4.4.2 Cycle Ambiguity

When a receiver is turned on, the fractional part of the phase difference between the

satellite transmitted carrier and a receiver generated signal is observed and an integer

counter is initialized. However, when the receiver starts operating the initial cycle

ambiguities contained in the measurements are not known. This will cause serious

errors in the attitude estimation.

4.4.3 Line Bias

Line bias is the nearly constant offset in phase from one antenna to another. Therefore

it is assumed constant for a baseline. The length of the cable between the antenna

and the receiver is the parameter of the line bias as well as a temperature-dependent

component.

4.4.4 Cycle Slip

During tracking the signal, GPS receivers increment the counter by one cycle when

the fractional phase varies from 2π to 0. However, GPS signals can be lost for a

while for various reasons. In this event, a reinitialization of the integer counter must

occur, which may cause a jump in the phase measurements. Since false cycle counts

will deteriorate the attitude estimation result, the cycle slips should be detected and

repaired in real time.

4.4.5 Dilution of Precision

The GPS navigation and attitude determination errors can be expressed by using

Dilution of Precision (DOP).69

4.4.5.1 Geometric DOP

DOP can be defined variously, however, Geometric DOP (GDOP) is the most com-

mon. By using GDOP, the single-point solution errors on position and time can be
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measured. The 4× 4 covariance matrix of position and time errors is given by69

cov (position) =
(
HTWH

)−1
(4.1)

where W is the weighting matrix and the sensitivity matrix H is defined by

H =




sT

1 1

...
...

sT

N 1




(4.2)

where the vector si is the i-th sightline, which is a unit vector from the receiver to the

i-th GPS satellite. The ranging errors, having the same variance σ2
R, are assumed to

be uncorrelated and contain zero-mean Gaussian noise. This implies that Eq. (4.1)

can be rewritten as

cov (position) = σ2
R

(
HTH

)−1
(4.3)

The matrix
(
HTH

)−1
is known as GDOP matrix. The scalar GDOP is defined as the

square root of the trace of the GDOP matrix, which is given by

GDOP =

√
trace

[
(HTH)−1

]
(4.4)

4.4.5.2 Attitude DOP

The concept of DOP can also be applied to attitude. The Attitude Diluition Of

Precison (ADOP), accordingly with the definition given by Crassidis,51,53 uses the

optimal covariance expression of attitude estimation error, which is given by

ADOP = trace




[
M∑

i=1

N∑

j=1

[Asj×]bi b
T

i [Asj×]T
]−1


 (4.5)

where the matrix A denotes the attitude matrix and bi denotes the i-th baseline.

The baseline is the vector between two antennas.

4.5 Alternative GPS Constellation

Global navigation systems provide navigation and attitude information by using sig-

nals broadcast by satellites orbiting the Earth. The current U.S. GPS constellation
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uses 28 satellites that are placed into 6 circular orbit planes.67,69 The GLONASS con-

stellation is constructed by 24 satellites in 3 orbital planes.92 The Galileo constellation

for global navigation, has been recently proposed by the European Commission (EC)

and the European Space Agency (ESA), and consists of 30 satellites to be placed

into 3 circular orbit planes.93 For the global navigation purpose, a minimum of 4

satellites are required to be in view at any time, no matter where you are on the

Earth. However, the presence of trees, mountains, and buildings, implies that more

than the minimum number of satellites in view are required. Furthermore, having

only 4 satellites in view is not sufficient for accurate navigation information since

the geometry of the sightlines affects the navigation performance. Designing a global

navigation system such as GPS or Galileo based on current constellation methods

such as the Walker delta pattern may not satisfy all these requirements.

An alternative constellation design scheme that uses the Flower Constellation

(FC) theory,94 is applied to design a new global navigation system. The FCs present

many interesting features useful for telecommunication, Earth and deep space obser-

vations, and global and regional navigation systems. The FCs are built with com-

patible orbits, thus the satellites follow the same relative trajectory with respect to

an Earth fixed system of coordinates. This is a peculiar property of the FCs, an

additional characteristic, that will certainly yield into the same advantage. A sub-

set of all the intersections of this relative trajectory with the inertial orbit identifies

a set of admissible positions for satellites to belong to the same relative trajectory

(patent pending). Among all of possibilities to distribute the satellites in these ad-

missible positions (along the relative trajectory), a uniform distribution in time is

here selected.

This section, which first includes a brief introduction summarizing the main FC

definitions and characteristics, introduces the new Global Navigation Flower Constel-

lation (GNFC). After a brief description on the proposed GNFC, it is then compared

in terms of GDOP and ADOP with the U.S. GPS, the GLONASS, and the Galileo

constellations by selecting a set of fixed Earth sites.
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4.5.1 Flower Constellation

An orbit is called compatible when the relative trajectory with respect to an Earth-

Centered-Earth-Fixed (ECEF) system of coordinates, constitutes a closed-loop that

has a given period of repetition. The concept of compatible orbit is more general

than the concept of repeated ground track orbit, since any two different equatorial

orbits follow the same ground track but, in general, not the same relative trajectory

in the ECEF coordinate system. A compatible orbit, which take into account the J2

effects on the orbital parameters due to the Earth oblateness, has a given number of

admissible positions for satellites all belonging to the same relative trajectory (patent

pending). The Flower Constellations94 are based on the two concepts of admissible

positions in compatible orbits and on a phasing rule to select a suitable subset of all

the admissible positions (satellite distribution rule).

There are two main advantages of using FCs for global navigation purpose. The

first one is that the dynamics of a FC is always axial-symmetric (constellation dynam-

ics synchronized with Earth spin rate), while the second one relies on the adoption of

compatible orbits (satellite spatial distribution repeats itself with periodicity). The

latter implies, for instance, that ground track antennae can synchronize their pointing

angles. However, we believe that the adoption of compatible orbits can - in some way

unknown to us - bring some additional benefits in the applications. Summarizing,

in the ECEF system of coordinates all the FC satellites follow the same repeating

relative trajectory on which the satellites are distributed with a given time step and

the GNFC spatial configuration repeats itself with the same time step. How one can

take advantage of this property will constitute the subject of a future work.

4.5.1.1 Background

An FC is identified by five independent integer parameters, Np, Nd, Ns, Fn, and Fd,

and three orbital parameters ω, i, and hp. In particular Np is the number of petals,

Nd is the number of sidereal days to complete the relative trajectory, Ns is the number

of satellites, Fn and Fd are two integer parameters ruling the satellite distribution in

the admissible positions, ω is the argument of perigee, i is the orbit inclination, and
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hp is the perigee altitude. The orbit compatibility is written by

NpTΩ = NdT⊕ (4.6)

where TΩ is the nodal period of the orbit and T⊕ is the nodal period of Greenwich.

This relation, by including the J2 perturbation, allows us to evaluate the orbit semi-

major axis a. The relationship to be solved is a nonlinear equation94,95

2π

ω⊕

Nd

Np

(
1 + 2ξ

n

ω⊕
cos i

)−1

{1 + ξχ} = 2π

√
a3

µ⊕
(4.7)

where

χ = 4 + 2
√

1− e2 −
(
5 + 3

√
1− e2

)
sin2 i (4.8)

and where

ξ =
3R2

⊕J2

4p2
and e = 1− R⊕ + hp

a
(4.9)

In these equations, e is the eccentricity, p is the semilatus rectum, n is the mean

motion, the Earth equatorial radius R⊕ = 6378.1363Km, the Earth spin rate ω⊕ =

7.29211585530× 10−5rad/s, the perturbation coefficient J2 = 1.0826269× 10−3, and

the Earth gravitational constant µ⊕ = 398600.4415Km3/sec2.

The value of the right ascension of ascending node (RAAN), Ω, and the mean

anomaly, M , for each satellite are then to be determined. Mortari et al. proposed

the phasing schemes given in Ref. [94]. The phasing of the satellites, the distribution

of the Ns satellites in any kinds of admissible locations, is accomplished by rules

proposed by Mortari et al.94 which are specified by two parameters, Fn and Fd.

Then, the relation of Ω and M at epoch time is obtained. The general symmetric

phasing scheme for an FC is given by

Ωk = fΩ (Np, Nd, Ns, Fn, Fd,Ωo, k) (4.10a)

Mk = fM (Np, Nd, Ns, Fn, Fd, ω, i, hp, Fn, Fd, Jnm,Mo, k) (4.10b)

where, for the k-th satellite, Jnm represents the geopotential perturbations and the

two integer parameters, Fn and Fd, can be chosen so that the satellites are uniformly

distributed in time along the relative trajectory. In particular, Mortari et al. have

introduced the symmetric phasing scheme of FCs by setting Fn and Fd as94

Fn = Nd and Fd = Ns (4.11)
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4.5.1.2 GNFC Constellation

There is a set of important constraints to be satisfied in order to design a proper

navigation systems. Our proposed navigation system adopts circular orbits only be-

cause, if elliptical orbits are to be used, then, in order to minimize the control effort,

one of the critical inclinations (63.4◦ or 116.6◦) must be adopted in order to avoid

the rotation of the apsidal line. Moreover, it is clear that the orbit altitude should be

chosen to avoid the Van Allen radiation belt, which ranges from 9,500 Km to 16,000

Km of altitude.96

The proposed GNFC constellation97 is derived from the idea that the shape

of a FC relative trajectory can approximate a uniform spatially distribution path

and on the fact that a symmetric phasing scheme implies a uniform distribution

of satellites along the relative trajectory (uniformly in time). Both of these ideas

constitute the basic of our GNFC and the reason why we believe it could enhance

the navigation accuracy. In order to prove this idea, several programs have been

written in MATLAB, and both, STK and the Flower Constellation Visualization and

Analysis Tool (FCVAT) software, have been employed. In particular, the JAVA 3-D

based FCVAT software constitutes an ad-hoc software to design flower constellations.

Actually, without this design tool, the development of the proposed GNFC were not

possible.

Through lots of trials by using FCVAT, the proposed FC for the half of a GNFC

has been determined. The FC parameters and the relative path are shown in Table

4.1 and Fig. 4.4, respectively.

Table 4.1. Example GNFC Parameters

FC Parameters Values

Np 2

Nd 1 Day

Ns 15

ω 180 Deg.

i 70 Deg.

hp 20182 Km
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Fig. 4.4. Half GNFC Fig. 4.5. Complete GNFC

The orbit period of each satellite is 11.97 hours. The orbits are circular and have the

altitude of 20,182 Km. Figure 4.4 shows the relative path of the FC. By using the

symmetric phasing scheme, the satellites in the constellation are distributed uniformly

in time along the relative path. The GNFC parameters having symmetric phasing

are shown in Table 4.2.

Table 4.2. GNFC Parameters: Ωk and Mk (In Degrees)

Sat. No. Ωk Mk Sat. No. Ωk Mk

1 0 0 2 24.0 311.99

3 48.0 263.99 4 72.0 215.98

5 96.0 167.97 6 120.0 119.96

7 144.0 71.96 8 168.0 23.95

9 192.0 335.94 10 216.0 287.94

11 240.0 239.93 12 264.0 191.92

13 288.0 143.92 14 312.0 95.91

15 336.0 47.90

The proposed complete GNFC constellation is obtained by combining two half GN-

FCs. The only difference between the two FCs is that the argument of perigee is

ω = 90◦ for one and ω = 180◦ for the other FC. The relative paths of the GNFC

constellation, which are generated by the FCVAT program, are shown in Fig. 4.5.
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Table 4.3. Parameters Used in Simulation
Parameters U.S. GPS GLONASS Galileo

Number of Satellites 28 24 30

Number of orbit planes 6 3 3

Orbit Inclination 55◦ 64.8◦ 56◦

Orbit Altitude 20,180 Km 19,100 Km 23,616 Km

Orbit Period 11h 58min 11h 16min 14h

4.5.2 Simulation and Result

The sightlines of GNFC are generated by using the FCVAT design tool, MATLAB,81

and Satellite Tool Kit (STK).98 The U.S. GPS constellations are generated by using

both GPS Almanac data90 and STK satellite data. The Galileo and GLONASS

constellations are generated by STK using the Walker constellation scheme. Table

4.3 shows the parameters of each constellations.
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Fig. 4.6. The GNFC Constellation (Polar View)



40

−3
−2

−1
0

1
2

3

x 10
4

−3

−2

−1

0

1

2

3

x 10
4

−2

−1

0

1

2

x 10
4

X (Km)

Relative Orbit Trajectories

Y (Km)

Z
 (

K
m

)

Fig. 4.7. The GNFC Constellation (Isometric View)

The relative path of the GNFC constellation is shown in Fig. 4.6 and Fig. 4.7. The

symmetry of the relative path with respect to the Earth spin axis is shown in Fig.

4.6, which shows a projection of the GNFC on the Earth equatorial plane. The same

relative path with a different viewpoint is shown Fig. 4.7.

To show the ground tracks of GNFC satellites, the STK software has been used.

Figure 4.8 shows the STK generated ground tracks of GNFC satellites. The duration

of simulation is 30 days. To include the Earth oblateness effect, the J2 perturbation

has been applied. Accesses between the receiver and the GNFC satellites have been

simulated, too. The thick light gray lines in the ground tracks show the access between

the receiver and the GNFC satellites. The squares surrounding satellites in thick lines

represent those satellites are connected.
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Fig. 4.8. Example Accesses Computed by STK for the GNFC Constellation and Receiver Locations (Shaded Boxes)
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Also, the straight lines link a receiver, located in 90◦W longitude and 40◦N latitude,

and the connected satellites. We can see 7 satellites are connected to the receiver.

The shaded squares in Fig. 4.8 represent the receiver locations used to compute the

GDOPs and ADOPs of U.S. GPS, GLONASS, Galileo and GNFC.
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Fig. 4.9. Number of GNFC Satellites in Connection

The total number of the connected GNFC satellites at the receiver location at 90◦W

longitude and 45◦N latitude with respect to time is shown in Fig. 4.9. In this case, 7

or more satellites are always in view. Since another satellite repeats the same relative

path after ω⊕∆Ω time, simulation of GNFC can be limited in this time range. Thus,

we can guarantee these numbers as long as the constellation geometry is maintained.

We point out that both the U.S. GPS and GLONASS sometimes only have 4 satellites

available during a 24 hour simulation while the Galileo has 6 as few as satellites. A

simulation example for GPS is shown in Fig. 4.10.
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Fig. 4.10. Number of U.S. GPS Satellites in Connection

Table 4.4. Percent Changes in GDOP vs. GNFC

Latitude U.S. GPS GLONASS Galileo

80◦N 40.9 23.0 13.1

60◦N 64.0 15.3 4.5

40◦N 24.5 163.0 2.7

20◦N 20.6 97.4 9.7

0◦ 8.9 136.4 -3.3

20◦S 21.0 108.1 7.0

40◦S 24.4 182.5 9.9

60◦S 61.7 12.9 4.9

80◦S 9.7 -1.3 -11.7
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To show the effect of the latitude location of the receiver, at 90◦W longitude the scalar

GDOPs of the GNFC constellation with respect to latitude are shown in Fig. 4.11. As
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Fig. 4.11. GDOP History for Selected Latitude Locations

time varies, the GDOPs are changing. However, these values are repeating because

the ground tracks are the same. Therefore, we can design the GNFC to assign the

minimum GDOPs into the most demanding regions. To compare GNFC with U.S.

GPS, GLONASS, and Galileo constellations, the time averaged scalar GDOPs are

considered. The time averaged GDOPs of four constellations are compared in Fig.

4.12.

The GDOPs of GLONASS for the regions between 60◦S and 60◦N latitude can

reach as high as 10 thus, they are not shown in Fig. 4.12 to make the differences

among the others distinguishable. The GDOPs of GNFC are predominantly smaller

than the other constellations in most regions. The percent changes in GDOPs relative

to GNFC, defined as the difference over the average, are shown in Table 4.4. Positive

percent changes represent that the constellation has the larger GPS errors. The
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Fig. 4.12. GDOP Comparison

position error of GPS is on average 31 percent larger than that of GNFC. With

the comparison of GLONASS, it is 82 percent larger. In comparison to Galileo, the

benefit of GNFC is about 4 percent on average. However, the GNFC benefit in the

most inhabited regions is about 6 percent.

Figure 4.13 shows the time averaged ADOP comparison with respect to latitude.

The GNFC has the smallest ADOPs for most regions except for the regions around

the Earth’s equator. The percent changes in ADOP relative to GNFC are also in-

vestigated in Table 4.5. Note that the GNFC has the smallest ADOPs for the most

inhabited regions of the Earth. For example, the comparison of ADOPs at 40◦N

latitude indicates the attitude error of GPS is 45 percent larger than GNFC. For the

GLONASS and the Galileo it is 35 and 25 percent larger, respectively. Thus, GNFC

has strong merits over the other constellations.
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Table 4.5. Percent Changes in ADOP vs. GNFC

Latitude U.S. GPS GLONASS Galileo

80◦N 47.5 33.1 26.1

60◦N 64.3 35.3 39.5

40◦N 44.5 35.4 25.3

20◦N 33.0 43.6 19.3

0◦ -20.7 34.1 -36.4

20◦S 17.0 27.3 4.1

40◦S 50.3 44.2 33.2

60◦S 64.9 34.3 40.2

80◦S 47.1 31.1 24.2

The GDOPs of GNFC for the all locations in Fig. 4.8 are shown in Fig. 4.14. As

can be seen, the longitude also affects the GDOPs of GNFC. Therefore, by obtaining

design parameters to assign lower GDOPs for the most required regions the better

positioning error characteristic can be achieved.

4.5.3 Conclusion

In the comparison of GPS errors for U.S. GPS, GLONASS, Galileo, and GNFC con-

stellations, the latter demonstrates superior level of service to almost all the regions of

the Earth. The GNFC constellation parameters presented in this paper are found by

a series of trials. Although the closed-form relationship to build GNFC constellation

parameters are not presented here, the FC design scheme has the strong attraction

to compensate for the drawbacks of the U.S. GPS, GLONASS, and Galileo constel-

lations.
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CHAPTER V

SELF SURVEY

The phase center of each antenna, used to define the baselines, which are the posi-

tion vectors between the phase center of the master antenna and that of the slave

antennas, are required to be determined accurately. Also, line bias errors and integer

ambiguities, that cannot be determined previously, need to be resolved before atti-

tude determination using GPS receiver can commence. Then, a GPS receiver with

multiple antenna can be used as an attitude sensor. Thus, the objective of GPS re-

ceiver self survey is to determine all the unknown parameters such as baselines, line

biases, integer ambiguities, and a suboptimal attitude simultaneously.

5.1 Problem Statement

The measurement model of the single differenced GPS signal carrier phase between

the Master Antenna (MA) and a Slave Antenna (SA) is shown in Fig. 5.1. The

j-th sightline vector, sj ∈ R3, is the unit LOS vector from the receiver to the j-th

GPS satellite in the ECEF reference frame. The i-th baseline vector, bi ∈ R3, is the

relative position vector from the phase center of the MA to that of the i-th SA, which

is represented by cycles in the body frame. Since the wavelength of the L1 frequency

of GPS signal carrier is 19.03cm,67,69 an integer (or cycle) ambiguity, nij, could occur

either if the baseline is longer than signal wavelength or when cycle slips occur due

to signal loss. Since the distance between the receiver and GPS satellites is very far,

the wavefronts of GPS signal carrier are considered as planar. Therefore, the single

differenced carrier phase between the i-th baseline and j-th sightline, ∆φij , in Fig.

5.1 can be expressed by

∆φij = bT

i A sj + nij + τi (5.1)

where A ∈ R3×3 is the attitude matrix between reference frame and body frame, and

τi is the line bias of the i-th baseline. The self survey determines the attitude A,
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baseline in the body frame bi, integer ambiguity nij , and line bias τi by using the

phase measurement ∆φ̃ij and the sightline sj information. The sightline information

is obtained using the navigation data of the receiver.

5.2 Previous Work

As we can see in Eq. (5.1), the self survey is a nonlinear estimation problem. Non-

linear least squares or a gradient search method can be used, however, the attitude

parameters and the baselines are not independent.53 Therefore, a singularity in the

Hessian matrix occurs. Alternatively, the baselines in the ECEF reference frame and

the summation of integer ambiguities and line biases are determined first by using

a linear least squares fitting. Then, the integer ambiguities and line biases can be

separated without loss of any information by taking the integer parts as the inte-

ger ambiguities. Also, a suboptimal attitude information can be estimated by using

vector observation methods if 3 non-coplanar baselines exist.53
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Since the GPS satellites are orbiting earth with a period of 12 hours, the connection

between GPS satellites and the receiver will be lost repeatedly. Also, the receivers are

often prone to losing GPS signals for several minutes due to hardware and software

problems. Since the receiver is accumulating the carrier phase cycles, an incorrect

cycle counts can occur when the signals are recovered after the signal connection loss.

Therefore, integer ambiguity resolution, cycle slip detection and repair subsystems

are required for a successful self survey.

5.2.1 Integer Ambiguity Resolution

The integer ambiguities can be determined using either instantaneous or dynamic

techniques.71 Instantaneous methods find a solution that minimizes the error resid-

ual at a specific time by searching through all possible integers sets. Refinements can

be made to the solution by restricting the search space using geometric constraints.63

This is well suited to short baselines, however, the minimum residual does not guar-

antee a correct solution in the presence of measurement noise.61 The algorithm can

determine wrong integers as valid ones. This may cause significant problems during

the self survey. Dynamic techniques perform a batch estimation using the collected

data for a given period of time while the integer ambiguities remain constant over the

collection period. Since these techniques require that a certain amount of motion has

occurred, several minutes of collection time may be required for convergence. Also,

large matrix inversions need to be taken. This leads to numerical errors, however,

dynamic techniques are more robust than instantaneous techniques because dynamic

techniques have numerous checks that can be implemented into the solution before it

is accepted.71

Cohen developed an algorithm that uses a linearized iterative batch estimator.71

By varying the sample rate and the data collection period, this algorithm can be

applied for almost any vehicle motion. However, there are several disadvantages,

including: 1) an a priori attitude should be given, 2) for large initial attitude errors it

may converge to wrong estimates, and 3) depending on the amount of data large-order

matrix inversions may be accomplished. Crassidis et al.61 developed an algorithm
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that has advantages over Cohen’s method, including: 1) it doesn’t require any a priori

attitude information, 2) large matrix inversions are not required, and 3) it is non-

iterative. Also, a covariance expression has been derived that can be used to check

the integrity of the integer ambiguity. However, this algorithm assumes that at least

three non-coplanar baselines exist. Also, a significant amount of vehicle motion is still

required in order for the integers to be observable. Lightsey and Crassidis developed

a real-time attitude independent ambiguity resolution algorithm based on UF which

is more robust than EKF.42

In the self survey, however, the antenna set connected to the receiver is not mov-

ing generally. Therefore, motion based dynamic techniques cannot be used. Instead,

a fast integer ambiguity resolution algorithm by Lightsey et al. can be used.63 This

algorithm uses the geometric inequality to reduce the integer search spaces. Also, it

can be applied for coplanar baselines. Then, a batch-type loss function is used to

resolve the integer ambiguity with the covariance integrity check. Therefore, even

with a few data the integer ambiguities can be resolved successfully.

5.2.1.1 Geometric Constraint

Instantaneous algorithms have an advantage in that they provide integers directly at

a specific time, although they are prone to noise errors, which can induce incorrect

solutions. An integer search is performed to maximize the probability that a unique

solution is the correct solution, while at the same time reducing the search space by

using normality constraints as well as geometric constraints. First, it is assumed that

either three non-coplanar baselines or three non-coplanar sightlines are available (if

three non–coplanar baselines exist then they should be used). The first step involves

reducing the integer search space by using a subset of only two baselines and two

sightlines. With this subset, a significant reduction in the search space is possible

(especially for long baselines). For example, with three baselines (assuming that κ is

possible integers associated with each baseline) the search space required to determine

the integers is on the order of κ3; however, with the reduced subset the search space

is now on the order of 3κ2.
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This test is used to significantly reduce the search space since only a few integers

will pass the geometric constraint described in the following. First, at any instant

of time, it is assumed that either three non-coplanar baselines or three non-coplanar

sightlines are available. When three non-coplanar baselines are available, using two

baselines b1 and b2, the following inequality pertaining to the j-th sightline must be

true:

||b1||2||b2||2 > (b1 · b2)
2 + ||b2||2(∆φ̃1j − n1j)

2

−2(∆φ̃1j − n1j)(∆φ̃2j − n2j)(b1 · b2) + ||b1||2(∆φ̃2j − n2j)
2

(5.2)

If three non-coplanar sightlines are available, the same inequality relative to the i-th

baseline can be expressed using sightlines s1 and s2 by

||bi||2
[
1− (s1 · s2)

2
]
> (∆φ̃i1 − ni1)

2

−2(∆φ̃i1 − ni1)(∆φ̃i2 − ni2)(s1 · s2) + (∆φ̃i2 − ni2)
(5.3)

If the integers have been properly resolved, then it can be shown that Eq. (5.2)

reduces down to (in the noise free case)

[
(Asj) · (b1 × b2)

]2

> 0 (5.4)

This means that Asj , b1 and b2 must not lie in the same plane. This condition is

required to be able to extract attitude information outside of the b1 and b2 plane.

Equation (5.4) is almost always satisfied if the integers pass the test using Eq. (5.2).

5.2.1.2 Cost Minimization

The next step involves converting the sightlines into the body frame, Asj, as the sum

of two components. This is accomplished by minimizing the following loss function:

J(Asj) =
1

2

M∑

i=1

1

w̄2
ij

(∆φ̃ij − nij − bT

i Asj)
2 for j = 1, 2, . . . , N (5.5)

where M is the number of baselines and N is the number of available sightlines. If

at least three non-coplanar baselines exist, the minimization of Eq. (5.5) leads to

Asj = ŝj − cj (5.6)
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where ŝj and cj are given by

ŝj = B−1
j

[
M∑

i=1

1

w̄2
ij

∆φ̃ij bi

]
(5.7a)

cj = B−1
j

[
M∑

i=1

1

w̄2
ij

nij bi

]
(5.7b)

Bj =

M∑

i=1

1

w̄2
ij

bib
T

i (5.7c)

Since the measurements are not perfect, Eq. (5.6) is replaced by the following mea-

surement model

ŝj = Asj + cj + εj (5.8)

where εj is a zero-mean Gaussian process with covariance Rj = B−1
j .

The next step is to use an attitude-independent method to find the phase-bias

vector cj. To eliminate the dependence on the attitude, the orthogonality of A and

Eq. (5.8) are used to give

||sj ||2 = ||Asj||2 = ||ŝj − cj − εj||2

= ||ŝj ||2 − 2ŝj · cj + ||cj||2 − 2(ŝj − cj) · εj + ||εj||2
(5.9)

Next, following Alonso and Shuster,72 an effective measurement and noise are defined

as

zj ≡ ||ŝj||2 − ||sj ||2 (5.10a)

vj ≡ 2(ŝj − cj) · εj − ||εj ||2 (5.10b)

The effective measurement model can be shown to be equivalent to

zj = 2ŝj · cj − ||cj||2 + vj (5.11)

where vj is approximately Gaussian for small εj having mean and variance given by

µj ≡ E{vj} = −trace{Rj} (5.12a)

σ2
j ≡ E{v2

j} − µ2
j = 4(ŝj − cj)

TRj(ŝj − cj)− µ2
j (5.12b)



54

Equations (5.10) to (5.12) define an attitude-independent set of conditions since they

do not contain the attitude matrix A. The negative-log-likelihood function for the

bias is given by

J(cj) =
1

2

L∑

k=1

{
1

σ2
j (k)

[
zj(k)− 2ŝj(k) · cj + ||cj||2 − µj(k)

]2
+ log σ2

j (k) + log 2π
}

(5.13)

where L is the total number of measurement epochs, and the symbol k denotes the

variable at time tk. The maximum-likelihood estimate for cj, denoted by c∗j , minimizes

the negative-log-likelihood function, and satisfies

∂J(cj)

∂cj

∣∣∣∣
c∗

j

= 0 (5.14)

The minimization of Eq. (5.13) is not straightforward since the likelihood function

is quartic in cj . A number of algorithms have been proposed for estimating the bias.

A new approach is to consider the case for M = 3, so that Eq. (5.7b) and Eq. (5.7a)

are rewritten as

ŝj = B−1
j ΓjΦj (5.15a)

cj = B−1
j Γjnj (5.15b)

where

Γj = [w̄−2
1j b1 w̄−2

2j b2 w̄−2
3j b3]

nj ≡




n1j

n2j

n3j



, Φj ≡




∆Φ̃1j

∆Φ̃2j

∆Φ̃3j




(5.16)

The loss function in Eq. (5.13) can be re-written as

J(nj) = 1
2

L∑
k=1

{
1

σ2
j (k)

[
||B−1

j Γj (Φj(k)− nj) ||2

−||sj(k)||2 + trace{B−1
j }

]2

+ log σ2
j (k)

} (5.17)

Equation (5.17) can now be used to directly determine the integers without pre-

computing the sightline vector in the body frame.
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The integer nij for all sightlines and baselines should be determined instantaneously

or using small number of data. The number of possible integers for a baseline is

obtained by taking the floor value of the length of the baseline. For example, if

b1 = [2 1 1]T, then its length is 2.45, and n1j can be among -2, -1, 0, 1, 2. If we have

6 sightlines and 3 baselines and their lengths are 2.45, 2.62, 1.34 respectively, then the

total number of integers to be searched is 6×5×5×3 = 450. In other words, the cost

function in Eq. (5.17) needs to be calculated 450 times to find the minimum value.

However, the required search space can be significantly reduced when the constraint

in Eq. (5.2) is tested. The number of integers that pass the geometric constraint test

is approximately 5%∼40% of the total number. Once the integers have been resolved,

the attitude can be obtained.

5.2.2 Survey Window

Since the GPS satellites are not always in view, the estimation accuracy will be

affected by the number of available sightlines and their relative positions as well as

their duration of connectivity. To investigate these effects a concept of survey window

is introduced. The survey window denotes the duration of time that a certain number

of sightlines are available without cycle slips in the measurements. An example of a

survey window is shown in Fig. 5.2 of which the longitudinal-axis denotes GPS time

in hours and the vertical-axis denotes the Pseudo-Random Number (PRN) of each

GPS satellite.

If the duration is increased, the number of available sightlines is decreased. Con-

versely, if the duration is decreased, the number of available sightlines is increased.

Also, the location of the receiver dictates the sightlines availability. By using both a

MATLAB based GPS simulator and Satellite Tool Kit (STK)98 the GPS constellation

is simulated for 48 hours worth of data. Then, a covariance analysis of the self survey

error can be accomplished. Since the receiver is not moving during the self survey, the

sightlines can be pre-computed. Therefore, if the self survey should be done in space,

the prediction of the self survey time can be made in the mission design because the

covariance analysis can be performed beforehand.
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Surv ey Window

Time

GPS Receiver Access

Fig. 5.2. An Example of Survey Window
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Table 5.1. Survey Window Types

Types Description

Type 1 the same 6 or more sightlines are in view for 1 hour

Type 2 the same 6 or more sightlines are in view for 2 hours

Type 3 the same 5 or more sightlines are in view for 3 hours

To investigate the effects of the number of the sightlines and duration of access, three

types of survey windows are devised and compared. These three survey windows are

shown in Table 5.1.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
0

1

2

3

Time (hr)

T
yp

e

Overlap
Region

Fig. 5.3. Availability of Survey Window

We cannot conclude the self survey performance with a few hours simulation because

the sightlines are moving slowly. The sightlines are moving because the orbits of

the GPS satellites have 12 hour period circular orbits and their ground tracks are

varying due to a perturbation effect. Since the sightlines are moving, these three
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survey windows are not always available. The availabilities of survey windows are

shown in Fig. 5.3 of which the longitudinal axis denotes the GPS time in hours and

the perpendicular axis represents the type of the survey window.
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Fig. 5.4. Covariance of Baseline Estimation Error for Each Type

The ephemerides of the satellites in the GPS constellation as well as their connectivity

to the ground receiver are simulated by using STK and its Chains module. Since the

connection between the GPS satellites and the receiver can be conveniently simulated

by STK, two days of sightlines and their availability are generated with an interval

of 30 seconds. Figure 5.3 shows the availability of each type of survey window. The

overlap region is neglected because the simulated sightlines are not available after 48

hours. It is clear that the Type 1 survey window has the longest availability, while

Type 3 has the shortest availability. This means that sometimes we cannot use a
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Type 2 survey window for 8 hours or a Type 3 survey window more than 10 hours,

while a Type 1 survey window can be used within approximately 2 hours.

Although the survey window availability of each type is different, the self survey

result of each type is compared. The covariance of a baseline estimation error for each

type is shown in Fig. 5.4 where the number of access in the longitudinal axis means

the count of time when that type of survey window is available. The perpendicular

axis denotes the covariance values of the error in cycles2. The estimation error of

the Type 3 survey window is the smallest while the number of access is the smallest.

Also, the covariance in the z-axis is the smallest and those of the other axes show

some fluctuation.

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6
x 10

−3 Type 1

C
yc

le
2

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
x 10

−3 Type 2

C
yc

le
2

0 200 400 600 800 1000 1200
0

1

2

3
x 10

−4 Type 3

No. of Access

C
yc

le
2
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Figure 5.5 shows the covariance of the estimation error of the summation of a line bias

and the integer ambiguities. Similar to the baseline result, the Type 3 survey window

results in the best estimate. Although the estimation errors depend on the sightlines,

the covariance values of the Type 3 survey windows are the smallest. Therefore,

a longer connection is the better for the self survey which intuitively makes sense,

however, a longer connection might not be achieved for an extended time as shown

in Fig. 5.3. Therefore, the commercial receivers such as TANS Vector receiver take

at least 8 hours for the self survey in general.

5.3 New Approach

The assumptions applied in the previous approaches do not allow for changes of

the baseline length. However, the lengths of the baselines might be changed since

the phase centers are different from the geometric centers. Furthermore, the integer

ambiguity resolution algorithm does not work if line biases errors are contained in

the phase measurements. In the new approach, these two problems are solved using a

double difference technique with nonlinear least squares. Also, the cycle slip detection

and repair problem is analyzed. The flow chart of new approach is shown in Fig. 5.6.

5.3.1 Cycle Slip Detection and Repair

When a GPS receiver is turned on, the fractional part of the phase difference between

the satellite transmitted carrier and a receiver generated replica signal is observed

and an integer counter is initialized. During the tracking, the counter is incremented

by one cycle whenever the fractional phase changes from 1 to 0. The initial integer

number, n, of cycles between the satellite and the receiver remains constant as long

as no loss of signal lock occurs. When the signal lock is lost, the integer counter is

restarted. Therefore, a cycle jump, called cycle slip, may occur. Sources of cycle slips

are: 1) obstruction of GPS signal due to trees, buildings, mountains, etc., 2) a low

SNR due to bad ionospheric conditions, multipath, high receiver dynamics, or low

GPS satellite elevation, or 3) a failure in the receiver software.67 A single difference
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Fig. 5.6. Flow Chart of Self Survey

of the phase measurements and its cycle slip repaired counterpart is shown in Fig.

5.7. As seen from Fig. 5.7, initial and end raw measurements contain numerous cycle

slips and signal lock loss because the TANS Vector receiver collects only 6-channels

of data. Also, the duration of signal lock loss lasts several minutes for some reason,

such as signal jamming. Therefore, the determination of cycle slip size becomes

complex. However, by monitoring its time derivative, large signal lock loss cases are

compensated successfully. An example of the time derivative comparison between the

measurements and the estimates is shown in Fig. 5.8.

A first order polynomial fit works successfully for the early 30 to 50 minutes

data because the sightlines are moving slowly in static case. After then, a real-time

sequential estimator is used for the cycle slip detection and repair since the slope of

the time derivatives is changing. Since a higher-order polynomial fitting is required,

at least 30 minutes of data are needed for the initialization of the estimator. In

real data applications an 8-th order polynomial is sometimes required for the correct
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result. The reason is that, for example, the TANS receiver has only 6-channels so

that the connection between a satellite and a receiver could be unstable for the early

part and the end of the connection. A block diagram of cycle slip detection and repair

algorithm is shown in Fig. 5.9.

5.3.2 Integer Ambiguity Resolution

The integer ambiguities need to be resolved before the attitude problem is solved.

However, existing integer ambiguity algorithms cannot be applied due to the line

biases errors contained in the measurements. This problem can be resolved by tak-

ing double differences, because the line biases errors are cancelled.69 However, the

double differenced integer ambiguity should still be resolved. It can be resolved by

using the modified fast integer ambiguity resolution algorithm. Since double differ-
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ences between sightlines are applied, the cost function and the geometric constraint

are reconstructed. Then, the baselines in the reference frame and line biases can

be determined. Finally, the integer ambiguities of the single differential phase mea-

surements can be obtained by taking the integer part of the residual between the

measurement and the dot product of the baseline estimates and the sightlines.

5.3.2.1 Double Differences

For a single difference carrier phase measurements, line biases between receivers are

troublesome. This problem can be resolved by taking between-receiver, between-

sightlines double difference measurements. Using Eq. (5.1), the single difference

measurement model is expressed by

∆φij = bT

i Asj + nij + τi + εij (5.18)
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Fig. 5.9. Cycle Slips Detection and Repair Block Diagram

where εij denotes the phase measurement error. If we take the differences of the

single differences in the sightlines j and k, we would get rid of the line bias on the i-

th baseline, τi. Therefore, the double differenced phase measurements can be written

by

2∆φjk
i = bT

i A(sj − sk)− (nij − nik) + (εij − εik) (5.19)

where 2∆φjk
i denotes the double differenced phase between single differenced phases

∆φij and ∆φik. However, measurement noise is increased by a factor of
√

2 times

that of the single differences. Still, double differenced phase measurements are useful

since line biases do not need to be determined.
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5.3.2.2 Geometric Constraint for Double Differences

From the identity of three dimensional vectors, Asjk,b1,b2, the geometric constraint

for double differences is now rewritten by

[(Asjk) · (b1 × b2)]
2 = (Asjk × b1) · [(b1 × b2) · (b2 ×Asjk)]

= (Asjk)
2 (b1)

2 (b2)
2 − (Asjk)

2 (b1 · b2)
2

− (b1)
2 (Asjk · b2)

2 − (b2)
2 (Asjk · b1)

2

+2 (Asjk · b2) (Asjk · b2) (b1 · b2)

= ||sjk||2||b1||2||b2||2 − ||sjk||2 (b1 · b2)
2

−||b1||2
(

2∆φjk
2 + njk

2

)2

− ||b2||2
(

2∆φjk
1 + njk

1

)2

+2
(

2∆φjk
1 + njk

1

)(
2∆φjk

2 + njk
2

)
(b1 · b2)

> 0

(5.20)

where sjk = sj−sk,
2∆φjk

1 = ∆φ1j−∆φ1k, and 2∆φjk
2 = ∆φ2j−∆φ2k. Although dou-

ble differences may increase the search space twice as much as using single differences,

a reduction of search space is achieved by using the constraint in Eq. (5.20).

5.3.2.3 Integer Ambiguity Resolution

The double differenced integer ambiguities in Eq. (5.19) can now be resolved using

the cost function defined in Eq. (5.21):

J(njk
i ) = 1

2

L∑
m=1

{
1

σ2
jk

(m)

[
||S−1

jk (m)Γjk(m)
(
Φ

jk
i (m)− n

jk
i

)
||2

−||bi||2 + trace{S−1
jk (m)}

]2

+ log σ2
jk(m)

} (5.21)

where

σ2
jk(m) = −trace2{S−1

jk (m)}

+
(
Φ

jk
i (m)− n

jk
i

)
T

ΓT

jk(m)S−3
jk (m)Γjk(m)

(
Φ

jk
i (m)− n

jk
i

) (5.22a)

Γjk(m) ≡
[
$−2

i1 s12(m), $−2
i2 s13(m), $−2

i3 s14(m)
]

(5.22b)
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Φ
jk
i (m) ≡




2∆φjk
i1

2∆φjk
i2

2∆φjk
i3




(5.22c)

Sjk(m) =
(
$jk

i1

)−2

s12(m)sT

12(m) +
(
$jk

i2

)−2

s13(m)sT

13(m)

+
(
$jk

i3

)−2

s14(m)sT

14(m)
(5.22d)

For further application, however, the integer ambiguities contained in the single dif-

ferenced phase measurements should be resolved. Therefore, the baselines in the

reference frame can be estimated using linear least squares. The loss function to be

minimized is given by

J
(
b̃i

)
=

1

2

∑

all jk

(
$jk

i

)−2 (
2∆φ̃jk

i − b̃T

i sjk

)2

(5.23)

Then, the baselines in the reference frame are given by

b̃i = N−1
i yi (5.24)

where

Ni =
∑

all jk

(
$jk

i

)−2

sjks
T

jk (5.25a)

yi =
∑

all jk

(
$jk

i

)−2
2∆φ̃jk

i sjk (5.25b)

After determining the baselines in the reference frame, the integer ambiguities of the

single differential phase measurements are resolved by taking the integer part of the

residual given by

nij = floor
(
∆φij − b̃T

i sj

)
(5.26)

where floor is the MATLAB command which rounds the residual to the nearest integer

towards minus infinity. This approach may not resolve the integers if the line bias

errors are close to 0 or 1, however, it means that the line bias errors can be considered

as the integer ambiguities.
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5.3.3 Nonlinear Least Squares

Since the integer ambiguities are resolved, Eq. (5.1) can be rewritten as

∆φij =g bT

i Asj + zij (5.27)

where gb represents the geometric baseline vector in the body frame that connects

the geometric center of two antennas and zij is the dummy parameter used in the

baseline estimation, given by

zij = ∆bT

i Asj + τi (5.28)

where ∆bi ∈ R3 is the additive error of baselines in the body frame. To estimate

attitude parameters and zij in Eq. (5.27), nonlinear least squares can be used. By

using the Modified Rodriguez Parameters (MRPs) as attitude parameters, the optimal

estimates are obtained to minimize the loss function, given by

J (p̂, z) =
N∑

i=1

M∑

j=1

[
∆̃φij −∆φij (p̂, z)

]2

(5.29)

where p̂ ∈ R3 denotes MRP estimates and z represents a row vector of which element

is zij . To express the solution of Eq. (5.29), we assume the nominal states as

xc =




pc

zc




Then, Eq. (5.27) can be written as

∆φi (x̂) ≈ ∆φi (xc) + Hδx (5.30)

where δx =
[
δpT ∆zT

]T

and the Jacobian matrix H is given by
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H = ∂
∂δx

[
gbT

i A (p) sj + z
]

= ∂
∂δx

[
gbT

i A (δp)A (pc) sj + zc + ∆z
]

= ∂
∂δx

[
gbT

i (I− 4 [δp×])A (pc) sj + zc + ∆z
]

=




4gbT

i [A (pc) sj×]

total M sightlines

,
︷ ︸︸ ︷
0, 0, · · · , 0︸ ︷︷ ︸, 1, 0, · · · , 0

(j-1) zeros before 1

...




for i = 1, 2, 3

(5.31)

where

[a×] =




0 −a3 a2

a3 0 −a1

−a2 a1 0




(5.32)

Then, the measurement residual can be written as

∆̃φ−∆φ (x̂) ≈ ∆̃φ−∆φ (x̂c)−Hδx

= ∆y −Hδx
(5.33)

Using the residual, the new cost ∆J can be defined as

∆J =
1

2
[∆y −Hδx]T W [∆y −Hδx] (5.34)

The minimization of ∆J is equivalent to the minimization of J . If the process is

convergent, then δx determined by minimizing ∆J would be expected to decrease on

successive iterations until the linearization is an extremely good approximation.

A stopping condition with an accuracy dependent tolerance for the minimization

of J is given by
∆J

J
=

ε

||W|| (5.35)

Then, the δx is given by

δx =
(
HTWH

)−1
HTW∆y (5.36)
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By using the obtained δx, the updates are given by

p̂ =

(
1− pT

c pc

)
δp +

(
1− δpTδp

)
pc − 2 [δp×]pc

1 + δpTδppT
c pc − 2δpTp

(5.37a)

ẑ = zc + ∆z (5.37b)

Since the problem itself is a nonlinear, the convergence to a correct estimate is not

guaranteed. Therefore, for robustness, the Levenberg-Marquardt (LM) method is

also used and compared with nonlinear least squares in the simulations.

5.3.4 Baseline Estimation

By using the estimation results of the nonlinear least squares, the differences in the

baselines in the body reference frame and the line biases errors are determined. Refer-

ring to Eq. (5.28), linear least squares is sufficient to estimate the baselines differences

and line biases errors. It is given by

z =




sT

1 A
T, 1

...

sT

MAT, 1







∆bi

τi


 (5.38)

Then, the baselines in the body frame are determined by

bi = gbi + ∆bi (5.39)

Since the antenna phase errors can easily be as much as 2cm, baseline estimation is

important in the self survey if the baselines are short.

5.3.5 Covariance Study

The covariance study of the self survey needs to be performed in three part. First,

the covariance of integer ambiguity resolution should be computed to monitor the

integrity of cycle ambiguity. Then, nonlinear least squares is investigated. Finally,

the covariance of the baselines and the line biases is derived.
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5.3.5.1 Integer Ambiguity Resolution

By using the double differences technique, the baselines in the reference frame are

determined first. Then, the integer ambiguities are obtained by taking the integer

part of the residual between the measurements and the dot product between the

baseline estimates and the sightlines. By the nature of the integers, therefore, the

integer ambiguity estimates contain no error if those estimates are correct.

5.3.5.2 Nonlinear Least Squares

The loss function consisting of the residual error is written as

J =
1

2
(∆y −Hδx)T

W (∆y −Hδx) (5.40)

The Jacobian is
∂J

∂δx
= −HTW (∆y −Hδx) (5.41)

The Fisher information matrix is given by

Fδx = E
{

∂J
∂δx

∂J
∂δx

T
}

= E
{
HTW (∆y −Hδx) (∆y −Hδx)T

WH
}

≈ HTWH

(5.42)

where the matrix W denotes the measurement error covariance matrix. Then, the

covariance matrix is given by

Pδx =
[
HTWH

]−1
(5.43)

5.3.5.3 Baseline/Line Biases Estimation

The estimation of the baselines and line biases is the linear least squares. Therefore,

the covariance matrix can be obtained by

Pz =
[
HT

zWE
{
∆z∆zT

}
WHz

]−1
(5.44)



71

where the Jacobian matrix is given by

Hz =




sT

1 A
T, 1

...

sT

MAT, 1




(5.45)

5.4 Implementation

The simulation of the GPS constellation is obtained by STK with Chains module and

GPS almanac data.

5.4.1 STK/Chains

The STK contains all the active 28 GPS satellites data. Also, the receiver can be

added as a sensor object. Therefore, the 15◦ mask angle of the receiver can be applied.

By using the Chains module all the GPS satellites can be accessed from the receiver.

The STK main window used in the simulation is shown in Fig. 5.10. The positions of

the available GPS satellites can be generated in the ECEF coordinate system with a

specified time interval of 48 hours. For a given ground location, the simulated ground

tracks of the GPS satellites are shown in Fig. 5.11. As can be seen, the access times

of the satellites to the receiver are not the same because the the ground tracks of the

GPS satellites are different.
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Fig. 5.10. STK Main Window for GPS Constellation

5.4.2 GPS Almanac

The almanac data are available to determine position and velocity vectors of the satel-

lites in a terrestrial reference frame at any instant. Both YUMA and SEM GPS al-

manac by Navigation Center (http://www.navcen.uscg.gov/gps/almanacs.htm) con-

tain every GPS satellite information.90 By using these almanac data, the GPS con-

stellation can be simulated by using the formulas

n =

√
µ

a3
(5.46a)

M = Mo + n (t− to) (5.46b)

i = 54◦ + δi (5.46c)

Ω = Ωo + Ω̇ (t− to)− Ω̇Et (5.46d)
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Fig. 5.11. GPS Constellation Simulation Using STK (2-D Map)



74

where n denotes the mean motion, µ is the earth’s gravitational constant, a is the

semi-major axis, Ω̇E is the angular velocity of the earth, M is the mean anomaly, i is

the inclination, δi is the inclination offset, Ω is the right ascension of ascending node,

and the subscript o denotes the value at epoch time to. The WGS84 system values

in Table 5.2 are used for the simulation. However, the prediction using almanac data

Table 5.2. WGS84 System Values

Parameters Values

µ 3.986005 × 1014(m3/s2)

Ω̇E 7.2921151467 × 10−6(rad/s)

provides the GPS satellite positions with less precise data that has the following User

Range Error (URE) in Table 5.3 during the operation interval due to perturbation

effect. In Table 5.3, the normal and short-term extended operations URE are some

Table 5.3. GPS Almanac Ephemeris URE

Operation Interval Ephemeris URE STD (m)

Normal 900

Short-term Extended 900 - 3,600

Long-term Extended 3,600 - 300,000

kilometers within approximately 70 hours after the first valid transmission time for

this almanac data set. In the following, an example of SEM GPS almanac data is

shown. The format of the data is shown in Fig. 5.12 and Table 5.4.

Table 5.4. SEM GPS Almanac Data Format
Number of Records Title
GPS Week Number GPS Time of Applicability

PRN Number
SVN Number

Average URA Number
Eccentricity Inclination Offset Rate of Right Ascension

Square Root of Semi-Major Axis Longitude of Orbital Plane Argument of Perigee
Mean Anomaly Zeroth-Order Clock Correction First-Order Clock Correction
Satellite Health

Satellite Configuration
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28 CURRENT.ALM 71 503808

1 32 1

0.50687789916992E-0002 0.66165924072266E-0002 -0.24738255888224E-0008

0.51535776367188E+0004 0.18455862998962E-0001 -0.55291974544525E+0000

-0.99051356315613E-0001 0.15926361083984E-0003 0.00000000000000E+0000

0

9

Fig. 5.12. SEM GPS Almanac Data

By using these almanac data and Eq. (5.46), the positions of the GPS satellites in

the ECEF coordinate system can be computed by the equations given by

M = E − e sinE (5.47a)

ν = tan−1

{√
1− e2 sinE

1− e cosE

/
cosE − e
1− e cosE

}
(5.47b)

Ψ = ν + ω (5.47c)

r = a (1− e cosE) (5.47d)

x′ = r cos Ψ (5.47e)

y′ = r sin Ψ (5.47f)

x = x′ cos Ω− y′ cos i sin Ω (5.47g)

y = y′ sin Ω + y′ cos i cos Ω (5.47h)

z = y′ sin i (5.47i)

where the eccentric anomaly E is obtained by solving the Kepler’s equation in Eq.

(5.47a), ν is the true anomaly, Ψ is the argument of latitude, r is the radius, x′ and

y′ are the positions in the orbit plane, and x, y, and z are the positions in the ECEF

frame.

5.5 Simulation and Result

The 8 hours phase measurement data are generated by using ‘351.al3’ SEM GPS

almanac data, three baselines shown in section 5.6, and the phase measurement model

is shown in Fig. 5.1. Then, 100 different random attitude matrices and line biases are

generated to simulate the phase measurements. Multipath errors are not considered in
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the measurement data because the effect of the nearby structure can be compensated

before the self survey. The integers are resolved first using the double differences

technique. Then, the data to solve the nonlinear least squares are constructed using

the available sightlines information. To consider large initial errors, initial Euler angle

errors are generated using MATLAB command given by




δφ

δθ

δψ




= 60 randn (3, 1) (Deg)

Both the NLS and LM algorithm are applied for the simulation and compared. Then,

the baselines in the body frame and the line biases are determined.
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Fig. 5.13. Attitude Error Comparison Between NLS and LM
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Figure 5.13 shows the Euler angles errors and their 3-σ boundary layers. The triangle

marker represents the NLS Euler angles errors and the circle marker denotes the

LM Euler angles errors. As can be seen, both NLS and LM show the same level

of estimation errors. For the pitch axis, the errors are well inside the 3-σ boundary

layers, however, for other axes some errors are outside the 3-σ bounds. This is because

the baselines are nearly coplanar which is aligned with body x-y axes. Also, the

geometry of the sightlines affects the covariance. Figure 5.14 shows the line bias

errors comparison between NLS and LM. As for the errors in the baselines 2 and 3,
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Fig. 5.14. Line Bias Error Comparison Between NLS and LM

the line biases are well below the 3-σ layers. The line bias in the baseline 1 is not,

however, it is still below the standard deviation of the phase measurement errors.

Also, the baseline 3 estimation errors are shown in Fig. 5.15. As can be seen, all

estimation errors are well inside the 3-σ bounds.
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Fig. 5.15. Baseline Error Comparison Between NLS and LM

In the comparison of nonlinear estimation errors, there is no difference between NLS

and LM for small initial errors. The NLS converges faster than LM, however, the

convergence to the correct estimate is not guaranteed. In the comparison using large

initial attitude error, the NLS fails two times out of 100 simulations while the LM

method works successfully. A comparison of the number of iterations is shown in Fig.

5.16. In general, the number of iterations of the LM algorithm is larger than that of

NLS, however, it guarantees the correct convergence. Also, the convergence speed of

the LM method can be enhanced by taking smaller η values.

In the simulation study, the convergence performance of LM for relatively larger

initial errors seems to be improved over NLS. To compare the convergence behaviour

of LM and NLS, large initial errors are considered as




δφ

δθ

δψ




=




−106.07◦

73.247◦

153.15◦



,




∆τ1

∆τ2

∆τ3




=




.0547

0.9129

0.5019




(Cycles)
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Then, the convergence of NLS and LM is compared in Fig. 5.17. As can be seen,

the NLS converges faster but leads to wrong estimates. However, the LM algorithm

converges to the correct estimates after 16 iterations.

5.6 Real Data Application

The self survey algorithm is applied with real data collected by Navigation Systems

and Technology Laboratory (NSTL) at NASA’s Johnson Space Center (JSC) in Hous-

ton, Texas. The Trimble Advanced Navigation System (TANS) Vector receiver with

a four antenna set is used for the test. To mitigate the multipath error, the antennas

are installed on the roof of a building. Since the Vector receiver provides an internal

self survey result, the estimates of the baselines and line biases are also compared.

Fig. 5.18. Baselines in the ENU Coordinate System
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The baselines in the East-North-Up (ENU) coordinate system shown in Fig. 5.18 are

given by

[ gb1
gb2

gb3] =




−115.91775 −42.66246 −20.74898

−45.57186 114.46932 −135.93129

−11.68865 −7.79448 −12.01909




(Cycles)

Although the baselines between geometric centers are not known, the TANS Vector

receiver baselines output can be used as gb. The phase measurements of TANS Vector

receiver have a range of -32 ∼ 32 cycles. Since the lengths of baselines are longer than

32 cycles, the phase measurement jumps to -32 cycles when it reaches 32 cycles or

vice versa. Thus, jumps of 64 cycles need to be compensated. Also, the cycle slips are

detected and repaired by the algorithm described in subsection 5.3.1. Nonlinear least

squares converges after 9 iterations. The value of ∆J after each iteration is shown in

Table 5.5.

Table 5.5. Convergence of Nonlinear Least Squares

Iteration J ∆J

1 2.6512e+007 2.6512e+007
2 1.0413e+007 1.6098e+007
3 4.8126e+006 5.6007e+006
4 8.0795e+004 4.7318e+006
5 9.0319e+003 7.1763e+004
6 1.4622e+002 8.8857e+003
7 6.9967e-001 1.4552e+002
8 6.9942e-001 2.5235e-004
9 6.9942e-001 7.2299e-011
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Figure 5.19 shows single differenced phase measurements data collected by the TANS

Vector GPS receiver after integer ambiguity and cycle slip compensation. The re-
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Fig. 5.19. TANS Vector GPS Receiver Phase Measurements

solved integer ambiguities are shown in Table 5.6 and the differences in the baseline

estimates are determined as

[∆b1,∆b2,∆b3] =




0.0147 −0.0059 −0.0029

−0.0005 0.0042 0.0098

−0.0171 −0.0125 −0.0188




(Cycles)

The differences are well below the standard deviation of the phase measurements.

The line bias estimates are compared with the TANS Vector receiver output in Table

5.7. The differences are less than 0.05 cycles.
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Table 5.6. Integer Ambiguities

s2 s4 s7 s8 s11 s19 s24

b1 -73 -46 -114 -24 58 56 -81
b2 -80 88 70 -87 94 9 73
b3 46 -147 -118 80 -63 33 -116

Table 5.7. Line Biases (Unit: Cycles)

Line Biases Self Survey TANS Receiver

τ1 0.2637 0.2240
τ2 0.9367 0.8954
τ3 0.3056 0.3196

The attitude matrix is given by

A =




−0.0003 −0.6662 0.7457

−0.2844 0.7150 0.6387

−0.9587 −0.2119 −0.1897




By using the estimated baselines, line biases, and attitude matrix the single differ-

enced phases are computed and compared with the measurement data. Figures 5.20

through 5.26 show the residual error between the measured and the estimated phase.

Since the multi-path errors exist in the measurement, oscillations are shown in the

residual error. Also, the residual errors are increased both in the early part and in the

end data. However, in the other regions the residual errors are below the measurement

standard deviation.

Figure 5.20 shows the residual errors for the PRN 2 signal phase. The residuals

between 100 and 300 minutes are well below than the standard deviation while the

residuals before 80 minutes and after 300 minutes begin to increase. Similar trends

are shown for the PRN 4, 7, 8, and 24 signal phases in Figs. 5.21, 5.22, 5.23, and

5.26. However, as can be seen in Figs. 5.24 and 5.25, the signal phases are different

for PRN 11 and 19. There exist oscillations in the residual since the multipath errors

are contained in the measurements.
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Fig. 5.20. The Residual Error of ∆̃φi2 −∆φi2 for i = 1, 2, 3
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Fig. 5.21. The Residual Error of ∆̃φi4 −∆φi4 for i = 1, 2, 3
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Fig. 5.22. The Residual Error of ∆̃φi7 −∆φi7 for i = 1, 2, 3
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Fig. 5.23. The Residual Error of ∆̃φi8 −∆φi8 for i = 1, 2, 3
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Fig. 5.24. The Residual Error of ∆̃φi11 −∆φi11 for i = 1, 2, 3
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Fig. 5.25. The Residual Error of ∆̃φi19 −∆φi19 for i = 1, 2, 3
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Fig. 5.26. The Residual Error of ∆̃φi24 −∆φi24 for i = 1, 2, 3
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5.7 Summary

A new self survey method has been developed and compared with a commercial GPS

receiver self survey result. The new method includes cycle slip detection and a repair

algorithm to compensate the cycle counter re-initialization problem when the GPS

signal lock is lost. Also, it includes a double differences scheme to resolve integer

ambiguities for the case that line biases errors are contained in the measurements.

For the cycle slip detection and repair, a first-order polynomial fit is used for

the early data since frequent signal lock loss has occurred. Then, after 30 minutes

an 8-th order polynomial replaces it because sightlines are moving. To verify algo-

rithms, real data collected by TANS Vector GPS receiver is used for the cycle slip

detection and repair algorithm. Integer ambiguity resolution using double differenced

phase measurements was then accomplished. Then, nonlinear least squares and the

Levenberg-Marquardt algorithm are used to determine attitude parameters. Finally,

baselines in the body frame and line biases have been determined.

In the comparison of NLS and LM using 100 simulations with random initial

conditions, the LM method shows more robust results for large initial errors, although

the convergence speed of NLS is faster than that of LM. In the comparison with the

TANS Vector receiver self survey output, the integer ambiguities matched exactly.

Also, line biases and baselines differences were within 3-σ error bounds.



89

CHAPTER VI

PSEUDOLITE SIGNALS APPLICATION

In this chapter the attitude determination algorithms using Pseudolite signals are

developed and analyzed through various simulations.

6.1 Problem Statement

Pseudo-GPS-satellites, the Pseudolite (PL), signals are essentially the same as GPS

signals.53,67, 69, 84, 99–103 The main purpose of using PL signals is to replace the GPS

signals when the GPS signals are blocked by the nearby huge structures, or to enhance

the positioning accuracy. Pseudolites are also used to determine relative attitude and

positions. When the PL signals are used, the phase measurement model should be

modified because the PL signal transceivers (TXs) are located too close to antennas

so that the planar assumption does not hold. Since the relative distances between

antennas and PL TXs are short, sightlines are no longer assumed as parallel. For PL

signals, the wavefronts are spherical.53,79, 80, 104 The new phase measurement model is

shown in Fig. 6.1. Two coordinate systems, one is the reference coordinate system and

the other is the body fixed coordinate system, are used to define the attitude. As can

be seen in Fig. 6.1, the phase measurement contains the nonlinear spherical wavefront

effect. This spherical phase difference measurement can be expressed by53,79, 80, 104

∆φ =

∣∣r + ATbm − t
∣∣−

∣∣r + ATbs − t
∣∣

λ
+ n+ τ (6.1)

where A is the attitude matrix, which transforms coordinates from the reference frame

to body frame, n is the integer ambiguity, τ is the line bias error, λ is the wavelength,

t is the position vector of a PL TX in the reference frame, r is the position vector of

the body frame origin in the reference frame, bm is the position vector of the MA in

the body frame, and bs is the position vector of the SA in the body fixed frame.

By using the self survey in Chapter V, it is assumed that the baselines, line
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Fig. 6.1. Non-Planar Pseudolite Carrier Phase Measurement Model
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biases, and integer ambiguities are already determined. Therefore, the attitude de-

termination is a nonlinear estimation problem to estimate the attitude parameters

of the attitude matrix A. With the vector form implementation, Eq. (6.1) can be

rewritten as

∆φij =

∣∣r + ATbm − tj

∣∣−
∣∣r + ATbsi

− tj

∣∣
λ

+ nij + τi (6.2)

where i denotes the i-th SA, and j denotes the j-th PL TX.

6.2 Previous Work

The most widely used attitude determination techniques using LOS vector measure-

ments are methods to solve the Wahba’s problem. Although the phase measurements

are not a LOS vector, a modified Wahba’s problem was posed by Crassidis et al.

They also found a suboptimal attitude solution.6,50, 51, 53 Nonlinear least squares or

gradient-based search techniques can solve for the optimal attitude by minimizing a

certain loss function. However, these methods are not computationally efficient be-

cause they are iterative. Also, convergence is not guaranteed if the initial errors are

large. Thus, a predictive filter, called ALLEGRO, using standard GPS signals was

developed by Crassidis,30,48, 49, 52 which is non-iterative. Then, a new predictive filter

using PL signals was developed by Park and Crassidis.53

6.3 New Approach

Since the Pseudolite signals are used, the sightlines are no longer parallel. Therefore,

the ALLEGRO algorithm cannot be applied directly. However, only minor changes

on a measurement model make ALLEGRO work for Pseudolite cases. Based on the

new phase measurement model shown in Eq. (6.2) and Fig. 6.1, the new predictive

filter is derived. To verify the new filter, two types of simulation cases are shown,

since the implementation of the static and moving cases is different.

For the static case, a comparison with the result using nonlinear least squares as

well as the LM method is presented. For moving cases, only the result of the new filter
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is presented because it is impossible to apply iterative methods. A more enhanced

attitude estimation can be obtained by combining the system dynamics with the PL

signal measurements. The EKF and UF using Pseudolite signals are developed and

compared with simulations.

6.4 Implementation

By using the Pseudolite signal measurement model, the attitude estimation algo-

rithms are developed in this section.

6.4.1 Nonlinear Least Squares

A nonlinear least squares using the quaternion is developed. The estimated attitude

matrix can be written by

A (q̂) = A (δq)A (q) (6.3)

where q̂ represented the estimated quaternion, δq is the error quaternion, and q is

the true quaternion. In the small angle approximation, A (δq) can be rewritten as

A (δq) = I− 2 [δq13×] (6.4)

Then, the PL signal phase measurement model in Eq. (6.2) can be approximated as

∆φ̂ij = 1
λ

(∣∣r + ATbm − tj

∣∣−
∣∣r + ATbsi

− tj

∣∣) + nij + τi

≈ 1
λ

[ ∣∣r + AT (q) (I + 2 [δq×])bm − tj

∣∣

−
∣∣r + AT (q) (I + 2 [δq×])bsi

− tj

∣∣
]

+ nij + τi

≈ 1
λ

[√
`m − 4 (r + AT (q)bm − tj)

T
AT (q) [bm×] δq

−
√
`si
− 4 (r + AT (q)bsi

− tj)
T
AT (q) [bsi

×] δq

]
+ nij + τi

≈ 1
λ

[√
`m

{
1− 2(r+AT(q)bm−tj)

T

AT(q)[bm×]δq

`m

}

−
√
`si

{
1− 2(r+AT(q)bsi

−tj)
T

AT(q)[bsi
×]δq

`si

} ]
+ nij + τi

(6.5)

where

`m =
(
r + AT (q)bm − tj

)T (
r + AT (q)bm − tj

)
(6.6a)
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`si
=

(
r + AT (q)bsi

− tj

)T (
r + AT (q)bsi

− tj

)
(6.6b)

Thus, the Jacobian matrix is given by

Hij =
∂∆φ̂ij

∂δq13

≈ − 2
λ

{
(r+AT(q)bm−tj)

T

AT(q)[bm×]
√

`m
− (r+AT(q)bsi

−tj)
T

AT(q)[bsi
×]√

`si

} (6.7)

To compute the attitude covariance matrix, the Fisher information matrix is deter-

mined by

F ≡ 1
4
E

{
∂J

∂q13
∂J

∂q13

T
}

= 1
4

m∑
i=1

n∑
j=1

σ−2
ij HT

ijHij

(6.8)

where the division by a factor of 4 is required because quaternion errors are two times

the Euler angle errors and the loss function is defined by

J =
1

2

m∑

i=1

n∑

j=1

σ−2
ij

(
∆φ̃ij −∆φij

)2

(6.9)

where m represents the number of baselines, n represents the number of sightlines,

and σij denotes the standard deviation of the ij-th measurement error. Then, the

attitude error covariance matrix is obtained by

P ≡ F−1

= 4

[
m∑

i=1

n∑
j=1

σ−2
ij HT

ijHij

]−1 (6.10)

6.4.2 Levenberg-Marquardt Method

As can be seen in section 5.5, the LM method is more robust than NLS for large

initial errors. However, after the first estimation time the current estimates will be

good guesses at the next estimation time. Therefore, the NLS algorithm is used after

the first estimation time because it is faster than LM method.

6.4.3 Nonlinear Preditive Filter

An algorithm using nonlinear predictive filtering from GPS signals was proposed by

Crassidis et al.48,49, 52 This algorithm is called the Attitude Lean Loping Estimator
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using GPS Recursive Operations (ALLEGRO). In the ALLEGRO algorithm, the

model is assumed as the quaternion kinematics model. Also, the attitude rate is

adequately modeled by a constant model error d between measurements, so that the

Eq. (2.37) can be written as

˙̂q =
1

2
Ξ (q̂)d (6.11)

where q̂ denotes the estimated quaternion. Then, the lowest order time derivative of

q̂ in Eq. (6.11) in which any component of d first appears is one, so that pi = 1. By

using the model in Eq. (6.11) and the GPS signal phase measurement model in Eq.

(5.1), the optimal model error is found. Therefore, the attitude parameter, i.e. the

quaternion, is determined without using angular rate information.

In this section, a predictive filter using the Pseudolite signal observation model

in Eq. (6.2) is developed. The only difference from ALLEGRO is that the Pseudolite

signal observation model contains the nonplanar effect of the carrier wavefronts. To

derive the S (q̂) matrix in Eq. (2.38), the following matrix is defined

Γ (b) ≡



− [b×]

... −b
. . . . . . . . . . . . . . . . .

bT
... 0


 (6.12)

where b is a 3-dimensional vector. Another useful properties between quaternions

and 3-dimensional vectors are given by

Ω (a)q = Ξ (q) a (6.13a)

Γ (b)q = Ψ (q)b (6.13b)

where a is a 3-dimensional vector, q is a quaternion, and matrices Ξ and Ψ are

defined in Eq. (3.7). Substituting Eqs. (6.12), (6.13), (3.6), and Eq. (3.14) into Eq.

(6.2) yields

cij [x̂ (t) , t] =

√
(r+AT(q̂)bm−tj)

T

(r+AT(q̂)bm−tj)−
√

(r+ATbsi
−tj)

T

(r+AT(q̂)bsi
−tj)

λ

=

√
`+bT

mbm−2q̂TΩ(bm)Γ(tj−r)q̂−
√

`+bT
si

bsi
−2q̂TΩ(bsi)Γ(tj−r)q̂

λ

(6.14)
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where ` = rTr − 2rTtj + tT

j tj. The S (q̂) matrix is formed by taking the partial

derivative of Eq. (6.14) with respect to q̂ and right-multiplying by 1
2
Ξ (q̂). Therefore,

we have

S (q̂) =
1

2λ




q̂T[Ω(bs1)Γ(t1−r)+Γ(t1−r)Ω(bs1)]√
`+bT

s1
bs1

−2q̂TΩ(bs1)Γ(t1−r)q̂
− q̂T[Ω(bm)Γ(t1−r)+Γ(t1−r)Ω(bm)]√

`+bT
mbm−2q̂TΩ(bm)Γ(t1−r)q̂

...

q̂T[Ω(bsm )Γ(tn−r)+Γ(tn−r)Ω(bsm )]√
`+bT

sm
bsm−2q̂TΩ(bsm )Γ(tn−r)q̂

− q̂T[Ω(bm)Γ(tn−r)+Γ(tn−r)Ω(bm)]√
`+bT

mbm−2q̂TΩ(bm)Γ(tn−r)q̂




Ξ (q̂)

(6.15)

The remaining quantities in Eq. (2.38) are given by

Λ = ∆tI3×3 (6.16a)

ŷ =




√
`+bT

mbm−2q̂TΩ(bm)Γ(t1−r)q̂−
√

`+bT
s1

bs1
−2q̂TΩ(bs1)Γ(t1−r)q̂

λ

...√
`+bT

mbm−2q̂TΩ(bm)Γ(tn−r)q̂−
√

`+bT
sm

bsm−2q̂TΩ(bsm )Γ(tn−r)q̂

λ




(6.16b)

z (x̂,∆t) = 0 (6.16c)

In order to derive an attitude error covariance from Eq. (6.11), a propagated expres-

sion must be derived. The attitude error equation is given by52

˙δα = − [d×] δα + δd (6.17)

Since the model error d (t) can be assumed constant over the time interval [t, t+ ∆t],

the propagation of the estimated quaternion is given by

q̂k+1 =

[
I4×4 +

1

2
∆tΩ (dk)

]
q̂k (6.18)

Thus, the discrete propagation is given by

δαk+1 = e−[dk×]∆tδαk +

∫ ∆t

0

e−[dk×]tdtδdk (6.19)

The true output is given by using a first-order expansion of the predictive filter output

in Eq. (2.38),

yk+1 = yk + ∆tS̄kd̄k + νk+1 (6.20)



96

where S̄k and d̄k correspond to true quantities of Sk and dk. Then, the model error

is given by

dk =
1

∆t
Kk

(
yk − ŷk + νk+1 + ∆tS̄kd̄k

)
(6.21)

where

Kk =
(
ST

k R−1Sk

)−1
ST

k R−1 (6.22)

Using a small angle assumption leads to

yk − ŷk ≈ Skδαk (6.23)

Also, we can approximate

S̄k ≈ Sk (I3×3 + [δαk×]) (6.24)

Since KkSk = I3×3, the model error is rewritten as

dk =
δαk

∆t
+

Kkνk+1

∆t
+ (I3×3 + [δαk×]) d̄k (6.25)

Since δdk = d̄k − dk, we have

δdk = −δαk

∆t
− Kkνk+1

∆t
+

[
d̄k×

]
δαk (6.26)

Substituting Eq. (6.26) into Eq. (6.19) leads to

δαk+1 = e−[d̄k×]∆tδαk +
∫ ∆t

0
e−[d̄k×]tdt

(
− δαk

∆t
− Kkνk+1

∆t
+

[
d̄k×

]
δαk

)

≈
(
I3×3 −

[
d̄k×

]
∆t

)
δαk + ∆t

(
− δαk

∆t
− Kkνk+1

∆t
+

[
d̄k×

]
δαk

)

= −Kkνk+1

(6.27)

Then, the attitude error covariance is given by

Pk+1 ≡ E
{
δαk+1δα

T

k+1

}

= KkRKT

k

(6.28)

Since Kk contains q̂k, we use the approximation of Eq. (6.18)

q̂k ≈
[
I4×4 −

1

2
∆tΩ (dk)

]
q̂k+1 (6.29)
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The term that involves [dk×] is typically three orders of magnitude less than the term

that doesn’t involve [dk×], and the term that is quadratic in [dk×] is typically six

orders of magnitude less than the term that doesn’t involve [dk×]. Then, after some

manipulations we have the equivalent attitude covariance expression to the optimal

covariance shown in Eq. (6.10). Although this is valid only for small ∆t, the nonlinear

predictive filter is essentially equivalent to solving the loss function in Eq. (6.9).

6.4.4 Extended Kalman Filter

In this section, a quaternion based Extended Kalman Filter (EKF) using Pseudolite

signals is developed for attitude estimation. The state error vector has seven compo-

nents consisting of error quaternion δq and gyro bias error ∆β. The multiplicative

error quaternion is defined by

δq = q⊗ q̂−1 (6.30)

where q is the true quaternion, q̂ is the estimated quaternion, and the operator ⊗
refers to quaternion multiplication in Eq. (3.12). The inverse quaternion is given

by q−1 =
[
−qT

13 q4
]T

. However, the covariance matrix of the error quaternion is

nearly singular since it has four components. Lefferts et al. solved this problem by

reducing the covariance into a three-component representation.18 The dimension of

the covariance matrix is then 6 by 6. For a small rotation, the error quaternion in

Eq. (6.30) can be approximated by

δq ≈



δq13

1


 (6.31)

The vector part of the error quaternion, δq13, corresponds to half Euler angle errors

for a small angle approximation. By using the quaternion kinematics model in Eq.

(3.13) and the gyro model in Eq. (3.25), the state model equation can be written by

q̇ =
1

2
Ω (ω̃ − β − ηv)q (6.32a)

β̇ = ηu (6.32b)
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where ηv and ηu are zero-mean Gaussian white-noise processes with the properties:

E [ηv(s)ηv(τ)] = σ2
vδ(s− τ)I3×3 (6.33a)

E [ηu(s)ηu(τ)] = σ2
uδ(s− τ)I3×3 (6.33b)

E [ηv(s)ηu(τ)] = 03×3 (6.33c)

where δ(t) is the Dirac delta function. By using the vector part of the error quaternion

in Eq. (6.31) and the additive gyro drift error ∆β, the state error equation of the

EKF is written as

∆ẋ = fx∆x + gxw (6.34)

where the state error is given by

∆x =



δq13

∆β


 (6.35)

The Jacobian matrices are given by

fx =



− [ω̂×] −1

2
I3×3

03×3 03×3


 (6.36a)

gx =



−1

2
I3×3 03×3

03×3 I3×3


 (6.36b)

where the angular velocity estimate is given by

ω̂ = ω̃ − β̂ (6.37)

For the state-observable discrete measurements model of Pseudolite signals shown in

Eq. (6.2), the corresponding Hk matrix is given by

Hk =




...

L
ij
k 01×3

...




(6.38)
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where

L
ij
k =

∂∆φij

∂δq13

≈ − 2
λ

{
(r+AT(q̂−

k )bm−tj)
T

AT(q̂−

k )[bm×]
√

`m
− (r+AT(q̂−

k )bsi
−tj)

T

AT(q̂−

k )[bsi
×]√

`si

}

(6.39)

The prediction of the covariance matrix is obtained by

Ṗ = fxP + PfT

x + gxQgT

x (6.40)

Then, the continuous-discrete EKF update equations are summarized by

∆x̂+
k = Kk

[
ỹk − hk

(
q̂−

k

)]
(6.41a)

P+
k = [I6×6 −KkHk]P

−
k (6.41b)

q̂+
k = δq̂+

k ⊗ q̂−
k (6.41c)

β̂
+

k = β̂
−
k + ∆β̂

+

k (6.41d)

where the Kalman gain matrix is obtained by

Kk = P−
k HT

k

[
HkP

−
k HT

k + Rk

]−1
(6.42)

6.4.5 Unscented Filter

In this section, an Unscented Filter (UF) is developed using Pseudolite signal mea-

surements. The quaternion is used as the attitude parameter because it is singularity

free and the kinematics equation is bilinear. However, since quaternions are not in-

dependent parameters, the normalization constraint in Eq. (3.5) should be satisfied.

The sigma points generated by using quaternions will violate the constraint. To solve

this problem the MRPs are used to generate the sigma points, which are converted

into quaternions. Although the MRPs have singularity at a 360◦, the error MRPs

related with the error quaternions should not have singularity in practice. Also, the

exact form of quaternion propagation solution in Eq. (3.15) can still be used. This

technique is first introduced by Crassidis et al.34 and called the unscented quaternion

estimator (USQUE). Let the state vector be

x̂+
k =



δp̂+

k

β̂
+

k


 (6.43)
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where δp̂k is the error MRP and β̂k is the bias error. Then, the sigma points are

generated by using Eq. (2.47) where the process covariance matrix is given by Eq.

(3.28). By using those sigma points the corresponding error quaternions can be

generated by

δq+
4 (k, i) =

1− ||χδp
k (i) ||2

1 + ||χδp
k (i) ||2

(6.44a)

δq+
13 (k, i) =

[
1 + δq+

4 (k, i)
]
χ

δp
k (i) (6.44b)

where χδp represents the sigma points pertaining to error MRPs. Then, the propa-

gation of the error quaternions are given by

q̂−
k+1 (i) = Ω

[
ω̂+

k (i)
]
q̂+

k (6.45a)

δq−
k+1 (i) = q̂−

k+1 (i)⊗
[
q̂−

k+1 (0)
]−1

(6.45b)

where

q̂+
k (0) = q̂+

k , q̂+
k (i) = δq+

k (i)⊗ q̂+
k (6.46)

Then, the propagated sigma points are given by

χk+1 (0) ≡




χ
δp
k+1 (0)

χ
β
k+1 (0)


 =




0

χ
β
k (0)


 (6.47a)

χk+1 (i) ≡




χ
δp
k+1 (i)

χ
β
k+1 (i)


 =




δq−

13
(k+1,i)

1+δq−
4

(k+1,i)

χ
β
k (i)


 (6.47b)

Also, the predicted mean and covariances are computed using Eq. (2.49) and Eq.

(2.50). The observation in Eq. (2.52) can now be written as

γk+1 (i) = h
[
q̂−

k+1 (i)
]

=




...

|r+AT[q̂−

k+1
(i)]bm−tj|−|r+AT[q̂−

k+1
(i)]bsi

−tj|
λ

+ nij + τi
...




(6.48)

The mean observation is obtained by using Eq. (2.51) and the output and cross

covariance matrices are obtained using Eqs. (2.53) and (2.55). The updates of MRPs
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and the biases are taken by using Eq. (2.44). Then, the quaternions are updated by

q̂+
k+1 = δq̂+

k+1 ⊗ q̂−
k+1 (0) (6.49)

where δq̂+
k+1 is given by

δq+
4 (k + 1) =

1− ||δp̂+
k+1||2

1 + ||δp̂+
k+1||2

(6.50a)

δq+
13 (k + 1) =

[
1 + δq+

4 (k + 1)
]
δp̂+

k+1 (6.50b)

For the next step the states should be set as

x̂+
k+1 =




0

∆β+
k+1


 (6.51)

The whole procedure flow of USQUE is shown in Fig. 6.2. First, the sigma points

are generated by using some initial covariance. Then, they are transformed into

error quaternions. The quaternions are propagated using Eq. (6.45) and the error

quaternions are computed again. Then, the propagated sigma points and observations

are obtained by using Eqs. (6.47) and (6.48). The predicted mean and covariance

are then computed by using Eqs. (2.49), (2.51), (2.50), (2.53), and (2.55). Then, the

update of covariance and error MRP are obtained by Eqs (2.44) and (2.46). Next, the

update of the quaternion is accomplished by using the updated error MRP. Finally,

the state is reset using Eq. (6.51) for the next propagation.

6.5 Simulation

To compare the attitude estimation algorithms described in section 6.4, the Pseudo-

lite signals are simulated using the geometry shown in Fig. 6.3. The locations of

the Pseudolite transceivers and receiver antennas are displayed as TX1, TX2, TX3,

TX4, MA, SA1, SA2, and SA3, respectively. The unit vectors {I, J,K} are for the

reference coordinate system and {x, y, z} are for the body fixed coordinate system.

The coordinates of the transceivers in the reference frame and those of the antennas

in the body fixed frame are shown in Table 6.1. The location of the origin of the

body fixed frame is given by r = [ 2.5, 2.5, 0 ]T(m). It is assumed that the position of



102

USQUE Procedure

Initial
Covariance

Corresponding Error Quaternion Generation

( ) ( )
( )

( ) ( ) ( )

2

4 2

13 4

1
,

1

, 1 ,

k

k

k

i
q k i

i

k i q k i i

δ

δ

δ

δ

δ δ

+

+ +

−
=

+� �
= +� �

p

p

p

�
�

q �

Propagated Sigma Points

( ) ( )
( ) ( )

( ) ( )
( )

( )
( )
( )

1
1

1

13
1

41
1

0
0

00

1,

1 1,

k
k

kk

k
k

k

k

k i
i

q k ii
i

i

δ

ββ

δ

β
β

δ
δ

+
+

+

−

−+
+

+

� � � �
≡ =

� � � �	 
	 
 � �
+� � � �

+ +≡ =
� � � �	 
 � �	 


p

p

0�� ��
q�� � �

                       Error Quaternion Propagation

   where

( ) ( ) ( )1 ˆ
k k ki i i− + +

+ � 
= � �q � � q^ ^

( ) ( ) 1

1 1 1 0k k kiδ
−− − −

+ + +

� �
= ⊗ � �q q q^ ^

( )
( ) ( )
0k k

k k ki iδ

+ +

+ + +

=

= ⊗

q q

q q q

^ ^

^^

 Set ˆ k k
+ � �= � �x 0 � �� �

Covariance and MRP Update

Sigma Points Generation

( )

( ) ( )
( ) ( )

ˆ0

ˆ

k k

k
k k k

k

i
i i

i

δ

β

+

+

= � �
≡ = +

� � !p

" x"" # x"

( ) ( )-th column of k k ki i n λ +
$ %

= ± + +& '( P Q

( )

( ) ( )

2

1

4 2

1

13 4 1

ˆ1
ˆ 1

ˆ1

ˆ ˆ1 1 1

k

k

k

q k

k q k

δ

δ

δ

δ

δ δ

+
++

+
+

+ + +
+

−
+ =

+) *
+ = + ++ ,

p

p

p

x

x

q x

Update Quaternion

 where             is1ˆ kδ +
+q

( )1 1 1 0k k kδ+ + −
+ + += ⊗q q q^ ^ ^

Predicted Mean

( ) ( )

( ) ( )

2

1 1 1
1

2

1 1 1
1

1 1
ˆ 0

2

1 1
ˆ 0

2

n

k k k
i

n

k k k
i

i
n

i
n

λ
λ

λ
λ

−
+ + +

=

−
+ + +

=

- .
= +/ 0

+ 1 2- .
= +/ 0

+ 1 2

3
3

x 4 4
y 5 5

Predicted Covariance

( )

1 1 1 1 1

1 1 1 1 1

1

1 1 1 1 1 1

ˆ

,       

k k k k k

k k k k k

xy yy
k k k k k k

νν

νν νν

+ − −
+ + + + +

+ −
+ + + + +

−

+ + + + + +

6 7
= + −8 9
= −

= = +

x x K y y

P P K P K

K P P P P R

:
;^ ^

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

2
1 1 1 1

21

1 1 1 1
1

2
1 1 1 1

21

1 1 1 1
1

1 0 0
1

1

2

1 0 0
1

1

2

T

k k k k

nk

k k k k
i

T

k k k k
xy

nk

k k k k
i

n i i

n i i

λ α β

λ

λ α β

λ

− −
+ + + +

−
+

− −
+ + + +

=

− −
+ + + +

+
− −

+ + + +
=

< => ? > ? > ?
+ − + − −@ A@ A@ AB B

= C D
+ > ? > ?

+ − −
B B@ A @ AE F< > ? > ? > ?

+ − + − −@ A@ A@ AB
= C

+
> ? > ?

+ − −@ A @ A

G

G

H x H x
P H x H x

H x I y
P H x I y

J

J
( ) ( ) ( )

( ) ( )

2
1 1 1 1

21

1 1 1 1
1

1 0 0
1

1

2

T

k k k k
yy

nk

k k k k
i

n i i

λ α β

λ

− −
+ + + +

+
− −

+ + + +
=

=BDB BE F< => ? > ? > ?
+ − + − −@ A@ A@ AB B

= C D
+

> ? > ?
+ − −

B B@ A @ AE FG I y I y
P I y I y

J

^ ^

^ ^

^ ^

^ ^

^ ^

^ ^

Fig. 6.2. USQUE Procedure



103

Fig. 6.3. Geometric Configuration of Simulation

the origin of the body fixed frame, r, is given from another source such as navigation

data. For several angular velocities, NLS, LM, nonlinear predictive filter, EKF, and

UF are compared with intensive simulations.

Table 6.1. Locations of Transceivers and Antennas
Transceivers Locations (m) Antennas Locations (m)

t1 [ 0, 0, 5 ]T bm [ -0.05, -0.05, 0 ]T

t2 [ 0, 5, 5 ]T bs1
[ 0.05, -0.05, 0 ]T

t3 [ 5, 0, 5 ]T bs2
[ 0.05, 0.05, 0 ]T

t4 [ 5, 5, 5 ]T bs3
[ -0.05, 0.05, 0 ]T
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6.5.1 NLS and LM

By using the same initial errors, the LM method is used to determine the quaternion

estimate at the first step. Then, NLS is used to determine the quaternion since the

previous estimate is a good guess for next estimation time. Figure 6.4 shows the

Euler angle errors and their 3-σ boundary layers of the NLS and LM estimation. As
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Fig. 6.4. Euler Angle Errors of NLS/LM Estimation (Static)

can be seen, the errors are well inside 3-σ bounds. Also, we can notice that the errors

in the pitch axis are smaller than those of the other axes when we use the sightline

geometry shown in Fig. 6.3.
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Table 6.2. Angular Velocities and Weighting Matrices for Each Case

Cases Weighting Matrices Angular Velocity (rad/s)

Static-1
W = 0

W = 105
I

W = 106
I

ω =




0
0
0




Moving-1
W = 0

W = 105
I

W = 5× 105
I

ω =




0
0.0011

0




Moving-2
W = 0

W = 105
I

W = 5× 105
I

ω =




5× 10−5 sin (0.0011t)
0.0011

5× 10−5 cos (0.0011t)




Moving-3
W = 0

W = 103
I

W = 104
I

ω =




0
0.01
0




6.5.2 Nonlinear Predictive Filter

To investigate the behaviour of the predictive filter, four different angular velocities

are considered. First, the static case is compared with nonlinear least squares. Then,

cases of a LEO spacecraft having an orbital period of 95 minutes are considered.

Finally, relatively rapid angular motion is considered. The angular velocities and

weighting matrices of all cases are shown in Table 6.2. As can be seen in section 2.6,

both ∆t and W can affect the filter performance. The sampling interval, ∆t, is set

to 10 seconds for the first three cases and 2 seconds for the Moving-3 case.

6.5.2.1 Static Case

To show the convergence behavior large initial errors are considered:




δφ

δθ

δψ




=




−43.086◦

−13.851◦

−55.382◦




Three different weighting matrices shown in Table 6.2 are used in the 8 hour sim-

ulations. The attitude time histories are compared in Fig. 6.5 for two weighting
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matrices, W = 106I and W = 0. The initial attitude is given by




φ

θ

ψ




=




27.962◦

−3.034◦

−54.706◦




As can be seen, the convergence of the large weighting matrix is slower but the

estimation errors are smaller after the convergence. A comparison of the Euler angle
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Fig. 6.5. Attitude History Comparison

errors is shown in Figs. 6.6 to 6.8. The horizontal axis of each figure represents the

time in hours unit and the longitudinal axis is the Euler angle errors in degrees. The

3-σ error bounds are also displayed in each figure. For all Euler angle comparisons, the

differences among 3-σ error bounds for each weighting matrix are not distinguishable.
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Fig. 6.8. Attitude Error Comparison in the Yaw Axis

As can be seen, the yaw angle error converges after 8 minutes for W = 106I and the

others require several minutes. However, the Euler angle errors clearly decrease as

the weighting increases.

To investigate the characteristics of the estimation errors, zero initial errors are

considered with the weight matrices W = 105I, W = 104I, W = 103I, and W =

0. Figure 6.9 shows the Euler angle estimates comparison between W = 105I and

W = 0. As can be seen, the estimation errors are smaller for the larger weighting. To

investigate the statistical properties of the estimation errors, the Gaussian distribution

of the Euler angle errors are compared in Figs. 6.10 through 6.12. As can be seen,

the standard deviation decreases as the weighting increases.
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Table 6.3. Mean and Standard Deviation Values
Mean (Deg.) Standard Deviation (Deg.)

Weighting Roll Pitch Yaw Roll Pitch Yaw

W = 105
I 0.0755 -0.1059 0.0341 0.1085 0.1061 0.1237

W = 104
I 0.0708 -0.1248 0.0540 0.3787 0.3945 0.4120

W = 103
I 0.0690 -0.1170 0.0499 1.0880 1.0511 0.9850

W = 0 0.0428 -0.1501 0.0891 2.0120 2.1646 1.9007

The mean and the standard deviation values are shown in Table 6.3. For W = 0,

which is the deterministic case, the 3-σ values of Euler angle errors are over 6 degrees.

However, for W = 105I, the 3-σ values of Euler angle errors are less than 0.4 degrees.

From the static simulation survey, we conclude that the larger weighting introduces

smaller attitude errors. However, the convergence to the correct attitude is the slower.

6.5.2.2 Moving Cases

To investigate the attitude determination performance of the predictive filter in mo-

tion, various angular velocities shown in Table 6.2 are considered. For the spacecraft

having an orbital period of 95 minutes, the attitude estimation results for W = 0

and W = 5× 105I are compared in Fig. 6.13. Initial Euler angle errors are set to




δφ

δθ

δψ




=




−0.411◦

7.106◦

−2.057◦




Although the Euler angles for the roll and yaw axes seem to be changing rapidly,

they represent the same orientation. Euler angle errors for each axis are compared in

Figs. 6.14 to 6.16. At first as the weighting increases the Euler angle errors decrease.

However, unlike the static case the errors seem to be biased for larger weightings. In

Fig. 6.14 the Roll angle errors decrease as W increases from W = 0 to W = 105I.

But, after that, the errors become large as W increases.
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Fig. 6.13. Attitude History Comparison (Moving-1)
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Fig. 6.15. Attitude Error Comparison in the Pitch Axis (Moving-1)
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Fig. 6.16. Attitude Error Comparison in the Yaw Axis (Moving-1)
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The same motion with small sinusodial disturbances is considered in the Moving-2

case. The weighting matrices are the same as those of Moving-1 case. Also, the

initial Euler angle errors are the same. The attitude estimation results for W = 0

and W = 5× 105I are compared in Fig. 6.17.
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Fig. 6.17. Attitude History Comparison (Moving-2)

Figures 6.18 to 6.20 show the Euler angle errors of Moving-2 case. The behavior

seems to be the same as that of Moving-1. The estimation errors are all within the

3-σ bounds. As can be seen, the 3-σ bounds for yaw axis is smaller than the other

two axes due to the sightline geometry.
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Fig. 6.18. Attitude Error Comparison in the Roll Axis (Moving-2)
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Fig. 6.19. Attitude Error Comparison in the Pitch Axis (Moving-2)
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Fig. 6.20. Attitude Error Comparison in the Yaw Axis (Moving-2)

In the Moving-3 case relatively rapid angular motion is considered. Thus, only a

one-hour simulation is used. Since ∆t is now set by 2 seconds, the weightings are also

changed. The attitude estimation results for W = 0 and W = 104I are compared

in Fig. 6.21. Figures 6.22 to 6.24 show the Euler angle errors for the Moving-3 case.

The behavior of Euler angle errors is the same as that of the others. However, as ∆t

decreases the choice of weights should be reconsidered.

As a conclusion, for the static case the estimation error of the predictive filter

decreases as the weight increases. However, for the moving cases if the weights exceed

certain limits the estimation errors increase and can violate the 3-σ bounds.
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Fig. 6.21. Attitude History Comparison (Moving-3)
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Fig. 6.22. Attitude Error Comparison in the Roll Axis (Moving-3)
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Fig. 6.23. Attitude Error Comparison in the Pitch Axis (Moving-3)
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Fig. 6.24. Attitude Error Comparison in the Yaw Axis (Moving-3)
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6.5.3 EKF and UF

The Pseudolite signal measurements as well as angular velocity measurements with

gyros are used for the comparison of EKF and UF. The comparison is accomplished

in two parts. The first compares the mean estimation error through Monte Carlo like

simulations. By using this comparison, the statistical properties of the EKF and UF

can be investigated. Then, by using large initial errors the convergence behaviors are

investigated.

6.5.3.1 Monte Carlo Simulation

To compare the EKF and UF, a Monte Carlo simulation is applied. The initial Euler

angle errors and gyro drift errors are generated randomly by




δφ

δθ

δψ




= 30 randn (3, 1) (Deg)

∆β = .0001 randn (3, 1) (rad/sec)

where the ‘randn’ is the MATLAB command used to generate a Gaussian normal

random number whose standard deviation is 1. The initial covariance matrix is set

to

P0 =




0.5I3×3 03×3

03×3 10−5I3×3




The process covariance matrix is given by Eq. (3.28) where ∆t = 10 seconds, σv =

1.7222e-5 (rad/sec3/2), and σu = 1.8133e-8 (rad/sec3/2). The measurement covariance

matrix is given by R = σ2
pI12×12 where σp = 0.0263(cycles).

By using 100 random initial attitude errors, bias errors, and measurements, the

mean values of Euler angle errors and biases errors are compared in the following

figures. Figures 6.25 to 6.27 show the Euler angle errors comparison. As can be

seen, the 3-σ bounds of UF are slightly larger than those of the EKF. However,

this does not mean that the EKF’s covariance is the smaller. Since the EKF uses
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Fig. 6.25. EKF vs. UF Roll Error

a linearization approximation, the mean and covariance expression do have errors.35

The covariance expression of UF is more correct than the EKF. In fact, the differences

in the mean estimation errors cannot be distinguishable. Also, the differences of 3-σ

bounds between the UF and EKF are the smallest for the pitch axis while the values

of 3-σ bounds are the largest due to the sightline geometry.

Figures 6.28 to 6.30 show the gyro drift errors comparison. Now, the 3-σ bounds

of the UF are slightly smaller than those of the EKF. For the same reason in the

Euler angle errors, the covariance of the UF is more reliable than that of the EKF.

The magnitudes of the 3-σ bounds are largest for β3 and smallest for β2. Similar to

the Euler angles error, the differences in the mean value of the gyro drift error are

not distinguishable while the differences in the 3σ bounds are slightly different.
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Fig. 6.26. EKF vs. UF Pitch Error
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Fig. 6.27. EKF vs. UF Yaw Error
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Fig. 6.28. EKF vs. UF β1 Error
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Fig. 6.29. EKF vs. UF β2 Error
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Fig. 6.30. EKF vs. UF β3 Error

6.5.3.2 Large Initial Errors

To compare the convergence behavior of the EKF and UF, a large initial error is

considered as



δφ

δθ

δψ
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−120◦
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(rad/sec)

With the given initial guesses, the Euler angle estimation errors are compared in

Figs. 6.31 and 6.32. As can be seen, the estimation of the EKF fails while the UF

estimation errors are well within their 3-σ bounds, although the convergence of the

covariance and estimation error requires an hour. The failure of the EKF is caused
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by the linearization approximation of the EKF that works only for small, first-order,

errors.
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Fig. 6.31. UF Attitude Estimation Errors

Similar to Euler angle errors, the gyro drift estimation of the EKF fails. However,

the estimation errors of the UF seem to be within 3-σ bounds. Also, the convergence

of the drift errors requires more time than Euler angle estimation. The comparison

is shown in Figs. 6.33 and 6.34.
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6.6 Summary

Attitude estimation algorithms using Pseudolite signals are developed and compared

in this section. The comparison is separated into two cases, the static and the moving

cases. For the static case, nonlinear least squares as well as the Levenberg-Marquardt

algorithm are compared with the nonlinear predictive filter. As a result, the nonlinear

predictive filter with large weighting shows the smallest estimation errors while the

estimation error covariance of all methods satisfies the Cramér-Rao lower bounds.

For moving cases, we consider a LEO spacecraft motion. Since the iterative

algorithms, NLS and LM, are not efficient, only nonlinear predictive filter, EKF, and

UF are compared. The estimation errors of the nonlinear predictive filter seem to

be decreasing as weighting increases. However, unlike the static case, the estimation

error of nonlinear predictive filter increases as the weight increases after a certain value

of weighting which is varying due to sampling interval, ∆t, and spacecraft angular

motion. To enhance the estimation error characteristic, two filtering algorithms, the

EKF and UF, are compared as well. As a result, both the EKF and UF determine

the attitude well within 0.5 degrees Euler angle errors. However, the UF shows more

robust results for large initial errors.
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CHAPTER VII

CONCLUSION

In this dissertation, two tasks are accomplished. First, a self survey algorithm for

GPS receiver is developed. Baselines, line biases, integer ambiguities, and attitude

are determined successfully, although the phase measurements contains line biases

and cycle slips. Both simulated and real data are used to verify the algorithm. Since

cycle slips or jumps are frequently contained in the phase measurements, a real-time

cycle slip detection and repair algorithm is developed for correct estimation. Then, a

double difference scheme is used to cancel line biases errors which are also contained

in the measurements. To determine the attitude, a nonlinear estimation problem

is solved by using nonlinear least squares and the Levenberg-Marquardt algorithm.

Simulations are used to compare the two methods. It is demonstrated that the LM

method is more robust to large initial errors while NLS converges fast.

Then, attitude determination algorithms using spherical wavefront Pseudolite

signals are developed and compared with simulations. A covariance analysis of the

nonlinear predictive filter demonstrates it is an optimal estimator. For the static case,

the estimation error is decreased as weighting is increased. However, the estimation

error of the predictive filter is increased after a certain value of weighting for moving

cases. To enhance the attitude determination performance, two filtering methods,

the EKF and UF, are developed. Monte Carlo like simulations are used to compare

the two filters for small initial errors. It is demonstrated that both filters work well.

The differences between them cannot be differentiated. However, the covariance of

UF is more reliable than that of the EKF. In the comparison of large initial errors,

the UF determines attitude parameters and gyro drifts successfully while EKF fails.

For the future work, real Pseudolite data application needs to be accomplished.
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In addition, a new GPS constellation is proposed by using the Flower Constellation

design scheme since the self survey and attitude determination rely on the geometry

of sightlines. The proposed GNFC shows the better GDOPs and ADOPs than the

existing or the upcoming GPS constellations.
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APPENDIX A

COLORED NOISE

Non-Gaussian error, such as multi-path error, is known to be contained in the GPS

phase measurement. This colored noise, ξ(t), may be calculated by53,105

dξ

dt
= −1

τ
ξ +

ε

τ
η(t) (A.1)

where η(t) is a Gaussian white noise and τ is a time constant. A colored noise used

in the simulation is shown in Fig. A.1. A time constant of twenty minutes is used.
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Fig. A.1. Colored Noise

By using these colored noises, the phase measurements are simulated. Then, NLS

and PF estimation results are compared in Fig. A.2. as well as 3-σ bounds. The

thick solid line represents the roll angle estimation error that is determined by the

PF. Small circles correspond to the NLS estimation error. As can be seen, the PF

shows slightly the better results.
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