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ABSTRACT 
 
 

Diagnosing Spatial Variation Patterns In Manufacturing Processes 

(May 2003) 

Ho Young Lee, B.S., Seoul National University 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Daniel Apley 

 

 This dissertation discusses a method that will aid in diagnosing the root causes 

of product and process variability in complex manufacturing processes when large 

quantities of multivariate in-process measurement data are available. As in any data 

mining application, this dissertation has as its objective the extraction of useful 

information from the data. A linear structured model, similar to the standard factor 

analysis model, is used to generically represent the variation patterns that result from 

the root causes. Blind source separation methods are investigated to identify spatial 

variation patterns in manufacturing data. Further, the existing blind source separation 

methods are extended, enhanced and improved to be a more effective, accurate and 

widely applicable method for manufacturing variation diagnosis. An overall strategy is 

offered to guide the use of the presented methods in conjunction with alternative 

methods.  
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CHAPTER I 
 

INTRODUCTION 
 

 

 A common characteristic of many modern complex manufacturing processes is 

the availability of large amounts of multivariate in-process measurement and 

inspection data for quality control purposes. One example is automobile body 

assembly, in which laser-optical measurement stations are built into the assembly line 

at various stages, typically immediately after major subassemblies are completed 

(Apley and Shi, 2001). In each measurement station, well over 100 key dimensional 

characteristics distributed over the subassembly may be measured. Moreover, 100% of 

the autobodies produced are measured. Another prime example is printed circuit board 

(PCB) assembly. In PCB assembly, laser-optical measurement is also commonly used 

to obtain detailed dimensional characteristics of the wet solder paste, after it is 

deposited onto the board during the screen printing stage. After the electronic 

components are placed in position on the board and the solder is cured in the reflow 

oven, additional dimensional characteristics of each cured solder joint are obtained via 

X-ray laminography (Glass and Thomsen, 1993). In state-of-the-art PCB assembly 

operations, the solder paste is measured in-process for 100% of the boards produced, 

and the cured solder joints are measured for nearly 100% of the boards.  

---------------------------------------- 

This dissertation follows style of Technometrics. 
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The measurement data may contain a wealth of buried diagnostic information 

concerning the numerous variation sources that contribute to overall levels of process 

variability. Each variation source will typically result in a distinct variation pattern in 

the data. The patterns will have "spatial" characteristics that indicate how a variation 

source causes different measured variables or features to interact, as well as 

"temporal" characteristics that indicate how a variation source evolves over time. As 

in any data mining application, a primary objective is to extract concise, relevant 

information from the raw data in a form that can be clearly presented to a human 

operator. For the purpose of understanding and reducing process variation, relevant 

information refers to the precise nature of the variation pattern caused by each source. 

The presumption throughout this dissertation is that process operators and engineers, 

when provided a clearer understanding of the nature of each variation pattern, will be 

better equipped to identify and eliminate the underlying root causes of process 

variation. 

 In the rest of the introduction, the model for representing spatial variation 

patterns is discussed using the autobody assembly process as an illustrative example. 

Also in this chapter, background information on the limitations of prior related work is 

presented. The end of the introduction provides an overview of the remaining chapters 

of this dissertation and discusses the potential contributions and practical significance 

of this work.  
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I.1  Representing and illustrating spatial variation patterns 

 Let x = [x1, x2, . . ., xn]' be an n×1 random vector that represents a set of n 

measured characteristics from the product or process. Let xi, i = 1, 2, . . ., N, be a 

sample of N observations of x. In autobody assembly, for example, x would represent 

the vector of all measured dimensional characteristics across a given autobody, and N 

would be the number of autobodies in the sample. It is assumed that x obeys the 

model 

 x = Cv + w,                      (1) 

where C = [c1, c2, . . ., cp] is an n×p constant matrix with linearly independent 

columns. The vector v = [v1, v2, . . ., vp]' is a p×1 zero-mean random vector with 

independent components, each scaled (without loss of generality) to have unit 

variance. The vector w = [w1, w2, . . ., wn]' is an n×1 zero-mean random vector that is 

independent of v. 

 The interpretation of the model is that there are p independent variation 

sources {vi: i = 1, 2, . . ., p} that affect the measurement vector x. Each source has a 

linear effect on x that is represented by the corresponding column of C. Together, civi 

describes the effect of the ith source on x. The variation pattern vector ci indicates the 

spatial nature of the variation caused by the ith source. Since the elements of v are 
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scaled to have unit variance, ci also indicates the magnitude or severity of the ith 

source. The random vector w represents the aggregated effects of measurement noise 

and any inherent variation that is not attributed to the sources. Unless otherwise noted, 

it is assumed throughout that the covariance matrix of w is Σw = σ2I, a scalar multiple 

of the identity matrix. Section II.6 discusses how to apply the methods of this 

dissertation in situations where this assumption would not be reasonable. All random 

variables are assumed to be zero mean. If not, the mean of x should be estimated and 

subtracted from the data. 

 The objective of this dissertation is to estimate the pattern vectors {ci: i = 1, 2, 

. . ., p} based on a sample of data and then to use the estimates to gain insight into the 

root cause of the variation patterns. To illustrate this, consider the following example 

from autobody assembly. Figure 1 shows a rear quarter panel subassembly of an 

autobody. The measurement vector x for the quarter panel subassembly consists of n = 

10 y/z-plane coordinates of five separate features that are numbered 1 through 5 in 

Figure 1. The measurements are taken after the quarter panel subassembly is joined to 

the bodyside, which is not shown in the Figure. Apley and Shi (1998) and Apley and 

Shi (2001) should be referred to for a more detailed description of the assembly 

process.  
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Figure 1  Illustration of linear spatial variation patterns in autobody assembly: a 

rotation of the quarter panel subassembly around locating-hole 5. 

 

 In a sample of N = 200 measured autobodies, there were two major variation 

patterns present, and estimates of c1 and c2 were obtained using the methods to be 

described in this dissertation. The estimates of c1 and c2 are illustrated on a figure of 

the autobody in Figure 1 and Figure 2, respectively. The elements of each variation 

pattern vector have been plotted as arrows at the locations of the features to which 

they correspond. The y/z coordinates of each feature have been combined into a single 

arrow. The estimate of c1 shown in Figure 1 appears to be a rotation of the entire 

subassembly about Feature 5. The source signal v1 would be a random variable that is 

proportional to the angle of rotation (clockwise on some autobodies; counter-

clockwise on others) of each quarter panel subassembly. The estimate of c2 shown in 

Figure 2 appears to be a z-direction (up/down) translation of the D-pillar with respect 
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to the rest of the quarter panel subassembly. The source signal v2 would be a random 

variable that is proportional to the amount of translation (up on some autobodies; 

down on others) of each D-pillar. 

 

y-direction 

z-direction 

 

Figure 2  Illustration of linear spatial variation patterns in autobody assembly: a 

translation of the D-pillar in the z-direction. 

 

 Graphical displays of the estimated variation pattern vectors, such as in Figure 

1 and Figure 2, generally facilitate identification of the root causes of variability. The 

root cause of the first variation pattern was found to be a loose locating element that 

failed to properly constrain the quarter panel subassembly when it was placed into a 

fixture and welded to the bodyside. The geometry of the fixture and the position of the 

loose locating element were such that the quarter panel subassembly was free to rotate 

by small amounts about Feature 5 (a hole that mates with a pin rigidly attached to the 

fixture). The root cause of the second variation pattern was found to be an elongated 

hole in the D-pillar that was due to improper stamping. The hole mated with a pin 
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whose purpose was to constrain the D-pillar when it was welded to the quarter panel. 

The elongated hole allowed the D-pillar to translate by small amounts in the z-

direction, relative to the rest of the quarter panel. 

 

I.2  Prior work on classifying pre-modeled variation patterns 

One approach to identifying and diagnosing the root causes of variation 

sources involves off-line analysis based on adequate understanding of the 

manufacturing processes. For example, consider again the autobody assembly process. 

In a set of case studies, 72 percent of the major root causes of variation were fixture 

failures, which usually happens when tooling elements for locating parts fail 

(Ceglarek, Shi and Zhou, 1993). When adequate knowledge about the process is 

provided, it may be possible to model corresponding potential variation patterns. For 

example, consider the quarter panel subassembly process in Section I.1. As discussed 

before, a loose locating element is one of the root causes of the potential variation, and 

this might cause a rotation of the quarter panel subassembly about Feature 5. If the 

geometry of the fixture is available from the CAD system (the CAD system involves 

knowledge about the layout of the tooling element and the measurement position of 

the fixture), the effect of the loose locating element can be analytically modeled off-

line. Likewise, other potential variation pattern vectors may also be amenable to 

modeling through extensive off-line analysis. Apley and Shi (1998) described how to 

analytically model potential variation sources from off-line analysis based on 

engineering knowledge of the process. Alternatively, Barton and Gonzalez-Barreto 
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(1996) suggested modeling potential pattern vectors from past experience with a 

process or through off-line experiments based on Design of Experiments.  

If all of the potential variation patterns are pre-modeled off-line, the on-line 

task reduces to classifying which of the pre-modeled patterns are actually present in 

the on-line measurement data. Ceglarek and Shi (1996) proposed to use principal 

component analysis (PCA) to accomplish this. From the on-line measurement data, 

the principal component (linear combination of the measurement variable x that 

produces the largest variance) can be estimated. By comparing the estimated principal 

component and the set of pre-modeled variation patterns, the single variation source 

resulting in process variation can be identified.  

The method proposed by Ceglarek and Shi (1996) classifies variation patterns 

effectively when only a single variation source is present. When there are multiple 

variation sources present, however, the method is unable to classify the different 

variation patterns. Apley and Shi (1998) proposed a method that is able to classify 

multiple variation patterns. The first part of this method involves estimating the 

severity of each of the potential variation sources using a least-squares approach. 

Based on the estimated secerity of the sources, multiple variation sources can be 

detected and classified using a form of F-test. An extention of this method will be 

discussed in detail in Section IV.2.  

All of the methods for classifying pre-modeled variation patterns rely on the 

assumption that every potential variation source has been pre-modeled off-line. If a 

variation source that has not been pre-modeled is present in the on-line data, then the 
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methods described in this section produce erroneous classification results (see Section 

IV.2). Therefore, the methods discussed in this section can be applied only in 

situations where it is possible to pre-model all of the potential variation sources. Pre-

modeling every potential variation source is not possible in some manufacturing 

processes, however. Although the number p of actual sources present at any given 

time may be reasonable, the number of potential variation sources may be too large to 

model. In addition, the physics of the process may be so complex that off-line 

modeling becomes impossible. The necessity for off-line pre-modeling therefore 

limits the applicability of the methods in this section.   

 

I.3 Prior work on blindly identifying un-modeled variation patterns 

An approach to overcoming the limitation described above involves 

identifying the pattern vector blindly from the on-line measurement data, without pre-

modeling the potential patterns. This section discusses prior works related to this 

objective. Note that the requirement of off-line modeling is the main distinction 

between the methods in Section I.2 and this section.   

Since the model (1) is similar to what is assumed in standard linear orthogonal 

factor analysis and principal components analysis (Jackson, 1980; Jackson, 1981; 

Johnson and Wichern, 1998), one may consider using those methods to estimate 

manufacturing variation patterns from on-line measurement data. Factor analysis was 

originally developed for psychometrics and the social sciences. Its main purpose is to 

extract unobservable common factors from a covariance matrix of many variables. For 
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example, the test scores of students in statistics, mathematics, English and foreign 

language courses may have two unobservable common factors regarding math 

intelligence and language intelligence.  

Let Σx denote the covariance matrix of x. From the model structure and 

assumptions, the covariance of x is 

 Σx = E[(Cv + w)(Cv + w)'] = CC' + σ2I.                  (2) 

Most factor analysis methods are based on PCA, which involves analyzing the 

eigenvectors and eigenvalues of Σx. Let {λi: i = 1, 2, . . ., n} denote the eigenvalues of 

Σx arranged in descending order, and let {zi: i = 1, 2, . . ., n} denote the corresponding 

eigenvectors, which are taken to be an orthonormal set. Define Zp = [z1, z2, . . ., zp] 

and Λp = diag{λ1, λ2, . . ., λp}, which are constructed from the p largest eigenvalues 

and their associated eigenvectors. A PCA decomposition of Σx also yields 

          Σx =  =  +  = ∑
=

n

i
'
iii

1
zzλ ( )∑ −

=

p

i
'
iii

1
2 zzσλ ∑

=

n

i
'
ii

1
2 zzσ [ ] ZIZ '

ppp σ 2−Λ  + σ2I, (3) 

where Zp = [z1, z2, . . ., zp], and Λp = diag{λ1, λ2, . . ., λp}. In order for the 

covariance structures in (2) and (3) to be consistent, C must be of the form Zp[Λp–

σ2I]1/2Q for some p×p orthogonal matrix Q. 



 11

  The methods in this dissertation are presented in the context that the true 

covariance matrix Σx and certain other distribution parameters are available. To 

implement the methods, all parameters are replaced by their estimates, which are 

obtained from the sample of data. The number of "dominant" eigenvalues in the 

sample covariance matrix serves as an estimate of p, and the average of the remaining 

n–p eigenvalues serves as an estimate of σ2. Estimates of Zp, and Λp are constructed 

from the eigenvectors and eigenvalues of the sample covariance matrix. Apley and Shi 

(2001) discuss this in more detail, and they include statistical tests for determining 

how many eigenvalues are dominant.  

  Since p, σ2, Zp, and Λp are all available from PCA, the problem reduces to 

finding an appropriate p×p orthogonal (rotation) matrix U and then using Zp[Λp–

σ2I]1/2U as an estimate of C. This is referred to as factor rotation (Jackson, 1981; 

Johnson and Wichern, 1998). Let Q denote the value of U that yields the true C. In 

other words, C = Zp[Λp–σ2I]1/2Q. An underlying premise of this dissertation is that 

there is some "true" C whose structure is dictated entirely by the physics of the 

process (refer to Apley and Shi, 2001, for a more detailed discussion). Each column of 

the true C represents a distinct variation pattern with a distinct physical root cause. In 

the autobody assembly example in the introduction, the root cause of the first pattern 

was a loose tooling element that caused a rotation of the entire quarter panel 

subassembly obout Feature 5. The first column c1 (illustrated in Figure 1) represents 

that rotation. The root cause of the second pattern was an elongated hole that caused a 
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translation of the D-pillar, and the second column c2 (illustrated in Figure 2) 

represents that translation.  

  Standard factor rotation techniques are not intended to produce a U that is 

necessarily close to Q. Rather, they produce a U that optimizes a somewhat artificial 

interpretability criterion such as the varimax criterion (Johnson and Wichern, 1998). 

Consequently, they do not necessarily produce an estimate of C that is close to the 

true C. In terms of understanding the root causes of variability, however, the most 

effective interpretation of an estimate of C will surely result when it equals the true C. 

The methods discussed in the remainder of this dissertation are intended to accomplish 

this. 

 The method proposed in Apley and Shi (2001) (hereafter referred to as A&S) 

can be viewed as a form of factor rotation that, rather than using some pre-defined 

interpretability criterion, attempts to rotate the estimate of C so that it is as close as 

possible to the true C. This will presumably result in the clearest interpretability, in 

the sense of leading to the clearest understanding of the true nature of the variation 

sources and their root causes. To accomplish this, the method of A&S assumes certain 

structural constraints on the true C. Although their assumptions are less restrictive 

than the implicit assumptions involved in the varimax method (see Section II.4), they 

limit the applicability of the method to some extent. In addition, the method of A&S 

involves a level of user subjectivity that may prohibit its use by process operators and 

engineers who have limited statistical training. This motivates us to turn to blind 

source separation methods to solve the manufacturing variation diagnosis problem.  
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I.4. Outline of the dissertation 

A class of signal processing methods, usually referred to as blind source 

separation methods (Cardoso, 1998; Haykin, 2000), appears to provide a more black-

box approach to identifying un-modeled manufacturing variation patterns. Blind 

separation methods were originally developed for processing sensor array (e.g., radar, 

sonar, wireless communication) signals. Even though these blind separation methods 

were developed for a very different setting, signal processing problems employ a 

model whose structure is nearly identical to (1) (see Section II.1); therefore, it is 

natural to speculate that the blind separation approach can be applied to the 

manufacturing variation diagnosis problem. However, because signal processing 

problems differ in many respects from manufacturing variation diagnosis problems, a 

number of application issues must be considered.  

In Chapter II, two blind separation methods – second-order methods and 

fourth-order methods – are extensively investigated for the manufacturing variation 

diagnosis problem. Second-order and fourth-order methods require their own set of 

additional assumptions to estimate Q uniquely, which will be discussed in Section 

II.2. A portion of the work involves investigating the assumptions required in blind 

source separation algorithms to determine whether they are satisfied in typical 

manufacturing processes. These assumptions are compared with the required 

assumptions of the varimax factor rotation method and the method of A&S in Section 

II.4.1. Furthermore, it is difficult to know a priori whether the required assumptions of 
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each method will be satisfied or not. Accordingly, methods for verifying whether the 

assumptions are satisfied are discussed in Section II.4.2.  

The performances of fourth-order and second-order methods have been already 

analyzed in signal processing applications. A mentioned before, however, there are 

some differences between signal processing applications and manufacturing variation 

diagnosis. For example, noise is usually negligible in signal processing applications, 

but not in manufacturing variation diagnosis. Consequently, the performances of 

second-order and fourth-order methods are studied specifically in the context of 

manufacturing variation diagnosis in Section II.5. In addition to the issues related to 

additional assumptions, Section II.6 discusses how to apply the blind separation 

methods in situations where the assumed noise structure of model (1) would not be 

reasonable in the manufacturing process.  

 The fourth-order and second-order methods can produce unique estimates of 

the variation patterns when the required assumptions are satisfied. If their uniqueness 

conditions are violated, however, they cannot estimate the variation patterns uniquely. 

To overcome this limitation, Chapter III develops a new method for estimating the 

variation patterns by optimally combining the second-order and fourth-order statistics. 

Conceptually, the fourth-order information is more heavily weighted than the second-

order information when the fourth-order assumptions are satisfied and the second-

order assumptions are violated. In the opposite case, the second-order information is 

more heavily weighted than the fourth-order information. Numerically, the optimal 

weights are derived to minimize some measure of estimation accuracy. The theoretical 
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uniqueness conditions of the new method are derived in Section III.2. The uniqueness 

conditions of the new method are less restrictive than the uniqueness conditions of 

either the second-order or the fourth-order method. Thus, the new method is more of a 

black-box type method for identifying manufacturing variation patterns.  

 As mentioned above, the existing methods for classifying pre-modeled 

variation patterns require that all of the potential variation patterns be pre-modeled. 

Due to the complexity of the process and the wide variety of potential variation 

sources, it is often impossible to pre-model all of them. But even when it is difficult or 

impossible to model all of the variation patterns off-line, a small subset can often be 

pre-modeled. However, the current methods for blind identifying un-modeled 

variation patterns (including the methods to be discussed in Chapters II and III) cannot 

utilize this partial information. Chapter IV presents a new method of identifying un-

modeled variation patterns by utilizing information on some pre-modeled variation 

patterns. The new method blindly identifies un-modeled variation patterns from on-

line measurement data, while simultaneously classifying some pre-modeled variation 

patterns by using some test statistics. The new method also has wider applicability 

than other existing methods of classifying pre-modeled variation patterns, since not all 

of the patterns need to be pre-modeled for its application (see Section IV.2). By 

utilizing partial a priori knowledge, the new method can estimate un-modeled 

variation patterns more accurately than the methods of purely blindly identifying un-

modeled variation patterns (see Section IV.4).   
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 The blind separation methods (including the methods to be discussed in 

Chapters II, III and IV) require additional assumptions regarding source distributions 

while the method of A&S requires certain structural conditions on the true C. These 

methods can be used together to identify many un-modeled variation patterns. Chapter 

V presents an overall strategy for combining the methods. Moreover, the chapter 

specifies in detail how to verify whether or not the estimates of the un-modeled 

variation patterns that result from the blind separation methods are reasonable.  
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CHAPTER II 
 

MANUFACTURING VARIATION DIAGNOSIS USING BLIND 
SOURCE SEPARATION APPROACH 

 
 

The existing methods (PCA, factor rotation and A&S method) for identifying 

un-modeled manufacturing variation patterns have certain limitations, as discussed in 

Section I.3. The blind source separation methods seem to provide effective tools, 

which may overcome the limitations of existing methods. This chapter analyzes the 

blind separation methods in manufacturing situations, and also discusses several 

issues related to applying blind source separation methods for manufacturing variation 

diagnosis. The advantages of the blind separation methods over the existing methods 

will be discussed as well as the capabilities and limitations of the blind separation 

methods.  

 

II.1  Blind source separation problem 

 Blind source separation is a term used to describe a number of related signal 

processing problems in which there is an array of spatially distributed sensors, each of 

which picks up signals from a number of distinct, signal-emitting sources (Cardoso, 

1998; Haykin, 2000). Applications include radar and sonar signal processing, 

biomedical (e.g., EEG, EKG, fetal heartbeat) and geophysical signal monitoring, 

wireless communications, and speaker localization. For example, the situation with the 

classic blind separation example of speaker localization, sometimes referred to as the 
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cocktail-party problem, is illustrated. Suppose there are a number of people (the 

sources) speaking simultaneously in a room, and that there are also a number of 

microphones (the sensors) spatially distributed throughout the room. Let p and n 

denote the number of speakers and microphones, respectively, as shown in Figure 3. 

Let xi,t denote the signal recorded by the ith microphone at time t, and let vj,t denote 

the speech signal emitted by the jth speaker at time t. Each microphone signal will 

generally be a mixture of source signals received from all of the speakers (typically 

assumed to be a weighted linear combination) plus additive noise. Ignoring any time 

delays, the model can be written as 

xi,t  =  ci,1v1,t + ci,2v2,t + . . . + ci,pvp,t + wi,t,   i = 1, 2, . . ., n,    (4) 

where each ci,j is a weighting coefficient that depends on the distance between the ith 

microphone and the jth speaker. The quantity wi,t is the noise affecting microphone i 

at time t. Combining (4) for i = 1, 2, . . ., n, the form of the speaker localization model 

is identical to (1). Many other sensor-array signal processing problems yield a 

sensor/source model with this same linear structure. In radar signal processing, for 

example, the sources are p spatially distributed objects to be detected, and the sensors 

are an array of n spatially selective radar antennae. It is generally assumed that the p 

source signals are random and independent. The noise is sometimes assumed 

negligible in sensor-array signal processing, whereas in most manufacturing 

applications it would be non-negligible. 
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Figure 3  Illustration of the blind separation problem for speaker localization. 
 

 

 The term "blind" in blind separation refers to the situation where information 

on the sources must be determined solely from the data sample (xt, t = 1, 2, . . ., N), 

with no prior knowledge of the relationship between the source and sensor signals 

other than the assumed structure of (1). To accomplish this, it is necessary to first 

estimate C "blindly" from the data. If the objective in the speaker localization problem 

were purely to identify and track the location of each speaker, then estimation of C 

would be the primary objective. Because the weighting coefficients contained in C 

depend on the distances between the speakers and the microphones, triangulation 
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principles could be used to determine the location of each speaker. In radar, sonar, and 

other applications, the location of the sources can also be determined based on the 

weighting coefficients in C (Monzingo and Miller, 1980). If, on the other hand, the 

objective in the speaker localization problem were to distinguish between the speech 

signals of each speaker, estimation of C would only be an intermediate step. Once an 

estimate of C is obtained, straightforward linear regression could be used to estimate 

each of the p individual speech signals over the data sample. This is similar to the 

objective in typical wireless communications applications, where the original source 

signals bear some transmitted information. 

 In manufacturing variation diagnosis, it may be useful to estimate both C and 

the source signals. The columns of C provide information on the spatial nature of the 

variation patterns, and the estimated source signals provide information on the 

temporal nature of the variation over the data sample. Although the primary focus of 

this dissertation is on estimating C, the simulation example in Section II.3 illustrates 

how the source signals may be estimated and utilized.  

 

II.2  Blind source separation methods 

 Since the classic blind source separation model is identical to (1), many of the 

blind separation methods apply directly to manufacturing variation diagnosis. This 

section discusses two main classes of blind separation algorithms – second-order 

methods and fourth-order methods. Each class involves a different set of additional 

assumptions regarding the characteristics of the source distributions, discussed in 



 21

Sections II.2.1 and II.2.2. Within each class, there are many variants. Rather than 

provide a comprehensive survey of the different variants, it is focused on a single 

method from each class that illustrates the main principles and that is relatively 

straightforward to implement. Comprehensive discussions can be found in Cardoso 

(1998), Hyvarinen and Oja (2000), and Hyvarinen (1999).  

Most blind separation methods, including those discussed in this dissertation, 

use a form of PCA as the first step. As discussed in Section II.1, PCA reduces a 

problem to find an orthogonal matrix Q that yields true C. To estimate Q uniquely, 

second-order method and fourth-order method use a different set of additional 

assumptions regarding the characteristics of the source distributions, to be discussed in 

Section II.4. This section provides backgrounds how the second-order and fourth-

order methods can estimate Q uniquely under certain constraints on source 

distributions.  

 Both the second-order and fourth-order methods work with a transformed 

version of the data with spatially white (uncorrelated) components. The whitened data 

vector is defined as y = Wx, where W = [Λp-σ2I]-1/2Zp' is the p×n "whitening matrix". 

Premultiplying (1) by W and using the relationship C = Zp[Λp–σ2I]1/2Q, the 

transformed data vector becomes 

 y = Wx = W[Cv + w] = Qv + Ww.                   (5) 

 Rather than working directly with the measurements x, blind separation 

methods usually work with a transformed version with spatially whitened 
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(uncorrelated) components. The p-length whitened vector of measurements is defined 

as y = W–1x, where W = Zp[Λp–σ2I]1/2, and W–1 = [Λp–σ2I]–1/2Zp' is a left inverse 

of W (W–1W = I). From the relationship C = Zp[Λp–σ2I]1/2Q = WQ, it follows that 

 y = W–1x = W–1[Cv + w] = Qv + W–1w.              (6) 

Since y has diagonal covariance matrix I + σ2[Λp–σ2I]–1, W–1 is often referred to as 

the whitening matrix. 

 

II.2.1  Second-order methods 

 Second-order methods utilize only second-order statistics (covariance and 

autocovariance) of the data. These methods impose the additional assumption that, of 

the p sources that are present, no pair has the exact same autocorrelation function. A 

necessary condition for this assumption to hold is that at least p–1 of the p sources are 

temporally autocorrelated. The noise is assumed to be temporally uncorrelated.  

 Let vt denote the source vector at time t. Define Σv,τ = E[vtvt+τ] to be the 

autocovariance matrix of v at lag τ ≥ 0. By the assumption of source independence, 

Σv,τ is a diagonal matrix with diagonal elements ρ1,τ, ρ2,τ, . . ., ρp,τ, where ρi,τ is the 

autocorrelation function of vi (the autocorrelation and autocovariance functions of the 

sources are equivalent, since they are scaled to have unit variance). From (6), the 

autocovariance matrix of y at lag τ ≥ 1 is Σy,τ = E[(Qvt +  

W-1wt)(Qvt+τ + W-1wt+τ)'] = QΣv,τQ'. Because Q is an orthogonal matrix, 
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 Q'Σy,τQ = Σv,τ =                 (7) 
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is diagonal for all τ ≥ 1. Equation (7) forms the basis for second-order blind separation 

methods. Its significance is that the p×p orthogonal matrix Q that yield true C is the 

matrix that jointly diagonalizes the entire set Σy,τ, τ ≥ 1. This joint diagonalizer is 

unique if the assumption holds that no pair of sources have the exact same 

autocorrelation function (see Theorem 3 of Belouchrani, Abed-Meraim, Cardoso, and 

Moulines, 1997). 

 When working with sample data, no single Q will jointly diagonalize the 

sample Σy,τ's for all τ ≥ 1. Tong, Soon, Huang, and Liu (1990) proposed choosing Q 

to be the orthogonal matrix that diagonalizes Σy,τ for a single specified τ. 

Belouchrani, et al. (1997) improved the approach by choosing Q to be the orthogonal 

matrix that jointly, approximately diagonalizes Σy,τ for a set of τ's (e.g., τ = 1, 2, . . ., 

10). Specifically, Q is chosen to minimize the sum of the squares of the off-diagonal 

elements of the set of matrices Q'Σy,τQ for the specified set of τ's. Fortunately, there 

is a computationally efficient numerical method for accomplishing this. Belouchrani, 

et al. (1997) is referred for details of the algorithm, which is a generalization the 

Jacobi technique (Golub and Loan, 1989) for exactly diagonalizing a single matrix.  
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 The reason the second-order method requires that the autocorrelation functions 

differ is somewhat apparent from the relationship Σy,τ = QΣv,τQ'. Consider the 

extreme case where all p sources have the exact same autocorrelation function ρi,τ = 

ρτ, i = 1, 2, . . ., p. Then for each τ, Σy,τ = QΣv,τQ' = ρτQQ' = ρτI, a scalar multiple 

of the identity matrix. Any orthogonal matrix will therefore diagonalize the entire set, 

and Q cannot be uniquely identified.  

 

II.2.2  Fourth-order methods 

 As the name suggests, fourth-order methods utilize fourth-order statistics to 

uniquely estimate Q under their own specific set of additional assumptions. Whereas 

second-order methods impose assumptions on the source and noise autocorrelation, 

fourth-order methods impose the assumptions that i) no more than one of the p sources 

follows a Gaussian distribution, and ii) the noise is either negligible or follows a 

Gaussian distribution. Fourth-order methods can be derived as approximate maximum 

likelihood estimation (MLE) methods (Cardoso, 1998). In addition to the above 

assumptions, exact MLE methods typically assume that additional characteristics of 

the source distributions are known (e.g., that the sources follow uniform distributions). 

In this sense, the fourth-order methods involve a more relaxed set of assumptions and 

less a priori knowledge than exact MLE methods. There also exists a computationally 

efficient algorithm for their implementation (Cardoso and Souloumiac, 1993). 
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 For an arbitrary zero-mean random vector u = [u1, u2, . . ., up]', the fourth-

order cumulant of its ith, jth, kth, and lth elements, 1≤ i,j,k,l ≤ p, is defined as 

           Ci,j,k,l(u) = E[uiujukul] – E[uiuj]E[ukul] – E[uiuk]E[ujul] – E[uiul]E[ujuk].      (8) 

Note that Ci,i,i,i(u) is the kurtosis of ui. Three important cumulant properties are 

(Rosenblatt, 1985; Stuart and Ord, 1987): i) If u is Gaussian, all of its fourth-order 

cumulants are zero; ii) If u and z are independent and of equal dimension, Ci,j,k,l(u + 

z) = Ci,j,k,l(u) + Ci,j,k,l(z); and iii) If the elements of u are independent, all cross-

cumulants of u are zero. A cross-cumulant is defined as Ci,j,k,l(u) with i,j,k,l ≠ i,i,i,i. 

 Let U be an arbitrary p×p orthogonal matrix, and consider the transformation 

U'y of the whitened data. Since w is assumed Gaussian and independent of v, 

properties i) and ii) and Equation (6) imply that Ci,j,k,l(U'y) = Ci,j,k,l(U'Qv). When U is 

the desired orthogonal matrix Q, U'Qv = v has independent components, and all cross-

cumulants of U'y are zero by property iii). This fact forms the basis for fourth-order 

methods. The objective is to find the orthogonal matrix U that minimizes the cross-

cumulants of U'y, and Q is then taken to be the minimizer. This can be viewed as 

finding the orthogonal transformation of (the already spatially uncorrelated) y whose 

components are as independent as possible, where the cross-cumulants provide the 

measure of independence. This bears a close relationship to PCA, in which the data 

are transformed to have uncorrelated, but not necessarily independent, components. 
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Because of this, Comon (1994) has referred to blind separation methods of this type as 

independent components analysis. 

 Comon (1994) has suggested taking Q to be the minimizer (over all p×p 

orthogonal matrices U) of the sum of the squares of the entire set of cross-cumulants 

of U'y. Cardoso and Souloumiac (1993) proposed taking Q to be the minimizer of a 

similar criterion 
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which involves only a subset of the cross-cumulants. For both of these criteria, U = Q 

is the unique minimizer if there is at most one Gaussian source (Cardoso and 

Souloumiac, 1993). The advantage of (9), which is referred to as the joint approximate 

diagonalization of eigenmatrices (JADE) criterion, is that there exists a 

computationally efficient method for finding its minimizer. Cardoso and Souloumiac 

(1993) have shown that an equivalent expression for (9) is 
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where [•]k,l denote the kth-row, lth-column element of a matrix, and each p×p 

cumulant matrix M(i,j) (1≤ i,j ≤ p) is defined such that [M(i,j)]k,l = Ci,j,k,l(y). 

 From (10), the JADE criterion is equivalent to finding the orthogonal matrix U 

that minimizes the sum of the squares of the off-diagonal elements of the set of 
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transformed cumulant matrices {U'M(i,j)U: 1≤ i,j ≤ p}. This gives rise to the "joint 

diagonalization" term in the JADE acronym. The "approximate" term in the acronym 

stems from the fact that with sample data, no orthogonal transformation will result in 

all sample cross-cumulants exactly equal to zero. The sample cumulant matrices can 

only be approximately diagonalized in the sense that (10) is minimized. The sample 

cumulants are defined in the obvious way by replacing the expectations of the 

quantities in (8) with their sample averages. 

 Since the second-order and fourth-order methods involve similar joint 

approximate diagonalizations, the same computationally efficient generalization of the 

Jacobi technique can be used for both cases. Cardoso and Souloumiac (1993) is 

referred for details on the JADE algorithm, which is often used as a benchmark for 

evaluating other algorithms (Reed and Yao, 1998; Wax and Sheinvald, 1997).  

 

II.3  An illustrative example 

 Consider the automotive crankshaft manufacturing process, which consists of a 

number of steps, including forging, rough cutting, finish cutting, drilling, grinding, 

and polishing. Figure 4 shows the geometry of a crankshaft produced in a 

manufacturing line in which there was an extensive amount of in-process 

measurement and inspection. Near the end of the line, for example, stylus traces 

around the circumference at a number of locations on the main bearings and pin 

bearings are taken automatically (for 100% of the crankshafts produced). The 

difference between the target diameter and the maximum, minimum, and average 
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diameter at each location is then logged (this example considers only the maximum 

diameter measurements). The bullet "•" symbols in Figure 4 indicate the locations at 

which the diameter measurements are taken. The diameters are measured at three 

locations along each of the five main bearings (Mains 1 through 5) and at five 

locations along each of the four pin bearings (Pins 1 through 4). The measurement 

vector x for each crankshaft therefore consists of n = 35 diameter measurements. 

 

 

 

Main 5 Main 4 Main 3 Main 2 Main 1 

Pin 4 Pin 3 Pin 2 Pin 1 

 

 

 

 

 

 

 

 

Figure 4  Geometry of the crankshaft in the example of Section II.3. 

 

 Based on a sample of N = 247 crankshafts, it was estimated (using the methods 

discussed in Apley and Shi, 2001) that p = 3 major variation sources were present. 

Estimates of the three variation pattern vectors and the corresponding source signals 
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using the fourth-order method are shown in Figures 5 through 7. The rotated version 

Q'yt of the whitened data was used as an estimate of vt. Each element of a pattern 

vector is represented as an arrow at the location of the corresponding diameter 

measurement. The length of the arrow is proportional to the magnitude of the element 

(the same scaling was used in all three figures). The sign of each element is 

represented by the direction of the arrow (pointing out of the crankshaft for a positive 

element and into the crankshaft for a negative element). Many elements of each 

pattern vector were negligibly small, in which case their arrows were omitted. Note 

that we could reverse the direction of all arrows without changing the meaning of the 

patterns. In other words, the ith pattern represents variation in x in both the positive ci 

and the negative ci directions. Whether the ith pattern causes a diameter to increase or 

to decrease on a particular crankshaft (say crankshaft t) depends on whether vi,t is 

positive or negative. An arrow pointing out of the crankshaft, coupled with a positive 

source signal, represents an increase in diameter. 
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Figure 5 Estimates of the first pattern vector c1 (top panel) and source signal v1,t 

(bottom panel). 
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Figure 6  Estimates of the second pattern vector c2 (top panel) and source signal v2,t 

(bottom panel). 
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Figure 7  Estimates of the third pattern vector c3 (top panel) and source signal v3,t 

(bottom panel). 
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 The three variation patterns were ordered in terms of decreasing severity, 

which is somewhat apparent by comparing the lengths of the arrows in Figures 5 

through 7. We can quantify the severity of each source by noting that the total 

variance of x is  
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The contribution of the ith source to the total variance is therefore ci'ci. The total 

variance for this example was 113, and the contributions of the three sources were 

c1'c1 = 44.5 (39.3%), c2'c2 = 17.2 (15.2%), and c3'c3 = 16.0 (14.2%). Together, the 

three sources account for 68.7% of the total variance of x. 

 The illustrations in Figures 5 through 7 might be used by process operators and 

engineers to aid in diagnosing the major root causes of variation in the bearing 

diameters. The first variation source, illustrated in Figure 5, has a pronounced effect 

on all but one of the main bearings and no effect on the pin bearings. Since the arrows 

on Mains 1 through 4 all point in the same direction, this source causes all of the 

diameters on these bearings to either increase together or decrease together from 

crankshaft to crankshaft. The relative lengths of the arrows indicate that the diameters 

located near the middle of the crankshaft (Mains 2 and 3) vary by a much larger 

amount (roughly 2.5 times larger) than the diameters located nearer to the ends of the 

crankshaft (Mains 1 and 4). The diameters on Main 5, which is nearest to the end of 

the crankshaft, do not vary at all. One possible explanation is that the large cutting 
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forces generated during rough cut machining cause the middle of the crankshaft to flex 

more than the ends, which are held securely in chucks. We note that the first variation 

source alone accounted for 83.5% of the total variance of the Main 2 and Main 3 

diameters.  

 The second variation source, illustrated in Figure 6, primarily affects Pins 1 

and 2. Main 2, which is located between Pins 1 and 2, is slightly affected. The arrows 

in Figure 6 indicate that the second source causes the diameters on Pin 1 to 

increase/decrease uniformly along its length, while simultaneously causing a taper 

along Pin 2. The estimated source signal also provides insight into the temporal nature 

of the variation pattern that may aid in identifying its root cause. The plot of v2,t in 

Figure 6 shows that the second source tends to wander both above and below the zero 

value for extended periods of time, with a substantial shift occurring around the time 

of crankshaft 200. The third variation source, illustrated in Figure 7, affects only the 

Pins. If we visually smooth the arrows for this pattern, it appears that when the 

diameters near the middle of the crankshaft (Pins 2 and 3) increase, the diameters near 

the ends of the crankshaft (Pins 1 and 4) tend to decrease, and vice-versa. The plot of 

v3,t in Figure 7 also reveals an interesting temporal pattern. A large portion of the 

variation in the third source is due to only a few spikes in the data, occurring at around 

the times of crankshafts number 60 and 180. By inspection of the plot of v3,t, it 

appears that the third source may come from a mixture of two different distributions 

during these temporary periods of large variability. The suspected root cause relates to 

the use of parallel machines to perform the same operation at certain locations in the 
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production line. The mixture distribution observed in v3,t most likely resulted from an 

intermittent problem experienced by only one of the parallel machines.  

 

II.4  Discussion of the assumptions 

Virtually all methods that attempt to uniquely estimate C impose either 

explicit or implicit assumptions regarding either the structure of C or the source 

distributions. This includes the method of A&S, blind source separation, and the 

varimax factor rotation method. Which method may produce a better estimate of C 

depends largely on which assumptions are better satisfied. The purpose of this section 

is to compare the various assumptions and provide guidelines for how one may verify 

whether they are satisfied. 

 

II.4.1  Comparing the assumptions 

 The varimax optimization criterion is intended to produce an estimate of C 

whose elements are either large in magnitude or small in magnitude, with as few 

moderate sized elements as possible (Johnson and Wichern, 1998). For any valid 

estimate of C, the sum of the squares of the elements of any one of its rows is a fixed 

quantity (equal to the variance of the corresponding element of x, minus σ2). 

Consequently, the varimax method seeks an estimate of C whose structure is as close 

as possible to what is referred to as the ideal varimax structure: 
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 C =  ,            (11) 
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where ci,i is an ni×1 vector with ∑ = n. This assumes an appropriate re-ordering 

of the elements of x. Hence, the ideal varimax structure is that the p variation sources 

affect p disjoint subsets of the elements of x. If the true C does not have this implicitly 

assumed structure, the varimax estimate would most likely be inaccurate.  
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 The method of A&S assumes that C has the ragged lower triangular structure 
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where ci,j is an ni×1 vector with ∑ = n. An additional assumption that each ni is 

strictly greater than one is required in order that the subsets discussed below can be 

identified. The interpretation of (12) is that there exists a subset of n1 measurements 

{x1, x2, . . ., xn1} that are affected by only a single variation source, which will be 

called as the first source. The effects of the first source on the first measurement 

subset is represented by c1,1. There must also exist a second subset of n2 

measurements {xn1+1, xn1+2, . . ., xn1+n2} that are affected by only one of the 

remaining p−1 variation sources, which will be called as the second source. The 

=
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second subset of measurements may also be affected by the first source (c2,1 ≠ 0), 

however, which is a major distinction between the ideal varimax structure and the 

assumed structure of A&S. There must also exist a third subset of measurements 

affected by only one of the remaining p−2 sources (although these measurements may 

also be affected by the first two sources), and so on.  

Comparing (11) and (12), it is clear that the ideal varimax structure is a rather 

restrictive special case of the structure assumed in A&S. Hence, their method could be 

expected to produce a reasonable estimate of C in many situations where the varimax 

method would not. Consider the crankshaft example discussed in Section II.3, and 

assume the true C coincides with the estimates shown in Figures 5 through 7. Since 

the second source and the third source both have strong effect on the diameter 

measurements for Pins 1 and 2, C does not possess the ideal varimax structure. In 

contrast, C does possess the structure of (12). Pins 3 and 4 are affected by only a 

single source (the source illustrated in Figure 7). The first measurement subset {x1, 

x2, . . ., xn1} would consist of the 10 diameter measurements taken on Pins 3 and 4. 

Although Pins 1 and 2 are also affected by this source, they are affected by only one 

(the source illustrated in Figure 6) of the remaining two sources. The second 

measurement subset {xn1+1, xn1+2, . . ., xn1+n2} would therefore consist of the 10 

diameter measurements taken on Pins 1 and 2. The situation is similar for the two 

variation patterns depicted in Figures 1 and 2. Since Features 2 and 4 are affected by 
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only one of the two variation sources, C possesses the structure of (12), but it does not 

possess the ideal varimax structure. 

 Even when C possesses the structure (12) required in the A&S method, there is 

often ambiguity in selecting the measurement subset affected by a single source, for 

reasons that are discussed in Section II.4.2. When this measurement subset is selected 

incorrectly, or when C does not possess the required structure, the method of A&S 

would not be expected to produce accurate estimates. Blind separation methods may 

still apply in these situations, since they make no assumptions regarding the structure 

of C. This broader applicability with respect to the structure of C comes at the 

expense of narrower applicability with respect to the source distributions. Recall that 

the fourth-order method requires that no more than one of the p sources follows a 

Gaussian distribution, and the second-order method requires that no pair of sources 

shares the same autocorrelation function. The latter is equivalent to requiring that for 

each pair (i,j) with 1 ≤ i ≠ j ≤ p, there exists a τ = τ(i,j) such that ρi,τ ≠ ρj,τ. In other 

words, the second-order assumptions are satisfied as long as the autocorrelation 

functions for each pair of sources differ for at least one time lag (providing the 

autocovariance matrix at this time lag is included in the set to be jointly diagonalized). 

 In Chapter III, a method is developed for optimally combining the second-

order and fourth-order joint diagonalization criteria in order to relax the blind 

separation assumptions required for uniquely identifying C. Section III.2 shows that 

the condition for uniquely identifying C using the combined criteria is that no pair of 

Gaussian sources share the same autocorrelation function. This is weaker than the 
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assumption in the second-order method that no pair of sources, Gaussian or not, share 

the same autocorrelation function. It is also weaker than the assumption in the fourth-

order method that no more than one source is Gaussian, since two or more Gaussian 

sources are allowed if their autocorrelation functions differ. Hence, the combined 

method would have broader applicability then either the second-order method or the 

fourth-order method, individually. 

 It should be noted that the blind separation conditions are theoretical 

conditions that result in the unique identification of C in the hypothetical situation 

where one has available the theoretical covariances and cumulants (or, equivalently, 

infinitely large samples). With finite sample sizes, the performance of the methods 

depends on the extent to which their assumptions are satisfied, as will be illustrated in 

Section II.5. 
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II.4.2  Verifying the assumptions 

 Regardless of which method is used, an attempt to verify that its assumptions 

are satisfied is recommended. In this respect, the blind separation methods have an 

advantage over the method of A&S. First note that the original sources satisfy the 

required assumptions of the methods if, and only if, the estimated sources do. The 

rotated version Q'yt of the whitened data can be used as an estimate of vt. For the 

fourth-order method, histograms of the estimated sources are useful for determining 

whether there are more than one Gaussian source. For the second-order method, a plot 

of the sample autocorrelation functions of the estimated sources is useful for 

determining whether a pair of sources share the same autocorrelation function. Figures 

8 and 9 show histograms and sample autocorrelation functions for the three source 

signals from the crankshaft example (the estimated signals are shown in Figures 5 

through 7). The distributions of the second and third sources appear to be non-

Gaussian, which satisfies the assumptions of the fourth-order method. In contrast, the 

autocorrelation functions for the first and third sources appear quite similar, which 

would violate the assumptions of the second-order method. 
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Figure 8  Histograms for the three source signal from the crankshaft example. 
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Figure 9  Sample autocorrelation functions for the three source signal from the 

crankshaft example. 

 

 When using the method of A&S, it is more difficult to verify whether the 

structural requirement (12) for C is satisfied. This relates to how one identifies the 

measurement subset that is affected by only one source. The strategy described in 

A&S is as follows. The latent covariance matrix is defined as the portion of Σx that is 

due to the sources. From (2) and (3), the latent covariance matrix is CC' = Zp[Λp–

σ2I] , which can be determined from the PCA step. The latent correlation matrix is 

defined in the usual way from the latent covariance matrix. Apley and Shi (2001) have 

shown that if a subset of measurements are affected by a single variation source, their 

Z'
p
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(theoretical) latent correlation coefficients are all ±1. The procedure for finding the 

subsets is to inspect the (sample) latent correlation matrix for a subset of 

measurements with latent correlation coefficients that are all close to one in 

magnitude. 

 While a subset of measurements affected by a single source will have latent 

correlation coefficients that are all ±1, the converse is not always true. Consider the 

situation where n = 4, p = 2, c1 = [1  1  1  1]', and c2 = [1  1  −1  −1]'. The latent 

correlation matrix in this case is 

 . 
















1100
1100
0011
0011

Since two measurement subsets {x1, x2} and {x3, x4} have unit magnitude latent 

correlation coefficients, one might incorrectly conclude that each of these subsets is 

affected by only a single source. The reason these subsets have a high latent 

correlation value is that the effects on {x1, x2} of the first and second source are [1  1]' 

and [1  1]', respectively, which are identical. Likewise, the effects on {x3, x4} of the 

first and second source are [1  1]' and [−1  −1]', respectively, which only differ by a 

constant scale factor. If the method of A&S were applied using either of these two 

subsets, the estimates of c1 and c2 would be [ 2  2   0  0]' and [0  0 2  2 ]', 

which differ substantially from the true pattern vectors. Note that these also coincide 

with the varimax estimates. In situations like this, it is difficult to verify whether high 
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latent correlation is the result of C truly possessing the structure of (12), or the result 

of two or more sources having exactly the same effect (up to a constant scale factor) 

on a measurement subset. 

 Because of this, there is a higher level of subjectivity involved in the A&S 

method than in the blind separation methods. The primary subjectivity in blind 

separation lies in deciding whether the fourth-order or second-order method should be 

used, which relates to verifying whether the fourth-order or second-order assumptions 

are better satisfied. It is relatively straightforward to do this using histograms and 

autocorrelation plots, as described earlier. This subjectivity may be further reduced if 

the fourth-order and second-order criteria are combined as in Chapter III.  

 

II.5  Effect of violating assumptions 

 The purpose of this section is to provide insight into how the performance of 

the blind separation methods is affected when their assumptions are violated or are 

close to being violated. A simulation example is used, in which a beam represents the 

part being manufactured, and n = 20 measurements are distributed uniformly across 

the beam. There are two variation sources, with c1 and c2 as illustrated in Figures 

10(a) and 10(b), respectively. For purpose of simplicity, the number of sources is 

assumed to be known for simplicity, although in practice this must also be estimated. 

Apley and Shi (2001) discuss in detail a number of methods for estimating p. 
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(a) 

(b) 

 

Figure 10  Illustration of the two variation patterns in the example: (a) c1, which 

represents a beam translation and (b) c2, which represents a beam rotation. 

 
 

 The beam can be considered a subcomponent of a larger assembly, in which 

case the variation patterns may represent assembly variation. The first pattern 

represents a rigid vertical translation of the beam, and the second pattern a rigid 

rotation around the beam centroid. Alternatively, the beam can be considered a 

separate part, in which case the variation patterns may represent fabrication (e.g., 

extrusion) variation. In this case, the first pattern represents variation in the thickness 

of the beam that occurs uniformly across its length. The second pattern represents 

thickness variation that, when larger on one end of the beam, is smaller on the other 

end. 
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 Both pattern vectors are scaled so that the total variance due to each source 

(ci'ci) is equal to the total variance due to the noise (nσ2). In other words, the signal-

to-noise ratio c is unity for each source. The noise variance σ2 is also unity. 

The first source follows a first-order autoregressive (AR) model v1,t = φv1,t-1 + at, 

where φ = 0.9, and the at's are zero-mean, independent, Gaussian random variables 

with variance  = 1-φ2. First-order AR processes are widely encountered in 

industrial environments (Box, et al., 1994). The variance and autocorrelation function 

of a first-order AR process are (1-φ2)-1 and ρτ = φτ (τ = 0, 1, 2, . . . ), respectively. 

The marginal distribution of the first source is therefore Gaussian with zero mean and 

unit variance, and its autocorrelation function is ρ1,τ = 0.9τ. The second source v2,t 

follows a (scaled and shifted) Bernoulli distribution, where the two values ±1 each 

occur with equal probability 0.5. Variation sources of this nature are also commonly 

observed in manufacturing, the root cause of which may be two parallel machines 

performing the same operation or the use of components or raw materials from two 

different suppliers. The second source is temporally uncorrelated. Since only one 

source is Gaussian, and the autocorrelation functions for the two sources differ, the 

assumptions of both the second-order method and the fourth-order method are 

satisfied.  

( ) 12 −
′ σniic

σ 2
a

σ 2
a

 By inspection of Figure 10, C = [c1 c2] possesses neither the ideal varimax 

structure (11) nor the structure (12) required in the A&S method. The structure of C is 
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close to (12), however, since the second source has very little effect on the two 

measurements that lie closest to the beam centroid. Ordering the measurements from 

left to right, these two measurements are referred to as x10 and x11. The elements of c1 

and c2 associated with {x10, x11} are [1 1]' and [0.087 –0.087]', respectively. It can be 

shown that the latent correlation coefficient for x10 and x11 is 0.985, which is 

relatively large. When {x10, x11} is selected as the measurement subset affected by 

only a single source, the performance of the A&S method is quite similar to the blind 

separation performance discussed below. One must use caution when applying the 

A&S method in this example, however. The elements of c1 and c2 associated with the 

two left-most measurements {x1, x2} are [1 1]' and [1.65 1.47]', respectively. It 

follows that the latent correlation coefficient for x1 and x2 is 0.9986, which is even 

larger than the latent correlation for x10 and x11. When {x1, x2} is selected as the 

measurement subset affected by only a single source, the A&S estimates (using the 

theoretical covariance matrix) of the two pattern vectors are the orthogonal linear 

combinations 0.55c1+0.84c2 and 0.84c1–0.55c2 of the true pattern vectors. 
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 A Monte Carlo simulation with 10,000 replicates is used to compare the 

second-order and fourth-order blind separation methods. A sample size of N = 200 is 

assumed, and the autocovariance matrices for lags τ = 1, 2, . . ., 6 are used in the 

second order-method. Figure 11 and Figure 12 show the estimated pattern vectors and 

source signals for a typical replicate. The estimated pattern vectors are reasonably 

close to the true pattern vectors shown in Figure 10 and would most likely be correctly 

interpreted as a translation and a rotation of the beam. The estimated source signals 

shown in Figure 11(b) and Figure 12(b) are noisy versions of the true source signals. 

From the histograms of the estimated signals shown in Figure 13, the second source is 

clearly non-Gaussian, which indicates that the fourth-order assumptions are met. 

Figure 14 shows that the two sources have substantially different sample 

autocorrelation functions, which indicates that the second-order assumptions are also 

met.  
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Figure 13  Histograms of the estimated source signals in the simulation example; (a) 

histogram of estimates of v1 and (b) histogram of estimates of v2 

 

 

 

 



 52

 
 

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

*: ρ1,τ 

τ  
(a)  

 
 

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

*: ρ2,τ 

τ  
(b)   

 
 

 
Figure 14  Sample autocorrelation functions of the estimated source signals in the 

simulation example; (a) sample autocorrelation function of estimates of v1 and (b) 

sample autocorrelation function of estimates of v2 
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 In order to evaluate the performance of the second-order and fourth-order 

methods over the entire Monte Carlo simulation, consider the performance measure Ji 

= [ ] 1−− iiiˆE ccc , where  denotes an estimate of ci (i = 1,2). The average value of iĉ

1−− iiiˆ ccc  over the 10,000 replicates is used to estimate J1 and J2 for both 

methods. The results, which are shown in the first row of Table 1, indicate that both 

methods perform similarly for this example.  

 
 
Table 1  Performance of the Second-order and Fourth-order Methods as Their 

Assumptions Come Closer to Being Violated.  

  Fourth-order 
method 

Second-order 
method 

v1 autocorrelation v2 distribution J1 J2 J1 J2 

φ = 0.9 Bernoulli 0.075 0.097 0.103 0.082 

φ = 0.9 uniform 0.103 0.116 0.104 0.083 

φ = 0.9 triangular 0.234 0.236 0.103 0.082 

φ = 0.9 Gaussian 0.362 0.360 0.104 0.082 

φ = 0.7 Bernoulli 0.075 0.098 0.116 0.098 

φ = 0.5 Bernoulli 0.075 0.098 0.144 0.132 

φ = 0.3 Bernoulli 0.075 0.097 0.277 0.270 

φ = 0 Bernoulli 0.074 0.098 0.568 0.567 

φ = 0 Gaussian 0.361 0.360 0.567 0.567 
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 The remainder of this section investigates the performance of the two methods 

as their assumptions come closer to being violated. While the first source remained 

Gaussian, the distribution of the second source is modified from the Bernoulli 

distribution to the uniform, triangular, and Gaussian distributions shown in Figure 15, 

each having zero mean and unit variance. This represents the second source 

distribution coming successively closer to the Gaussian distribution in terms of its 

kurtosis. Note that the kurtosis for the Bernoulli, uniform, triangular, and Gaussian 

distributions are –2, –1.2, –0.6, and 0, respectively. When the second source is exactly 

Gaussian, the assumptions of the fourth-order method are violated. The results, using 

10,000 Monte Carlo replicates to estimate J1 and J2, are shown in Table 1. The 

performance of the fourth-order method clearly deteriorates as the distribution of the 

second source comes closer to the Gaussian. Its performance is still reasonable (Ji ≈ 

0.1), however, when the second source distribution is uniform. The performance of the 

second-order method is unaffected by the source distribution.  
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Figure 15  The Bernoulli, uniform, triangular, and Gaussian distributions (with mean 

zero and unit variance) used for the second source. The Bernoulli distribution is 

discrete, whereas the others are continuous distributions. 

 

 

 The situation is reversed as the assumptions regarding the source 

autocorrelation in the second-order method come closer to being violated. While the 

second source remains temporally uncorrelated, the autocorrelation of the first source 

is reduced by decreasing the AR parameter φ, as illustrated in Figure 16. For φ = 0, the 

first source is uncorrelated, and the assumptions of the second-order method are 

violated. Table 1 indicates that the performance of the second-order method 
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deteriorates rapidly for φ < 0.5, whereas the fourth-order method is unaffected by the 

source autocorrelation. 
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Figure 16  Autocorrelation function ρ1,τ = φτ of the first-order AR source v1, for 

various φ.  

 
 

 The last row of Table 1 shows the results when the assumptions for both 

methods are violated, in which case neither method performs well. In comparison, the 

A&S method is still quite effective (J1 = 0.108, J2 = 0.085) in this situation when 

{x10, x11} is selected as the first measurement subset. For the reasons discussed above, 
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however, it performs poorly (J1 = 0.574, J2 = 0.573) when {x1, x2} is selected as the 

first measurement subset.  

 It has also been observed that the performance measures for both the second-

order and the fourth-order methods are roughly inversely proportional to the square 

root of the sample size N and the square root of the signal-to-noise ratio. This agrees 

with the asymptotic results discussed in Cardoso (1998), for example.  

 

II.6  Accomodating other noise covariance structures 

 Throughout this dissertation, it has been assumed that Σw = σ2I. In other 

words, the noise variables associated with each element of x are uncorrelated and have 

equal, but unknown, variance. In applications where the elements of x are similar 

entities obtained via similar measurement principles, this would often be a reasonable 

assumption. In this situation, one may even take the view that the noise variance for 

each element of x should be equal. If Σw = σ2I is assumed, but a particular element of 

w has much larger variance (because of larger measurement error, for example), this 

would appear as an additional variation pattern. The only nonzero element of the 

associated pattern vector would correspond to the element of w with larger variance. 

This may provide an indication that the apparatus used to measure that particular 

element of x should be recalibrated or replaced. 

 Many factor rotation methods only assume that Σw = diag{ , , . . ., } 

is diagonal (Johnson and Wichern, 1998). When the elements of x represent different 

σ 2
1 σ 2

2 σ 2
n
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entities measured on different scales, this would be more appropriate than assuming 

Σw = σ2I. The blind separation algorithms may still be applied in this situation, as 

long as the diagonal Σw is known (up to multiplication by a scalar constant) or a 

reasonable estimate is available. Before applying the algorithms, the data would first 

be transformed via  = ( C)v + w, where  = diag{xΣ 21 /
w
− Σ 21 /

w
− Σ 21 /

w
− Σ 21 /

w
− σ 1

1
− , 

, . . ., }. Since the covariance matrix of the transformed noise w is a 

scalar multiple of the identity matrix, blind separation algorithms can be applied 

directly to the transformed data to produce an estimate of C. This estimate can 

then be transformed back to C by premultiplying by . 

σ 1
2
− σ 1−

n Σ 21 /
w
−

Σ 21 /
w
−

Σ1
w

2/

σ 2
2

2
n

 An estimate of Σw would often be available in the context of manufacturing 

statistical process control (SPC). The estimate could be obtained by estimating the 

noise variances { , , . . ., } from a sample of data collected when the process 

is known to be in-control (i.e., when there are no variation sources present, so that x = 

w). Gage repeatability and reproducibility studies might also be used to estimate the 

noise variances. 

σ 2
1 σ

 An alternative to estimating the noise variances is to assume they are such that 

σi = αTi (i = 1, 2, . . ., n), where Ti denotes the width of the tolerance interval assigned 

to xi, and α is some arbitrary scale factor. In other words, the assumption would be 

that the standard deviation of each xi is proportional to its tolerance width when no 

variation sources are present other than the noise. Borrowing SPC terminology, this 
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may be viewed as common cause variability. This assumption translates to equal 

process capability ratios (the tolerance width divided by six standard deviation units) 

for all elements of x when only common cause variability is present. Although there is 

no statistical validity to this assumption, it has a conceptual appeal. First, tolerances 

are often assigned and/or manufacturing processes designed so that common cause 

variability is proportional to the tolerance width. Second, suppose that with only 

common cause variability present, the process capability ratio for a particular element 

of x was substantially smaller than for the other elements. If the blind separation 

methods were applied under the assumption of equal process capability ratios, the 

result would be an additional variation pattern affecting only the variable with the low 

process capability. This would rightly call attention to the variable in most need of 

quality improvement efforts. 

 

II.7  Chapter summary 

 In this chapter, two blind source separation methods, second-order and fourth-

order methods representing different classes of algorithms, have been applied to 

manufacturing variation diagnosis. The second-order method uses the information of 

autocovariance matrices to estimate Q uniquely. The second-order method jointly 

diagonalizes a set of autocovariance matrices. The second-order method requires that 

no pair of sources share the same autocorrelation function. The fourth-order method 

uses the fourth-order cumulants information of sources to estimate Q uniquely. The 

fourth-order method jointly diagonalizes a set of cumulant matrices. It requires that no 
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more than one of the p sources follow a Gaussian distribution. Likewise, the blind 

separation methods use assumptions regarding source distribution while the A&S 

method uses assumptions regarding the structure of C. The blind source separation 

methods have certain advantages over the A&S method because verifying the 

assumptions of the blind source separation methods is more straightforward than 

verifying the assumptions of the A&S method. If the required assumptions are 

violated, none of these methods can estimate the variation patterns uniquely. This 

limitation motivates us to combine the second-order and fourth-order criteria in order 

to relax the uniqueness conditions, which we will undertake in the next chapter.   
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CHAPTER III 

 
COMBINING SECOND-ORDER AND FOURTH-ORDER 

CRITERIA 
 

 

 In Chapter II, two blind separation methods – fourth-order and second-order 

methods- were investigated to estimate variation patterns. Blind separation methods 

are able to produce unique estimates of variation patterns by imposing additional 

conditions on the statistical nature of the variation sources. As demonstrated in 

Chapter II, fourth-order and second-order methods are effective when their respective 

uniqueness conditions are satisfied. If their conditions are violated, however, they are 

unable, much like PCA and factor analysis, to produce unique estimates of the 

variation patterns. In practice, it is difficult to know a priori which set of conditions 

will be better satisfied and, consequently, which method will be more effective. In this 

part of the dissertation, a new method is developed for estimating the variation 

patterns by combining the second-order and fourth-order statistics. The uniqueness 

conditions of the new method, derived in Section III.2, are less restrictive versions of 

the conditions for the individual second-order and fourth-order methods. The result is 

a more black-box method with wider applicability, in which the end user is not 

burdened with verifying which set of conditions are better satisfied. 
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III.1  Combining second-order and fourth-order statistics with optimal weighting 

 Although derived from completely different perspectives, the second-order and 

fourth-order methods share a commonality. Both methods seek to jointly 

approximately diagonalize a set of matrices. A natural means of combining the 

second-order and fourth-order criteria is to jointly approximately diagonalize the 

cumulant matrices {M(i,j): 1≤i,j≤p} together with the autocovariance matrices {Σy,τ: 

τ = 1, 2, . . ., T}. More specifically, consider the set of K = T+p2 matrices {Ak: k = 1, 

2, . . ., K} defined as follows. The first T matrices {Ak: k = 1, 2, . . ., T} are the set of 

scaled autocovariance matrices {Σy,τ/s1: τ = 1, 2, . . ., T}, where s1 = [ ]2
1

1 E i
p
i yp Σ =

−  

is the average second moment of the whitened data. The remaining p2 matrices {Ak: k 

= T+1, 2, . . ., K} are the set of scaled cumulant matrices {M(i,j)/s2: 1≤i,j≤p}, where 

s2 =  is the average fourth moment of the whitened data. For example, 

if T = 3 and p = 2, we have K = 7 and {Ak: k = 1, 2, . . ., K} = {Σy,1/s1, Σy,2/s1, 

Σy,3/s1, M(1,1)/s2, M(2,1)/s2, M(1,2)/s2, M(2,2)/s2}.  

[ 4
1

1 E i
p
i yp Σ =

− ]

]

 Let α=[α1, α2, …, αK]' be a vector of nonnegative weighting coefficients, to 

be determined. The estimate of Q is taken to be the orthogonal matrix U that 

minimizes 

 ,        (13) [∑
=

′
K

k
kk

1
off UAUα
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where off[•] denotes the sum of the squares of the off-diagonal elements of a matrix. 

This can be viewed as jointly approximately diagonalizing the weighted set of 

matrices { : k = 1, 2, . . ., K}. The algorithm in the Appendix can be used to 

perform the joint approximate diagonalization.  

kk A21 /α

 It is considered to seek a means of "optimally" selecting the weighting 

coefficients α. Some of the matrices in the set {Ak: k = 1, 2, . . ., K} will contain more 

information than others and should therefore be given higher weight. For example, 

suppose that after a certain time lag (τ ≥ 3, say) the autocorrelation functions for each 

source become identical, but that at time lags one and two the autocorrelation 

functions differ substantially. Then it is better to use larger weighting coefficients for 

the two matrices Σy,1/s1 and Σy,2/s1 and smaller coefficients for {Σy,τ/s1: τ ≥ 3}, 

since the latter set contains very little information that can aid in separating the 

sources. As an other example, consider an extreme case where the fourth-order 

uniqueness condition happens to be satisfied, but all sources are temporally 

uncorrelated so that the matrices {Σy,τ/s1: τ > 0} contain no useful information. In this 

case it would be better to assign all of the weight to the cumulant matrices and no 

weight to the autocovariance matrices. In the opposite extreme, if all sources are 

Gaussian but the second-order uniqueness conditions are satisfied, it would better to 

assign all of the weight to the autocovariance matrices and no weight to the cumulant 

matrices. Using large coefficients for matrices that contain no information only adds 

noise to the estimation problem. The method proposed below for assigning the 
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weighting coefficients results in weights that are commensurate with the information 

contained in each matrix. 

  In the following, the overscore symbol "^" is used to distinguish between 

theoretical quantities and their estimates from the sample data. Theoretically, every 

matrix in {Ak: k = 1, 2, . . ., K} is exactly diagonalized by Q, so that the criterion (13) 

is zero for any choice of α. The joint diagonalizer Q  that minimizes (13) with Ak 

replaced by  will depend on α and will generally differ from Q. An attractive 

strategy for selecting α is to attempt to minimize some measure of the error between 

Q and . 

ˆ

kÂ

Q̂

  Represent the error between Q  and Q via δE, defined such that 

=

ˆ

Q̂ )( EIQ δ+ . It is straightforward to adapt a result from Cardoso (1994) to the 

criterion (13), which gives the following approximate expression for δE. The  ith row, 

jth column element of δE is (1≤ i ≠ j ≤p) 

 δEi,j ≈ 
∑ −

′∑ −

k
kkk

jki
k

kkk

ij

ˆij

2))(d)((d

))(d)((d

α

α qAq
,                 (14) 

where qi is the ith column of Q, and dk(i) is the ith diagonal element of Q'AkQ. The 

error δEi,j is affected by three types of quantities: α, {dk(j)−dk(i): k = 1, 2, . . ., K}, and 

jki
ˆ qAq′

jki qAq ˆ′

. Although q  = 0 for 1≤ i ≠ j ≤p (Q'AkQ is exactly diagonal), 

 will generally differ from zero. Writing , the term 

jki qA′

jkkijki qAAqqAq )( −′=′ ˆˆ
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jki qAq ˆ′  in (14) stems from the error in estimating Ak with a finite set of sample data. 

The quantities {dk(j)−dk(i): k = 1, 2, . . ., K} relate closely to the second-order and 

fourth-order uniqueness conditions. Suppose that two Gaussian sources (the ith and jth 

sources, say) have very similar autocorrelation functions. Since dk(j)−dk(i) will be 

close to zero for all k in this case, it can be expected to have large error δEi,j and to 

have difficulty separating the ith and jth sources. This is consistent with the theoretical 

uniqueness condition derived in Section III.2 for the combined method, since two 

Gaussian sources with identical autocorrelation functions violate the uniqueness 

condition.  

∑∑
ji k

  While (14) provides some insight into the factors that affect accuracy, 

selecting α in an attempt to minimize it directly would not be straightforward. Rather, 

the suboptimal approach of selecting α is proposed to maximize the denominator 

terms in (14), which will generally result in smaller values of the δEi,j terms in (14). 

Specifically, it is recommended selecting α to maximize  

 ( ) ( )( ) ( ) ( )( )∑ ∑
≠ ≠

−=−
k ji

kkkkkk ijij 22 dddd αα     (15) 

under some equality constraint on the norm of α (α'α equals some constant value). 

Since rescaling α does not affect the solution to (13), it does not matter what value is 

specified for the norm of α. Equation (15) is maximized by selecting 
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( )∑ −∝
≠ij

kkk ij 2)(d)(dα .                  (16) 

In other words, the weight assigned to Ak is proportional to ( ) ( )( )∑ ≠
−

ij kk ij 2dd

( ) ( )( )

, 

which is closely related to the information contained in Ak. If ∑ ≠
−

ij kk ij 2dd = 

0 for some k, there is no information in Ak that can be used to separate the sources.  

  (16) cannot be implemented exactly, since the dk(i) terms are the diagonal 

entries of Q'AkQ, and the true values of Q and {Ak: k = 1, 2, . . ., K}cannot be known. 

In light of this, it is recommended to first obtain an initial estimate  of Q by 

minimizing (13) with equal weighting (αk = 1: k = 1, 2, . . ., K). The ith diagonal 

element of Q  can then be substituted for dk(i) in (16) to obtain the final 

weighting coefficients. The entire procedure for the combined method is summarized 

as follows. For notational convenience, the "^" symbol on all quantities is omitted, 

which are meant to be estimated values from the sample data. The algorithm in the 

Appendix is used for Steps 5 and 8. 

0Q̂

00 QA ˆˆˆ
k′

1) From the data sample {xi: i = 1, 2, . . ., N}, calculate the sample covariance 

matrix Σx = ( )( )′−−Σ =
− xxxx ii

N
iN 1

1  where i
N
iN xx 1

1
=

− Σ= . 

2) Based on a PCA decomposition of Σx, calculate the whitening matrix W = [Λp-

σ2I]-1/2Zp' and the whitened data {yi = Wxi: i = 1, 2, . . ., N}. 
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3) Select T and calculate the sets of cumulant and autocovariance matrices {M(i,j): 

1≤i,j≤p} and {Σy,τ: τ = 1, 2, . . ., T} of the whitened data. 

4) Calculate the average second and fourth moments s1 and s2 of the whitened data 

and form the set of matrices {Ak: k = 1, 2, . . ., K}. 

5) Find the joint approximate diagonalizer Q0 of the set {Ak: k = 1, 2, . . ., K}. 

6) Set dk(i) equal to the ith diagonal element of 00 QAQ k′  (i=1,2,…,p; k = 

1,2,…,K). 

7) Select optimal weights α according to (16).  

8) Find the joint approximate diagonalizer Q of the set { Ak
/

kα 21 : k = 1, 2, . . ., K}. 

9) Take the estimate of C to be Zp[Λp-σ2I]1/2Q.  

 In Step 3, we recommend using a relatively large value for T (e.g., T = 10 to 

20). The reason is that if there happens to be little information contained in the 

autocovariance matrices at larger time lags, the weighting scheme (16) tends to 

automatically discount them by assigning them small weights. For example, suppose 

the source autocovariance decays to very small values for time lags greater than 10, 

but T = 20 has been chosen. Consider a value of k such that Ak corresponds to Σy,τ for 

some time lag between 10 and 20. Since dk(i) is the autocorrelation function (scaled 

by s1) for the ith source at that time lag, dk(i) will be close to zero for i = 1, 2, . . ., p. 

Equation (16) would then select a small value for αk, and the autocovariance matrices 

for time lags greater than 10 would be largely ignored in the joint diagonalization. 
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III.2  Uniqueness condition for the combined method 

  This section derives the uniqueness condition for the combined method, which 

is a less restrictive version of the uniqueness conditions for the individual second-

order and fourth-order methods. The derivation parallels that presented in 

Belouchrani, et al. (1997) for the second-order method. The uniqueness condition is 

derived in the context that the second and fourth moments of the data are known, 

which is equivalent to having an infinitely large sample of data. For the finite sample 

sizes one must work with in practice, the effectiveness of the methods depends on the 

extent to which the conditions are satisfied, as discussed in Chapter II. 

  Since Q diagonalizes the entire set {Ak: k = 1, 2, . . ., K}, and Q is orthogonal, 

we can write Ak = QDkQ' with Dk = diag{dk(1), …, dk(p)}. Recall that Ak is either of 

the form Σy,τ/s1 for some τ or of the form M(s,m)/s2 for some s and m. In the former 

case dk(i) = ρi,τ/s1, and in the latter case dk(i) = Ci,i,i,i(v)qs,iqm,i/s2. 

  Proposition 1: Suppose that no pair of Gaussian sources share the exact same 

autocorrelation function, and consider two arbitrary sources vi and vj (i ≠ j). Then 

there exists an index k such that dk(i)≠ dk(j). 

 Proof: There are three possibilities: both vi and vj are Gaussian (Case 1); one 

source is Gaussian and the other source is not Gaussian (Case 2); and neither source is 

Gaussian (Case 3). The proof is separated by case.  
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 Case 1: By assumption, the two Gaussian sources must have different 

autocorrelation function. Thus, there exists a time lag τ such that ρi,τ  ≠ ρj,τ, which 

completes the proof for Case 1. 

 Case 2: Let vi denote the Gaussian source and vj denote the non-Gaussian 

source. Since vi is Gaussian, Ci,i,i,i(v) is zero, which implies that Ci,i,i,i(v)qs,iqm,i=0 for 

all 1≤ s,m ≤p. Since vj is non-Gaussian, Cj,j,j,j(v)≠0, and there exists an s and m such 

that Cj,j,j,j(v)qs,jqm,j≠0= Ci,i,i,i(v)qs,iqm,i. This completes the proof for Case 2.  

 Case 3: Since both sources are non-Gaussian, Ci,i,i,i(v)≠0 and Cj,j,j,j(v)≠0. 

Since qi and qj are orthogonal and have unit norm, there exist an s and m (possibly 

equal) such that Ci,i,i,i(v)qs,iqm,i ≠ Cj,j,j,j(v)qs,jqm,j, which completes the proof for Case 

3.  

 Theorem 1 (uniqueness condition for the combined method): If no pair of 

Gaussian sources share the exact same autocorrelation function, then the orthogonal 

joint diagonalizer of the set { Ak
/

kα 21 : k = 1, 2, . . ., K} is unique and equal to Q (up 

to an interchange of its columns). 

 Proof: Let U be any orthogonal joint diagonalizer of the set { : k = 1, 

2, . . ., K}, and let u denote any column of U. Since {qs: s = 1, 2, . . ., p} are 

orthogonal, u can be represented as some linear combination u = , where at 

least one of the coefficients (say βi) is nonzero. For any 1 ≤ j ≤ p with j≠i there exists 

an index k such that dk(i)≠dk(j) by Proposition 1. Equation (7) implies that αk ≠ 0. 

kk A21 /α

ss qβ∑ =
p
s 1
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Since U diagonalizes , u is an eigenvector of Ak. If γ denotes the 

corresponding eigenvalue, we have γu=Aku. Substituting u =  gives 

= = 

k
/

k A21α

sk qA

∑ =
p
s ss1 qβ

∑ =
p
s ss1 qγβ ∑ =

p
s s1 β ( ) sks

p
s s qd1β=Σ , where the last equality follows from 

the fact that Ak = QDkQ'. Equating the coefficients of each qs implies that 

βs[dk(s)−γ]=0 for s=1,…p. Since βi≠0, it follows that γ = dk(i) ≠ dk(j), which in turn 

implies that βj = 0. Since j (≠i) was arbitrary, βj =0 for any j ≠ i, and thus u=qi. 

Repeating for each column of U completes the proof. 

 Theorem 1 states that the uniqueness condition for the combined method is that 

no pair of Gaussian sources share the same autocorrelation function. In other words, 

multiple Gaussian sources are allowed as long as the subset of Gaussian sources have 

different autocorrelation functions. The autocorrelation functions of the non-Gaussian 

sources are irrelevant. Suppose the sources are divided into subsets that have the same 

autocorrelation function (e.g., one subset of uncorrelated sources, a second subset of 

moderately correlated sources, and a third subset of highly correlated sources). An 

equivalent statement of the uniqueness condition is that within each subset having the 

same autocorrelation function there is at most one Gaussian source. Hence, multiple 

sources with the same autocorrelation function are also allowed. The uniqueness 

condition for the combined method is therefore less restrictive than the individual 

uniqueness conditions for the second-order and fourth-order methods. The following 

section provides an example in which the uniqueness condition for the combined 

method is satisfied but the conditions for the individual methods are not. 
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III.3  Performance analysis 

 This section compares the performance of the second-order method, the fourth-

order method, and the combined method in a simulation example. The performance of 

the methods in situations where their uniqueness conditions are satisfied, and in 

situations where they are violated, are both considered. The following example 

represents the situation where the uniqueness conditions are satisfied for all three 

methods. In the example, a simple beam, illustrated in Section II.5, is used. There are 

three variation sources in the baseline example, with c1, c2, and c3 illustrated in 

Figures 10(a), 10(b), and 17, respectively. The beam can be considered a 

subcomponent of a larger assembly, in which case the third variation patterns can 

represent a bending of the beam about the midpoint. Alternatively, the beam can be 

considered a separate part, in which case the third variation pattern may represent 

variation in the thickness such that, when the ends of the beam are larger, the center is 

smaller. The pattern vectors were scaled so that c 11c′ = 22cc′ = 33cc′ = nσ2. The sample 

size was N = 200 in all cases. 
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Figure 17  Illustration of the third variation pattern c3 in the example: c3 representing 

a beam bending. 

 
 

The source distributions for the baseline example are chosen so that the 

uniqueness conditions of both the second-order and the fourth-order methods are 

satisfied. The third source {v3,t: t = 1, 2, . . .} is generated via the first-order AR 

model v3,t = φv3,t-1 + at, with AR parameter φ = 0.9. Figure 18 shows typical sets of 

200 observations of three different first-order AR processes, each with a different 

level of autocorrelation. The top, middle, and bottom panels of Figure 18 represent 

high autocorrelation (φ = 0.9), moderate autocorrelation (φ = 0.6), and no 

autocorrelation (φ = 0), respectively. The first source {v1,t: t = 1, 2, . . .} is generated 

as an independent sequence of discrete random variables taking on values of ±1 with 
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equal probability 0.5, which is referred to as the (scaled and shifted) Bernoulli 

distribution. The second source {v2,t: t = 1, 2, . . .} is generated via 

                  (17) 




=
q-1 yprobabilit with : -

q yprobabilit with : 

1-2,

1-2,
2,

t

t
t v

v
v

with q = 0.05 and starting value v2,1 drawn from the Bernoulli distribution. It can be 

shown that v2,t is a stationary process with a marginal Bernoulli distribution and 

autocorrelation function ρ2,τ = (2q–1)τ = (–0.9)τ. The parameter q can be used to 

control the autocorrelation of Bernoulli sources just like φ can be used to control the 

autocorrelation of Gaussian sources. For q < 0.5, the lag-one autocorrelation will be 

negative. A typical realization of 100 observations for q = 0.05 is shown in Figure 

19(a). This could represent the effects of multiple tooling, as discussed in Section II.5. 

For q > 0.5, the source autocorrelation will be positive. A typical realization of 100 

observations for q = 0.95 is shown in Figure 19(b). This could represent the situation 

where the process mean jumps back and forth between two different values at 

occasional random times. For q = 0.5, the source will have no temporal 

autocorrelation, which is illustrated in Figure 19(c). The uncorrelated v1,t in the 

example can be viewed as being generated via the same model (17) with q = 0.5. 
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Figure 18  Illustration of first-order AR source signals with different levels of 

autocorrelation: (a) high autocorrelation (φ = 0.9); (b) moderate autocorrelation (φ = 

0.6); (c) no autocorrelation (φ = 0). 
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Figure 19  Illustration of autocorrelated Bernoulli sources with different levels of 

autocorrelation (different values of q). 
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 The performance measure Ji, defined in Section II.5, is used to evaluate the 

methods. The average value of a Monte Carlo simulation with 10,000 replicates is 

used to approximate Ji in all cases. T = 20 was chosen for the second-order and 

combined methods. 

 The Monte Carlo results for the three methods in the first example are shown 

in the first three rows of Table 2. Since the autocorrelation functions of the three 

sources differ [ρ1,τ = 0, ρ2,τ = (-0.9)τ, ρ3,τ = 0.9τ], and only one source is Gaussian, 

the uniqueness conditions for both the second-order and the fourth-order methods are 

satisfied in the first example. As might be expected, Table 2 demonstrates that the 

second-order and fourth-order methods both perform quite well in this situation.  
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Table 2  Summary of the Monte Carlo Simulation Results Comparing the 

Performance of the Three Methods. 

 
source properties method J1 J2 J3 

fourth-order method 0.103 0.083 0.076 

second-order method 0.102 0.109 0.108 
no 

conditions violated 
combined method 0.084 0.097 0.096 

fourth-order method 0.609 0.570 0.575 

second-order method 0.137 0.129 0.128 fourth-order 
conditions violated 

combined method 0.106 0.114 0.113 

fourth-order method 0.106 0.105 0.106 

second-order method 0.640 0.611 0.610 second-order 
conditions violated 

combined method 0.111 0.111 0.110 

fourth-order method 0.123 0.348 0.349 

second-order method 0.468 0.469 0.137 
second-order and fourth-

order 
conditions violated 

combined method 0.109 0.900 0.123 
 
 

 To investigate the effects of violating the fourth-order uniqueness conditions, 

the three sources are generated as Gaussian first-order AR processes via vi,t = φvi,t-1 

+ at. AR parameter values of 0, -0.7, and 0.7 are used for sources one, two, and three, 

respectively. The source autocorrelation functions are therefore ρ1,τ = 0, ρ2,τ = (-

0.7)τ, ρ3,τ = 0.7τ, and the uniqueness condition for the second-order method is 

satisfied. Since all three sources were Gaussian, the uniqueness condition for the 
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fourth-order method is violated. Rows 4 through 6 of Table 2 show the Monte Carlo 

results for this situation. The performance of the fourth-order method is substantially 

worse than in the first example, whereas the second-order method still performed well. 

The combined method is slightly more effective than the second-order method, most 

likely because the combined method automatically assigns less weight to the 

autocovariance matrices at larger time lags.  

 To investigate the effects of violating the second-order uniqueness condition, 

each of the three sources are generated as independent sequences of uniformly 

distributed random variables with zero mean and unit variance. Since all three sources 

are temporally uncorrelated, the second-order uniqueness conditions are violated. The 

fourth-order uniqueness conditions are still satisfied, however, because all three 

sources are non-Gaussian. Rows 7 through 9 of Table 2 show the Monte Carlo results 

for this situation. The performance of the second-order method is now substantially 

worse than in the first example. The performances of the fourth-order method and the 

combined method are roughly the same, and both are reasonably good.  

  The final simulation represents the situation where the uniqueness conditions 

of both the second-order and the fourth-order methods are violated, but the conditions 

of the combined method are satisfied. Everything is as in the first example, except that 

the second source is changed from an autocorrelated Bernoulli random variable with q 

= 0.05 to a temporally uncorrelated Gaussian random variable. There are two sources 

(v2 and v3) that follow a Gaussian distribution, so the uniqueness condition of the 

fourth-order method is violated. There are also two sources with the same 
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autocorrelation function (ρ1,τ = ρ2,τ = 0 for all τ > 0), so the uniqueness condition of 

the second-order method is violated. Since the two Gaussian sources have different 

autocorrelation functions, however, the uniqueness condition of the combined method 

is satisfied. The last three rows of Table 2 show that the combined method performs 

quite well, whereas the second-order and fourth-order methods do not. It is interesting 

to note that the fourth-order method is able to separate the first source reasonably well 

(J1 = 0.123) but is unable to separate the two Gaussian sources (J2 = 0.348 and J3 = 

0.349). In contrast, the second-order method is able to separate the third source 

reasonably well (J3 = 0.137) but is unable to separate the two temporally uncorrelated 

sources (J1 = 0.468 and J2 = 0.469). It is essentially this "block separability" 

characteristic of the blind source separation methods that allows the combined method 

to fully separate the sources. 

 This section has only investigated the effects of violating the uniqueness 

conditions. There are a number of other factors that affect the overall accuracy of the 

methods, including the number of sources p, the sample size N, the dimension n of the 

measurement vector, the magnitude of the noise variance relative to the severity of the 

variation patterns, and how close the pattern vectors are to being linearly independent. 

Additional simulation results indicate that these factors affect all three methods by 

roughly the same degree. Since the focus of this section is on the relative performance 

of the combined method versus the individual second-order and fourth-order methods,  

the details of these simulations are omitted.  
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III.4  Chapter summary 

 Both the second-order and fourth-order methods seek to jointly approximately 

diagonalize a set of matrices (autocovariance matrices for the second-order method 

and fourth-order cumulant matrices for the fourth-order method). Taking advantage of 

this commonality, the new method presented in this chapter seeks to jointly 

approxemately diagonalize autocovariance matrices with fourth-order cumulant 

matrices. Each matrix contains a different level of information, however. Accordingly, 

the new method assigns weight optimally (by minimizing some measure of estimation 

accuracy) to each matrix depending on the information contained in it.  

 When the second-order and the fourth-order methods are combined optimally, 

the required assumptions for uniquely estimating Q are more relaxed. The uniqueness 

condition of the combined method is derived so that no pair of Gaussian sources share 

the exact same autocorrelation function. This assumption is less restrictive than the 

individual required assumptions of the second-order and fourth-order methods. 

Therefore, the combined method has broader applicability than either. Also, the 

burden of verifying which set of uniqueness conditions are better satisfied is reduced, 

resulting in a more black-box method that requires less statistical expertise on the part 

of the user.  
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CHAPTER IV 

BLIND SOURCE SEPARATION WITH PARTIAL PRIOR 
KNOWLEDGE 

 
  

In previous chapters, several blind separation methods are examined for 

estimating un-modeled spatial variation patterns without prior knowledge about the 

manufacturing process. All of the methods in Chapters II and III can be referred to as 

blind identification methods. As discussed in the introduction, there is another 

approach for identifying variation patterns which involves classifying pre-modeled 

variation patterns (hereafter referred to as classifying methods). The classifying 

methods require that all of the potential variation patterns be pre-modeled through 

intensive off-line pre-modeling based on engineering knowledge of the process. The 

presence of too many potential variation sources and the complexity of modern 

manufacturing processes often make pre-modeling of all potential patterns impossible 

and, therefore, prevent the wide applicability of the classifying methods. The blind 

identification methods have an advantage over the classifying methods in the sense 

that no off-line pre-modeling is required.  

The blind identification methods do have certain disadvantages when 

compared to the classifying methods, however. The blind identification methods 

estimate variation patterns from on-line measurement data, which means that the 

accuracy of the methods is affected by a number of factors, such as the number of 

variation sources p, the sample size N, the dimension n of the measurement vector, the 
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signal-to-noise ratio, and how close the required assumptions are to being violated. 

For example, if the sample size N is very small (N<50) and the signal-to-noise ratio is 

small (c  < 0.25 for i = 1, 2,…, p), the estimates of the variation patterns 

will not be accurate (Ji>0.3) in the examples used in Chapters II and III (the 

performance measures are roughly proportional to the square root of N and the signal-

to noise ratio). While the accuracy of the estimated variation patterns depends on a 

number of factors, the pre-modeled variation patterns are not affected by these factors. 

Pre-modeling variation patterns totally depend on engineering knowledge of the 

process. If the manufacturing process is understood adequately and pre-modeling of 

all potential variation patterns is possible, the pre-modeled variation patterns are the 

most accurate. Also, the blind identification methods require additional assumptions to 

estimate the variation patterns uniquely. If the required assumptions are violated, no 

method can estimate the variation patterns uniquely. These advantages and 

disadvantages of the blind identification methods and classifying methods are 

summarized in Table 3.  

( ) 12 −
′ σniic
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Table 3  Advantages and Disadvantages of the Method of Blindly Identifying Un-

modeled Variation Patterns and the Method of Classifying Pre-modeled Variation 

Patterns. 

 
the method of classifying pre-

modeled variation patterns 

the method of blindly identifying 

un-modeled variation patterns 

advantages 

• produce the most accurate 

estimate of variation 

patterns 

• can be applied in broader 

situations than off-line based 

approach (off-line analysis is 

not required) 

disadvantages 

• cannot be applied if all 

potential variation patterns 

are not pre-modeled 

• produce less accurate estimate 

variation patterns due to a 

number of factors 

• cannot estimate variation 

patterns if the assumptions are 

violated  
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Although pre-modeling of all potential variation patterns is impossible in many 

manufacturing processes, partial variation patterns often can be pre-modeled. This 

partial prior knowledge is illustrated as follows with an autobody example. In the 

autobody assembly process, the autobody is measured at measurement stations that 

follow major subassembly stations. Before the autobody is measured, it is fixed firmly 

by pins mating with a square hole and slot located on the bottom of the autobody as 

Figure 20(a). Since the same hole/pin is used to locate the underbody at many 

previous assembly stations, the square hole often becomes rounded as in Figure 20(b). 

Once the hole becomes rounded, it no longer constrains the autobody fully in the y-

plane anymore. For example, some autobodies may be translated to the negative y-

direction as in Figure 20(c). In the figure, the dashed line represents the nominal 

autobody position, and the solid line represents the actual translated autobody 

position. For some other autobody, the position may be translated to the positive y-

direction. In a sample of all the measured autobodies, the rounded hole causes a 

distinct variation pattern. The root cause of this measurement variation pattern is 

rarely fixed or is fixed very slowly, however, because the overall quality of the 

autobody is not affected.  
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Figure 20  Illustration of the bottom of an autobody in the y-z plane: (a) bottom of the 

autobody, (b) a rounded hole, and (c) a translation of the entire autobody 
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This measurement variation pattern can be pre-modeled from the information 

above. Let u1 denote the random variable representing the amount the whole autobody 

translates in the y-direction, and b1 denote the corresponding variation pattern scaled 

to unit norm (b1'b1=1). Since all of the measurement features are affected equally in 

the y-direction due to this variation source, the elements of b1 corresponding to the y-

direction coordinates have the same sign and magnitutes, and the elements of b1 

corresponding to the z-direction coordinates are all zeros. The pre-modeled pattern 

vector b1 in the whole autobody is shown in Figure 21. Twenty-six measurement 

points are selected from the entire autobody for the analysis.  

The pre-modeled variation pattern b1 provides partial prior knowledge. Since 

all potential variation patterns are not pre-modeled (only one variation pattern b1 is 

pre-modeled), the methods for classifying pre-modeled variation patterns cannot be 

applied (see Section IV.2). The methods for estimating un-modeled variation patterns 

cannot utilize this partial information (note that these methods are trying to estimate 

b1 and un-modeled variation patterns together from the on-line measurement data). 

However, a new method is presented in this chapter that is referred to as blind source 

separation with partial prior knowledge. This method can be used for only estimating 

the un-modeled variation patterns by utilizing information from pre-modeled variation 



 87

 

 

z (up) 

y (fore) 

front door
opening rear door 

opening 
rear 

window 
opening 

right 
bodyside 

left 
bodyside 

23 

24 

25 
26 

22 

21 

20 

19 

18 

17 

16 

15 

14 
13 

12 
11 

10 

9 

8 

7

6

5

4

3

2 

1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21.  Illustration of the pre-modeled measurement variation pattern in autobody 

assembly (a translation of the entire autobody). 
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patterns. The new method has broader applicability than the methods of classifying 

pre-modeled variation patterns, since pre-modeling of all of the potential variation 

patterns is not required. With the new method, only partial variation patterns need to 

be pre-modeled. When the new method utilizes partial prior knowledge, the accuracy 

of the estimates of un-modeled variation patterns are superior to those of the blind 

separation method that does not utilize partial prior knowledge (see Section IV.4). 

Therefore, the new method has advantages over both the blind identification methods 

and the classifying methods.  

In addition, the new method can be used in situations where it is necessary to 

determine the presence or absence of important pre-modeled variation patterns, and it 

can also accommodate some un-modeled variation patterns. In other words, the new 

method can determine the presence of pre-modeled variation patterns without 

depending on un-modeled variation patterns (see Section IV.3.2).  
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IV.1  Pre-modeling spatial variation patterns from engineering knowledge 

 This section discusses how to pre-model variation pattern vectors from 

engineering knowledge in manufacturing processes. Let u1, u2,… , ur denote the 

random variable representing potential variation sources, and b1, b2,… , br denote 

corresponding pattern vectors. Then, biui describes the effect of the ith potential 

source on the measurement data. In practice, most variation patterns involve some 

degree of nonlinearity, however. A more generic representation of the effect of the ith 

potential source would be fi(ui), where fi is some nonlinear mapping from 1-

dimensional space to n-dimensional space. Then, biui may be viewed as a linearization 

of a more exact nonlinear mapping, where bi is the partial derivative vector ∂fi/∂ui. 

The suitability of a linear representation depends on the accuracy of the linear 

approximation to fi(ui). Apley and Shi (1998) argued that the linear approximation 

provides a good representation of a variety of commonly encountered variation 

patterns in autobody manufacturing, including those due to stamping, welding, and 

material handling faults. Refer to Apley and Shi (1998) for more detailed discussion 

on how to model b1, b2,… , br from off-line analysis.  

 Apley and Shi (1998) discussed modeling spatial variation patterns in a single 

stage manufacturing process. In the overall process, there are several stages in which 

the operation performed at previous stages affects those that follow. This multistage 

manufacturing process is common in modern manufacturing. In a single stage process, 

the measurement data are affected by variation sources present in that stage only. In a 
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multistage process, the measurement data in a stage are affected not only by the 

variation sources present in that stage but also the variation sources present in 

previous stages. Jin and Shi (1999) proposed a “state space” model to describe 

accumulative variation patterns for multistage manufacturing processes. Refer to Jin 

and Shi (1999) for a definition of the state space model and further discussion on 

analytical modeling in multistage processes. The state space model has also been 

applied to manufacturing variation diagnosis (Ding, Ceglarek and Shi, 2002), but 

because this dissertation is focused on a single stage manufacturing process, we have 

not used the state space model here. The analytical modeling for a single stage 

process, as discussed in Apley and Shi (1998), is sufficient for the method presented 

in this section.  

 

IV.2 Limitation of classifying pre-modeled variation patterns 

This section examines the reasons that classifying methods can lead to 

erroneous results when all of the potential variation patterns are not pre-modeled. The 

classifying method of Apley and Shi (1998) is used to represent the approach of 

classifying pre-modeled patterns (in the rest of this section, the classifying method 

will be represented by this particular method). Suppose that r variation patterns are 

pre-modeled from the off-line analysis and there exist p un-modeled variation patterns 

present in a set of sample data. Let x = [x1, x2, . . ., xn]' be an n×1 random vector that 

represents a set of n measured characteristics from the product or process. It is 

assumed that x obeys the model  
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 x = Bu + Cv + w,        (18) 

where B = [b1, b2, . . ., br] is an n×r constant matrix with linearly independent 

columns. Each column of B represents pre-modeled potential variation patterns, and is 

scaled (without loss of generality) to have an unit norm (bi'bi=1). It is assumed that [B 

C] has full rank r+p. The vector u = [u1, u2, . . ., ur]' is a r×1 zero-mean random 

vector with independent components, and u is independent of v and w. It is assumed 

that var(ui)= σi2 for i = 1,2,…, r. The notation and assumptions of C, v, and w are the 

same as for model (1) used in Chapters I, II and III. Note that model (18) is the same 

as model (1) if there are no pre-modeled variation patterns.  

The rest of this section uses an example to show why the classifying method 

cannot be applied in a situation where there are un-modeled variation patterns. The 

classifying method has two steps; 1) find the least square estimates of u, and 2) 

determine which pre-modeled variation sources are present by using some test 

statistics based on the least square estimates of u. The following discussion shows that 

the test statistics are no longer valid when there are un-modeled variation patterns.  

The classifying methods find the least square estimates of u as  

jû  = (B'B)−1B'xj,   for j = 1,2, …, N.      (19) 

Let  define  where ui,j denotes the jth observation of ui. If there are no 

un-modeled variation patterns,  has the following statistics  

2
iσ̂ 2

1
1

ji
N
j uN ,ˆ=

− Σ

2
iσ̂
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2
iσ̂  ~ [σi2 +σw2 [ ] ]1−′ ii ,BB ( )

N
N2χ ,       (20) 

where  denotes the ith diagonal element of ( ) 1−• ii , ( ) 1−•  and χ2(N) is a chi-squared 

random variable with N degrees-of-freedom. Based on (20), the classifying method 

determines whether the pre-modeled variation pattern is present or not by using a test 

statistic Fi, defined as  

 ( ) 21

2

wii

i
iF

σ

σ

ˆ

ˆ

,

−′
≡

BB
 ,        (21) 

where ( )( ) ( ) ( )jjjj
N
jw rnN uxuxˆ BB −′−Σ−= =

−
1

12σ

2
iσ̂

1−′ ii ,BB

2
iσ̂

. The classifying method compares 

Fi to a threshold γ where γ denotes the 1−α percentile of F(N, N(n−r)), which is a F-

distribution random variable with N, N(n−r−p) degrees of freedom. If Fi is greater 

than γ, it would be concluded that the ith pre-modeled variation source is present. 

Otherwise, it would be concluded that the ith pre-modeled variation source is not 

present. If there are un-modeled variation patterns, the statistical property of (20) is no 

longer valid.  would approximately follow [σi2 + [(B'B)−1B'CC'B((B'B)−1)']i,i 

+σw2 [ ] ]χ2(N)/N, so the statistical property of  will generally differ from (20) 

if C and B are not orthogonal. Since the test statistic is based on the statistical 

property of , Fi >γ does not guarantee the presence of the ith pre-modeled variation 

source. 

2
iσ̂
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 For example, suppose that one variation pattern b1 is pre-modeled as 

illustrated in Figure 21, and there is one un-modeled variation pattern c1 as illustrated 

in Figure 22. c1 represents a translation of the right bodyside. Suppose that the pre-

modeled variation pattern b1 is not present (σ12 =0) while c1 is present. Note that the 

magnitude or severity of the un-modeled variation pattern is expressed by c1'c1, and 

suppose that c1'c1 = 26 and σw2=1 (the signal-to-noise ratio ( ) 12
11

−
′ σncc  = 1 in this 

case). Then, theoretically, F1 becomes 3.33>1.24 (1.24 is 99 percentile of F(N, 

N(n−r)) when N=200). Therefore, it might be concluded that b1 is present, while 

actually b1 is not present. In other words, the classifying method may conclude that 

some pre-modeled variation patterns are present even when they are not, and vice 

versa.  
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Figure 22.  Illustration of c1 in autobody assembly (a translation of the right 

bodyside). 

 

IV.3  Blind separation approach with partial prior knowledge 

 This section presents a new method, referred to as the blind source separation 

approach with partial a priori knowledge, which is a blind source separation approach 

that utilizes pre-modeled variation patterns. This method has two steps: 1) estimate the 

un-modeled variation patterns from the measurement data (Section IV.3.1), and 2) 

classify the pre-modeled variation patterns by using some test statistic (Section 

IV.3.2).  
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IV.3.1  Estimating the un-modeled variation patterns 

To estimate the un-modeled variation patterns, a version of measurement data 

projected orthogonally onto the subspace V1 is first analyzed where V1 denotes 

span . Let P denote the projection matrix that projects orthogonally onto V1, 

then P = B(B'B)

{ }r
ii 1=b

∑ =
= r

i 1

−1B'. Let P⊥ denote the projection matrix onto , which denotes the 

orthogonal complement of V1, then P⊥ = I − B(B'B)

⊥
1V

−1B'. For j = 1, …,  p, each un-

modeled pattern vector cj, can be decomposed into two parts as cj = Pcj + P⊥cj, since 

P + P⊥ = I the identity matrix. Pcj lies in V1; hence Pcj can be represented as the 

linear combination of bi,  i = 1, …, r, with relative coefficients αi,j’s as 

. Combining for j = r+1, …, p, ijij bPc ,α

 PC = B = BA            (22) 





















prrr

p

p

,,2,1

,2,22,12

,1,21,11

ααα

ααα
ααα

"
#%##

"
"

where the ith row, the jth column element of A is  αi,j (1 ≤ i ≤ r, 1 ≤ j ≤ p). To 

simplify, letC~  = [  = P⊥[c1, c2, …, cp], then (18) becomes ]21 pccc ~,,~,~ …

 x = Bu + Cv+w  

  = Bu + (BA+ )v + w.                                                       (23) C~
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Define = P⊥x. Then, premultiplying (23) by P⊥, the new model becomes x~

 = v+                           (24) x~ C~ w~

where  =  P⊥w since P⊥B = (I−B(B'B)w~ −1B')B = B−B(B'B)−1B'B = 0n×p where 0n×p 

denotes a n×p zero matrix.  

  Though the new model (24) is similar to model (1), there is a difference 

between them. Note that  is a n×p constant matrix with linearly independent 

columns; v = [v1, v2, . . ., vp]' is a p×1 zero-mean random vector with independent 

components, each scaled (without loss of generality) to have unit variance. However, 

 ≠ σ2I (model (1) assumed that Σw = σ2I). The covariance matrix of  becomes 

=σ2P⊥, since = P⊥ΣwP⊥ = σ2P⊥P⊥ = σ2P⊥ where the last equality comes 

from the property of the projection matrix. In this case, the discussion in Section II.6 

(dealing with noise covariance structures other than σ2I) cannot be applied, because 

 should be obtained in order to apply the discussion in Section II.6. However, 

 does not exist since  is not of full rank by the property of the projection 

matrix.  

C~

Σ

w~Σ

w~Σ

1~−wΣ

1~−wΣ

w~

w~Σ

2/

2/
w~

  Due to the difference in assumptions between the models (24) and (1) 

regarding the noise covariance structure, the blind separation methods discussed in 

Chapters II and III are not directly applicable. The concepts of the blind separation 
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methods can be extended to estimate C  from the projected data , however. The 

following discussion shows how to accomplish this.  

~ x~

  Like the other blind separation methods in Chapters II and III, the covariance 

matrix of  is analyzed. From the model (24) and the assumptions, the covariance 

matrix of  is  

x~

x~

  .                   (25) ⊥+′= PCCΣ x
2σ~~

~

  Theorem 2: Let {zi: i = 1, 2, . . ., n} denote an orthonormal set of eigenvectors 

of , and let {λi: i = 1, 2, . . ., n} denote the corresponding eigenvales in descending 

order. Let {δi: i = 1, 2, . . ., p} denote the p nonzero eigenvalues of , arranged in 

descending order. Then λi=δi+σ2 (1 ≤ i ≤ p), λi=σ2 (p+1 ≤ i ≤ n−r) and λi=0 (n−r+1 ≤ 

i ≤ n). 

x~Σ

CC ′~~

 Proof: Let V2 denote span{ }p
ii 1=c~ . Then there are three possibilities for the 

eigenvectors of : that the eigenvectors lie in V2 (Case 1), that the eigenvectors lie 

in (Case 2), and that the eigenvectors lie in V1 (Case 3). The proof is 

separated by case.  

x~Σ

)( ⊥⊕ 21 VV

Case 1: Let zi, i = 1, 2, …, p, denote the eigenvectors of x~Σ  that lie in V2. Since zi ∈ 

V2 ⊂  for 1 ≤ i ≤ p, the projection of zi onto  does not make the 

change to P⊥zi= zi. Premultiplying (25) by zi, i = 1, 2, …, p, it becomes 

zi = C zi +σ2P⊥zi. Then zi = 

⊥
1V

~

⊥
1V

x~Σ C′~ CC ′~~
x~Σ zi −σ2P⊥zi = λizi −σ2P⊥zi. 



 98

Therefore zi, i = 1, 2, …, p, is also the eigenvectors of zi. Note that 

span{ }  = span ; hence, the eigenvalue of  corresponding to zi, 

i = 1, 2, …, p, should be nonzero. Since λ1 ≥ λ2≥ …≥ λp>σ2, δ

CC ′~~

x~Σ

p
ii 1=c~

( ⊥⊕ 2V

{ }p
iiz 1= CC ′~~

i =λi −σ2 (1 ≤ 

i ≤ p), which completes the proof for Case 1.  

(

⊥
1V

′

C~~

Σ

x~Σ

⊥
1

C~

Case 2: Let zi, i = p+1, 2, …, n−r, denote the eigenvectors of  that lie in 

. Since zi ∈)1V )⊥⊕ 21 VV

′

⊂  for p+1 ≤ i ≤ n−r, the projection of 

zi onto  does not make the change to P⊥zi= zi. Since zi ∈ ( ) ⊂ 

 for p+1 ≤ i ≤ n−r, these eigenvectors are orthogonal to any column of 

, which implies C zi is a zero vector with a proper dimension. 

Premultiplying (25) by zi, i = p+1, 2, …, n−r, it becomes zi =C zi 

+σ2P⊥zi= σ2P⊥zi = σ2zi. Therefore λi=σ2 (p+1 ≤ i ≤ n−r), which completes 

the proof for Case 2.  

⊥
1V

⊥⊕ 21 VV

C′~~

⊥
2V

C~

x~

Case 3: Let zi, i = n+r−1, n+r−2, …, n, denote the eigenvectors of  that lie in V1. 

Since zi ∈ V1 for n+r−1 ≤ i ≤ n, the projection of zi onto  is a zero vector 

with proper dimension P⊥zi = 0. Since V1 and V2 are orthogonal spaces, zi, i 

= n+r−1, n+r−2, …, n, are orthogonal to any column of , which implies 

zi is a zero vector with a proper dimension. Premultiplying (25) by zi, i 

V

CC~~
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= p+1, 2, …, n−r, it becomes x~Σ zi = C zi +σ2P⊥zi= 0. Therefore λi=σ2 

(n+r−1 ≤ i ≤ n), which completes the proof for Case 3.  

C′~~

+′iz i
2zσ

~

x~Σ

 

By using Theorem 2, x~Σ  can be decomposed in terms of its eigenvectors and 

eigenvalues as  

x~Σ  =  =  ∑
=

′
n

i
iii

1
zzλ ∑∑

−

==

′−
rn

i
i

p

i
ii

11

2 )( zzσλ

       = +′−Λ PZIZ σσ ppp                    (26) [ ] ⊥22

where Zp=[z1, z2, …, zp] and Λp = diag{λ1, λ2, …, λr}. Comparing (25) and (26), just 

as in Chapters I and II, C~  must be in the form C  = Zp[Λp–σ2I]1/2Q and the rest of 

problem reduces to find Q. The estimate of σ2 can be obtained from the mean of 

λp+1, λp+2, …, λn-r, which are the eigenvalues of  from p+1 largest to n−r largest. 

Like in the other blind separation methods, a transformed version of whitened 

data is used to estimate Q.  

Theorem 3: Suppose that  follows the model (24). Define where 

W = [Λp–σ2I]-1/2Zp' is the p×n whitening matrix. Then,  

x~ x~y~ W=

x~y~ W= = Qv+ Ww.                   (27) 
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Proof: By the property of the projection matrix and Theorem 2, P⊥zi= zi (1 ≤ i 

≤ n–r) and P⊥zi= 0, (n–r+1 ≤ i ≤ n). Then, zi (1 ≤ i ≤ n) are the eigenvectors of P⊥ 

with corresponding eigenvalues 1 or 0. P⊥ can be decomposed in terms of its 

eigenvectors and eigenvalues as P⊥ = . Premultiplying W by P⊥, it becomes 

WP⊥ = ∑  = W, where the last equality follows from the property of the 

eigenvectors. Using the relationship 

∑ −

=
′rn

i ii1
zz

C

−

=
′rn

i ii1
zWz

~  = Zp[Λp–σ2I]1/2Q, the transformed data 

becomes  = = W[C v+ P⊥w] = Qv + WP⊥w = Qv + Ww.               y~ x~W ~

Since (27) is identical to (5) in Section II.2, either the second-order method, 

the fourth-order method or the combined method can be used to estimate Q. Here, we 

recommend using the combined method to estimate Q uniquely. Q can be estimated 

uniquely when no pair of Gaussian sources among v share the exact same 

autocorrelation function. When Q is estimated uniquely, the estimate of C~  is taken to 

be Zp[Λp–σ2I]1/2Q.    

Up to this point, we have been discussing how to estimate C~ . However, what 

we really want is to estimate C. Noting that C = BA+C , it follows that we need to 

find A in order to estimate C, which the following theorem describes how to do.  

~

Theorem 4: Suppose x follows the model (18) and C = BA+C . Then, A = 

(B'B)

~

−1B'Σx C~ ((C~ 'C~ )−1)'.  
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  Proof: From (23), (B'B)−1B'x = (B'B)−1(B'Bu+ B'BAv+ B'C v+ B'w) = u+ Av+ 

(B'B)

~

−1B' v+ (B'B)C~ −1B'w = u+ Av+ (B'B)−1B'w, where the last equality comes from 

the fact that C~  is contained in the orthogonal complement of B (B'C~ =0).  Similarly, 

( )CC ~~ ′ −1 C~ 'x = ( )CC ~~ ′ −1(C 'Bu+ 'BAv+ ' v+ 'w) = v+(C )~ C~ C~ C~ C~ C~′~ −1 C~ 'w. Since 

E[vv']= I, E[uv'] = 0, E[uw'] = 0, E[vw'] = 0 and E[ww'] = I with proper dimensions, 

(B'B)−1B'Σx C~ ((C~ 'C~ )−1)' = (B'B)−1B'E[xx']ΣxC~ ((C~ 'C~ )−1)' = E[((B'B)−1B'x)((C )C~~ ′ −1 

C~ 'x)'] = E[(u+ Av+ (B'B)−1B'w)(v+(C )C~~ ′ −1 C~ 'w)'] = A + (B'B)−1B'C~ ((C~ 'C~ )−1)' = A.  

 

 In this section, we present a method for estimating un-modeled variation 

patterns c1, c2, …, cp from on-line measurement data x when there are pre-modeled 

variation patterns b1, b2, …, br. This is the first step in the blind source separation 

approach with partial prior knowledge, and the procedure is summarized as follows. 

For notational convenience, the "^" symbol is omitted on all quantities, which are 

meant to be estimated values from the sample data. 

 

Step 1 : Estimate un-modeled variation patterns 

1) Construct B = [b1, b2, …, br] from the pre-modeled variation patterns. 

2) Obtain projected data vector = P⊥x where P⊥ = I−B(B'B)x~ −1B'.  

3) From the projected data sample { : j = 1, 2, . . ., N}, calculate the sample 

covariance matrix = 

jx~

x~Σ ( )( )′−Σ =
− x~x~x~ j

N
jN 1

1 −x~ j  where j
N
jN x~x~ 1

1
=

− Σ= . 
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4) Based on a PCA decomposition of x~Σ , calculate the whitening matrix W = 

[Λp-r–σ2I]-1/2Zp-r'  and the whitened data { jj x~y~ W= : j = 1, 2, . . ., N}. 

5) Find the orthogonal matrix Q by using the combined method. 

6) Take the estimate of C~  to be Zp[Λp-σ2I]1/2Q. 

7) From the data sample {xj: j = 1, 2, . . ., N}, calculate the sample covariance 

matrix Σx = ( )( )′−−Σ =
− xxxx jj

N
jN 1

1  where j
N
jN xx 1

1
=

− Σ= . 

8) Take the estimate of A to be (B'B)−1B'ΣxC~ ((C~ 'C~ )−1)'. 

9) Take the estimate of C to be BA+C~ . 

 

IV.3.2  Classifying the pre-modeled variation patterns 

 The second step of the method is to determine which potential (pre-modeled) 

variation patterns are present in the data. The author recommends using the method of 

classifying pre-modeled variation patterns presented by Apley and Shi (1998). The 

test statistic, proposed by Apley and Shi (1998), to determine which potential patterns 

are present is very simple and also easy to calculate. The following discussion shows 

why the method of Apley and Shi (1998) can be directly applicable after un-modeled 

variation patterns are estimated. For simplicity, it is assumed that span of the estimates 

of  is equal to the span of C , which means that the whitening matrix W = [Λp–σ2I]-

1/2Zp'  is known.  

C~ ~
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 Suppose that the uniqueness conditions of estimating un-modeled variation 

patterns are satisfied. Then, the un-modeled variation patterns are to be estimated 

accurately. Once the un-modeled variation patterns are identified, we can use the 

estimates as pre-modeled variation patterns. Since all of the variation patterns are pre-

modeled (including the estimates of the un-modeled variation patterns), the classifying 

method becomes directly applicable. Now, suppose that the uniqueness conditions of 

estimating un-modeled variation patterns the method are violated. Then, the blind 

separation method produces the estimates of C  as C U by some p×p orthogonal 

matrix U. The following lemma shows the estimate of C is CU.  

~ ~

Lemma 1: Let the estimate of C  is C U, the estimate of C is CU. ~ ~

Proof : From theorem 4, the estimate of A becomes  = (B'B)Â −1B'ΣxC U 

((U'

~

C~ 'C~ U)−1)' = (B'B)−1B'Σx C ((C~ ~ 'C~ )−1)'U = AU. Since C = BA+ ,  = 

BAU + U = CU. 

C~ Ĉ~ABC ˆˆ +=

C~

Then, the following theorem shows that the test statistic Fi, defined in 

Theorem 5, does not depend on U, which means that determining the presence of the 

ith source does not depend on whether the uniqueness conditions of uniquely 

identifying C are satisfied or not where C = CU.  ˆ
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Theorem 5: Let Fi denote the test statistic of determining the presence of the 

ith pre-modeled variation source, defined as 

[ ] [ ] 2
1

2

w
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Therefore,  =  and =U' v .  Since  = ,  does not depend on U. 

Also, =

jû j,û0 jv̂ j,ˆ 0 jû j,û0
2
iσ̂

2
wσ̂ ( )( ) ( ) ( )jjjpn v̂xv̂ˆûx C j Ĉ−jj BN
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    = ( )( ) ( ) ( )jjjjjj
N
jprnN ,,, v̂ûxv̂ûx 0001

1 CBCB −−′−−Σ−− =
− .  

Therefore,  does not depend on U. Similarly,  2
wσ̂

   = . [ ] [ ]
1−







 ′

ii ,

ˆˆ CBCB [ ] [ ]
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



 ′

ii ,
CBCB

Therefore, Fi does not depend on U.  

     

Using Theorem 5, the test statistic proposed by Apley and Shi (1998) is 

directly applicable whether the uniqueness conditions of the blind separation method 

with partial prior knowledge are satisfied or not. The remainder of this section 

summarizes the classifying procedure of Apley and Shi (1998) with modifications for 

fitting the model (18). For notational convenience, “^” has been omitted as before.  

 

Step 2: Classify pre-modeled variation patterns 

10) Estimate uj and vj as [ u j′  v j′ ]' = ([B C]'[B C])−1[B C]'xj for j = 1,2, …, N.  

11) Calculate  where ui,j denotes the jth observation of ui for i 

= 1,2, …, n. 

2
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2
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iiF σσ
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
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,
/ CBCB

14) Determine whether the ith pre-modeled variation source is present or not by 

comparing Fi and γ where γ denotes the 1−α percentile of F(N, N(n−r−p)).  
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IV.4  Performance Comparison 

 The purpose of this section is to compare in a simulation example the 

performance of the blind separation method with partial prior knowledge and the 

combined method. A simple beam example is used, and n = 20 measurement points 

are distributed uniformly across the beam. There is one pre-modeled variation source 

(u1) with b1 and two un-modeled variation sources (v1 and v2) with c1 and c2 

illustrated in Figure 23(a), 23(b) and 23(c), respectively. The pre-modeled variation 

sources and the un-modeled variation pattern vectors are scaled so that σ12 = c1'c1 = 

c2'c2 = nσw2. 

(a) 

beam

(b) 

(c) 
Figure 23  Illustration of the three variation patterns used in Section IV.4: (a) b1, 

representing a beam rotation, (b) c1, representing a beam translation, and (c) c2, 

representing a beam bending. 
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 As a baseline example, the situation is considered where the uniqueness 

conditions of both the blind separation method with partial prior knowledge and the 

combined method are satisfied. Note that the combined method does not distinguish 

between the pre-modeled variation sources and the un-modeled variation sources, 

while the blind separation method with partial prior knowledge does. Therefore, the 

uniqueness condition of the combined method in this example is that no pair of 

Gaussian sources among u1, v1 and v2 share the exact same autocorrelation function. 

The uniqueness condition of the blind separation method with partial prior knowledge 

in this example is that no pair of Gaussian sources among v1 and v2 share the exact 

same autocorrelation function. The first un-modeled source v1,t follows a first-order 

Gaussian AR process with AR parameter φ = 0.9. The second un-modeled source v2,t 

has two values ±1 with equal probability 0.5; hence it follows a Bernoulli distribution. 

The first pre-modeled source u1,t is uncorrelated Gaussian random variables with a 

zero mean and unit variance.  

 A sample of N = 200 simulated observations are used, and the autocovariance 

matrices for lags τ  = 1, 2, …, 20 are used for both methods. Let Jb1
 = [ ]11E bb −ˆ  (b1 

has unit norm), Jci
 = [ ] 1−− iiiˆE ccc . The performance measure Jb1

, Jc1
, Jc2

 and the 

test statistic F1 are averaged from a Monte Carlo simulation with 10,000 replicates. 

The results are shown in the first row in Table 4. The blind source separation with 

partial prior knowledge performed slightly better in estimating c1 and c2 than the 
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combined method for the baseline example. Note that the combined method estimates 

b1 from the measurement data, and the blind separation method with partial prior 

knowledge tests the presence of b1. The blind separation method with partial prior 

knowledge concludes that b1 is present in the baseline example since F1= 20.35 > 

1.47 where 1.47 is the 99 percentile of F(N, N(n−r−p)), N=200, n=20, r=1, and p=2.  

 

Table 4  Summary of the Monte Carlo Simulation Results Comparing the 

Performance of the Two Methods. 

  

Blind source separation 

with partial prior 

knowledge 

Combined method 

v1 

autocorrelation 

v2 

distribution 
F1 Jc1

 Jc2
 Jb1

  Jc1
 Jc2

 

φ = 0.9 Bernoulli 20.35 0.1163 0.1034 0.0899 0.1223 0.1088

φ = 0.7 Bernoulli 20.48 0.1082 0.1079 0.0973 0.1248 0.1093

φ = 0.5 Bernoulli 20.50 0.1008 0.1139 0.1384 0.1536 0.1144

φ = 0.3 Bernoulli 20.42 0.0987 0.1180 0.2776 0.2832 0.1191

φ = 0 Bernoulli 20.49 0.0981 0.1188 0.4411 0.4417 0.1200

φ = 0 Gaussian 20.54 0.4331 0.4329 0.4509 0.4670 0.4673

 
 

The next examples represent situations where the uniqueness condition of the 

combined method is violated or comes close to being violated, while the uniqueness 

condition of the blind separation method with partial prior knowledge is satisfied. 
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Everything is the same as in the baseline example, except that the autocorrelation of 

the second source has been reduced by decreasing the AR parameter φ . As the 

autocorrelation of v2 is decreased, the autocorrelation functions of the two Guassian 

sources (u1 and v1) become closer; hence the accuracy of the estimates of the 

combined method decreases rapidly in identifying the first and second variation 

patterns as in Table 4. The combined method separates the third source reasonably 

well in these situations. Since there is only one Gaussian source (v1) among the un-

modeled variation sources (v1 and v2), the uniqueness condition of the blind 

separation method with partial prior knowledge is not affected by changing φ. Table 4 

also shows that the blind separation method with partial prior knowledge performs 

quite well since it does not depend on φ. The last row of Table 4 shows the results 

when the assumptions for both methods are violated, in which case neither method 

separates the second and third sources well. 

As the number of sources increases, the likelihood of the combined method 

assumptions being violated also increases because it becomes more likely that two or 

more Gaussian sources will have approximately the same autocorrelation function. As 

the number of pre-modeled sources increases, it becomes increasingly likely that the 

uniqueness condition of the blind separation method with partial prior knowledge will 

be satisfied since the pre-modeled variation sources do not require any additional 

assumptions regarding distributions.  
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 In practice, there is no a priori knowledge as to whether the uniqueness 

conditions of the methods are satisfied or not. To verify the assumptions from the 

measurement data, histograms of estimated signals and sample autocorrelation 

functions can be plotted. For illustration, a Monte Carlo simulation with one replicate 

is used in a situation where v1 is changed to be uncorrelated (ρ1,τ = 0 for all τ > 0), 

and the rest is as in the baseline example. When the blind separation method with 

partial prior knowledge is applied, Figure 24 shows histograms and sample 

autocorrelation functions for the three source signals. Among the un-modeled sources 

(v1 and v2), the second un-modeled source appears to be non-Gaussian, which satisfies 

the uniqueness condition of the blind separation method with partial prior knowledge. 

Estimates of the three pattern vectors and corresponding estimated source signals are 

plotted in Figure 25. As expected, the estimates are reasonably good. The combined 

method results in a misleading interpretation, however. Figure 26 shows that u1 and v1 

appear to follow Gaussian distribution with quite similar autocorrelation functions. 

Figure 27 shows that the estimates of b1 seem to be the rotation about the right two-

third point, and the estimates of c1 seem to be the rotation of the beam about the left 

end point, which are incorrect conclusions. These results appear in Table 4.  
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Figure 24  Histograms (left panels) and sample autocorrelation functions (right 

panels) for three source signals, by using the blind separation method with partial 

prior knowledge.  
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Figure 25  Estimates of the three pattern vectors b1, c1 and c2 (left panels) and source 

signal u1,t, v1,t and v2,t (right panels), using the knowledge involved blind separation 

method. 
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Figure 26  Histograms (left panels) and sample autocorrelation functions (right 

panels) for three source signals, using the combined method.  
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Figure 27  Estimates of the three pattern vectors b1, c1 and c2 (left panels) and source 

signals u1,t, v1,t and v2,t (right panels), using the combined method. 
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IV.5  Chapter summary 

This chapter has presented a new method, a blind source separation approach 

utilizing partial prior knowledge. The new method can be applied when partial pre-

modeled variation patterns are available. The new method requires two steps for 

identifying variation patterns present in manufacturing processes. The first step is to 

estimate un-modeled variation patterns by using information from pre-modeled 

variation patterns. A method similar to the combined method is used to estimate un-

modeled variation patterns. The second step is to classify pre-modeled variation 

patterns to determine whether they are present or not. This procedure is the same as 

the method proposed by Apley and Shi (1998).  

Our new method combines the advantages of the estimating un-modeled 

variation pattern approach and the classifying pre-modeled variation pattern approach. 

Our new method does not need to pre-model all of the potential variation patterns, 

plus it has wider applicability than the classifying pre-modeled pattern approach 

because it is applicable when only partial variation patterns are pre-modeled. In 

addition, the performance accuracy is improved by utilizing the partial prior 

information. Note that the new method is the same as the combined method if no 

partial prior variation patterns are available. Also, the new method is the same as the 

method proposed by Apley and Shi (1998) if all of the potential variation patterns are 

pre-modeled.  
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CHAPTER V 

OVERALL STRATEGY 
 

 Several blind separation methods (including the blind separation method with 

partial prior knowledge) for identifying variation patterns have been presented in 

previous chapters. These blind separation methods require assumptions regarding the 

distribution of sources whereas the A&S method requires assumptions regarding the 

structure of C. Since they employ different assumptions to estimate variation patterns 

uniquely, they can be used in different situations. This difference also enables us to 

use the blind separation methods and the A&S method together. This chapter presents 

an overall strategy for using all of these methods in combination. The strategy makes 

it possible to identify variation patterns which cannot be identified by using any 

individual method. The ultimate objective of the strategy is to identify as many 

variation patterns as possible.  

 

V.1  Block separability of the blind separation methods 

 Recall that the blind separation method with partial prior knowledge and the 

combined method can identify variation patterns uniquely if no pair of Gaussian 

sources (among un-modeled sources with partial a priori knowledge) share the exact 

same autocorrelation function. Some sources can be separated from other sources, 

however, even though the uniqueness conditions are not fully satisfied. A variation 
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source can be separated from others if it follows a non-Guassian distribution or it has a 

different autocorrelation function than the other Gaussian sources. Let “block” define 

a set of two or more variation sources that follow a Gaussian distribution with the 

same autocorrelation function. The blind separation methods can separate sources 

from others if they do not belong to the same block. For example, suppose that there 

exist five un-modeled variation sources, referred to as v1, v2, v3, v4 and v5. Suppose 

that v1 follows a Bernoulli distribution with no temporal autocorrelation, and the 

second and third source follows the first-order Gaussian AR model with AR parameter 

φ = 0.9.  Also suppose that the fourth and fifth sources are assumed to follow 

uncorrelated Gaussian distributions. Since two pairs of Gaussian sources, {v2, v3} and 

{v4, v5}, have the exact same autocorrelation function, the uniqueness condition of the 

blind separation method is violated. The first source can be separated from the other 

sources, however, because v1 follows a non-Gaussian distribution. The second source 

can be separated from the fourth and fifth sources since they have different 

autocorrelation functions, but cannot be separated from the third source. Hence, the 

second and third sources are within the same block. Likewise, the first block contains 

the second and third sources  {v2, v3} and the second block contains the fourth and 

fifth sources {v4, v5}. 

 As discussed in Section II.5, the performance of the blind separation method 

depends on the extent to which its assumptions are satisfied with a finite sample size. 

Likewise, the block separability of the blind separation method also depends on 
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whether two Gaussian-like sources have similar autocorrelation functions. As 

discussed in previous chapters, histograms of the estimated source signals and plots of 

the sample autocorrelation functions can be used to determine blocks. The author 

recommends that the sources that seem to follow Gaussian distributions be found first. 

Consider crankshaft example in Section II.3. Figure 8 shows examples of histograms 

of estimated source signals. Figure 8(a) shows a typical histogram of estimated 

Gaussian sources. In Figure 8(b), it appears that the estimated source does not follow a 

symmetric distribution, but is an example of a non-Gaussian source. In Figure 8(c), 

the estimated source has a long tail; hence it also provides an example of a non-

Guassian source. The existence of a long tail and symmetry of distribution are 

attributes to consider in determining whether the sources follow a Gaussian 

distribution or not.  

 Once the Gaussian sources are identified, the sources that have similar 

autocorrelation functions should be identified. This can be accomplished by plotting 

the sample autocorrelation functions together. Figure 9 shows three sample 

autocorrelation functions (ρ1,τ, ρ2,τ, and ρ3,τ). Figure 9 demonstrates that ρ1,τ and ρ3,τ 

are similar. If the corresponding sources follow a Gaussian distribution, they cannot 

be separated from each other, and they belong to the same block. However, some 

ambiguity is involved in selecting inseparable sources since choosing similar 

autocorrelation functions is very subjective. This is also true of a number of factors 

that affect the accuracy of blind separation methods, such as sample size N and signal-

to-noise ratio. Section II.5 discusses this issue in more detail.  
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 By using the guidelines discussed above, it can be determined whether two 

sources are separable or not. If a source does not belong to a particular block, that 

source can be considered a separable source and the corresponding estimates of its 

variation patterns can be considered as reasonable estimates. If sources are not 

separable from each other, these sources can be considered within the same block and 

the corresponding estimates of their variation patterns cannot be considered as 

reasonable estimates. Section V.2 discusses how we can try to separate sources within 

the same block by using the A&S method.  

 

V.2  Overall strategy for identifying spatial variation patterns 

 This section presents an overall strategy for identifying spatial variation 

patterns by using the blind separation methods and the A&S method in combination. 

The first step of the strategy is to check the availability of pre-modeled variation 

patterns. If pre-modeled variation patterns are available, the blind separation method 

with partial prior knowledge, introduced in Chapter IV, should be used. Otherwise, the 

combined method, introduced in Chapter III, is to be used. Regardless of which 

methods are used, the variation sources should be checked to determine whether they 

are separable or within the same block (see discussion in Section V.1). Also, which 

pre-modeled (potential) variation patterns are present should be determined.  

 After selecting the blocks, the A&S method is recommended for separating 

sources within the same block. Suppose the ith block has sources vi1
 vi2

 … vik
 and that 

di1
, di2

, …, dik
 denote the estimated corresponding pattern vectors by using blind 
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separation methods. Let Ci denote [ci1
, ci2

, …,cik
] and Di denote [di1

, di2
, …,dik

]. 

Although Ci≠ Di, it can be shown that CiCi'= DiDi'. Let Σi denote CiCi'. Since Σi (this 

is the information needed to use the A&S method) can be calculated from di1
, di2

, …, 

dik
, the A&S method can estimate Ci if Ci possesses the structure of (12) in Section 

II.4.1. Refer to Apley and Shi (2001) for a more detailed algorithm.  

 The overall strategy which is illustrated in Figure 28 is summarized as follows: 

1) check the availability of pre-modeled variation patterns, 2) apply the blind 

separation method with partial prior knowledge if pre-modeled variation patterns are 

available; otherwise apply the combined method, 3) based on the discussion in Section 

V.1, identify the un-modeled sources that can be separated and the blocks that cannot 

and also determine which pre-modeled variation sources are present, and 4) for each 

block, calculate Σi, and apply the A&S method.  
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Apply the A&S method to each
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Interpret the estimated variation
patterns

Yes

No

 

 Figure 28  Flowchart of the overall strategy. 
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 The overall strategy enables us to identify variation patterns, which cannot be 

identified by using any single method. For example, consider the situation where n=6, 

p=5, c1=[1 1 1 1 1 1]′, c2=[1.5 1 0.5 −0.5 −1 −1.5]′, c3=[0 0 1 1 1 −1]′, c4=[ −1.5 0 1.5 

1.5 0 –1.5]′, and c5=[−1 1 0 0 −1 1]′. Suppose that the first source follows a Bernoulli 

distribution, the second and the third sources follow the first-order Gaussian AR 

process with an AR parameter 0.9, and the fourth and fifth sources follow an 

uncorrelated Gaussian distribution. It is assumed that there are no pre-modeled 

variation patterns available; hence the combined method is applied first. From the 

block separability of the blind separation methods, the first variation pattern c1 can be 

identified since the corresponding source follows a non-Gaussian distribution. Since 

the second and third sources have the same autocorrelation function, they are within 

the same block, referred to as the first block. Similarly, the fourth and fifth sources are 

within the same block, referred to as the second block. The A&S method can be 

applied to each block. In examining the first block matrix C1=[c2, c3], we notice that 

the measurement subset {x1, x2} is affected by the second source only (among second 

and third sources). Since C1 possesses the structure of (12), the A&S method can 

estimate c2 and c3. Similarly, C2=[c4, c5] possesses the structure of (12); hence the 

A&S method can estimate c4 and c5. Likewise, the overall strategy enables us to 

identify all of the variation patterns whereas the combined method can only estimate 

c1 and the A&S method cannot estimate any variation patterns.  
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V.3  Illustration of applying the overall strategy 

 To illustrate the overall strategy, a simulation example is used in which a beam 

represents the manufacturing part as in Section II.5. There is one pre-modeled 

variation pattern vector b1 and three un-modeled variation patterns c1, c2, and c3 as 

illustrated in Figures 29(a), (b), (c) and (d), respectively. The first pattern represents a 

large measurement error at the left-most measurement point. N=200, n=20, and σ12 = 

c1'c1 = c2'c2 = c3'c3 = nσw2 is chosen for the simulation.  

 

(a) 

(b) 

(d) 

beam 

(c) 

 

Figure 29 Illustration of the four variation patterns used in Chapter V: (a) b1, 

represents a large measurement error at the left-most point, (b) c1, (c) c2 and (d) c3. 
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 The source distributions of the example are chosen so that the uniqueness 

conditions of the blind separation method with partial prior knowledge are partially 

satisfied. u1, v2 and v3 were generated via an uncorrelated Gaussian distribution. v1 

was generated via (17) with q=0.05 and the starting value drawn with a marginal 

Bernoulli distribution. For an illustration of the strategy, a Monte Carlo simulation 

with one replicate is used.  

Step 1 : Check the availability of the pre-modeled variation pattern 

A pre-modeled variation pattern is available, so the blind separation method 

with partial prior knowledge is used.  

Step 2 : Apply the blind separation method  

The estimates of the variation patterns are illustrated in Figure 30. 

Step 3 : Identify separable sources and blocks (by plotting histograms of estimated 

source signals and sample autocorrelation functions), and determine which pre-

modeled variation patterns are present.  
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(a) (b) 

(c) 

Figure 30 Illustration of estimates of the un-modeled variation patterns used in 

Section V.3: (a) the estimates of c1, (b) the estimates of c2 and (c) the estimates of c3. 
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After examining the histograms of the estimated source signals (Figure 31), we 

conclude that v2 and v3 follow Gaussian distributions. By plotting the sample 

autocorrelation functions of v2 and v3 (Figure 32), we also conclude that they 

have similar autocorrelation functions. Therefore, v1 does not belong to any 

block, and v2 and v3 belong to the same block. In the next step, the A&S method 

is applied to separate v2 and v3 from each other. The result agrees with the result 

in Step 2, since c1 is reasonably estimated while c2 and c3 are not. Also, the test 

statistic, defined at (28) in Section IV.3.2, is F1 = 14.2270. The 99 percentile of 

F(N, N(n−r−p)) is about 1.47, where N=200, n=20, r=1 and p=3. Since F1> 1.32, 

we conclude that u1 is present.  

Step 4 : Identify c2 and c3 using the A&S method.  

When {x10, x11} was selected as the measurement subset affected by only one of 

v2 or v3, the estimates of c2 and c3 are illustrated in Figure 33, and these 

estimates are reasonable. As discussed in Sections II.4 and II.5, there is user 

subjectivity in choosing the measurement subset and selecting the wrong 

measurement subset may result in a misleading interpretation.  
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Figure 31  Illustration of histograms of the estimated source signals. 
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Figure 32 Illustration of sample autocorrelation functions of v2 and v3. 

  



 129

 

 

 

(b) (a) 

 

 

 

Figure 33  Estimates of c2 and c3 using the A&S method: (a) estimates of c2, and (b) 

estimates of c3. 

 

V.4  Chapter summary 

 This chapter has presented an overall strategy for how to use the blind 

separation methods and the A&S method in combination. The first step of the strategy 

is to determine which blind separation methods are to be applied based on the 

availability of pre-modeled variation patterns. After applying the blind separation 

methods, one must verify which variation sources are separable and which are within 

a same block. Histograms of the estimated source signals and sample autocorrelation 

functions are used to identify separable sources and blocks. If the blind separation 

method with partial prior knowledge is used, the pre-modeled variation patterns that 

are present must also be determined. After identifying blocks, the A&S method is 

applied to each block. For the A&S method, Σi should be calculated from the 

estimates of the variation patterns by using blind separation methods so that the A&S 

method can be applied without any modification.  
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 The overall strategy enables us to separate variation sources, which cannot be 

separated by using any other methods (blind separation methods or the A&S method), 

which is illustrated with the examples in Section V.2 and Section V.3. There is, 

however, a high level of user subjectivity involved in selecting the separable sources 

and blocks. This overall strategy could be further enhanced by developing a measure 

of separability for any two sources.  
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CHAPTER VI 

CONCLUSION AND FUTURE WORKS 

  

This dissertation has focused on identifying spatial variation patterns to identify 

and eliminate the underlying root causes of process variation. In general, there are two 

different approaches used for identifying variation patterns − classifying pre-modeled 

variation patterns and estimating un-modeled variation patterns. The classifying 

approach requires modeling all of the potential variation patterns from off-line, a 

condition which precludes the wide applicability of the approach. As a consequence, 

estimating variation patterns from on-line measurement data has more practical 

significance. However, the existing methods for estimating un-modeled patterns also 

have several limitations, such as a high level of user subjectivity. To find a more 

generic and black-box type (i.e., requiring less user input) method, several blind 

source separation methods have been proposed and investigated in this dissertation.  

Since the existing blind source separation methods employ a model whose 

structure is nearly identical to the model used for manufacturing variation diagnosis, it 

can be directly applied. The existing blind separation methods (the second-order and 

fourth-order methods) require additional assumptions for uniquely estimating 

variation patterns. When these methods are compared to a existing method for 

estimating un-modeled patterns (the A&S method), they have advantages in the sense 
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that verification of the required assumptions is more straightforward. If required 

assumptions are violated, no method can estimate variation patterns reasonably.  

In this dissertation, the existing blind separation methods have been further 

enhanced to be more effective and more black-box like. The second-order and fourth-

order criteria have been combined and optimally weighted. The optimal weights have 

been chosen by minimizing some measure of estimation accuracy. The optimal 

weights are generally relative to the information contained in each second-order and 

fourth-order criteria. Combining second-order and fourth-order criteria further relaxes 

the required assumptions of the second-order and fourth-order methods. The blind 

separation methods have been further enhanced by utilizing partial prior knowledge. 

There are two steps in the new method, which are estimating the un-modeled variation 

patterns and classifying the pre-modeled variation patterns. By incorporating partial 

information from off-line analysis, the new method can estimate un-modeled variation 

patterns more accurately.   

The rest of this section discusses issues for the future study.  

• This dissertation has presented an overall strategy for using the blind 

separation methods with the A&S method. By using this overall strategy, 

variation patterns, which cannot be identified by any single method, can be 

identified. However, the overall strategy involves a high level of user 

subjectivity in selecting separable sources and blocks. Criteria for measuring 

the separability of any two sources should be further studied in order to 

reduce the user subjectivity. These criteria may be usable for interpreting 
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estimates of variation patterns using any of the blind source separation 

methods.  

• It should be noted that all of the methods discussed in this dissertation are 

based on the linear model (1). If this model (1) does not adequately represent 

reality, all of the blind source separation methods in this dissertation may be 

inapplicable. The extension of the blind separation methods to nonlinear 

variation patterns should be studied further. For example, estimating linear 

un-modeled variation patterns with partially pre-modeled nonlinear variation 

patterns is one likely area for further study. Another is the estimation of 

nonlinear un-modeled variation patterns using blind source separation 

concepts.  

• As discussed in Section IV.1, this dissertation has focused on a single stage 

manufacturing process. In multistage manufacturing processes, the state 

space model can be used to describe the overall assembly process (Jin and 

Shi, 1999; Ding, et al, 2002). The extension of blind source separation 

concepts to the state space model in multistage manufacturing processes 

should be an area for future study.  

• All of the blind separation methods in this dissertation are based on second-

order and fourth-order statistics. The third-order statistic can also be used for 

blind source separation (Comon, 1994). The third-order statistic is not 

widely used in signal processing applications, however, since they usually 

deal with symmetric sources. Therefore, the third-order statistic contains 
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little information in signal processing applications. In the manufacturing 

process, skewed source signals are often examined as in crankshaft example 

in Section II.3. Therefore, the third-order statistic may contain useful 

information for manufacturing variation diagnosis. By including the third-

order statistic (more information), the blind separation methods would 

become more effective in estimating un-modeled variation patterns.  

• Every estimate of variation patterns involves estimation error. Plotting the 

variation patterns as arrows as in Figures 1 and 2 may not be sufficient for 

interpreting the estimates of the variation patterns. Considering the 

confidence interval of the estimates of the variation patterns, more 

interpretable visualization methods should be developed.  
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APPENDIX A 

JOINT APPROXIMATE DIAGONALIZATION  

 

This appendix summarizes the algorithm of Cardoso and Souloumiac (1994), 

to be used for jointly approximately diagonalizing a set of matrices {Ak: k = 1, 2, . . ., 

K}. The algorithm involves representing the orthogonal matrix U as the product of a 

series of Givens rotation matrices (Golub and Van Loan, 1989). For a specified 

rotation angle θ  and a pair of indices i and j with 1 ≤ i ≠ j ≤ p, the Givens rotation 

matrix U(i,j,θ) is defined as a slightly modified version of the identity matrix. All 

elements of U(i,j,θ) are the same as the identity matrix, except that uii(i,j,θ) = cos(θ), 

uij(i,j,θ) = -sin(θ), uji(i,j,θ) = sin(θ), ujj(i,j,θ) = cos(θ), where ukl(i,j,θ) denotes the 

kth-row, lth-column element of U(i,j,θ). As the algorithm iterates over i and j, the θ 

that determines each U(i,j,θ) is chosen to minimize 

 ,                 (30) ∑
=

K

k
i jiji

1
]off[ ),,(),,(' θθ UAU

which is a function of only a single parameter θ. The matrices {Ak: k = 1, 2, . . ., K} 

are updated via Ak → U'(i,j,θ)AkU(i,j,θ) after each new U(i,j,θ) is found. 

 For a fixed i and j, the θ that minimizes (30) is easily determined as follows. 

Define the 2×2 symmetric matrix 
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where h(Α) is defined as [aii-ajj  aij+aji] with aij denoting the ith-row jth-column element 

of a matrix A. The θ that minimizes (31) is given by (Cardoso and Souloumiac, 1994) 

 
2

1
cos 1 +

=
z

θ   and  
1)2( 1

2

+
=

z
z

θsin ,                (32) 

where [z1  z2]' denotes the eigenvector of H that corresponds to its largest eigenvalue. 

The algorithm is iterated over i and j values with 1 ≤ i ≠ j ≤ p until (31) converges. 

The final Q matrix is then taken to be the product (from left to right) of the individual 

U(i,j,θ) matrices at each iteration. 
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