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ABSTRACT

Learning to Segment Texture in 2D vs. 3D : A Comparative Study. (August 2004)

Se Jong Oh, B.S., Korean Air Force Academy

Chair of Advisory Committee: Dr. Yoonsuck Choe

Texture boundary detection (or segmentation) is an important capability of the

human visual system. Usually, texture segmentation is viewed as a 2D problem, as

the definition of the problem itself assumes a 2D substrate. However, an interesting

hypothesis emerges when we ask a question regarding the nature of textures: What

are textures, and why did the ability to discriminate texture evolve or develop? A

possible answer to this question is that textures naturally define physically distinct

surfaces or objects, thus, we can hypothesize that 2D texture segmentation may be an

outgrowth of the ability to discriminate surfaces in 3D. In this thesis, I investigated

the relative difficulty of learning to segment textures in 2D vs. 3D configurations. It

turns out that learning is faster and more accurate in 3D, very much in line with

what was expected. Furthermore, I have shown that the learned ability to segment

texture in 3D transfers well into 2D texture segmentation, but not the other way

around, bolstering the initial hypothesis, and providing an alternative approach to

the texture segmentation problem.
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CHAPTER I

INTRODUCTION

Detection of a tiger in the bush is a perceptual task that carries a life or death con-

sequence for preys trying to survive in the jungle [1]. Here, figure-ground separation

becomes an important perceptual skill. Figure-ground separation is based on many

different cues such as luminance, color, and texture. In case of the tiger in the jun-

gle, texture plays a critical role. Texture segmentation divides a scene into regions

of uniform textures, each of which corresponds to the surface of a distinct object or

object pattern. The visual system can then recognize what each object is. What are

the visual processes that enable perceptual systems to separate figure from ground

using texture cues? This intriguing question has led many researchers in vision to

investigate the mechanisms of texture perception.

There have been numerous studies targeted at understanding the neural mecha-

nisms of human visual system underlying texture segmentation. Based on the early

works of Beck [2][3] and Julesz [4] many studies have investigated the features that

characterize two abutting textures such that they can be pre-attentively separated

from each other [5][3][6]. In these studies, orientation and size of bars or blobs are

considered as key features in the segmentation of texture regions [7]. These studies

focused on labeling the texture regions, so their approaches can be called segmen-

tation based on classification. On the other hand, psychophysical and physiological

studies have shown that human texture processing can also be based on the detection

of boundaries between bordering, heterogeneous textures [7], which can be referred to

segmentation without classification. Common to all of these texture segmentation and

The journal model is IEEE Transactions on Neural Networks.
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texture boundary detection studies is that the problem of texture is viewed as a 2D

problem, where textures are defined on 2D surfaces. However, an additional approach

emerges when we ask a question regarding the nature of texture: What are textures,

and why did the ability to discriminate texture evolve or develop? In this thesis, the

proposed answer to the question is that textures naturally define physically distinct

surfaces, thus, it is hypothesized that 2D texture processing ability may have been

an outgrowth of the ability to discriminate textured surfaces in 3D.

This thesis investigates the relative difficulty of learning to segment textures in

2D vs. 3D configurations and test whether the learned ability of 3D texture processing

can easily be transferred to 2D texture tasks. The rest of this chapter provides a

review on current texture segmentation and boundary detection studies in 2D and

ideas on 3D surface representation. Next, the motivation and research problems will

be presented, followed by the main approach taken in this thesis and a brief overview

of the organization of the remaining chapters.

A. Problem Overview

For a better understanding of the problem addressed in this thesis, a brief review of

current studies in texture segmentation is first provided. Next, the concept of surface

representation in vision, which provided motivation for this research, is introduced.

1. Texture Segmentation

Julesz [4] and Beck [2][3] conducted psychological experiments investigating the visual

features that enable humans to discriminate one texture from another. These stud-

ies suggested that texture segmentation occurs based on the distribution of simple

properties of “texture elements”, such as brightness, color, size, and the orientation
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of contours, or other elemental descriptors [8]. Julesz further proposed the texton

theory, in which textures are discriminated if they differ in the density of simple,

local textural features called textons [9].

Texture segmentation models based on these observations naturally lead to a

feature-based theory, in which segmentation occurs when feature differences (such as

difference in orientation) exist. According to Chubb et al. [10], any first-order (quasi-

linear) mechanism cannot detect the boundary that emerges between two textures of

equal mean luminance but composed of differently oriented micropatterns. So, com-

putation of texture boundary must take the responses from the first-order channels

as its input (first filtering process) and then apply some strong nonlinearity (e.g.,

rectification) to these channel outputs to sense the texture boundary appropriately.

Several texture segmentation models such as Malik’s [11] and Bergen’s [12] adopted

this approach. In this prototypical second-order model, rectification-type nonlinearity

that separates two linear-filtering stages in complex channels was used [13] [12] [11].

Whereas studies based on the feature-based theory viewed texture processing with

classification of texture features, psychophysical and physiological studies have shown

that human texture processing may be based on the detection of texture boundaries

between heterogeneous textures using contextual influences via intra-cortical interac-

tions in the primary visual cortex [14][15][7]. These latter studies focused on neural

correlates of boundary detection at relatively early stages of cortical processing [16].

However, some have proposed that bottom up approach alone cannot fully ex-

plain texture segmentation. For example, Theilscher and Neuman [7] proposed a

novel computational model of texture boundary detection. Their neural model for

texture boundary detection consisted of bi-directionally linked cortical areas V1, V2

and V4, and it integrated the data obtained from a variety of methods and experi-

mental results. Their model was built upon the two key hypotheses that (i) texture
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segmentation is based on boundary detection and that (ii) texture border detection is

mainly a function of higher visual cortical areas such as V4, which were motivated by

the principle of recurrent interaction for response integration and cortical prediction

[17]. Their model is different from the other bottom up approaches such as Malik and

Perona’s [11] and Li’s [14][15] models, which are based on feedforward projections of

signals and the intra-cortical interactions within V1.

Many approaches presented above are based on the response of the simple cells

in primary visual cortex, which are estimated by linear filters. The output energy

of a filter bank that consists of filters with different orientation and frequency chan-

nels is computed. It is further processed for output combinations from different

channels, or for input into a decision stage [12][18][19]. Inspired by these theoreti-

cal foundations based on physiological and psychological experiments, many compu-

tational/engineering models of classification and segmentation of texture in digital

image have been proposed. Main features used in these models can be categorized

into five classes: statistical [19], geometrical, structural [20], model-based [21], and

signal processing features [1]. All of the models reviewed above assume that texture

segmentation and boundary detection to be a 2D problem. This means that texture

perception is understood in terms of 2D features and filtering, so the performance is

determined by differences in the output of neurons in low-level visual processing.

2. Surface Representation

We live in a 3D world, which means that we cannot expect to see only one surface at

a time within any given scene of the external world. Often we see multiple surfaces in

local regions of the visual scene, with closer objects at least partially covering those

behind. Thus many surface regions have no counterpart projected on the retina [22].

But we do not feel much loss of information even when part of a surface is not visible
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y

x z

Fig. 1. Three two-dimensional areas, labeled x, y and z. Even though they do not look

like recognizable objects, x is perceived to be in front of a partially occluded

regions y and z, and y and z are perceived to be part of a same region. Adapted

from [22].

by occlusion, that is we do not consider invisible surface regions as not existing.

Figure 1 shows an example, in which we perceive depth and infer that surface x is

covering surface y and z. Even though these patches are not recognizable as familiar

objects, we can still infer that y and z constitute one connected surface. Nakayama

et al. [22] view that such inferences are embedded in the visual system and can occur

at early stages, independent of our knowledge about familiar objects.

Other similar observations as the above led them to propose that surface rep-

resentations form a critical intermediate stage in vision, poised between the earliest

processing stage of image information and later stages such as object recognition.

This view of intermediate visual processing is shown in figure 2 [22]. In this view,

the visual surface representation stage is considered to serve a critical link between

lower-level vision and higher-level vision. Here, an indispensable part of visual per-

ception is the encoding of surfaces, whereas the output signal of lower-level vision is

projected directly to the higher-level in the traditional view. In line with this view, He

et al. [23] showed experimental results suggesting that in rapid texture segmentation,



6

Features
Image

Perception
Texture

Visual 
Search

Motion
Perception

(a) Traditional view

Perception
Texture

Visual 
Search

Motion
Perception

Surface
RepresentationFeatures

Image

(b) An alternative view

Fig. 2. Two views of intermediate visual processing. (a) Texture perception, visual

search and motion perception depend on feature processing in early cortical

areas. (b) Surface representation must precede other intermediate visual tasks

[22]. Adapted from [22].

the visual system cannot ignore information regarding surface layout. However, the

proposed surface representation stage is mainly based on psychological experiments

using stereograms, without physiological considerations.

This idea about surface representation stage presented above provided me with

the insight that texture boundary detection in 3D may go through quite different

processing and the 3D texture detection ability may have contributed to the 2D

counterpart.
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3. Motivation

From the review of research regarding texture segmentation and boundary detection,

we can observe that textures are normally defined on 2D surfaces rather than in 3D

configurations and thus texture boundary detection is basically seen as a 2D prob-

lem. However, an interesting hypothesis arises when we ask an important question

regarding the nature of textures and consider the proposed view above about the

surface representation stage: What are textures, and why did the ability to discrim-

inate textures evolve or develop? One possible answer to this question is that, in

line with the above, texture is that which defines physically distinct surfaces, be-

longing to different objects or object parts, and that texture segmentation function

may have evolved out of the necessity to distinguish different surfaces. Human vi-

sual experience with textures in life can be, therefore, in most cases, to use them as

cues for surface perception, depth perception, and 3D structure perception. In fact,

as reviewed earlier, psychological experiments by Nakayama and He [23][22] showed

that the visual system cannot ignore information regarding surface layout in texture

discrimination and proposed that surface representation must actually precede other

perceptual representations such as texture.

From the discussion above, we can reasonably infer that texture processing may

be closely related to surface discrimination. Surface discrimination is fundamentally a

3D task, and 3D cues such as stereopsis and motion provide unambiguous information

about the surface. Thus, it can also be hypothesized that 3D surface perception

could have contributed in the formation of early texture segmentation processing

capabilities in human vision.

In this thesis, through computational experiments using artificial neural net-

works, the relative difficulty of learning to detect texture boundaries in 2D vs. 3D
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arrangement of textures will be investigated. I will also study whether the learned

ability to segment texture in 3D can transfer into 2D, to test the above hypothesis.

Thus, the relevant research problem to be addressed in this thesis can be summarized

as follows :

1. Relative difficulty of learning to detect boundaries in 3D vs. 2D arrangement

of textures in terms of speed and accuracy.

2. The ability to transfer 3D texture boundary detection skills into its 2D coun-

terpart.

B. Approach

In this thesis, I will answer the specific problems listed above through computational

experiments with textures defined in 3D and 2D. The input texture will be pre-

processed according to the properties of receptive field responses in the early visual

system. Since several studies using single- or multi-unit recordings in the primary

visual cortex of primates provided evidence that V1 is involved in the processing of

texture [7], I will use a model of simple cells and complex cells, which is a filter bank

that consists of filters with different orientation and frequency channels. These filters

typically include oriented Gabor filters [24] and differences of Gaussian (DOG) filters

[7]. However, in this thesis, for simplicity, I will only use oriented Gabor filters to

estimate the spatial feature responses of receptive fields.

The texture segmentation will be accomplished without explicit classification,

which means that the learning process will focus on detecting the boundary, and not

on the classification of each texture based on image features.

For the learning part, a standard backpropagation and mutilayer perceptron

(MLP) will be used. Even though there are several limitations of the backpropagation
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algorithm such as local minima, many researches have successively used it in texture

processing [25] [26]. To overcome some of the limitations of backpropagation, I will

apply several standard improvements such as momentum and adaptive learning rate.

Two MLPs will be trained with different training sets, the 2D training set and the

3D training set, and the speed of learning and the accuracy of boundary detection

over prepared texture images will be compared. I will also test the performance of

the network trained with 3D inputs on 2D texture boundary detection tasks.

C. Outline of the Thesis

This thesis is organized as follows. In Chapter II, I will first present the property of the

early visual system and a brief overview of the backpropagation learning algorithm.

In Chapter III, details about the method I used for my experiments will be described,

which includes details about input preparation and preprocessing, training of the

MLPs, and testing of the trained MLPs. Next, the experimental results and their

analysis will be presented in Chapter III. The speed and accuracy of learning in each

network will be compared and the performance will be statistically analyzed. Finally,

discussion about the results and the relation with other studies will be presented in

Chapter IV, followed by future work and conclusion.
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CHAPTER II

BACKGROUND

In this chapter, I will summarize the properties of the early visual system and the

Gabor filter, which the preprocessing stage of the network input is mainly based

upon. Next, a brief overview of the backpropagation learning algorithm, which is the

foundation of the computational experiments, will be provided.

A. The Early Visual System

Various psychophysical and electrophysiological experiments and advances in brain

imaging technology have provided us with a lot of knowledge about the visual system

of the primates and mammals [27]. Even though there are obvious differences between

the human visual system and the primate visual system, it has also been widely

accepted that the general structure is quite similar [28]. In this section, I will briefly

provide a general overview of the early visual system, the properties of its neurons

and a computational model of the simple cells.

1. Organization of the Visual System

Figure 3 shows an illustration of the early stages of the visual pathway in primates

(adapted from [29]). The signals generated by photoreceptors in the retina, which

is a layer of cells at the back of the eye, are transmitted to the lateral geniculate

nucleus (LGN) in the thalamus through the optic nerve, and are further sent to the

primary visual cortex (V1). V1 is considered to be the first location where the visual

information is processed by the cerebral cortex. The signals are processed in V1 and

then sent to other locations in the extra-striate cortex such as V2, V3, V4, and V5.

The central visual pathway can be divided into two pathways, which are the
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Retina
LGN

V1

Optic Nerve

Fig. 3. Central visual pathway in primates. The major pathway that visual informa-

tion goes through from the eye to the primary visual cortex is shown. Signals

are produced by rod and cone receptors in the retina and are then transferred

to a major relay station, the LGN (lateral geniculate nucleus) via the optic

nerve. Signals then travel to selected areas of the primary visual cortex (V1).

Signals are sent to higher areas of cortex from there on. Adapted from [29].

m-pathway and the p-pathway. The m-pathway is characterized by the following

properties [30]:

• poor spatial resolution and good temporal resolution,

• m ganglion cells,

• magnocellular layers (LGN),

• an upper subdivision of layer 4 in V1,

• V2 (thick stripes),

• MT (’the motion area’), and

• parietal lobes (’where’).

On the other hand, the p-pathway has the following properties [30]:
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• poor temporal resolution and good spatial resolution,

• p ganglion cells,

• parvocellular layers (LGN),

• a lower subdivision of layer 4 in V1,

• V2 (thin stripes and interstripes),

• V4 (’the color area’), and

• inferotemporal lobes (’what’).

Physiological studies have shown that neurons in areas along the p-pathway

respond selectively to visual features with respect to object identification such as

color, texture, shape and binocular disparity [31]. On the other hand, neurons in

areas along the m-pathway respond selectively to spatial aspects of the stimuli, such as

direction of motion, speed of motion, and tracking eye movements [32]. Many studies

have supported the distinction between these two pathways [33]. However, important

inter-connections between the two streams have been shown and the functional impact

for such inter-connections is believed to subserve the integration of visual information

at higher stages of the processing [34]. This thesis is partly motivated by such an

integration of visual information in the m-pathway and the p-pathway.

Now let us look at the response property of a typical neuron in the early visual

pathways, which plays an important role in texture processing and the preprocessing

stages of the experiments in this thesis. The response of a neuron depends on the

pattern of input of a small area of the visual field, called the receptive field (RF).

Thus changes in the input stimulus in the receptive field will lead to changes in the

firing pattern of the corresponding neuron. The receptive fields in different stages of
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Fig. 4. Typical receptive fields of the neurons in the early visual pathway. Positive

signs denote excitation and negative signs denote inhibition. (Left) the RFs of

retinal ganglion cells and LGN cells show a center-surround property. (Right)

The RFs of V1 neurons show orientation, phase, and frequency selectivity.

Adapted from [28].

the visual pathway are known to exhibit different properties. The receptive fields of

the retinal ganglion cells and of the LGN show a center-surround property, which is

exhibited by on-center/off-surround cells or off-center/on-surround cells. On-center

cells respond best to a point of light in a dark field and off-center cells respond best

to a dark point in a light field [35] [36] (figure 4). On the other hand, in the primary

visual cortex (V1), the receptive fields exhibit orientation, phase, and frequency tuned

properties, as illustrated in figure 4 (adapted from [28]).

It is also known that neurons in the visual cortex (as in other cortical areas)

show graded response to specific stimuli. Also, nearby locations in the visual field are

found to be mapped to nearby neurons in the visual cortex. A consequence of the

finding about the receptive fields shown in figure 4 is that the early visual processing

can be modeled as a sequence of filter convolutions. The center-surround receptive

fields can be modeled as the difference of two Gaussian kernels, a classical model of

which is given by the Difference-of-Gaussian (DoG) filter. The orientation selective

receptive fields can be modeled by Gabor filters which are products of sinusoidal

gratings and Gaussian envelopes [37]. Gabor filters are closely related to the function
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Fig. 5. The hypercolumn organization of the cortex. It is shown with the addition of

columns of color-opponent cells (shaded). These areas are called blobs because

of their appearance when the cortex is stained. Adapted from [38].

of simple cells in the primary visual cortex of primates. There are alternating columns

of cells parallel to the surface of V1, which are driven predominantly by inputs to a

single eye. These alternations between left and right eye are referred to the ocular

dominance columns. Changes of the preferred orientation from horizontal to vertical

also make orientation columns perpendicularly to the surface of V1. These two types

of columns constitute hypercolumn as shown in figure 5 [38]. The Gabor response

matrix, the orientation response matrix, and the frequency matrix in the following

chapter is based on this concept of hypercolumn.

2. Model of Simple Cell in V1

Since simple cells play a critical role in texture boundary detection, a computational

model of this type of cell is briefly introduced. This section is largely based on [39]

and [40]. The response r of a simple cell which is characterized by a receptive field



15

function g(x, y) to a luminance distribution image f(x, y) is computed as follows [41]:

r =
∫ ∫

f(x− x′, y − y′)g(x, y)dx′dy′, (2.1)

where x′ and y′ denote a rectangular window. This operation is referred to as convo-

lution. The 2D Gabor functions to model the spatial summation properties of simple

cells are given as follows [24] [42] [43]:

Gθ,φ,σ,ω(x, y) = exp−
x′2+y′2

2σ2 cos(2πωx′ + φ), (2.2)

where θ is the orientation, φ the phase, σ the standard deviation (width) of the

envelope, ω the spatial frequency, (x, y) represents the pixel location, and x′ and y′

are defined as:

x′ = x cos(θ) + y sin(θ), (2.3)

y′ = −x sin(θ) + y cos(θ), (2.4)

where the parameter θ ∈ [0, π) specifies the orientation of the normal to the parallel

excitatory and inhibitory stripe zones which can be observed in the receptive fields of

simple cells. The standard deviation σ of the Gaussian factor determines the linear

size of the receptive field. The parameter ω, which is the frequency of the cosine

factor cos(2πωx′ + φ), determines the preferred spatial frequency of the receptive

field function Gθ,φ,σ,ω(x, y). Finally, the parameter φ, which is a phase offset in the

argument of the harmonic factor cos(2πωx′ + φ), determines the symmetry of the

function Gθ,φ,σ,ω(x, y): for φ = 0 and φ = π it is symmetric with respect to the center

of the receptive field; for φ = −π
2

and φ = π
2

it is asymmetric. An intensity map of a

receptive field function with a particular position, size, orientation, and symmetry is

shown in figure 6(a). Figure 6(b) shows the corresponding spatial frequency response.
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(a)

(b)

Fig. 6. 2D Gabor function in (a) spatial (θ = π
4
) and (b) in spatial frequency domain.

Although such a model is quite simplistic, it has been found to be quite effective

as a model for preprocessing of visual input to study visual responses [44].

B. Backpropagation Algorithm and Its Improvements

Artificial neural networks are composed of a simple element, called neuron, operating

in parallel and these elements are inspired by the biological nervous systems. A neural

network can be trained to perform a particular functions by adjusting the values of

the connections between the elements. Out of many learning methods, I used neural

networks because of the following useful properties (adapted from [45]) :

• Nonlinearity. It is a highly important property due to the inherent nonlinearity

of the underlying input signals, which are texture feature signals in the current
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case.

• Input-output mapping. The experiments in this thesis, which require supervised

learning, involves modification of the synaptic weights of a neural network by

applying a set of labeled training samples and corresponding responses.

• Adaptivity. The natural capability of a neural network for pattern classification

make it a useful tool in the experiments done here, which can be considered as

adaptive pattern recognition.

In this section, I will briefly present the general structure of artificial neural

networks and a summary of the backpropagation algorithm. This section is closely

follows [46] and [45].

1. Neuron

A neuron is an information processing unit that is fundamental to the operation of

a neural network. Figure 7 shows the model of a neuron, which forms the basis of

designing artificial neural networks. There are three basic elements of the neuronal

model;

• A set of synapse or connecting links, each of which is characterized by a weight.

The signal input xm is multiplied by the synaptic weight wkm.

• An adder for summing up the input signals, weighted by the respective synapses

of the neuron.

• An activation function f for limiting the amplitude of the output of a neuron.

The model of a neuron in figure 7 also includes bias (bk), which has the effect of

increasing or decreasing the net input of the activation function depending on whether

it is positive or negative, respectively.
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Fig. 7. Nonlinear model of a neuron. xi denotes input signals to the neuron, wkj de-

notes synaptic weights, bk denotes the bias, f(·) denotes the activation function

and yk denotes output of the neuron. Adapted from [46].

A neuron k can be described by the following pair of equations:

vk =
∑m

j=1
wkjxj + bk (2.5)

yk = f(vk), (2.6)

where x1, x2, ..., xm are the input signals, wk1, wk2, ..., wkm are the synaptic weights of

neuron k, uk is the linear combiner output due to the input signals, bk is the bias, f(·)

is the activation function, and yk is the output signal of the neuron. The activation

function f(·) defines the output of a neuron in terms of the induced local field v. Here

are several types of activation functions:

• Threshold Function:

f(v) =


1, if v ≥ 0

0, if v < 0.
(2.7)

A neuron that has this form of activation function is referred to as the McCulloch-

Pitts model. In this model, the output of a neuron takes on the value of 1 if

the induced local field of that neuron is nonnegative, and 0 otherwise.
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• Piecewise-Linear Function:

f(v) =


1, if v ≥ +1

2

v, if +1
2

> v > −1
2

0, if v ≤ −1
2
.

(2.8)

This form of activation function may be viewed as an approximation to a non-

linear amplifier.

• Sigmoid Function (Figure 8a):

f(v) =
1

1 + exp(−av)
, (2.9)

where a is a slope parameter. For the corresponding form of a sigmoid function

the hyperbolic tangent function (f(v) = a tanh(bv), where parameter a and b

will be provided in Chapter III) can be used. This form of function is most

commonly used in the construction of artificial neural networks. This function

is differentiable, whereas the threshold function is not.

• Radial Basis Function (Figure 8b):

f(v) = exp(−v2). (2.10)

Radial basis function has maximum of 1 when its input is 0.

One most common class of a feedforward neural network is multilayer perceptron

network, which consists of a set of input units that constitute the input layer, one

or more hidden layer of computation nodes, and an output layer of computation

nodes. The input signals propagate through the network in a forward direction, on

a layer-by-layer basis. These neural networks are commonly referred to as multilayer

perceptrons (MLPs). MLPs have been applied successfully to solve difficult and
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diverse problems by training them in a supervised manner with the backpropagation

algorithm, which is based on gradient descent learning. In the next section, a brief

review about backpropagation algorithm, which is a popular training algorithm for

MLPs, will be provided along with the heuristics for making the backpropagation

algorithm perform better.

2. Backpropagation

Single layered perceptrons can only do a linear classification, but MLPs trained by

backpropagation algorithm are capable of various nonlinear classifications. The back-

propagation algorithm employs gradient descent to attempt to minimize the sum of

squared error between the network output values and the target values for these out-

puts. The simplest implementation of the backpropagation algorithm updates the

network weights and biases in the direction in which the error function decreases

most rapidly. In the following, I will briefly describe the backpropagation algorithm

and several heuristics, which I applied in the current experiments, to make the back-

propagation algorithm perform faster and stabler.

a. Backpropagation Algorithm

The backpropagation algorithm can be described as follows [47]:

• Each training example is a pair of the form < ~x,~t >, where ~x is the vector of

network input values, and ~t is the vector of target network output values.

• η is the learning rate. nin is the number of network inputs, nhidden is the number

of units in hidden layer, and nout is the number of output units.

• The input from unit i into unit j is denoted xji, and the weight from unit i to

j is denoted wji.
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– Create a feed-forward network with nin inputs, nhidden hidden units, and

nout output units.

– Initialize all network weights to small random numbers (e.g., between -0.05

and 0.05).

– Until the termination condition is met, For each < ~x,~t > in training ex-

amples, do:

1. Propagate the input forward through the network:

2. Input the instance ~x to the network and compute the output ou or

every unit u in the network.

3. Propagate the errors backward through the network:

4. For each network output unit k, calculate its error term δk

δk = ok(1− ok)(tk − ok). (2.11)

5. For each hidden unit h, calculate its error term δh

δh = oh(1− oh)
∑

k∈outputs

wkhδk. (2.12)

6. Update each network weight wji

wji = wji + ∆wji (2.13)

∆wji = ηδjxji. (2.14)

The backpropagation algorithm provides an approximation to the trajectory in weight

space computed by the method of steepest descent. The smaller the learning rate η

is set, the smaller the changes to the synaptic weights in the network will be for each

iteration, and the smoother the trajectory in weight space will be. This, however, is
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attained at the cost of a slower rate of learning. If, on the other hand, the learning

rate η is too high in order to speed up the rate of learning, the resulting large changes

in the synaptic weights assume such a form that the network becomes unstable (i.e.,

oscillatory). A simple method of increasing the rate of learning but avoiding the

danger of instability is to modify equation 6 by including a momentum term:

∆wji = α∆wji(n− 1) + ηδjxji,

where α is usually a positive number called the momentum constant. It has some

beneficial effects on the learning behavior of the algorithm and prevents the learning

process from terminating in a shallow local minimum on the error surface.

b. Heuristics for Faster Backpropagation

There are numerous factors involved in the design of the networks. Here are some

of the heuristics for making the backpropagation algorithm perform faster, which I

employed in my experiment (adapted from [48]). The details on how these are applied

are provided in the following chapter.

• Sequential vs. batch method. The sequential mode of backpropagation learning

is computationally faster than the batch mode, especially when the training data

set is large and highly redundant.

• Activation Function. A network trained with the backpropagation algorithm

may, in general, learn faster when the sigmoid activation function is antisym-

metric (f(−v) = −f(v)) than when it is nonsymmetric. A popular example of

such a sigmoid activation function is the hyperbolic tangent function.

• Target values. It is important that the target values be chosen within the range

of the activation function.
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• Normalizing the inputs. Each input variable should be preprocessed so that its

mean value, averaged over the entire training set, is close to zero, or else it is

small compared to its standard deviation.

• Learning rates (backpropagation with adaptive learning rate).

1. Every adjustable network parameter of the cost function should have its

own individual learning-rate parameter.

2. Every learning rate parameter should be allowed to vary from one iteration

to the next.

3. When the derivative of the cost function with respect to a synaptic weight

has the same algebraic sign for several consecutive iterations of the algo-

rithm, the learning rate parameter for that particular weight should be

increased.

4. When the algebraic sign of the derivative of the cost function with respect

to a particular synaptic weight alternates for several consecutive iterations

of the algorithm, the learning rate parameter for that weight should be

decreased.

In this chapter, I provided a brief summary of the properties of early visual

system and the Gabor filter, which plays a critical role in texture processing in the

visual system and, therefore, in the preprocessing stages of the experiments in this

thesis. A brief overview of the backpropagation learning algorithm, which is the

foundation of the computational experiment, was also provided. In the following

chapter, the detailed experimental method based on the background presented above

will be provided.
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Fig. 8. Activation functions. (a) Sigmoid function and (b) Radial basis function.
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CHAPTER III

EXPERIMENTAL METHOD

To investigate the relative difficulty of learning to segment textures in 2D vs. 3D

configurations and to find out whether the learned ability of 3D texture processing

can easily be transferred to 2D perception of texture, texture boundary detection

on 2D surface and in 3D space were simulated using Matlab. In this chapter, I will

describe in detail how I prepared the two different arrangements (Section A), and

explain how I trained two standard MLPs to discriminate these texture arrangements

(Section B). Two separate networks that are identical in structure were trained, one

with input prepared in a 2D arrangement (I will refer to this network as the 2D-net),

and the other in a 3D arrangement (the 3D-net).

A. Input Preparation

Three sets of texture stimuli S1, S2, and S3 were prepared for the experiments. Tex-

tures in S1 were simple artificial texture images (bars of orientation 0, π
4
, π

2
, or 3π

4
in

2 different spatial frequencies) and those in S2 were more complex texture images

(bars with orientations different from S1 or more complex patterns such as crosses

and circles), which were adopted from Krose [49] and Julesz [5]. Textures in S3 were

real texture images from the widely used Brodatz texture collection [50], as shown in

figure 9.

For the training of the 2D-net and the 3D-net, eight simple texture stimuli from

S1 were used. For testing the performance of the 2D-net and the 3D-net, all sets of

texture stimuli, S1, S2, and S3, were used. To extract the primitive features in a given

texture, I used a bank of Gabor filters as explained in Chapter II. Previous studies

have shown that Gabor filters closely resemble experimentally measured receptive
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S1

S2

S3

Fig. 9. Texture stimuli. Three texture sets S1, S2, and S3 are shown from the top to

the bottom row.
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fields in the visual cortex [44] [24] and have been widely used to model the response

of visual cortical neurons. Thus, I used a bank of oriented Gabor filters to approximate

the responses of simple cells in the primary visual cortex. The Gabor filter is defined

as follows [37]:

Gθ,φ,σ,ω(x, y) = exp−
x′2+y′2

2σ2 cos(2πωx′ + φ), (3.1)

where θ is the orientation, φ is the phase, σ is the standard deviation (width) of the

envelope, ω is the spatial frequency, (x, y) represents the pixel location, and x′ and

y′ are defined as:

x′ = x cos(θ) + y sin(θ) (3.2)

y′ = −x sin(θ) + y cos(θ). (3.3)

For simplicity, only four different orientations (0, π
4
, π

2
, 3π

4
) were used for θ. (Below, I

will refer to Gθ,φ,σ,ω as simply G.) To adequately sample the spatial-frequency feature

of the input stimuli, three frequency ranges (1 to 3 cycles/degree) were used for ω.

The size of the filter was 16 × 16, σ = 16/3, and φ = π/2. This resulted in 12 filters

Gi (for i = 1..12) for the computation of simple cell responses as shown in figure 10.

To get the Gabor energy matrix C, a gray-level intensity matrix I was obtained from

the images randomly selected from S1 and convolved with the filter bank Gi:

Ci = I ∗Gi, (3.4)

where (i = 1..12) denotes the index of a filter in the filter bank, and ∗ represents the

convolution operator. The Gabor filtering stage is linear, but models purely based on

linear mechanisms are not able to reproduce experimental data [11]. Thus, half-wave

rectification is commonly used to provide a nonlinear response characteristic following

linear filtering. However, in the current experiments, full-wave rectification was used
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full−wave rect.

Ci

R i

Max

Gabor Energy Orientation Spatial Frequency

G

i=1..12

Fig. 10. Gabor filter bank.The process used to generate two orientation response ma-

trices is shown. The texture I is first convolved with the Gabor filters Gi (for

i = 1..12), and the resulting responses are passed through a full-wave rectifier

resulting in Ri. Finally, we get the Gabor energy matrix E(x, y), Orientation

response matrix O(x, y), and Frequency response matrix F (x, y).
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as in [6], which is similar to half-wave rectification, but is simpler to implement1. The

final full-waved rectified Gabor feature response matrix is calculated as

Ri = |Ci|, (3.5)

for i = 1..12. I acquired three Gabor response matrices (or maps), which are Ga-

bor energy response matrix E, orientation response matrix O and frequency response

matrix F , for each sample texture pair. First, to get the Gabor energy response

matrix E, only one maximally responding values at location (x, y) from the twelve

response matrices Ri were selected. In addition to the Gabor energy matrix, orienta-

tion response matrix and frequency response matrix were computed to avoid the loss

of orientation and frequency properties at a given location. The orientation response

matrix O had orientation index (1 ≤ O(x, y) ≤ 4) of the filter that are maximum

response at location (x, y) out of 12 filters. The frequency response matrix F had

frequency index (1 ≤ F (x, y) ≤ 3) of the filter that are maximum response at location

(x, y) out of 12 filters. The same filtering procedure was used for both the 2D and

the 3D arrangement of textures, which will be described below. Figure 10 shows the

Gabor filter bank and the three response matrices E, O, and F of the given texture

pair.

To get the 2D training samples for the 2D-net, two randomly selected textures

from S1 were paired and convolved with the Gabor filter bank (figure 10). Gabor

energy response matrix was acquired first, and orientation response matrix and fre-

quency response matrix were computed from the 12 different response matrices that

were used to get Gabor energy response matrix. Each training input in the 2D train-

ing set consisted of three 32-element vectors (say, ξ2D
k , where k is the training sample

1Full-wave rectification is equivalent to summing the outputs of the two corre-
sponding half-wave rectification channels (see, e.g. Bergen and Adelson [12] [11]).
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(a) Texture image with boundary (b) Texture image without boundary

(c) Gabor energy response to (a) (d) Gabor energy response to (b)

Fig. 11. Generating the 2D input set (2D preprocessing). The procedure used to gen-

erate the training data is shown. (a) Input with a texture boundary. (b) Input

without a texture boundary (c) Gabor energy response calculated from (a).

(d) Gabor energy response calculated from (b).
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(f) Response profile of figure 11(d)

Fig. 12. Response profiles generated by the 2D preprocessing. (a) The response pro-

file (Gabor energy, orientation response, frequency response) from the 32-pixel

wide area marked with a white rectangle in figure 11(c). (b) The response pro-

file from the 32-pixel wide area marked with a white rectangle in figure 11(d).
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index) taken from a short horizontal strip (response profile) of the Gabor response

matrix, the orientation response matrix, and the frequency response matrix, which re-

sulted in a 96-element vector. A single scalar value (say, ζ2D
k ) indicating the existence

(= 1) or nonexistence (= 0) of a texture boundary within that strip was paired with

ξ2D
k . The vector ξ2D

k was taken from a horizontal strip centered at (xc, yc) within the

Gabor energy matrix, the orientation response matrix, and the frequency response

matrix respectively (e.g., the white rectangle in figure 11c & d), where xc is the hori-

zontal center where the two textures meet, and yc is randomly chosen within the full

height of the matrix. The Gabor energy matrix was normalized so that each value

in the matrix have the range 0 ≤ E(x, y) ≤ 5. When the two selected textures were

the same, a texture boundary will not occur at the center; and if they were differ-

ent, a texture boundary will occur. The number of input-target pair (ξ2D
k ,ζ2D

k ) in each

class, i.e., boundary vs. no boundary, was balanced so that each class is equally repre-

sented. Figure 12a shows an example vector ξ2D
k when there was a texture boundary,

and figure 12b a case without a boundary.

For the training samples for the 3D-net, motion cue was applied to simulate

self-motion of an observer as shown in figure 13. One texture from a pair of textures

was overlayed on top of the other and the texture above was allowed to slide over

the one below, which resulted in successive further occlusion of the texture below.

The texture above was moved by one pixel 32 times and each time the resulting 2D

image (I ′j, for j = t1...t32; figure 14a) was convolved with the oriented Gabor filter

bank followed by full-wave rectification as in the 2D preprocessing case (figure 14b).

To generate a single training input pair (ξ3D
k , ζ3D

k ) for the 3D-net, at each time step

the Gabor energy response value E(xc, yc), orientation response value O(xc, yc) and

frequency response value F (xc, yc) were collected into a 92-element vector, where xc

was 16 pixels away to the right from the initial texture boundary in the middle,
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32             1t t

... ...
t32

t1

t2

(a) Texture in 3D (b) Resulting 2D view

Fig. 13. Generating the 3D input set (3D preprocessing). (a) A 3D configuration of

textures and (b) the resulting 2D views before, during, and after the movement

are shown. As the viewpoint is moved from the right to the left (t1 to t32)

in 32 steps, the 2D texture boundaries in (b) marked by black arrows show a

subtle variation.



34

1

32

2

t

t

t

T
im

e

... ... ...

(a) Input over time (b) Response to (a)

Fig. 14. Generating 3D input set through motion (3D preprocessing). (a) Texture pair

images resulting from simulated motion: I ′j for j = t1..t32. (b) The response

matrix of the texture pair.
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(d) Temporal profile (no boundary)

Fig. 15. Response profiles generated by the 3D preprocessing. (a) Response profile

obtained over time near the boundary of two different texture images (marked

by the small squares). (b) A similarly measured response profile collected

over time, using a different input texture, near a location without a texture

boundary (note the periodic peaks).
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and yc was selected randomly for each new input pair but remained the same within

the same input pair (the white square in figure 14b shows an example). Figure 15a

shows an example of such a vector ξ3D
k (note that the x-axis represents time) for a

case containing a texture boundary, and figure 15b a case without a boundary. The

target value ζ3D
k of the input pair ( ξ3D

k , ζ3D
k ) was set in a similar manner as in the

2D case, either to 0 (no boundary) or 1 (boundary). When collecting the training

samples for the 3D-net, the above procedure was performed with two different 3D

configurations. In the first 3D configuration, the texture on the left side is on top of

the texture on the right side with self-motion of observer from right to left. In the

second 3D configuration, the texture on the right is on top of the texture on the left

side with self-motion of observer from left to right. For a balanced training set, the

same number of samples were collected for each 3D configuration.

For a fair comparison between the 2D and the 3D arrangements, 400 training

samples were collected for each combination of two different textures to make 2,400

samples with a target value of 1, and the same number of samples with a target value

of 0. This resulted in 4,800 input-target samples for each case (1 ≤ k ≤ 4,800). These

4,800 input-target samples from each training set were then randomly ordered during

training. Typical response profiles of 2D processing and 3D processing are shown in

figure 16, figure 17, figure 18, figure 19, figure 20, and figure 21 respectively.

B. Training the Texture Segmentation Networks

I used standard multilayered perceptrons (MLPs) to perform texture boundary de-

tection. The networks (2D-net and 3D-net), which consisted of two layers including

96 input units, 16 hidden units and 1 output unit, were trained for 2,000 epochs each
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(b) S1 without boundary

Fig. 16. Typical response profiles of 2D input samples from S1. Note that the profiles

with a boundary (a) is less symmetric about the center compared to those

without a boundary (b).
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(b) S2 without boundary

Fig. 17. Typical response profiles of 2D input samples from S2. Note that (1) the

profiles with a boundary (a) is less symmetric about the center compared to

those without a boundary (b); and that (2) S2 is more complex than S1.
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Fig. 18. Typical response profiles of 2D input samples from S3. Note that (1) the

profiles with a boundary (a) are less symmetric about the center compared to

those without a boundary (b); and that (2) S3 is more complex than S2.
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(b) S1 without boundary

Fig. 19. Typical response profiles of 3D input samples from S1. The same properties

as in figure 16 are observed, but the asymmetry in the boundary cases is more

pronounced.



41

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  5  10  15  20  25  30  35

R
es

po
ns

e

Time

Gabor Energy
Orientation
Frequency

(a) S2 with boundary

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  5  10  15  20  25  30  35

R
es

po
ns

e

Time

Gabor Energy
Orientation
Frequency

(b) S2 without boundary

Fig. 20. Typical response profiles of 3D input samples from S2. The same properties

as in figure 17 are observed, but the asymmetry in the boundary cases is more

pronounced.
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Fig. 21. Typical response profiles of 3D input samples from S3. The same properties

as in figure 18 are observed, but the asymmetry in the boundary cases is more

pronounced.
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using standard backpropagation2. The goal of this study was to compare the relative

learnability of the 2D vs. the 3D texture arrangements, thus a backpropagation net-

work was good enough for our purpose. The hyperbolic tangent function was used

for the activation function of the hidden layer, which is defined as:

f(v) = a tanh(bv), (3.6)

where a and b are constants, which are set to 1.7159 and 2
3

respectively (following [51]).

The hyperbolic tangent function is antisymmetric (f(−v) = −f(v)), thus considered

to learn faster than nonsymmetric activation function [45]. For the activation function

of the output layer that consisted of one unit, the radial basis function (RBF) was

used. The use of the radial basis function in standard MLP is not common and it is

usually used as an activation function of the hidden layer in radial basis networks,

which has additional data-independent input to the output layer. In my experiment,

as shown in the previous section, an input vector to MLP is symmetric about the

center when there is no boundary. On the other hand, an input vector to MLP is

quite asymmetric when there is a boundary, but the mirror image of that vector

should result in the same class. This observation led me to use the radial basis

function, which has a Gaussian profile as shown in figure 8b. Several preliminary

training trials showed that the use of the RBF as the activation function enabled

both the 2D-net and the 3D-net to converge faster (data not provided here).

For the training, the input vectors were drawn from the texture set S1. Back-

propagation with momentum and adaptive learning rate was applied. The delta rule

(from the equations (2.13) and (2.14)):

wji = wji + ∆wji, (3.7)

2Matlab neural networks toolbox was used for the simulations.
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∆wji = ηδjxji, (3.8)

was modified by including a momentum term as

∆wji = α∆wji(n− 1) + ηδjxji, (3.9)

where α is usually a positive number called the momentum constant. The momentum

constant must be restricted to the range 0 ≤ |α| < 1 for the network to converge.

When α is zero, the backpropagation algorithm operates without momentum. Also

the momentum constant α can be positive or negative, although it is unlikely that a

negative α would be used in practice [48]. To determine the best learning parame-

ters, several preliminary training runs were done with combinations of learning rate

parameter η ∈ {0.01, 0.1, 0.5} and momentum constant α ∈ {0.0, 0.5, 0.9}. MLP with

each combination was trained with the same set of inputs so that the results of the

experiment can be compared directly. Each training set consisted of 280 examples,

drawn from S1 and processed by the 2D preprocessing procedure. The training pro-

cess continued for 1,000 epochs. Some of the resulting learning curves are shown in

figure 22. The MLPs with other combination of parameters failed to converge. Based

on these preliminary training tests, I chose the learning parameters as shown in Ta-

ble I. Even though the combinations of (η = 0.1, α = 0.0) and (η = 0.1, α = 0.1)

exhibited quite good final performance, the learning processes caused oscillations in

Table I. Optimal combination of parameters for the backpropagation algorithm.

Parameter Symbol Value

Optimal learning-rate parameter ηopt 0.01

Optimal momentum constant αopt 0.5
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Fig. 22. Learning curves from preliminary training runs with different learning rates

(η) and momentum constants (α).

the MSE during learning. Therefore, those configurations were not selected.

I also applied standard heuristics to speed up and stabilize the convergence of

the networks as introduced in the previous chapter. First, each input variable was

preprocessed so that its mean value, averaged over the entire training set, is close

to zero. Secondly, adaptive learning rate was applied. For each epoch, if the mean

squared error (MSE) decreased toward the goal (10−4), then the learning rate (η) was

increased by the factor of ηinc:

ηn = ηn−1 × ηinc, (3.10)

where n is the epoch. If MSE increased by more than MSEMAX = 1.04, the learning
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rate was adjusted by the factor of ηdec:

ηn = ηn−1 × ηdec. (3.11)

The constants selected above (η = 0.01, α = 0.5) were used for the second test training

to choose the optimal adaptive learning rate factors (ηinc and ηdec). Combinations

of the factors ηinc ∈ {1.01, 1.05, 1.09} and ηdec ∈ {0.5, 0.7, 0.9} were used during the

test training to observe their effects on convergence. The learning curves of five best

combinations of factors are shown in figure 23, where only the beginning part (up to

100 epochs) is shown, but the learning process continued up to 1,000 epochs. The

combination of factors ηinc = 1.01 and ηdec = 0.5 were chosen based on these results.

The 2D-net and the 3D-net were trained 10 times each with parameters chosen

from the preliminary training above (η = 0.01, α = 0.5, ηinc = 1.01, and ηdec = 0.5).

After the training of the two networks, the speed of convergence and the classification

accuracy were compared. To test generalization and transfer potentials, test stimuli

drawn from the texture sets S1, S2, and S3 were preprocessed using both 2D- and

3D-preprocessing to obtain six sample input sets. The results from these experiments

will be presented in the following chapter. These input samples were then presented

to the 2D-net and the 3D-net to compare the performances of the two networks on

these six sample input sets.
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CHAPTER IV

RESULTS

In section A, I will present the performance of the two trained networks (2D-net and

3D-net) in terms of speed and accuracy, and in section B, the performance of the two

networks on novel texture images that were not used during training.

A. Speed of Convergence and Accuracy of Classification on the Training Set

Figure 24 and figure 25 show the 3 best learning curves of each network out of 10

trials of training. The learning processes continued for 2,000 epochs. After 2,000

epochs, the average mean squared error (MSE) of the 2D-net was 0.0742 and that

of the 3D-net was 0.0073. For the 10 trials, the results were comparable each time

(data not presented here). The fact that the final MSEs of the three curves for each

network did not vary significantly as shown in figure 25 suggests that the number

of epochs was adequate. A noticeable difference in the two learning curves is that

there are significant fluctuations in the learning curves of the 2D-net, which often

prevented convergence of a network. These results indicate that the 3D-net is easier

to train than the 2D-net. In other words, texture arrangements in 3D may be easier to

segment than those in 2D. The misclassification rate, which was computed by using

threshold of 0.5, in the 2D-net for the 2D training set was 11.2% and that of the

3D-net for the 3D training set was 0.2%, thus, accuracy was also higher in the 3D-net

for the training data.

I analyzed the training sets, from the perspective of statistical analysis of the

data, using principal components analysis (PCA), which provides an effective tech-

nique for dimensionality reduction and visualization. We may reduce the number of

features needed for effective data representation of 2D training set and 3D training
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Fig. 24. Performance of the networks. (a) The final MSE of the networks after training

for 2,000 epochs, and (b) the misclassification rate of the networks on training

set.
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Fig. 25. Learning curves of the networks. The learning curves of the 2D-net and the

3D-net up to 2,000 epochs of training on texture set S1 are shown. The 3D-net

is more accurate and converges faster than the 2D-net (near 100 epochs),

suggesting that the 3D preprocessed training set may be easier to learn than

the 2D set.
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set acquired from texture images in S1. The two dimensional PCA feature space of

the two training sets are shown in Figure 26, where it is clearly shown that the 3D

training set may be easier to separate than 2D set. An interesting observation is

that the data sets without texture boundary for both the 2D and the 3D set have

similar features (cluster in the lower right marked ”X”). It seems that the invariance

of Gabor filter bank responses (Gabor energy response, orientation response, and fre-

quency response) in one half of each response profile (either the left side or the right

side) in the 3D cases with texture boundary (figure 19) gives more separability than

different responses in 2D cases. This invariance of Gabor filter bank responses are

due to motion. Thus, it suggests that motion and 3D arrangement of textures can

allow us to separate two texture surfaces more easily than with spatial features in

2D.

B. Generalization and Transfer

The 2D-net and the 3D-net trained with the texture set S1 were tested on texture

pairs from S1, S2 and S3. (Note that for the texture set S1, input vectors different

from those in the training set were used.) For this testing, 500-sample sets of 2D

and 500-sample of 3D per each texture set, which were prepared in the same manner

as the training samples sets, were used. All six sample sets were presented to the

2D-net and the 3D-net. Two methods to compare the performance of the networks

were used. First, I compared the misclassification rate, which is the percentage of

misclassification. Misclassification rates were calculated for all 12 cases (= 6 sample

sets × 2 networks): Figure 27 shows the result. The 3D-net outperformed the 2D-

net in all cases, except for the sample set from S1 with 2D preprocessing, which

was similar to those used for training the 2D-net. It is also notable that the 3D-
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Fig. 26. Principal Component Analysis (PCA) feature space representation of the

training sets. (a) PCA representation of the 3D training set and (b) the

2D training set from texture images in S1 shows that the 3D training set may

be easier to separate than the 2D set. Also note that the data sets without

texture boundary are similar for both 2D and 3D (lower right cluster marked

”X” in both sets).
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Fig. 27. Comparison of misclassification rates. The misclassification rates of the dif-

ferent test conditions are shown (white bars represent the 2D-net, and the

black bars the 3D-net). The x-axis label SnD
i mD indicates that input set i

preprocessed in n-D was used as the test input, and the m-D network was

used to measure the performance. In all cases, the 3D-net shows a lower

misclassification rate compared to that of the 2D-net, except for S2D
1 2D.
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Fig. 28. Comparison of output errors. The mean error in the output vs. the target

value in each trial and its 99% confidence interval (error bars) are shown for

all test cases (white bars represent the 2D-net, and the black bars the 3D-net).

In all cases, the differences between the 3D-net and the 2D-net are significant

(t-test: n = 500, p << 0.001) (Note that for S2D
1 , 2D < 3D).

net outperformed the 2D-net on the sample sets from S2 and S3 prepared with 2D

preprocessing (3rd and the 5th column in figure 27; these are basically a 2D texture

segmentation problem), where one would normally expect the 2D-net to perform

better because of the manner in which the input was prepared.

As another measure of performance, I compared the absolute error (= |target−

output|) for each test case for the two networks. The results are shown in figure 28.

The plot shows the mean absolute errors and their 99% confidence intervals. The

results are comparable with those reported above. The 3D-net consistently outper-

formed the 2D-net for the sample sets from S2 and S3, and the differences were found

to be statistically significant (t-test: n = 500, p << 0.001). However, the 2D-net out-
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performed the 3D-net for sample set from S1 (figure 28 first pair from the left). Again,

since S1 preprocessed in 2D was used for training the 2D-net, this was expected from

the beginning.

As to why the 3D-net outperformed the 2D-net on sample sets from S2 and S3

(even for the 2D sets preprocessed in 2D) may be stated as follows based on careful

observation of the data:

• 2D-net shows relatively high miss rate even on sample set from S1, which were

used for the training of 2D-net. This means that the 2D-net may not have been

trained well enough to acquire the ability to classify more complex response

patterns as that of S2 and S3. The reason for that may be that the 2D input

representation was not adequate for the task.

• The 2D-net may have been trained adequately enough to classify the more com-

plex response profiles in S2 and S3 differences of change in patterns of response

profiles, On the other hand, the 3D-net seems to have been trained to classify

whether there is significant difference between the average response of the one

half and the average response of the other half. If there is a significant differ-

ence, then there is a boundary. Otherwise, no boundary. This is true with the

S2 and the S3 cases after both 2D preprocessing and 3D preprocessing, whereas

the difference is less significant in S1 with 2D preprocessing. To quantitatively

measure the difference, let us define the mean of one half of the response profile

as,

µk,c,r = AVG
x∈X

(Ec
k(x, yc)), for X =


{1, ..., 16} if r = L

{17, ..., 32} if r = R
, (4.1)

where AVGx(·) denotes a function that computes the mean value over x, k

denotes the sample index, c denotes the class ∈ {B, NB}, where B corresponds
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to ’boundary’ and NB corresponds to ’no boundary’, and E denotes the Gabor

energy response matrix of the texture pair. From this we can define the degree

of asymmetry in the mean values of the response profile as follows:

µB = AVG
1≤k≤500

(|µk,B,L − µk,B,R|), (4.2)

µNB = AVG
1≤k≤500

(|µk,NB,L − µk,NB,R|), (4.3)

µ = |µB − µNB|. (4.4)

Table II shows µ for each case. Note that µ of the 2D preprocessed S1 (the

value marked ∗) is significantly smaller (0.003182) than all the rest(n = 500, p <

0.006).

Table II. The degree of asymmetry (µ) in the Gabor energy profiles.

S1 S2 S3

2D Preprocessing 0.003182∗ 0.014493 0.070150

3D Preprocessing 0.022924 0.017543 0.031973

Another point that I noticed from the results is the relatively poor performance

on texture sample sets of S2, even though the texture pairs from S2 are highly sep-

arable and the texture elements that constitute the texture image in S2 are simple

enough, which suggests that only local feature of difference in orientation and spatial

frequency is not enough to segregate textures in S2, for instance, a texture pair that

consists of a texture composed of ’L’s and one with ’X’s. In fact, Bergen and Adelson

[6] showed such a pair can be discriminated by using size-tuned mechanisms, which

suggests that filters with different sizes may be necessary. On the other hand, Julesz

and Krose [52] viewed that the pair can be segmented even without multiple filter
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sizes if textons are extracted, e.g., the existence or absence of crossing in this case

(’X’ or ’L’, respectively).

These results suggest that (1) developing a texture segmentation function in 3D

can be easier than in 2D, and (2) the ability to segment texture in 3D may transfer

very well into solving texture segmentation problems in 2D.
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CHAPTER V

DISCUSSION

This chapter discusses the main contribution of the current study with respect to rel-

evant works by other researchers (section A), followed by discussion on issues related

to the current experimental approaches (section B), and future directions of this work

(section C).

A. Main Contribution

Since the early works of Julesz[4] and Beck[2] on texture perception, many studies

have been conducted to understand the mechanisms of the human visual system un-

derlying texture segmentation and texture boundary detection in both psychophysical

and pattern recognition research. In most cases, their main concern has been about

the texture perception ability of humans in 2D. In this thesis, I proposed an additional

approach to the problem of texture perception, with a focus on boundary detection

rather than texture classification. First, I demonstrated that texture boundary de-

tection in 3D is easier than in 2D. I also showed that the learned ability to find

texture boundary in 3D can easily be transferred to texture boundary detection in

2D. Based on these results, my careful observation is that the outstanding ability of

2D texture boundary detection of the human visual system may have been derived

from an analogous ability in 3D.

The results of this thesis allow us to question one common belief that many

other texture boundary detection studies share. In the current view, intermediate

visual processing such as texture perception, visual search and motion processing do

not require object (in the context of this thesis, “3D”) knowledge, and thus perform

rapidly; and texture perception is understood in terms of features and filtering, so the
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performance is determined by differences in the response profiles of receptive fields

in low-level visual processing. Nakayama and his colleagues advanced a view which

is similar to that presented in this thesis [23][22]. They proposed that surface repre-

sentation forms a critical intermediate stage of vision between lower level and higher

level vision. In Nakayama’s alternative view on intermediate visual processing, visual

surface representation is necessary before other visual tasks such as texture percep-

tion, visual search, and motion perception can be accomplished (figure 2 in Chapter

I and figure 29 below). In his alternative view, the most important characteristics of

a world defined by surfaces is that it is in 3D. Such an observation is in line with the

results of this thesis indicating that 3D performance can easily transfer into 2D tasks.

image
features

surfaces

What ?

Where?

Fig. 29. Presumed placement of surface representation in relation to lower level and

higher level visual functions. Adapted from [22].

Also, the experiments in this thesis share a common approach as that of ac-

tive vision, which empathizes that vision cannot be performed in isolation and that

vision system can benefit from continuously interacting with the environment [53].

This concept was employed to solve many computer vision problems, such as stereo

matching, with low complexity algorithm by using controlled sensor motion and in-

teraction with environment [54] (see, e.g., [55] [56] [57]). In the experiments of this

thesis, self-motion of observer was simulated to acquire input sets for the 3D case.
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The experiments showed that the 3D case significantly outperformed the 2D case that

has no motion involved. This results are in line with those in active vision, where ac-

tive vision system outperforms passive vision system, and generally leads to a simpler

solution. In this thesis, even though the 3D-net did not have any goal directedness as

most other active vision systems do, the experimental results showed the usefulness

of motion and interaction with the environment, which supports the main argument

for active vision.

B. Limitations of the Model

The main goal of this thesis was to understand the nature of textures, and from that

emerged the importance of 3D cues in understanding the texture detection mech-

anism in vision systems. To emulate 3D depth, motion cues were employed. The

experimental model in this thesis is based on an assumption that moving features

within a visual image remain projectively attached to fixed locations on the surface

of an object, but various phenomena argues against this assumption [58], which means

that a retinal position does not remain fixed on the surface of an object when it is

observed during motion. Although this violation may weaken my argument as well as

many current models regarding shape from motion in other studies, the assumption

about fixation of surface are easily interpretable for human observers and commonly

assumed in most shape from motion algorithms [59] [58], thus it may be reasonable.

One concern is that using motion may have given an unfair advantage to the 3D-

net. That is, additional information may have become available to the 3D-net; some

form of temporal information that the 2D inputs do not have. However, we should

note that the 2D-net has additional spatial information, which the 3D-net does not

have, so eventually these two relative advantages may have canceled out.
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In top-down perceptual modeling approaches such as Gestalt theories of visual

perception, texture perception task is considered to require global information as other

visual perception tasks do and there are many experimental results that support these

approaches [60]. In this thesis, I did not employ any top-down information such as

Gestalt properties or object information, but it may be more appropriate to take

Gestalt approaches than neural modeling approaches as in this thesis. However, the

purpose of this thesis was to show that a seemingly difficult task that may potentially

require at least some amount of object knowledge can be easily solved with motion

and 3D-cues, thus it may be enough to employ neural modeling approach for this

purpose.

In the experiments of this thesis, for the textures with a boundary, the input

sample sets were acquired exactly from the center of the boundary (a fixed boundary

position xc = 16, the measuring range 1 ≤ x ≤ 32). One may think that xc should

be also variable, and that I made the problem so simple that this model cannot be

used in a computer vision system detecting texture boundary. However, it can be

resolved by carefully selecting a threshold (0.5 in this thesis). In addition to this,

when considering the purpose of the experiments, this problem may not change the

conclusion of this thesis, because the condition was the same for in the 2D case as

well.

One conern may be that the results would not hold if the Gabor filter parameters

such as filter size are changed. In fact, the use of multiresolution approach was shown

to affect the performace of texture processing [49]. However, since the change of

parameter values should be applied to both the 3D case and the 2D case uniformly,

the results are not expected to change.

Lastly, even though I applied the heuristics for making backpropagation converge

faster, these may not have been enough to get optimally trained networks. There is
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also a possibility that what was applied in this thesis can be advantageous to either

2D network or 3D network but not both. This point will be discussed more in the

following section.

C. Future Work

In the experiments of this thesis, only motion cues were employed to emulate 3D

depth. One immediate future direction, therefore, is to extend the current approach

to utilize binocular cues as well as monocular cues. Binocular disparity is another

relevant cue for the perceptual analysis of 3D structure. The analysis of structure

from motion and shape from binocular disparity is similar in that it generally requires

two distinct stages of processing. The first of these stages is to compute an optical

flow field from changing patterns of light on the retina and the next is to incorporate

these results to estimate the 3D structure of an observed scene [58]. Thus, a similar

computational/experimental method as used in this thesis can be employed to emulate

binocular disparity. One of the benefits that can be attained from using binocular

disparity is its relative computational simplicity.

Another direction for the future work would be to use more powerful learning

methods such as support vector machines (SVM). While neural networks usually re-

quire problem specific heuristics to optimize the performance, SVMs use a systematic

approach and can be easily applied in different problem domains. SVMs also show

better generalization performance. The nature of neural network models is that the

longer they get trained the better they learn. In fact, there is no precise way to tell

how long the training process is enough. Thus, it would be worth employing SVM

for testing the hypothesis proposed in this thesis, since the current neural network

training scheme in this study may not be optimal for the given task. Furthermore,
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the current model can be more easily applied to computer vision system when SVMs

are used along with other 3D depth cues like binocular disparity.

Lastly, the sample set for training neural networks were acquired from simple

textures that have only four orientations and two spatial frequencies. In future ex-

periments, the number of sample texture for training can be increased so that the

trained network can perform better on any given natural texture image.
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CHAPTER VI

CONCLUSION

I began this thesis with a simple question regarding the nature of textures: What

are textures, and why did the ability to discriminate texture evolve or develop? The

tentative answer was that textures naturally define distinct physical surfaces, and

thus the ability to segment texture in 2D may have grown out of the ability to

distinguish surfaces in 3D. To test this insight, I compared texture boundary detection

performance of two neural networks trained on textures arranged in 2D and in 3D. The

results revealed that texture boundary detection in 3D is easier to learn than in 2D

in terms of speed and accuracy, and that the network trained in 3D easily solved the

2D problem as well, but not the other way around. Based on these results, I carefully

conclude that the human ability to segment texture in 2D may have originated from

a module evolved to handle 3D tasks. The results from this thesis can help us take

a fresh look at the problem of texture segmentation, and allow us to design more

powerful computer vision algorithms in the future.
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