

A PRACTICAL METHOD FOR PROACTIVE INFORMATION EXCHANGE

WITHIN MULTI-AGENT TEAMS

A Thesis

by

RYAN TIMOTHY ROZICH

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2003

Major Subject: Computer Science

A PRACTICAL METHOD FOR PROACTIVE INFORMATION EXCHANGE

WITHIN MULTI-AGENT TEAMS

A Thesis

by

RYAN TIMOTHY ROZICH

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

 Approved as to style and content by:

Thomas Ioerger
(Chair of Committee)

 Richard Volz
(Member)

Christopher Menzel
(Member)

 Valerie Taylor
(Head of Department)

August 2003

Major Subject: Computer Science

 iii

ABSTRACT

A Practical Method for Proactive Information Exchange

within Multi-Agent Teams. (August 2003)

Ryan Rozich, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Thomas Ioerger

Psychological studies have shown that information exchange is a key component of

effective teamwork. In addition to requesting information that they need for their tasks,

members of effective teams often proactively forward information that they believe other

teammates require to complete their tasks. We refer to this type of communication as

proactive information exchange and the formalization and implementation of this is the

subject of this thesis. The important question that we are trying to answer is: under

normative conditions, what types of information needs can agent teammates extract from

shared plans and how can they use these information needs to proactively forward

information to teammates? In the following, we make two key claims about proactive

information exchange: first, agents need to be aware of the information needs of their

teammates and that these information needs can be inferred from shared plans; second,

agents need to be able to model the beliefs of others in order to deliver this information

efficiently. To demonstrate this, we have developed an algorithm named PIEX, which,

for each agent on a team, reasonably approximates the information-needs of other team

members, based on analysis of a shared team plan. This algorithm transforms a team

 iv

plan into an individual plan by inserting communicative tasks in agents’ individual plans

to deliver information to those agents who need it. We will incorporate a previously

developed architecture for multi-agent belief reasoning. In addition to this algorithm for

proactive information exchange, we have developed a formal framework to both

describe scenarios in which proactive information exchange takes place and to evaluate

the quality of the communication events that agents running the PIEX algorithm

generate. The contributions of this work are a formal and implemented algorithm for

information exchange for maintaining a shared mental model and a framework for

evaluating domains in which this type of information exchange is useful.

 v

To my family,

for their endless amount of support, encouragement and love throughout all these years.

 vi

ACKNOWLEDGMENTS

I gratefully acknowledge the support and presence in this work of many people without

whom I never would have been able to complete my program. I am grateful to my

advisor, Dr. Thomas Ioerger, whose support has made my graduate experience the best

possible; I feel lucky to have had him as my advisor, mentor, and friend. Since I started

doing research with Dr. Ioerger as an undergraduate, I haven’t made many academic,

research or career decisions over the past three years without consulting him, and he has

never steered me wrong. Dr. Ioerger’s enthusiasm for research, his knowledge and sense

of direction has inspired me and has made what is at many times a difficult and uncertain

journey, manageable - and at times, even fun.

I would also like to thank my other committee members Dr. Richard Volz, whose

support for my research and leadership within our MURI group have been very valuable

to me, and Dr. Christopher Menzel for taking the time to review my thesis and sit on my

committee. Most of this research has been built upon the research of the

CAST/MALLET project in the MURI group at Texas A&M University. I would like to

thank the members of that group: Mr. Mike Miller, whose informal discussions and

suggestions have proved very useful to my work on CAST-PM. Also, the other members

of that group, Dr. Dianxiang Xu, Keith Biggers, Yue Zhou, Lini He, and Sen Cao.

Last, but never least I would like to thank my family, who have supported me financially

and have been a never-ending source of encouragement and love throughout my

 vii

university career.

 viii

TABLE OF CONTENTS

 Page

ABSTRACT... iii

ACKNOWLEDGMENTS...vi

TABLE OF CONTENTS... viii

LIST OF FIGURES..x

LIST OF TABLES ..xi

INTRODUCTION..1

BACKGROUND..9

Multi-Agent Systems..9
Shared Mental Models..10
Other Approaches to Multi-Agent Communication...11

FORMAL DESCRIPTION OF PIEX ..17

THE PIEX ALGORITHM AND IMPLEMENTATION...25

Overview of Approach ...25
Shared Plans and Information Needs ...26
Belief Reasoning ..28
Overview of MALLET...30
Overview of CAST-PM..33
Deriving Information Needs from Team Plans ..37
PIEX Implementation in CAST-PM ..39

VALIDATION FRAMEWORK..47

 ix

 Page

Description ...48
A Simple Example..51
Optimal Communication ..53
Calculating the Optimal Communication Sequence ..56
Modeling Agent Domains ..57
Evaluation Framework ...62
Limitations and Extensions ..63

EXAMPLE ...66

CONCLUSION ..73

REFERENCES...75

APPENDIX A MALLET SYNTAX...79

APPENDIX B GRAPH ALGORITHM FOR OPTIMAL COMMUNICATION81

APPENDIX C MALLET PLAN FOR MILITARY AIRCRAFT TEAM82

APPENDIX D INFORMATION EXCHANGE FILE FOR MILITARY
 AIRCRAFT DOMAIN...86

APPENDIX E PROCESS MANAGER TREE FOR AIRCRAFT AGENT...................87

APPENDIX F KNOWLEDGE BASE AND PROCESS MANAGER
 STATES IN THE AIRCRAFT DOMAIN...88

APPENDIX G BOA SYNTAX AND NOTES...94

VITA ..103

 x

LIST OF FIGURES

 Page

Figure 1 - Decision Tree for Selective Communication .. 13

Figure 2 - Illustration of Responsibilities as a Graph... 20

Figure 3 - Illustration of Multiple Agents Delegating Responsibility 21

Figure 4 - Process Tree States for Executing Own Agents Task 41

Figure 5 - Process Tree States for Executing Other Agents Task.................................. 43

Figure 6 - Information Need/Event Graph ... 52

Figure 7 - Information Need/Event Graph for Party Domain .. 61

Figure 8 - Information Exchange Graph for Party Domain ... 62

Figure 9 - Graphical Representation of Military Aircraft Scenario67

Figure 10- Graphical Representation of Optimal Communication for Military
 Air Combat Scenario ... 68

Figure 11 - Map of Air Combat Simulation... 69

 xi

LIST OF TABLES

 Page

Table 1 – O ptimal Communication for Military Aircraft Simulation........................... 70

Table 2 - Actual Communication for Military Aircraft Simulation 70

 1

INTRODUCTION

With the advent of communication networks for computers, it is a rare situation in which

computer-based intelligent agents can operate usefully in isolation. Many times, either

the complexity of the task at hand or the number of interacting agents make it more

useful and convenient to deal with them as teams of agents (rather than a group of

interacting individual agents). The discipline of Multi-Agent Systems (MAS), which is a

subset of Distributed Artificial Intelligence (DAI), is the study of how interacting,

intelligent agents can pursue shared goals in a coherent way. Multi-Agent Systems

research involves the study and construction of agents at the micro (individual agent) as

well as the macro (group or team level). Teamwork is a structured way to collaborate,

and communication plays a variety of roles in multi-agent teams, including: information

exchange, task delegation[1], team coordination, negotiation and contracting, distributed

planning [2], conflict resolution, and maintaining situation awareness, just to name a

few.

As a basis for the study of multi-agent teams, it is useful to look at the large body of

research into human teams. Teamwork, which is defined as two or more people working

interdependently toward a shared goal [3], is the focus of a wide variety of research,

spanning disciplines from Business Management, to Psychology, to Organizational

Theory, to Philosophy. Communication is a vital part of the team process, researchers

have studied the ability of teams to use communication effectively in order to maintain

 This thesis follows the style and format of IEEE Transactions on Systems, Man, and Cybernetics.

 2

situation awareness, perform joint decision making, and to request help or offer

assistance. The roles of communication in teams and how teams use communication

effectively has been studied in a wide variety of ways, from experiments to observation

to simulation.

Building computational models that mimic naturalistic human teamwork is an important

goal for the implementation of large-scale collaborative systems. The challenge is

simulating the implicit team knowledge that humans seem to employ. That is, humans,

without explicitly planning such team activity know the right thing to do in certain

situations (i.e. backup teammates, share information, report failure). Getting agents to be

this intelligent is a significant goal. In this thesis, we will be considering one piece of

this puzzle, that is implementing the ability for agent teams to automatically keep each

other informed of relevant information. To this end, our primary focus is how to build

agent teams that communicate effectively by reasoning about the plans, responsibilities,

and knowledge of their teammates. Some important challenges relating to this are,

defining formal semantics for communicative actions [4-6], describing agents motivation

for exchanging information [7-9], modeling the belief states of other agents [10, 11], and

defining optimality conditions for communications.

Currently, there are a variety of ways in which agents communicate in collaborative

environments, depending on the communicative goals of the agent (coordination,

delegation, negotiation, information exchange). First we note that it is common in many

interoperating systems to have communication protocols that are ad-hoc, hard-coded

communication points. As the size and complexity of agents and tasks grows though,

 3

coherent action is difficult to achieve using this approach [12]. As an alternative to this

approach, some practical architectures for building multi-agent systems have a method

of automatic communication grounded in formal semantics. For instance, STEAM [13]

uses joint intentions theory to ensure that all agents stay coordinated with respect to

joint-persistent-goals (JPGs). STEAM also uses a decision-theoretic framework for

communication selectivity. Another architecture is GRATE* [1], which uses a model of

joint responsibilities that enable teams of agents to automatically negotiate who will be

responsible for different goals, the plans for how to achieve those goals, and also how to

recover from failure. Other agent architectures use communication in order to maintain a

consistent knowledge base over all the agents on the team through distributed truth

maintenance [11]. While others communicate to perform distributed problem solving,

such as distributed constraint satisfaction [14]. Whatever the higher-level team goal of

the communicative acts, we believe that this type of general, automatic, and verifiable

communication is necessary for complex multi-agent systems.

A particularly important role of communication in teamwork is exchanging information.

In most multi-agent environments, both knowledge and information are distributed. An

important assumption in this thesis is that information exchange within teams can

improve the team efficiency, since knowing required facts earlier could allow tasks to be

completed more quickly. For example, if a team of military aircraft were on a mission

and one aircraft were to notice an area that contained enemy surface to air missile

(SAM) site, it would initiate routines to reroute around that area. In addition, this team

member, knowing that his teammates also need this information, should choose to

 4

communicate this information to them. This would allow the teammates to reroute their

flight paths earlier than if they each came across the information on their own, and thus

operate more efficiently (and safely).

Another important role for communication, especially in domains involving tactical

decision-making, is to build and maintain situation awareness, such as by assimilating

information from disparate sources in order to abstract, classify and understand what is

going on in the environment. Examples of this have been observed in human teams from

fire brigades to battalion tactical operations centers, to air traffic controllers. Among

other things, information exchange allows team members to act as if they possessed a

shared mental model that is to act as if their sensors, knowledge and decision-making

were centralized, rather than distributed.

There are at least two ways in which teammates can exchange information1:

1. Information-needers can request information needed from information-suppliers, or

2. Information-suppliers can proactively forward this information to information-

needers. Most information exchange in multi-agent systems uses the first type of

communication (request-reply) exclusively. We claim that the second type of

communication, referred to as proactive information exchange, can enhance team

efficiency in two respects, first because agents informed of needed information should

be able to perform more efficiently than if they had to discover the information on their

own and, secondly because agents needing information may not know who within their

1 We recognize that there are more ways to exchange information, such as broadcasting messages or posting
information to shared message boards (black boards).

 5

team (if anyone) has the information that they desire. In the proactive information

exchange model, teammates committed to achieving a shared goal anticipate each

other’s information needs and automatically forward this information (if they know it) to

the agent(s) that need it. A major challenge in implementing this type of communication

is for an agent to determine exactly which agents need what information at any point in

time. We believe that determining relevance of information can be accomplished by the

analysis of a shared team plan [15] (i.e. what others on the team are responsible for and

what the preconditions of those actions are). Our PIEX (Proactive Information

EXchange) algorithm, which extracts information needs from shared plans, is the focus

of this thesis.

Yen et al. [16] define ideal conditions under which an agent should proactively

communicate with another agent. Beliefs are modeled using a modal operator B , e.g.

()hammerhaveBMike
, with the usual possible worlds semantics [17]. Goals refer to

specific steps in plans, to which agents can make commitments. This condition is as

follows:

() ()() ()() () ()[]
() ()[])(IBInformGoalGDoneI

GDoneIGGoalII

ABB

BBBABAA

B
BBBBB

→¬¬→

∧¬→¬∧∧¬∧

p

p

Where is the temporal operator for ‘always’. This formula says that when agent A

believes some information fact I and A does not believe that B believes I (i.e. I is not

redundant) and A believes that B has a goal G and I is a precondition of G (i.e. I is

 6

relevant to B) then A should tell B fact I. There are two challenges to a practical

implementation of this condition for information exchange: first, agents need to be able

to reason about the goals (and therefore the information needs) of other agents and

second, agents need to reason about the beliefs of other agents.

There is another theoretical question separate from the conditions in which proactive

information exchange takes place, and that is: what motivates agents to monitor their

teammates goals and to communicate when they think it is helpful to their teammates? If

agents have individual goals as part of a team plan, why would they bother to help others

achieve their portion? A simple answer might be that agents are simply computer

programs and therefore are motivated to communicate because that is the way we design

them to behave; but we must recognize that not all multi-agent systems are closed and

therefore agents may need to collaborate with possibly self-interested agents that have

different designers2. Therefore, as part of this thesis, we will describe the motivation in

which agents will have to proactively exchange information. This motivation is based on

joint intentions theory [18] and an expanded formal description of responsibilities

presented in [9]. The motivation can be derived from their joint commitment to the team

goal, and the consequent requirement to maintain mutual belief. For a team of agents

jointly committed to a goal , and who have delegated responsibility for some sub goal

’ to a member of the team, each member not assigned to ’ should actively monitor the

information needs and beliefs of the responsible agent (in parallel with their own

2 There is also a large body of research having to do with mixed human-agent teams. While we are interested
in agent-only teams in this thesis, the possibility of introducing humans into the loop increases the need to be
sure that our teammates will be sufficiently motivated to be helpful.

 7

activities) and send any relevant information that they believe to the teammate that needs

it.

Our goal is to specify multi-agent teams by providing the required teamwork process and

knowledge (in the form of shared plans) and allowing the agent architecture to

automatically generate the required information exchanges, without having to explicitly

define communication points in the system. In this thesis, we will describe our general

algorithm, named PIEX, for Proactive Information EXchange in MAS teams. PIEX uses

a pre-processing algorithm to infer information needs of other agent teammates based on

analysis of a shared plan. We also use a multi-agent belief reasoning framework to filter

out redundant messages. We claim that these two pieces provide a reasonable

approximation of an implementation of the formal conditions for proactive information

exchange given above. These methods can be applied to other agent architectures,

especially those based on Hierarchical Task Networks (HTNs) [19]. The key idea is to

use a generic information-exchange plan that runs in parallel which monitors for info

relevant to others and sends it automatically (if the other agent doesn’t already believe

the information). We then go on to describe a formal validation framework that will

allow us to define optimal communication sequences for teams of agents in a variety of

environments for assessing team performance. We will also describe the implementation

of our PIEX algorithm in the CAST-PM agent architecture and demonstrate these agents

ability to perform effective proactive information exchange in a military air combat

simulation environment. Finally, we will validate the results (our agent’s communicative

acts) using a formal framework and evaluation criteria that we also developed as part of

 8

this thesis.

 9

 BACKGROUND

MULTI-AGENT SYSTEMS

In many environments, agents must work together to cooperatively solve problems or

perform tasks. Teamwork, as defined in [20] is a special type of coordinated activity

where team members work with each other in order to satisfy a shared goal. In some

domains, goals or tasks may be impossible for a single agent to achieve, such as

surveying land or fighting a battle. In other domains, goals such as preparing a meal or

searching a space may be achieved more efficiently or effectively by teams rather than

individuals.

The field of multi-agent systems (MAS) is highly interdisciplinary. Areas such as

economics, philosophy, cognitive psychology, logic and computer science are all related

and each look at the field differently. In this thesis, we are interested in developing

practical methods for building multi-agent systems that can automatically infer

information needs of other agents in their team in order to produce intelligent behaviors

and solve complex problems through teamwork. Jennings et al. [21] list four key

characteristics of multi-agent systems:

1) Each agent has incomplete information, or capabilities for solving the problem, thus

each agent has a limited viewpoint

2) There is no global system control

3) Data is decentralized

4) Computation is asynchronous

 10

Characteristics 1-3 are most important to our discussion of proactive information

exchange and information needs in multi-agent systems. Agents in a distributed

environment do not have total access to each other’s senses or knowledge bases;

although in many cases, agents could perform more efficiently if they did have a certain

level of this access. Agent teammates exchange information (and effectively give access

to each others knowledge base) through communication.

SHARED MENTAL MODELS

A mental model is an internal representation of a situation or environment, at a certain

level of granularity that has the property of being complete – that is, all of details are

filled in (and assumptions are made for missing information). Shared mental models

extend this to a team context by representing not only an individual agent’s own beliefs

and activities, but also those of their teammates as well as the team structure and state.

Shared mental models consist of different types of knowledge, both static and dynamic

[22]. Static knowledge includes information about team structure (who is on the team,

who plays what role), team goals, communication policies, agent capabilities and

responsibilities. Dynamic knowledge consists of the knowledge of the team process that

changes over time and includes current task assignments and status of agents, overall

progress of the team, current knowledge of teammates, and the overall progress of the

team towards its goal.

Studies have shown that maintaining situation awareness is critical to many teams

effectiveness [23], especially in distributed command and control environments [24]. In

 11

these situations, team members receive different information and must work together to

resolve any conflicts or ambiguities in order to come up with a common picture of the

situation.

Maintaining a shared mental model can take on many aspects including maintaining

shared ontology [7], shared goals [13], team structure and process [15, 20], and shared

belief [10]. For the PIEX algorithm, we are mostly concerned with maintaining a shared

mental model of team process and belief in order to estimate the information needs of

other agents and decide whether to inform teammates of needed information.

The CAST project [16] is a multi-agent architecture for teamwork developed at Texas

A&M University that simulates teamwork for multi-agent teams with an emphasis on

maintaining a shared mental model among the team members. This allows teammates to

dynamically assign tasks to team members, to anticipate information needs of teammates

and to decide whether to forward relevant information to teammates. Team

processes/plans, as well as knowledge about team structure are described using the

MALLET (Multi-Agent Logic-based Language for Encoding Teamwork) language,

which is described in more detail in the implementation section. Our reference

implementation of the PIEX algorithm, which enables agents to proactively inform

teammates of information that they need, fits into a specialized version of the CAST

agent architecture, known as CAST-PM.

OTHER APPROACHES TO MULTI-AGENT COMMUNICATION

There are other agent architectures that incorporate automatic routines for generating

 12

agent communication. Most notably, STEAM [12], which generates communications to

keep teams committed to shared goals and coordinated, Stone’s work in communication

for strategic teamwork in dynamic environments [25], Biggers and Ioerger’s work on the

TIP-C algorithm which transforms team plans into individual plans by inserting

communicative acts, and Jenning’s work on GRATE* which uses communication to

coordinate teammates responsibilities [1].

The automatic communication routines in STEAM [12] are based on Joint Intentions

theory [17, 18]. A joint intention is a mutual belief about a commitment to attempt to

achieve a goal so long as the goal has not been achieved, can still be achieved and is still

relevant. Communication in STEAM is used to establish and maintain joint intentions,

and synchronize team action. Tambe describes a decision-theoretic framework for

communication selectivity in STEAM. In this framework, the criteria for whether or not

to communicate a fact, F is not only based on communication rewards and benefits but

also the likelihood that relevant information is already common knowledge and hence

unnecessary to communicate. Rewards and costs are measured in terms of the team, not

the individual. The decision of whether or not to broadcast a fact, F to the team is made

in terms of:

B – the benefit to keeping the team’s knowledge of F coordinated.

τ - the probability that F is not shared belief in the team.

Cmt - the penalty for the teams beliefs about F to be out of sync

Cc - the cost of communicating

 13

The decision of whether to broadcast fact F can be visualized as the decision tree in

figure 1:

Figure 1 - Decision Tree for Selective Communication

We can see that the expected utility of not communicating E(NC)=B-τCmt and the

expected utility of communicating E(C)=B-Cc and therefore the agent will communicate

iff EU(C) > EU(NC) i.e. iff τ Cmt > Cc.

Using this decision-theoretic framework, Tambe describes the motivation for agents to

either communicate information needs of others, or to withhold such communication.

While B, Cc, and Cmt can be considered a function of the current team situation (and fact

F), τ is a value local to the individual agent making the decision to communicate. If F

has already been broadcast by another teammate, the agent can be relatively certain that

τ=0 and it should not communicate. However, the agent can also reason about the ability

 14

of his teammates to observe F in order to get a better estimate of τ. If the agent believes

that his teammates can all observe F, he can reason that τ is high and, if Cmt is

sufficiently low and if Cc is sufficiently high, the agent can increase the team’s utility by

saving the team the cost of the communication. This suggests that belief reasoning can

play an important role in information exchange and communication selectivity.

STEAM uses information exchange for the purposes of coordinating the team with

respect to team operators and joint goals. To test the effectiveness of selective

communications in STEAM, Tambe created an attack helicopter simulation with six

different scenarios (varying costs of communication, visibility restrictions, etc) [13]. He

also defined three team types with respect to communication – balanced, cautious and

reckless – and compared the amount of communication performed between team

members. Balanced agents exploit the decision theoretic communication structure

described above, cautious agents always communicate, and reckless agents communicate

very little. Their results show that the reckless team was rarely able to achieve its goal,

and while the cautious and balanced teams were both able to achieve the team goals, the

cautious team exchanges 10-20 fold more messages than the balanced team.

While STEAM focuses on communication for team coordination, we claim that

information exchange may also be used to provide assistance to teammates in

completing their tasks more efficiently by communicating relevant facts F to teammates

if they do not currently believe F (even if they may come to believe F on their own at

some time later). Whatever the use of information exchange, this decision-theoretic

 15

framework provides a useful way to describe the utility of reasoning about observability

in modeling agent teammates’ beliefs.

Another approach looks at the function of communication in terms of dynamic role

assignment in strategic teams situated in low-bandwidth environments [25]. Stone uses

PTS (Periodic Team Synchronization) to allow team members to act autonomously

during low communication (“on-line”) periods (due to a high cost of communication

during these periods) and to coordinate and synchronize during high communication

(“offline”) periods. Stone implemented teams of agents in the Robocup soccer domain

and therefore called the periods of high communication “locker-room agreements”.

These locker-room agreements allow teams to remain synchronized without making

costly communications by agreeing upon roles and collections of roles (formations) and

the conditions upon which to take on certain roles and configurations.

In [26], Biggers and Ioerger describe the TIP-C algorithm which takes a transformational

approach to automatically generating communication in multi-agent teams. They focus

on three principal goals of communication: synchronizing joint action, disambiguating

shared responsibilities, and alerting of failure. TIP-C takes plans written in a multi-agent

teamwork language (MALLET) and converts them to an equivalent individual plan in an

individual agent language (TRL). The steps added in the individual plans keep the team

synchronized and also perform the necessary communication required to generate team

behavior, such as disambiguating responsibilities and failure recovery. This approach is

similar to the approach taken in PIEX, in that both approaches insert communication by

transforming team to individual plans.

 16

The GRATE* agent architecture [1], also based on joint-intentions, generates

communication in order to coordinate and synchronize joint action. A situation

assessment module determines when joint action is warranted, and when an opportunity

is identified, the identifying agent becomes the organizer of the joint action. The

situation assessment module then hands control off to the cooperation module which

attempts to identify and send messages to those acquaintances with potential for joint

action. Potential teammates either accept or reject offers of joint action. The participants

then negotiate the exact details of the common recipe (plan) for how to achieve the goals

of the joint action, the joint action is then considered operational. Communication is

also automatically generated when agents either drop commitments to a goal or drop

commitments to the recipe for achieving the goal. Jennings has a real world team of

agents running GRATE* that manages an electricity transportation network; software

agents attempt to analyze alarms, identify potential blackouts, and control the flow of

power to respond to blackouts.

Each of these approaches are related to our work with PIEX. These architectures take a

principled approach to multi-agent communication to achieve the desired goals

(coordination, synchronization, low-bandwidth usage) in order to properly simulate

teamwork. Our approach is motivated by these approaches and aims to augment them by

maintaining a shared mental model with respect to each agent’s beliefs and

automatically delivering needed information to other agents on a team.

 17

FORMAL DESCRIPTION OF PIEX

In this section, we take two approaches to formalizing proactive information exchange:

using a modal logic of belief to describe the internal conditions for an agent proactively

forwarding information to another, and using a model of responsibilities built on joint

intentions theory to describe the global team conditions for monitoring the information

needs of teammates. Using formal methods to specify and reason about agent behavior is

important because it allows us to specify agent-based systems in a concrete and

verifiable way.

Yen et al. [16] presented a formalized condition upon which agents will perform

proactive information exchange. In this, beliefs are modeled using a modal operator B ,

e.g. ()hammerhaveBMike
, with the usual possible worlds semantics [17, 27, 28]. Goals

refer to specific steps in MALLET plans, to which agents can make commitments.

Proactive information exchange is formally defined as follows: Information I should be

sent from agent A to a teammate agent B when

1) agent A believes the truth-value of I,

2) agent A believes that agent B does not currently believe I, and

3) I is an information need of B. Formally, B has the current goal G, the achievement of

which depends on believing I (i.e. I is a pre-condition of goal G):

() ()() ()() () ()[]
() ()[])(IBInformGoalGDoneI

GDoneIGGoalII

ABB

BBBABAA

B
BBBBB

→¬¬→

∧¬→¬∧∧¬∧

p

p

 18

Where is the temporal operator for ‘always’. In [16] the DIARG (for Dynamic Inter-

Agent Rule Generator) algorithm is presented as a first approximation to this condition

in an implemented multi-agent system – particularly this implementation did not

incorporate the ability for agents to reason about the beliefs of other agents. In DIARG,

goals are examined for preconditions which are treated as information needs and allow

agents to associate their teammates with the facts that are relevant to them. When an

agent comes across a relevant fact, it generates a TELL message to that agent. However,

determining relevance of information is only half of the picture for proactive information

exchange; the other necessary component is need. Agents should only TELL other

agents relevant information when they can be reasonably sure that they do not already

believe it. We present PIEX as a second approximation to this condition; particularly we

add the ability of agents to reason (in a principled way) about the beliefs of the other

agents on their team.

This formal condition is important because it captures the notion that in teamwork,

agents can determine relevance of information to each other by analyzing the

preconditions of each others goals. While there may be other ways to determine

relevance of information to agents (such as a publish-subscribe method), this method

allows agents to determine information needs directly from their team goals. It is also

important to capture the chain of mental states that an agent would go through in order to

be motivated to exchange information with another teammate. We believe that this

motivation can be derived from a concept of agent responsibility to others and to a team.

 19

In [9] Ioerger and Johnson formally present the concept of responsibilities using a modal

logic of intention [17]. They define responsibilities as similar to intentions in that they

refer to mental attitudes of agents towards actions, sometimes producing commitments

to action. Responsibilities are different from intentions though, in that responsibilities

can be transferred (delegated) from one agent to another, whereas an agent can only

intend itself to perform an action, or request that another perform the action thereby

dropping the intention. A central aspect to this definition of responsibility is that, rather

than treating responsibilities as irreducible mental states (like intentions are in the BDI

model), Ioerger and Johnson model them as specific combinations of mutual beliefs and

persistent goals. In their definition of responsibilities, agents can be responsible for a

concrete action or sequence of actions (i.e. plans or sub-plans). Someone is responsible

to someone else who wants the action done.

Fundamentally, responsibilities are asymmetric relationships between agents –

particularly the agent that gave (delegated) the responsibility and the agents who have

received the responsibility. In [9] a partial ordering of agents is defined with respect to

the delegation of responsibility of a certain task θ. To illustrate, suppose that is an

action (or sequence of actions) and that agent A had responsibility for but delegated it

to B; we would then say A >� B which can be read “B is responsible to A for performing

”. B can then further delegate to C and we would say C <� B <� A. They note that

these partial orders can be viewed as a directed graph (see figure 2).

 20

Figure 2 - Illustration of Responsibilities as a Graph

Ioerger and Johnson go on to define three fundamental types of responsibilities:

1. Direct – has a responsibility and does not delegate it: directResp(A,) → resp(A,)

∧ (¬∃B A >�
 B)

2. Indirect – has a responsibility and has delegated it to someone else: indirectResp(A,

) → (∃B ¬(B=A) ∧ A >�
 B)

3. Ultimate – has a responsibility, has delegated responsibility to someone else, but is

not in-turn responsible to anyone else ultimateResp(A,) → resp(A,) ∧ (¬∃B B >�

A)

They also define concepts of RPGs (responsibility-persistent goals), and A-RPGs

(accountable r-persistent goals). RPGs are goals in which agents with direct

responsibility will not give up until the goal is achieved, unachievable or irrelevant.

Agents with RPGs also have the option of delegating the responsibility to others. A-

RPGs have the same conditions as RPGs, but agents are also committed to maintain

mutual belief about the status of the goal (achieved, unachievable, irrelevant) with

whoever delegated the responsibility.

This responsibilities framework can be used to facilitate the implementation of

procedural specifications of actions that achieve goals that dictate when agents should

 21

accomplish a goal on their own, when they should wait for others to do it, when to

inform others that they are going to fail, and how teams should recover from failure of a

teammate. Most importantly, we will use this to implement procedural specifications that

dictate when agents should monitor their teammate’s responsibilities and proactively

forward information needs of these teammates to them. We view information-needs of a

goal/task as a special type of derived goal ’:

()() ()()FGoalFGoal BB AAAA ¬∨=Θ'

where F = pre-conds(). Note that while, at first glance ()FBA
or ()FBA

¬ may seem

like a tautology (i.e. believing something is either true or believing that it is false), we

also consider that the truth value of F can be unknown to the agent and therefore it is

meaningful to state that agent A believes the truth value of a fact F (this is referred to as

knowing-whether).

Figure 3 - Illustration of Multiple Agents Delegating Responsibility

We use an extended definition of responsibility that allows for teams of agents to

delegate responsibility to sub-teams and also use concepts of joint intentions [18] to

 22

describe conditions for proactive information exchange. Our definition includes a team

of agents T that is jointly committed to a goal θ, delegating responsibility for some sub-

goal θ’ of to an agent b∈T. Therefore, instead of responsibility being a unique set of

pairs in PxP (where P is a set of agents), we consider that a subset of P can delegate

responsibility to another subset of P (see figure 3).

We would then have {A, B} >� {C}. We therefore expand the definition from of

delegation (from Ioerger and Johnson) to teams. In Ioerger and Johnson, an individual

agent a delegates responsibility for a goal θ to another agent b: delegated(a,b,θ). We

extend this by allowing teams of agents to delegate responsibility by adding the

following axiom:

a,b∈T delegated(T,b,θ) → delegated(a,b,θ)

This means that whenever a team T delegates the responsibility to a member of the team,

essentially each member of the team has delegated the responsibility to the member and

the normal axioms of individual responsibility apply. Having presented the

responsibilities framework and our extension, we would like to use this to derive the

following condition (which is similar to the conditions given in [16]). for proactive

information exchange

a,b∈T delegated(T,b,θ) ∧ direct-resp(b,Θ)∧ Bel(a,α) ∧ pre-cond(α,Θ)∧ ()()αBB ba
¬ →

Intend(a,Tell(b,α))

The derivation of this condition will use our expanded definition of responsibilities and

will trace an agent’s motivation for exchanging information with teammates. The

 23

derivation follows the steps:

In the responsibilities framework, when a delegates responsibility for θ to b, a by

definition has an indirect responsibility and therefore a persistent goal towards θ.

1. delegated(a,b,θ) → indirect-resp(a,Θ) → PGOAL(a, Done(Θ))

If φ is a precondition for the goal Θ, then as long as φ is not satisfied then Θ will never

be done when φ is satisfies then Θ has the chance of being done. This establishes how

preconditions will be used to infer that b needs to know φ.

2. pre-cond(φ, Θ) → () ())()(Θ¬¬→∧Θ¬→¬ DoneDone pp φφ

If a believes φ and has a persistent goal for Θ being done (step 1) and if a believes that b

has the direct responsibility for Θ and that b does not believe φ, then Θ will never be

done (step 2); therefore a will have a persistent goal of b believing φ.

3. Bel(a, φ) ∧ PGOAL(a, Done(Θ)) ∧ pre-cond(φ,Θ) ∧ direct-resp(b, Θ) → PGOAL(a,

Bel(b, φ))

If a has the goal of being in a state of mutual belief about a predicate φ and a believes

that b does not believe φ, then a will have the intention of telling b φ.

4. PGOAL(a, Bel(b,φ)) ∧ Bel(a, ¬Bel(b, φ)) → Intend(a,Tell(b, φ))

A PGOAL of an agent a towards a goal Θ, as defined in [17], is an individual goal of a

to do Θ until one of three conditions are satisfied: 1) the goal is achieved, 2) the agent

believes the goal is unachievable, or 3) the goal becomes irrelevant. This derivation

 24

traces the path from an agent delegating responsibility to another to that agent’s intention

to communicate relevant facts to the agent with ultimate responsibility for the action.

There are also other approaches to formalizing the conditions for proactive information

exchange. Grosz and Kraus [15, 20] describe how their axioms for shared plans lead to

helping behavior. Also, in [29] Yen and Volz present a formal foundation of proactive

information is presented derived from SharedPlan theory. They derive proactive

information delivery behavior from the assist axiom in SharedPlan theory to describe

agents motivation.

In this section we have described the proactive information exchange task from two

perspectives. First, we listed the formal conditions (written in modal logic) for an

individual agent to have a goal of informing another agent of a particular fact, then we

built upon established formal team constructs of responsibilities and joint intentions to

describe the motivation of team members to exchange information. In the next section,

we will describe how common knowledge of a shared plan can help agents analyze each

others information needs.

 25

THE PIEX ALGORITHM AND IMPLEMENTATION

OVERVIEW OF APPROACH

In this section, we describe our approach to automatically generating communication

within multi-agent teams. Our approach is based on analysis of a shared team plan and

inserting communication acts (as calls to sub-plans) in a process of transforming the

team plan into an individual plan. This involves more online reasoning than the

transformational process used in Biggers’ TIP-C algorithm, because agents must reason

about the current belief state of the other agents on their team. PIEX is general enough to

transform a shared team plan into an individual plan in most agent architectures,

especially those based on hierarchical task networks (HTN) [19] in which tasks are

decomposed hierarchically into subtasks until they ground out at atomic actions.

PIEX relies on three key steps to generate need-based communication between agent

teammates:

1) Monitoring teammate responsibilities as encoded in a shared plan

2) Anticipating the information needs of those responsibilities, and

3) Monitoring what an agent believes his teammate believes.

The information need generation is done in a recursive way, analyzing the information

needs of the highest task level (shared plans) and decomposing this task into sub-tasks,

which in turn have sub-information-needs, until the tasks ground out at atomic actions,

which in many cases also have information needs (i.e. their pre-conditions). This method

is derived from the formal model of the team mental states described in the previous

 26

section. To illustrate our approach, we have implemented PIEX in a variation of the

CAST agent architecture known as CAST-PM. CAST-PM operates on shared plans

written in a teamwork modeling language called MALLET (described below).

SHARED PLANS AND INFORMATION NEEDS

Our approach is based on analysis of roles and responsibilities encoded in a shared team

plan. Individuals are given responsibility to achieve certain goals, which in turn commit

them to action (sub-plans or operators). We claim that information needs of agents can

be automatically derived from analysis of the team plan; the following example

illustrates this. Suppose two agents have a plan to rescue a hostage and their plan

specifies that first, one goes around the building and disarms any alarm systems and then

the other enters the building and rescues the hostage3:

 (team-plan rescue-hostage

 (process

 (seq

 (do technician

 (seq (go-around-back)(disable-alarm))

 (do soldier

 (seq (enter-building)(rescue-hostage))))))

Implicit in this plan is that the soldier agent needs to know that the technician agent has

disarmed the alarm before he can start his portion of the team activity. In other words,

3 This is an example of MALLET syntax. It defines a plan named “rescue-hostage” the process of this plan
specifies that, in sequence the technician agent first performs plan “go-around-back” then performs plan
“disable-alarm”. When the technician agent is done the soldier agent performs, in sequence, the plan “enter-
building” and then the plan “rescue-hostage”.

 27

the fact that the technician agent has completed the “disable-alarm” plan is an

information need of the soldier agent. In addition, the sub-plans of agents may encode

information needs; in this case the technician should believe that there is no one around

back before he goes around back and that the alarm is on before he attempts to disable it.

The plan writer could explicitly encode communication steps for agents at given points

in time, but this puts the burden of generating information needs on the person writing

the plans. It would not only be timesaving but potentially more complete if agents could

automatically infer the information needs of their teammates directly from the plans that

they share.

The DIARG algorithm from the CAST project [16] is a preliminary implementation of

the idea of proactive information exchange. DIARG generates sets of possible needers

and possible providers of information through static analysis of operators. DIARG then

analyzes the team plan structure (encoded as a predicate transition network) and decides

who should ask and tell information in that context. PIEX differs from DIARG in three

important ways. First DIARG is based on analyzing a static predicate transition network

structure but PIEX does not require such a model. Second, DIARG analyzes only agents’

newly sensed pieces of information, whereas PIEX analyzes all information that agents

currently believe. Finally, PIEX unlike DIARG uses a belief reasoning module to model

the belief state of other agents in order to prevent communicating information that

another agent may already believe.

 28

BELIEF REASONING

As we have stated earlier, the second necessary component of proactive information

exchange is the ability of agents to be reasonably sure that their teammates do not

already believe the relevant information before they send it. This is because there may be

a high cost of communication to the agents. In many computer-agent-only domains, the

cost of communication is small and therefore agents can afford to send many (sometimes

superfluous) messages to each other in order to ensure that the team is kept synchronized

and information is properly distributed. A liberal proactive information exchange

strategy could be for each member of a team, upon coming across a new information fact

I, to broadcast I to all teammates. This may seem appropriate for domains in which the

cost of communication is low. However, there are some domains in which

communication may be costly; for instance, if agents are trying to maintain radio silence

or if there is a high computational cost to process new information messages, then we

would like to limit our communication to only the most important, relevant and needed

information to each teammate. Additionally, when we have mixed human-agent teams

the cost of communication is clearly higher, as humans have limited attention resources

and cannot process a constant stream of communication and perform well at their given

task at the same time.

While communication is important to teamwork, in psychological studies [24] it has

been observed that under particularly high workload (or high tempo operations),

communication in the most effective teams can actually decrease, presumably because

team members begin to rely on more well-developed shared mental models and can infer

 29

what other teammates already believe or can figure out for themselves. We would like

to take advantage of this type of shared mental model such that agents resist informing

other agents of facts when they are reasonably sure the others already believe it.

Accordingly, the PIEX algorithm requires an ability to simulate multi-agent belief

reasoning, that is, agents maintaining a model of their teammate’s beliefs. For example,

it is relatively straightforward for an agent A to believe that agent B believes something

if A has told B about it (or if B told A about it).

We use a method of multi-agent belief maintenance, called BOA. BOA is implemented

in Java and is incorporated into our CAST-PM agent architecture. One advantage of

BOA over traditional theorem-provers like JARE (an implementation of PROLOG in

Java), is that BOA allows us to represent more than true or false states of belief; we can

also represent that the state of an agent belief is unknown or whether. The belief state of

whether means that we know that the agent believes the truth value of a fact, but we do

not believe ourselves what that truth value is. For instance, if an agent A watches

another agent B go into a room, agent A will believe that B believes whether light-

on(room) is true or false, which is like saying ¬(unknown B (light-on(room)))4. BOA

allows a knowledge engineer or agent designer to define justifications for different

beliefs that agents may have in different situations. For instance, an important method of

inferring what other agents believe is by reasoning about observability in the

environment – there are many cases in which agents can see (sense) what others see, and

can use that to make inferences about what they believe. Another justification for belief

4 Semantics for (unknown B F) = ¬(BEL B F) ∧ ¬(BEL B ¬F) = ¬(WHETHER B F)

 30

are the results of actions: often actions have known effects, and if an agent believes that

another agent has completed a task, then the agent can believe that the acting agent

believes the effects of those actions have occurred. Other justifications include

persistence rules (to define what facts persist over time), inference rules, defaults, facts,

and others. These justification rules are loaded in as a file and the BOA system processes

agent senses, resolves any possible dependencies or conflicts between justifications and

maintains the multi-agent knowledge base. The BOA file format and notes about BOA

system are listed in Appendix G. An text-dump of an agent BOA knowledge base is

listed in Appendix F.

Given the distributed nature of many multi-agent domains, it may not be possible to

believe for certain what another agent currently believes, and therefore BOA provides a

best-approximation of other agents’ beliefs. Belief reasoning is very important to the

PIEX algorithm because it allows us to evaluate the predicate (BEL A ¬(BEL B I))

in the formal conditions for proactive information exchange. Belief reasoning is essential

to simulating effective information exchange, particularly in domains in which the cost

of communications is high, having mentioned the importance of belief reasoning to

PIEX, we will not go into the details of this belief algorithm any further.

OVERVIEW OF MALLET

There are many multi-agent languages developed for specifying teamwork processes

[12, 15, 22]. Each language has advantages and disadvantages and our PIEX algorithm

should be general enough to work with almost any of these team process languages. Our

 31

reference implementation of PIEX analyzes plans written in the MALLET teamwork

specification language. MALLET is a logic-based language that allows for description of

both team structure (agents, roles, goals, capabilities) and team processes (plans).

MALLET uses a LISP-like syntax (nested s-expressions).

Actions that agents are able to take in the world are defined in terms of operators.

Individual operators (i-opers) are those atomic actions that an individual agent can

execute in the environment. Operators, as well as plans in MALLET have STRIPS-style

preconditions and effects [30]. The following is an example of an operator that moves an

agent in a given direction:

(i-oper move (?direction)

 (pre-cond (at self ?cur-x ?cur-y) (can-move ?direction ?new-x ?new-y))

 (effects (at self ?new-x ?new-y) (not (at self ?cur-x ?cur-y)))

)

The above is an example of mallet syntax, variables are indicated with a ‘?’ prefix and

are bound by either the underlying theorem prover (for queries, like in the preconditions)

or when parameters are passes (operators and plans are invoked like functions, so in the

above ?direction is bound by passing a parameter when invoked). In an implementation

of MALLET (like the CAST-PM architecture described in the next section) there is a

theorem prover that unifies the variables against a logical knowledge base. Preconditions

represent what must be true in the agent’s knowledge base just before an action takes

place; effects are what will hold directly after the action takes place (both are important

for inferring information needs of other agents in shared plans). In the example above,

 32

before an agent moves, there should be a fact in its knowledge base like (at self 5 4).

“can-move” is a rule, or predicate that takes two arguments ?new-x and ?new-y , the

new coordinates of the agent after moving in the specified ?direction , inferred by

the rule.

Operators indicate the atomic actions in the plan hierarchy. Plans are more complex

process descriptions – they are like operators except they also define a process definition

(plan body). Plans can call sub-plans or operators by connecting them in various

constructs such as seq (sequential), par (parallel), while (iteration), if (contingency), etc.

Plans in MALLET are defined using the following grammar:

(plan <planName> (<var>*)

 [(pre-cond <cond>+)] // pre-conditions for execu tion

 [(effects <cond>+)] // effects of execution

 [(term-cond [FAILURE|SUCCESS] <cond>+)] // defaul t is FAILURE

 (process (<proc>+))

<proc> ::=

 (seq <proc>+) | // sequential ex ecution

 (par <proc>+) | // parallel exec ution

 (if (cond <cond>+) <proc> [<proc>]) | // conditi onal statement

 (while (cond <cond>+) <proc>) | // do-while loop

 (foreach <cond> <proc>) | // iterates sequ entially

 (forall (<cond>+) <proc>) | // iterates in p arallel

 (choice <proc>+) // handles failu re

In addition, team plans – which specify joint actions among members of the team, are

 33

specified using the following grammar5:

<team-plan> ::=

 (team-plan <name> (<var>+)

 [(pre-cond <cond>+)]

 [(term-cond [SUCCESS|FAILURE] <cond>+)]

 [(effects <cond>+)]

 (process <tproc>)

)

<tproc> ::=

 (seq <tproc>+) |

 (par tproc>+) |

 (do <agent> <proc>) // agent specified by <agent> is to do <proc>

For the most part, team plans look very similar to other plans. There are two important

features which distinguish a team plan from an individual plan. First, the addition of the

do construct allows teams to specify which agent will perform the specified procedure.

Also, only seq (sequential action) and par (parallel action) are allowed to wrap around

these ‘do’ constructs. Our implementation of PIEX determines how the MALLET

implementation (agent interpreter) executes ‘do’ constructs. Complete MALLET syntax

is provided in Appendix A. Next, we will describe our concrete agent implementation

that interprets MALLET plans, known as CAST-PM.

OVERVIEW OF CAST-PM

CAST-PM is a derivative of the CAST agent architecture from Texas A&M University

5 The version of MALLET that we are using is a slightly modified version of the official MALLET
specification from Texas A&M. One of the major modifications is the addition of the <team-plan> construct
to distinguish team from individual plans. Also, there is no role specification or agent-binding.

 34

[16]. Both CAST and CAST-PM are multi-agent architectures designed to simulate

teamwork, primarily thorough the simulation of shared mental models. The major

difference is that CAST-PM is based on the Process Manager agent kernel and CAST is

based on predicate transition networks. Process Manager is an algorithm that models the

state of an agent's tasks, plans, and operators in a hierarchical way (as a tree), similar to

the HTN networks in RETSINA [19, 31]. Different node types represent different types

of agent process control sequences and operators. A plan node is represented by a

"control" node, that is a node that is not an atomic action but a way of combining and

controlling the flow of actions. Examples of control nodes are: while, if, choice,

for-each, for-all, seq, par, start , etc. These are the direct implementation

of the control-flow constructs in MALLET. All nodes contain a status tag that keeps

track of the current status of that task. For instance, for atomic primitive actions (leaf

nodes in the tree), nodes are marked ‘in progress’ until they are either completed

successfully and marked done or they fail and are marked fail. The status of control

nodes are updated according to the status of its children in a bottom-up, recursive way.

The semantics of different node types are defined in terms of recursive functions

node.expand(node) and node.repair(node). Nodes get repaired at each time step, this

involves checking the state of the node with respect to the current knowledge base (i.e.

for while nodes the condition gets checked at each time step, plan nodes termination

conditions are checked at each time step). At the beginning of each time step the process

manager kernel calls repair on the root node, which calls repair on each of it’s child

nodes, which in turn repair each of their child nodes. This recursive repair process

 35

continues until all branches ground out at atomic actions in the world (which do not get

repaired) and the recursion unwinds to the root node of the tree. As part of the repair

process, both success and failure statuses are propagated up the tree (a special choice

node type catches failure, similar to exception handling in other programming

languages). Control nodes are expanded when they are first created and also when their

children are complete. Control nodes are expanded and repaired according to their node

type; below we give pseudocode for the expansion and repair steps for seq (sequential)

and par (parallel) nodes.

Expand(node):

 if type(node)=’par’ then:

 for each αi where proc(node) = par(α1,…, αn):

 create new node(αi) = n i

 addchild(n i)

 expand(n i)

 if type(node)=’seq’ then:

 αi ← min αi ∈seq(α1,…, αn) (status(αi)!=’done’)

 create new node(αi) = n i

 addchild(n i)

 expand(n i)

else if type = ‘oper’ then:

 create leaf node and mark as open

Repair(node, status):

 parent ← parent(node)

 if status=’fail’ then:

 unlink node from parent

 repair(parent, fail)

 else if status=’success’ then:

 if all children done then:

 unlink node from parent

 36

 repair(parent, success)

 else if type(parent)=’seq’ then:

 αi ← min αi ∈seq(α1,…, αn) (status(αi)!=’done’)

 create new node(αi) = n i

 addchild(n i)

 expand(n i)

 else if type(parent)=’par’ then: continue

Control nodes can expand into both control nodes and operator (primitive action) nodes

as children. The type of control node defines the way in which its children are expanded.

Operator nodes are always the leaves of a tree. At any time, the current intentions of an

agent can be found by gathering the operator leaves of the tree that are not marked as

failed or done.

This provides a simple yet powerful way to model how an agent schedules its actions,

tasks, plans and operators. CAST-PM uses BOA as its theorem prover, BOA is a

forward-chaining theorem prover (similar to CLIPS) but is also a multi-agent belief

maintenance system. BOA not only maintains the agent's knowledge base, it also allows

the agent to query. assert and retract facts from the ‘self’ knowledge base and also other

agents knowledge bases. BOA is called to evaluate the conditions in statements such as

if and while.

CAST-PM is implemented in Java and provides the ability to write domain-specific

adapter classes which act as interfaces to simulation environments. While agent

designers write team plans in MALLET, and CAST-PM interprets those plans to decide

on actions in an environment, CAST-PM itself does not provide the ability to interface

 37

directly with the agent domains. Instead agents interface with dynamically loadable

adapter classes which in turn provide the domain application functionality layer – such

as API functions, RPC (Remote Procedure Calls), or network message passing. This

separation of agent reasoning from domain-specific actions has allowed us to plug-in

CAST-PM agents to many simulation environments, including the networked team game

Unreal Tournament, the Robocup Soccer simulator, and our own simulation

environments without having to rewrite the code that controls the agents reasoning

processes.

Next, we will describe how PIEX is implemented in CAST by illustrating how agents

derive information needs from MALLET team plans and how these information needs

are incorporated into the agent’s individual plan to proactively inform teammates.

DERIVING INFORMATION NEEDS FROM TEAM PLANS

Our implementation of the PIEX algorithm in CAST uses the following procedure to

anticipate the information needs of a teammate to perform a task. We use a method that

approximates all possible information needs that this other agent requires for its assigned

process. Below is a pseudo code description of the algorithm we use for generating

information needs stored in a knowledge base from a MALLET plan. In this method,

proc is the current MALLET construct (list) being processed. When an agent comes

across a do construct (responsibility) in a team-plan for which it is not responsible, it

calls itself recursively to detect all information needs of the responsible agent:

generateInfoNeeds(List proc, String agent, int id){

 if(proc.key=='seq'|'par'|'choice'){

 38

 for(each process in <proc>+) generateInfoNeeds(process, agent, id);

 }

 else if(proc.key=='while'){

 generateInfoNeeds(proc.process, agent, id);

 }

 else if(proc.key=='foreach'|'forall'){

 for(each binding in proc.cond){

 bound-process=binding.unify(proc.process);

 generateInfoNeeds(bound-process, agent, id);

 }

 }

 else if(proc.key=='if'){

 cond = <if-condition>

 assert(“info-need ” id “ ” cond);

 generateInfoNeeds (proc.trueBranch(), agent, id);

 generateInfoNeeds (proc.falseBranch(), agent, i d);

 }

 else if(proc.key=planName|tPlanName){

 new_id = new_unique_id();

 // see description of ‘do-id’ fact in section 7

 assert(“do-id ” new_id “ ” id “ “ agent “ “ pre c.key);

 for(each cond in <pre-cond>,<term-cond>,<effect s>)

 assert("info-need " new_id " " cond);

 generateInfoNeeds(proc.process, agent, new_id);

 }

 else if(proc.key=operName){

 for(each cond in <pre-cond>,<effects>)

 assert("info-need " id " " cond);

 }

}

Note that whenever a new plan is expanded, it is given a new id. Each direct information

need of that plan is tagged with a ‘do-id’ fact in the KB that marks the id of the plan that

 39

it is an information need of (see next section for more description). Sub-plans are given

new ids, but also tagged with the parent id. When it is observed that an agent has

completed a plan, the information needs of that plan are retracted; in addition, all sub-

information needs of the plan are also retracted. This allows the agent to prune

information needs that are no longer relevant (because when parent plans are observed to

be complete, the sub-information-needs are no longer relevant).

In order to avoid exchanging obvious facts or functions in the world, we also define facts

that are common knowledge among all agents, such as procedural attachments (i.e.

functions such as ‘=’,’+’,’>’,’cons’,etc), team facts that everyone knows (self ?self),

(role ?agent) and sensory facts that agents assert directly from the environment (i.e.

(hear ?msg) (at self ?x ?y) (see ?object ?x ?y) etc.). The generate-info-needs step ignores

these facts when they appear, to avoid sending obvious information to others.

PIEX IMPLEMENTATION IN CAST-PM

As previously described, MALLET defines special constructs for individual and team

plans as well as do constructs for assigning responsibilities. Implementing MALLET in

CAST-PM involves creating node-types for each construct (plan, seq, while, etc.) that

get expanded and repaired in a Process Manager tree in a way that is consistent with the

semantics of those constructs. Our implementation of PIEX involves implementing do

nodes in MALLET. A do statement is part of a team plan (see above) that specifies a

responsibility, that is - both a task and the agent that is to perform that task. A simple

team plan might look like this:

 40

(team-plan build-campfire

 (process

 (par

 (do ryan (gather wood))

 (do mark (shop-for (graham-crackers chocolate marshmallows)))

 (do jim (clear area))

)

))

This specifies that, in parallel, Ryan, Mark and Jim will each perform a task in order to

complete the team plan. Each member of this team (Ryan, Mark and Jim) executes this

same plan. The root of each agent’s process tree is a team-plan node which has one child

par node which in turn has three do node children. These team plans are transformed

into individual plans that each agent executes independently. For each of the three do-

nodes expanded in parallel, the agent checks to see if it is the agent assigned to the task.

If it is the agent assigned to the do task, then they do the task and broadcast that they

have completed the task when they are done (or failed, if they fail at the task). If the

individual agent is not the responsible agent specified, the agent derives all information

needed for the assigned task and all subtasks (using the routine given in the previous

section) and monitors his own knowledge base for opportunities to proactively inform

his teammate of these information needs (until he hears that the subtask is complete).

 41

Figure 4 - Process Tree States for Executing Own Agents Task

These figures illustrate how do nodes are expanded in the process trees. In figure 4, we

can see that, if the agent is the team member specified in the do node, the agent will

expand his do node into a seq node (sequence node) with two children: first the agent

 42

performs the specified action and then he notifies his teammates that he is done with the

action.

Figure 5 shows that if the agent is not the specified agent in the do node, then he

calculates the information that his teammate (the agent specified in the do node) needs

for that plan and then adds an active-inform plan-node to his process tree. The active

inform plan, while waiting for a ‘done’ message, actively queries the agents knowledge

base at each moment to check if he believes any of the information needs of his

teammate and, when he does, forwards that information (but only if he believes that his

teammate does not already believe the information about to be sent).

At a more technical level, here is how the process works: When the agent comes across a

do node for which it is not the agent specified, it first increments a unique id counter and

tags its teammate’s do-assignment by asserting a fact of the form:

((do-id <id> <parent-id> <agent> <spec>))

 43

Figure 5 - Process Tree States for Executing Other Agents Task

Where <id> is the unique id of the plan, <parent-id> is the parent plan’s unique-id if this

is called as a sub-plan (null if this is the top level plan), <agent> is the agent assigned to

do the action and <spec> is the specification given in the do statement for action. For

example

 44

((do-id 46 40 mark (gather firewood)))

Here the plan (gather firewood) is assigned to mark and is given the id of 46, it is the

child of the do task with id 40. After the task is tagged with an id, there is a

generate-info-needs step (described in the previous section) that infers the

information needs of the other agent’s task and asserts them as these types of facts

((info-need <id> <cond>))

For example

((info-need 46 (loc firewood ?x ?y)) // comes from precond

 // of gather f irewood

((info-need 46 (loc gloves ?x ?y))

Where <id> is the unique id of the plan specified as part of the do-id and <cond> is an

information need of <agent> to do his task (indexed by int). There will be 0 to many of

these facts, depending on the task of the other agent.

Finally, there is a plan that will get added as a child to the do node for the agent that is

not directly responsible. The plan specifies that the agent waits until he hears that the

task for his teammate is completed and, while he is doing so, monitors his knowledge

base for opportunities to communicate needed information to his teammate (provided he

doesn't believe that his teammate already believes this information). This is a generic

plan in MALLET, which gets expanded to form the sub-tree in figure 5.

; Plan Active-Inform: for PIEX

(plan active-inform (?id)

 (pre-cond (do-id ?id ?parent ?agent ?proc))

 45

 (term-cond SUCCESS (complete ?proc))

 (effects (not (do-id ?id ?parent ?agent ?proc))

 (not (info-need ?type ?id ?pred)))

 (process

 (par

 ; active-inform all info needs of this plan

 (forall ((info-need ?type ?id ?info-need))

 (seq

 (while (cond (not ?info-need)

 (needs-info ?agent ?type ?id ?info-need))

 (NOP))

 (if (cond ?info-need

 (needs-info ?agent ?type ?id ?i nfo-need))

 (say ?agent ?info-need))

)

)

 ; create another active inform plan for all c hildren of this plan

 (forall ((do-id ?child-id ?id ?child-agent ?c hild-spec))

 (active-inform ?child-id)

)

)

)

)

; BOA rules – says that an agent only ‘needs’ infor mation when it

; doesn’t already know it – important for filtering communication

(defrule (needs-info ?agent ?type ?id ?info-need)

 (do-id ?id ?parent ?agent ?proc)

 (info-need ?type ?id ?info-need)

 (not (bel ?agent ?info-need)))

(defrule (needs-info ?agent ?type ?id ?info-need)

 (do-id ?id ?parent ?agent ?proc)

 (info-need ?type ?id ?info-need)

 (not (bel ?agent (whether ?info-need))))

 46

It is interesting to note that the active-inform task for monitoring information needs,

analyzing teammate’s beliefs, informing teammates of information and cleaning up

information needs and sub-information needs of completed tasks is itself written in

MALLET. This can be loaded in as a module and makes it easier to experiment with

different communication policies. Appendix D shows a visualization of an actual

Process Manager tree running PIEX and the active-inform plan.

The process manager network structure (hierarchical task network) itself also aids in

maintaining the information needs of teammates. Keeping track of parent-child

relationships in information needs is useful for retracting information needs and sub-

information needs when they are no longer relevant. For example, if a plan p1 has a sub

plan p2 and p2 has information needs a, b, and c, and the agent learns that p1 is complete,

we can be sure that the agent no longer needs to perform p2 and therefore, no longer

needs to know a, b, or c and they can be retracted from the set of information needs for

that agent. Since the parent-child relationship of plans/sub plans are explicit in the

Process Manager structure, so are the information-needs/sub-information needs of

agents. So when a parent (plan/info-need) node is pruned from the tree, so are all its

descendants.

In this section, we have described the implementation of the PIEX algorithm in CAST-

PM. Next, we will describe the proactive information exchange validation framework

developed as part of this research.

 47

VALIDATION FRAMEWORK

We have recognized the need for an effective description and evaluation framework to

both describe scenarios in which proactive information exchange would take place and

to validate the proactive information exchange communication events that agents

perform. The following is a formal framework for describing, from an omniscient point

of view, information-exchange scenarios for agent-based teams. We describe the

scenarios in terms of the agents involved, the facts relevant to those agents, the

information needs of each agent, and the event-times at which each agent will come to

learn each event. In addition to being a descriptive tool, it also prescribes an optimal

communication sequence for information exchange between agents on the team. Note

that this formalism should not be confused with PIEX, the actual information-exchange

algorithm to control the communications of agents working under conditions of limited

information. Instead, this is a useful framework for discussing the aspects of information

exchange from an omniscient point of view. This can also be used as a performance

metric in order to evaluate PIEX as a communication policy for information exchange

among agent team members. One could do this validation in a post-hoc way, by running

agent team members in a simulation environment and then determining the information

needs of each agent, analyzing the sensory-events that agents received at each moment

and finally, the communications that they send to each other. Alternatively, we could use

this framework to specify the simulation environment from the start and evaluate their

communications in the same way (this is the way in which we run our experiments in

this thesis). In the final section of this proposal, we describe the method we use to

 48

evaluate PIEX.

Once again, it is important to remember that this formal description specifies scenarios

at an omniscient level of knowledge, and since we assume that no agent has access to

this level of knowledge, this formalism is not meant to specify how agents should

communicate to exchange information, only to describe the environment that the agents

will inhabit and the optimal communication sequence of these agents. Additionally, this

formalism is independent of the agent architecture used to implement information

exchange. In the following pages, we will describe the formal framework for specifying

information exchange scenarios, show that we can define and derive the optimal

communication sequence from this description under different optimality conditions,

show how we can evaluate actual communication according to the optimal sequence,

give an example scenario and finally discuss limitations and possible extensions to the

model.

DESCRIPTION

The following is a formalism that allows us to set up and validate our scenarios:

S. S = <A, F, info-needs, events, inferences>

A scenario is a quintuple of: A – agents, F – facts, info-needs – sets of facts relevant to

each agent, events is a set of information events for each agent, and inferences are the

inference rules that agents use to make logical deductions.

A. A = {a1, a2, … , an}

Set of all agents on a the team

 49

F. F = {f1, f2, … , fm}

Set of all facts (propositions) in the domain required by some agents to complete their

tasks. These may be actual information needs or antecedents used to infer information

needs.

info-needs. (∀a ∈ A : (info-needsa = {f∈F, | a requires f to complete a task}))

info-needsi assigns, for each agent, a set of facts fj ∈ F that agent ai needs to complete

his individual task. The semantics of this is that, without this information, ai will never

be able to complete his task. We assume that agents will not act on an action until they

believe the preconditions hold.

info-events. (∀a ∈ A : (∀f ∈ F : (events = {<a,f,t> | t = moment at which a discovers fj

independently, or through its own sensors})))

events assigns, for each agent, a set eventsi, which is a set of information sensing event

tuples <a,f,t>. Events are a mapping from A×F→N∪{-1}, where N is the set of natural

numbers. For agent a and each fact f ∈ F. events gives the time step t that the a will

discover f independently, that is without communication from other agents (or –1 if the

agent will never come across that information on its own). |events| = m. The semantics

for this is that for each <ai,fj,t>, fB
t

a
 meaning that a will believe fact f at time ≥ t (and all

other times after that). We assume that knowledge bases are static, that is facts do not change

truth value over time.

inferences. inferences = {α1^α2^…^αx → c | α1…αx,c ∈ F}

inferences are a set of rules that specify the logical conclusions that the agents can

 50

draw6, such as:

mother(Jane, Julie) ^ mother(Julie, Helen) → grandmother(Jane, Helen)

Rules are encoded as Horn clauses, where each conjunct of the antecedent and the

consequent of each rule are members of F. For the rule α1^α2^…^αx → c we denote

antecedent(α,c) as the fact that α is an antecedent of an inference rule with the

consequent c. The semantics is that, if an agent believes all the antecedents of a rule,

then it will believe the consequent. That is

{ } ct
A

B
iB

A
Inferencesc

n

t

A
n
i

→∧∈→∧ =∧ ααα 11
�

By using this method of specifying scenarios for our agent teams we can represent our

scenario as a directed graph with agent and fact nodes. Edges emanating from a fact

node fj (circle shaped) to an agent node ai (square shaped) represent an information need

for fact fj of agent ai. Each member of info-needsi for all ai is an edge from a fact node to

an agent node. Each edge emanating from an agent node a to a fact node f represents an

information event <a, f, t> ∈ events. Each member of the set events for all a is an edge

from an agent node to a fact node, these edges are labeled with the value of <a, f, t>,

where t is the time in which a will discover f without help from his teammates (-1 if he

will never learn this).

Using this formalism we can say that, if there is no eventij = <a i, fj, t>, t = -1 where fj ∈

info-needsi, then each agent can carry out their own tasks independently, without the

6 We say that inference rules are common knowledge among all of the agents

 51

help of other agents, as each agent can carry out their own tasks independently, without

the help of other agents7. There may still be an advantage for information-exchange

communication, though, because a teammate may learn information needed by another

agent before the other agent learns it. Formally, for some fact fj ∈ info-needsi there could

be an information event eventkj = <ak, f j, tkj> and eventij = <ai, f j, tij> such that tkj < tij,

which should trigger a communication of information fj from ak to ai enabling the agent

to believe it earlier than otherwise.

A SIMPLE EXAMPLE

To illustrate, let us consider a simple scenario with 2 agents, 3 facts and no inference

rules.

A = {a 1, a 2}

F = {f 1, f 2, f 3}

info-needs 1 = {f 1}

info-needs 2 = {f 2, f 3}

Event Mapping A ×F→NU{-1}:

 f 1 f 2 f 3

a1 5 3 -1

a2 4 2 3

inferences = {}

7 Conversely, if there is any fact fj ∈ info-needsi and an event <ai, f j, t> = -1, then there is no way that agent ai
can complete their individual task on their own.

 52

The graph in figure 6 encodes this scenario8.

Figure 6 - Information Need/Event Graph

In this example, there is an opportunity for communication from a2 to a1 of fact f1 at t=4

because there exist two information-events <a2, f1, t21> and <a1, f1, t11> such that t21< t11

and f1 ∈ info-needs1.

8 In larger graphs, we will probably want to leave off event edges labeled –1 (i.e. no information event)

 53

OPTIMAL COMMUNICATION

This framework allows us to specify the optimal communication of teammates working

in a scenario specified the formalism above. That is, we can define a policy which can be

used to derive what a team will optimally communicate in any scenario. In order to do

this, we need to determine exactly what we mean by the optimal communication

sequence. This is relatively straightforward if we do not consider inference rules in

giving the optimal communication sequence. In this case, the agent who happens to

believe an information-fact first (and only that agent) should tell all others who need that

information as soon as he discovers this fact. Implicit in our optimality definition is that

it is better to perform fewer communications-actions and to believe information needs

sooner. In other words, the optimal communications in a setting that ignores inference

achieves the minimal number of communication messages possible while informing

each agent of his information need as soon as it is available within the team.

The addition of inference rules, while increasing the richness of the scenario description,

adds ambiguity as to what the optimal communication sequence is. We can define

different optimal communication policies for how to handle implication rules combined

with the facts that agents believe at different times. As an example domain, say that:

1) a, b, c ∈ A

2) r ∈ info-needsc

3) (p^q → r) ∈ inferences

4)B
t

a
(p) and B

t

b
(q).

 54

In this scenario, neither a nor b can infer r and therefore, cannot tell c its information

need outright. However, between the two of them, a and b have information for which c

can infer r. The decision about what agents should optimally communicate to each other

based on their current knowledge and the information needs of other agents is defined in

an optimal communication policy. The definition of optimal information-exchange could

vary in different domains, we therefore define 4 different policies of optimal

communication.

a. POLICY 1 – MINIMAL COMMUNICATION MODEL

Ignores inference rules and simply states that if an agent a needs fact I, and agent b

specifically believes I at time t before anyone else, that b should inform a of I at t.

∃a,b∈A ,¬∃c∈A, ∃t∈N ∧ B
t

b
(I) ∧ (¬∃c∈A, ¬∃t*∈N ∧ I∈info-need(a) ∧ (a ≠ b) ∧ B

t

c

*
(I) ∧

(t* < t)) → TELL(a,b,I,,t)

In the example above involving inferences, neither agent a nor b will communicate with

c because neither believes the information-need r outright. a or b will only communicate

r when they personally have the information r.

b. POLICY 2 - LIBERAL COMMUNICATION MODEL

Follows the communications rule in model 1. Also, if an agent b believes an antecedent

N to an information need I of another agent a at time t; b will tell a N at time t.

∃a,b∈A, ∃n,I,J∈F, ∃J∈Inferences ∧ I=consequent(J) ∧ I∈info-need(a) ∧ antecedent(n,J)

∧ (¬∃t*∈N, ∃t∈N ∧ B
t

b
(n) ∧ B

t

c

*
(n) ∧ (t* < t)) → TELL(a,b,n,,t)

In the example above a will tell c p and b will tell c q, even though they do not believe

 55

that any other agent believe the remaining antecedent-facts. Therefore, a would still

inform c of fact p even if b did not believe q.

c. POLICY 3 - ORACLE-AGENT MODEL

Requires agents to have access to all other agents’ knowledge. If an agent a needs fact I

that either (a) some agent believes directly or (b) that all agents together have enough to

infer, a should be informed (by one agent) of I at time t. In the example above A would

tell c fact r only when a believes that b believes q. Note that this requires more insight

than we normally attribute to agents, since it requires a to believe b believes q without a

believing q itself (since it would, by implication, believe r and the rule in model one

would apply).

∃a,b∈A, ∃I∈F, ∃t∈N, ¬∃t*∈N ∧ (B
t

Aai∪ ∈ |= I) ∧ I∈info-need(a) ∧(B
t

Aai∪ ∈

*

|= I) ∧ (t*

< t) → TELL(a,b,I,,t)

In the example above, either agent a or b should inform c of I at time t.

d. POLICY 4 - LIBERAL ORACLE MODEL

The liberal-oracle model has elements of both the liberal and oracle models. Agents may

communicate if they only believe antecedents to information-needs and do not believe

the information-need outright (unlike the minimal communication model). Agents will

only communicate what they personally believe (like the liberal but unlike the

omniscient model, they will only communicate facts that are in their own personal

knowledge base), but will not communicate these facts until they believe that all of the

antecedents of the information need are satisfied by the entire team (like the omniscient

 56

model and unlike the liberal).

∃a,b∈A, ∃t∈N ∧ J∈Inferences ∧ I=consequent(J) ∧ I∈info-need(a) ∧ (∀n∈F ∧

n∈antecedents(J) B
t

Aai∪ ∈ |= I) ∧ (∃m∈F, ¬∃t*∈N ∧ m∈antecedents(J) ∧ B
t

a
(m) ∧ B

t

c

*
(m)

∧ (t* < t)) → TELL(a, b, m, t)

 In the example above, agent a will inform c of p if and only if, among the other agents

b,c the fact q is also known. This model generates more communication than the

omniscient model, since more facts are communicated, but potentially less than the

liberal model because no communication occurs unless the union of all of the agents’

knowledge bases entails the information need fact.

CALCULATING THE OPTIMAL COMMUNICATION SEQUENCE

All of the policies above use the same formal framework for describing the scenario. The

models differ in the optimal communications sequence specified for a given scenario.

For our experimental results, we use policy 1 optimality conditions. Below is the

algorithm which shows how we calculate the optimal communication sequence using

model 19.

Set T = ∅

Set Comm = ∅

for each fact node f i in F

 T = T ∪ min edge=(a,f,t) (incoming-edges(f i) | edge.t ≠ -1)

T = sort t (T)

for each edge=(a i ,f i ,t i) ∈ T

9 This assumes that there exists an optimal communication sequence in which all agent information needs are
satisfied. We can encode scenarios in which this condition does not hold.

 57

 for each a j in outgoing-edge(f i)=(f i ->a j)

 if(a i ≠ a j) Comm = Comm ∪ tell(a i , a j , f i , t i)

 return Comm

This algorithm returns a chronologically sorted set of communicative actions from agent

ai to aj of fact fi at time ti. Intuitively, this algorithm says that the first agent to learn fact

f i ∈ F should inform all other agents who will need this information (other than

themselves). This allows us to specify the optimal Policy 1 communication sequence of

agents in this scenario. Similar algorithms can be derived for models 2-4.

MODELING AGENT DOMAINS

Now that we have a formal way to specify scenarios, we next ask, “What types of

scenarios can we represent using this formalism?” As a concrete example, here we will

specify a scenario of a multi-agent team whose goal it is to plan a party.

A rugby team decides to throw a party and has put three players A1, A2, and A3 in

charge of making the party arrangements and collecting money from the other members

of the club. In addition A4 is the treasurer of the club, the treasurer must make all

purchases for the club – although he has no time to actually plan the party. A1 is in

charge of figuring out the details of the food, disc jockey and location of the party. A2 is

responsible for getting a permit from the city to hold the party, and determining where to

purchase the drinks for the party. A3 is a social chair of the club, so he is responsible for

contacting the members of the team, collecting money from members, getting a count of

the number of people planning to attend the party, the best day to hold the party and

 58

preferred music to play at the party.

Notice that A4 is completely dependant on information from the other three agents to

complete his task (purchase items for the party). The other agents can complete their

tasks on their own, but have opportunities to help their teammates by communicating

information they come across in the course of their tasks. For instance, A3 happens to

believe exactly how much it will cost to hire the disc jockey since his roommate hired

one at his last party, he should tell A1, since he believes that it is an information need of

A1. When A1 talks to the dj at time 4, the dj tells him that techno will be the best choice

of music. A1 believes that A3 is responsible to gather this information – so he should

communicate this, and so on. The facts and info needs are as follows:

A = {a1, a2, a3, a4}

F = {f1 = best_caterer(buppys),

f2 = best_day_for_party(Saturday),

f3 = amount_collected($500),

f4 = num_people(50),

f5 = drink_merchant(Kroger),

f6 = place_to_file_permit(municipal-building),

f7 = amount_of_permit($20),

f8 = best_dj(mark),

f9 = cost_of_dj($50),

 59

f10 = music_pref(techno),

f11 = party_location(marks-house),

f12 = cost_of_drinks($300),

f13 = cost_of_food($100)}

info-needs1 = {f 1, f8, f9, f11, f13}

info-needs 2 = {f 5, f6, f7, f12}

info-needs 3 = {f 2, f3, f4, f10}

info-needs 4 = {f 3, f5, f7, f8, f9, f12, f13}

inferences = {} // for this example, we ignore inferences.

Numbers in this list are the time steps at which agents will learn facts. The number -1

means that the agent will never learn the information.

 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

a1 5 -1 -1 -1 -1 4 -1 3 4 4 9 -1 5

a2 -1 -1 10 -1 7 5 8 -1 -1 -1 -1 10 -1

a3 -1 5 6 4 5 -1 -1 1 -1 7 -1 3 -1

a4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Below is a graph of this scenario, edges emanating from facts and terminating at an

 60

agent are dashed and represent information needs. Edges emanating from agents and

terminating at a fact are solid and represent information-events; these event-edges are

labeled with the time in which they occur.

Using the algorithm listed in appendix B, we can show that the optimal communication

sequence is:

t From To Message

- ---- -- -------

1 a3 a1 f8

1 a3 a4 f8

3 a3 a2 f12

3 a3 a4 f12

4 a1 a3 f10

4 a1 a2 f6

4 a1 a4 f9

5 a3 a2 f5

5 a3 a4 f5

5 a1 a4 f13

6 a3 a4 f3

8 a2 a4 f7

Figure 7 shows the information needs and event graph for the rugby party domain.

61

Figure 7 - Information Need/Event Graph for Party Domain

 62

This communication sequence can be plotted graphically by connecting agents with

edges labeled with the time and fact of the communication sent (see figure 8).

Figure 8 - Information Exchange Graph for Party Domain

EVALUATION FRAMEWORK

We have described a formal framework for specifying information exchange scenarios

and how to calculate the optimal communications between agents in these scenarios, as

well as our algorithm for generating the communications in a multi-agent setting. In this

section, we discuss how we will evaluate the agents’ performance using our definition of

the optimal communication sequence. We start by looking at the set of optimal

communication actions OPT = {<a,f,t> | agent a is optimally informed of fact f at time t}

calculated from the description of the domain and the actual communications delivered

by each agent ACT = {<a,f,t> | agent a is actually informed of fact f at time t} operating

in the scenario. We can specify an error function err that assigns a numerical value to the

difference between actual and optimal communication and use this to score our agents’

information-exchange actions. We can say that:

���
∈∉∉∈∩∈

++−=
OPTafACTafafOPTafACTafafOPTACTaf

afaf

i

ii
OPTACTerr

,|,|

γβ

 63

where ACTaf is the time at which agent a is actually informed of fact f, OPTaf is the time

at which agent a is optimally informed of fi.
�

 is a numeric error value for unnecessary

communication and � is a numeric error value for missed communication opportunity.

These two penalties can be set in a domain-dependent way; in some domains it is more

costly not to communicate information needs and in others it is more costly to

communicate unnecessarily. Note that if ACT ≡ OPT then the agent has optimally

informed his teammates and err = 0.

Note that we do not expect our agents to achieve the optimal communication for

proactive information exchange, since it is not guaranteed that they will maintain a

perfect model of their teammate’s beliefs. Nonetheless, our hypothesis is that they will

be able to come reasonably close to the optimal communication in certain situations. In

this section, we have discussed how we will quantitatively evaluate the communication

events generated from the PIEX algorithm using the criteria for optimal communications

described in this section. In the example section, we will create a military aircraft

mission scenario, implement agents running PIEX and evaluate the communication that

they perform.

LIMITATIONS AND EXTENSIONS

We do not claim that this framework can capture or describe all of the nuances of

proactive information exchange scenarios. Having said that, we do think that this

formalism captures the fundamental aspects of the proactive information exchange task,

and we use this for our experiments. Below we list limitations of this framework, which

 64

can be viewed as possible extensions for future work.

a. Ability to communicate This framework does not consider whether agents can

communicate with each other. In many domains agents do not have unlimited

communication ability. For instance, agents may have a sensory range, which includes

sensing communications, and agents might not be able to send/receive a message if they

are out of range. This model does not take this into account; we assume that agents can

send and receive messages to any member of the team at any time.

b. Information need contingency For instance, some information needs may be

dependent on the knowledge of other facts, such as (if x then info-need(y) else info-

need(z)). That is, we do not handle the case in which ai needs to believe either y or z

depending on the value of x. The agent therefore, will not need either y or z unless he

first believes the value of x. For instance, in the party-planning example above, the

information need that best_dj(mark) may be dependent on the agent believing that

preferred_music(techno). This culd be accounted for by using dependency trees which is

left for future work.

c. Time dependent needs Some information needs might have temporal constraints,

such as “I need this information before x” or “This information will be relevant to a after

time t” or “During time (ts,tf) this information is relevant to agent a. In this framework,

we only consider static information needs.

d. Dynamic truth values We assume that the facts in the world have a fixed truth value,

that is fact b will not toggle between true,false,true, etc.

 65

e. Weighted error (cost function) In evaluating our team information exchange

performance, some facts may be more critical than others and communication errors

with respect to these pieces of information can cost the team more than errors on other

information-facts. The error function err defined above can be modified to take this cost

of each fact into account, although it currently does not do so.

f. Team structure Sometimes, teams are structured in such a way that communication

should not travel point-to-point from information-possessors to information-needers.

Instead the structure of the team could dictate that certain agents only communicate with

other agent, which may then possibly act as an intermediary, forwarding this information

according to the team protocol. This description of scenarios assumes that point-to-point

communication is acceptable.

While we admit that these limitations restrict our ability to model all possible

communication scenarios for proactive information exchange, we feel that our approach

captures the most salient features of the problem and that we can construct interesting

scenarios for proactive-information-exchange algorithm evaluation.

 66

EXAMPLE

In this section, we will implement a scenario for a team of military aircraft agents

running CAST-PM/PIEX to demonstrate qualitatively that PIEX generates

communication reasonably close to optimal. This scenario involves five military aircraft

on a bombing mission. Two scout aircraft (s1 and s2) and fighter jet (p1) fly ahead of the

two bombers (b1 and b2). The scouts verify the location of the enemy targets, status of

air-defense and radar systems, and the number of enemy forces at the target. The support

fighter jet provides assistance to and helps protect the reconnaissance aircraft. When the

scouting is complete, the bombers are informed and they strike their targets. The five

aircraft then return to the base together. The MALLET plan for this team is listed in

Appendix C and the file used to specify the information scenario is listed in Appendix D.

The CAST-PM agents analyze this MALLET plan to detect the information needs of

their teammates. For instance, the bomber agents have the goal of striking target

‘target1’ and ‘target2’, these are plans with preconditions of knowing the locations of

each target. Since the team believes that agent b1 is assigned to strike target ‘target1’ –

the location of target1 is an information need of b1. Sub-plans and sub-task information

needs are expanded and the information is categorized as sub-information needs of the

parent tasks, this allows agents to prune sub-information needs when they believe that

the parent task is complete.

In this example scenario (appendix D), while scout one (s1) is responsible for scouting

positions of enemy radar, scout two (s2) comes to believe of the location of radar2 first

(at time 13) and therefore has an opportunity to let s1 believe before he would come to

 67

Figure 7 - Graphical Representation of Military Aircraft Scenario

F
ig

ur
e

9
-

G
ra

ph
ic

al
 R

ep
re

se
nt

at
io

n
of

 M
ili

ta
ry

 A
ir

cr
af

t
Sc

en
ar

io

 68

believe the fact himself (time 17). Other such opportunities are available throughout the

course of this plan.

Figure 9 shows the graph representing this scenario and Figure 10 shows the optimal

communication graph. Table 1 lists the optimal communication sequence 10for the

agents. In our validation, we will use the scenario listed in Appendix D to run a

simulation for a team of agents executing the MALLET plan listed in Appendix F.

Figure 10 - Graphical Representation of Optimal Communication for Military Air Combat Scenario

10 Using the minimal communication optimality condition described above.

 69

Figure 11 - Map of Air Combat Simulation

Figure 11 shows a view of this air combat scenario. The scenario simulation server

outputs the optimal communication sequence for the agents running the scenario,

delivers the information events at the specified times and keeps track of the actual

communication events that take place between teammates. We will now examine the

communication behavior of the teammates running the plans listed in appendix D to see

how closely the communication generated by PIEX comes to the optimal

communication. The optimal communication sequence is listed in table 1.

 70

Table 1 - Optimal Communication for Military Aircraft Simulation

t from to fact
5 p1 s2 (loc defense1 (276 4476 0))
6 b1 p1 (threat t1 (200 300 12000))
6 s1 p1 (threat t2 (600 135 15000))
10 s2 b2 (loc target2 (235 7754 1))
13 s2 s1 (loc radar2 (456 876 0))
15 s1 b1 (loc target1 (2234 9932 1))

The simulation engine delivers the information events to agents at the prescribed times

(the information events specified in the scenario description file in Appendix D). Agents

run in their own processes and have no access to each others’ knowledge bases or plan

states, other than through the messages that agents send to each other through the

simulation server. The actual communication events that the agents perform are listed in

table 211:

Table 2 - Actual Communication for Military Aircraft Simulation

t from to fact
6 p1 s2 (loc defense1 (276 4476 0))
7 s1 p1 (threat t2 (600 135 15000))
7 b1 p1 (threat t1 (200 300 12000))
11 s2 b2 (loc target2 (235 7754 1))
14 s2 s1 (loc radar2 (456 876 0))
16 s1 b1 (loc target1 (2234 9932 1))

Comparing table 1 (optimal communication) and table 2 (actual communication) we see

that none of the optimal communication points are missed and no superfluous

communication is generated by this team. The actual and optimal communication times

11 Note that we only list the information exchange events, in order to compare the actual to the optimal
communication sequences for information exchange. The PIEX algorithm also automatically generates
communication to inform teammates when the agent has completed a task or plan.

 71

differ by only one time step, which is due to the way the simulator and agents interact –

when agents are delivered senses, they must process the senses and re-evaluate their

plans (Process Manager tree) according to any new information received, then

afterwards the agents decide on an action and perform it, during the next time step.

We also notice that the BOA belief reasoning module is useful in filtering out

unnecessary communications. For instance, agent B1 will come to believe fact (threat t1

(200 300 12000)) at time 6, S2 believes this at time 10, and P1 believes this at time 12.

This fact is an information need of agent P1. The optimal communication sequence

specifies that P1 only needs to be informed once and as soon as possible (which has B1

telling P1 at time 6). In order for agent S2 to avoid sending redundant information at

time 10, S2 needs to reason that since B1 has already told P1 the information need, that

P1 now believes this. The following BOA action justification encodes this knowledge:

; says that when we know that agent ?ag tells agent ?to

; message ?msg then we know that ?to knows ?msg

(action (do ?ag (say ?to ?msg))

 (effects (bel ?to ?msg))) 12

And one of the conditions of the active-inform plan generating a communication act is

the rule:

12 Of course, this seems like a trivial rule that would be easy enough to hard code into an agent architecture.
The real utility of BOA is when it is used in complex environments where several justifications can attempt to
alter the value of the same fact, and the reasoning system has to resolve these conflicts. Since our purpose is to
demonstrate PIEX and not BOA, it is sufficient to show that the BOA system is integrated with CAST enough
to maintain models of teammate’s beliefs.

 72

(defrule (needs-info ?agent ?type ?id ?info-need) (do-id ?id ?parent
?agent ?proc) (info-need ?type ?id ?info-need) (not (bel ?agent ?info-
need)) (not (bel ?agent (whether ?info-need))))

this says that an agent only needs information if it is both listed as an information-need

and also that the information needing agent does not already believe the given fact. The

combination of the BOA justification for how to update an agents model of his

teammates knowledge coupled with this rule about who needs to be told information

allows the agent to perform selective communication.

In addition to filtering out unnecessary communication, PIEX has improved the

efficiency of this team activity. In the communication of the threat1 in the previous

example, the fighter jet was able to intercept the threat at time 6 rather than time 12,

which helps ensure the safety of the team.

Appendix E shows a screenshot of the visualization of the Process Manager tree for

agent B1 during the simulation. Appendix F shows the state of agent p1’s knowledge

base and process manager tree in time steps 5 and 6. At time 5, p1 is delivered the

information (loc defense1 (276 4476 0)), and we can see the change in both the agents

knowledge base and process manager tree which commits him to communicating that

fact to agent s2, who needs that information.

In this section, we have run actual CAST-PM software agents running the PIEX

algorithm in a military aircraft simulation. We have demonstrated that PIEX comes quite

close to optimal communication in this environment.

 73

CONCLUSION

The goal of this research was to enable agents to maintain a shared mental model for the

purposes of enhancing proactive teamwork behavior, specifically proactive information

exchange. Our claim is that by analyzing a shared team plan and with a way to maintain

knowledge about the beliefs of agent teammates, agent architectures can automatically

transform a shared team plan into individual plans with appropriate communication

points for need-based information exchange. We have defined formal conditions for

when proactive information takes place as well as the motivation for proactive

information exchange. We have described our framework for generating information

testing scenarios for validating agent behavior and tested our agents in one such

scenario.

We feel that our work on practical methods for proactive information exchange in agent

teams is a significant contribution to the area of multi-agent systems; although we have

only scratched the surface in this area. Future work might focus on the costs and utility

of communication in different domains, in these domains teams may use decision-

theoretic methods to decide when and if to deliver information (similar to the decision-

theoretic communication routines in STEAM). Another open area involves identifying

characteristics of agent domains that would make proactive information exchange more

useful or difficult. We hypothesize that in less observable environments, agents will be

less able to maintain models of each others beliefs and would deviate farther from

optimal communications; although in these environments teams also stand to benefit

more from proactive information exchange even more since information is more

 74

distributed. The formal framework presented might be used to define certain

characteristics of agent domains and test the performance teams under different

environmental conditions. One might experiment with other types of communication

protocols such as broadcast vs. multicast vs. point-to-point communication.

It would also be interesting to investigate possible applications of proactive information

exchange for agent teams in the real world. Recently, the inability of organizations

(especially in government) to keep other agents or organizations properly informed of

relevant information has been blamed for many blunders. Also, organizations such as the

CDC might benefit from the ability to have relevant information from health centers

around the country proactively forwarded to them to aid in assessing the possibility of

outbreaks of disease or other health hazards. The amount of information that such

organizations have to analyze and interpret is growing rapidly and the ability to pre-filter

only relevant information could also possibly boost the efficiency of such organizations.

Future work may also look at other applications of belief reasoning systems like BOA.

In this work, we have leveraged the ability to reason about beliefs of others for the

purposes of need based delivery of information. There could be other multi-agent

applications of modeling the beliefs of others; for instance, coordination, negotiation,

role assignment, etc. The primary contribution of this work is the enhancement of team

efficiency by monitoring information needs and beliefs of other agents to properly

maintain a shared mental model.

 75

REFERENCES

[1] N. R. Jennings, "Controlling cooperative problem-solving in industrial

multiagent systems using joint intentions," Artificial Intelligence, vol. 75, no. 2, pp. 195-

240, 1995.

[2] E. H. Durfee and V. R. Lesser, "Using partial global plans to coordinate

distributed problem solvers," in Proc. Tenth International Joint Conference on Artificial

Intelligence, pp. 875-883, 1987.

[3] E. Salas, T. L. Dickinson, S. A. Converse, and S. I. Tannenbaum, "Towards an

understanding of team performance and training," in Teams: Their Training and

Performance, R. W. Swezey and E. Salas, Eds. Norwood, NJ: Ablex Pub. Corp., 1992,

pp. 3-29.

[4] J. Searle, Speech Acts: An Essay in the Philosophy of Language. Cambridge:

Cambridge University Press, 1970.

[5] P. R. Cohen and H. J. Levesque, "Communicative actions for artificial agents," in

Proc. First International Conference on Multi-Agent Systems, San Francisco, CA, pp.

65-72, 1995.

[6] P. R. Cohen and C. R. Parrault, "Elements of a plan-based theory of speech acts,"

Cognitive Science, vol. 3, pp. 177-212, 1979.

[7] L. Gasser, "Social conceptions of knowledge and action: DAI Foundations and

Open Systems Semantics," Artificial Intelligence, vol. 47, pp. 107-138, 1991.

 76

[8] N. R. Jennings, "Commitments and conventions: The foundation of coordination

in multi-agent systems," Artificial Intelligence, vol. 75, 1994.

[9] T. R. Ioerger and J. C. Johnson, "A formal model of responsibilities in agent-

based teams," in Proc. Fifth International Conference on Autonomous Agents, Montreal,

Canada, pp. 157-158, 2001.

[10] H. Isozaki and H. Katsuno, "A semantic characterization of an algorithm for

estimating others' beliefs from observation," in Proc. of the Thirteenth National

Conference on Artificial Intelligence and the Eighth Innovative Applications of

Artificial Intelligence Conference, vol. 2, H. Sharobe, Ed. Menlo Park, CA, 1996, pp.

543--549.

[11] M. N. Huhns and D. M. Bridgeland, "Multiagent truth maintenance," IEEE

Transactions on Systems Man and Cybernetics, vol. 21, no. 6, pp. 1437-1445, 1991.

[12] M. Tambe, "Towards flexible teamwork," Journal of Artificial Intelligence

Research, vol. 7, no. 1, pp. 83-124, 1997.

[13] M. Tambe, "Agent architectures for flexible, practical teamwork," in Proc.

National Conference on Artificial Intelligence, pp. 22-28, 1997.

[14] M. Yokoo and K. Hirayama, "Algorithms for distributed constraint satisfaction:

A review," Autonomous Agents and Multi-Agent Systems, vol. 3, no. 2, pp. 185-207,

2000.

[15] B. Grosz and S. Kraus, "Collaborative plans for complex group actions,"

Artificial Intelligence, vol. 86, no. 2, pp. 269-357, 1996.

 77

[16] J. Yen, J. Yin, T. R. Ioerger, M. S. Miller, D. Xu, and R. A. Volz, "CAST:

Collaborative agents for simulating teamwork," in Proc. 17th International Joint

Conference on Artificial Intelligence, Seattle, WA, pp. 1135-1144, 2001.

[17] P. R. Cohen and H. J. Levesque, "Intention is choice with commitment,"

Artificial Intelligence, vol. 42, pp. 213-261, 1990.

[18] P. R. Cohen and H. J. Levesque, "Teamwork," Nous, vol. 25, no. 4, pp. 487-512,

1991.

[19] K. Erol, J. Hendler, and D. S. Nau, "HTN planning: Complexity and

expressivity," in Proc. Twelfth National Conference on Artificial Intelligence, Seattle,

Washington, pp. 1123-1128, 1994.

[20] B. Grosz and S. Kraus, "The evolution of shared plans," in Foundations and

Theories of Rational Agency, A. Rao and M. Wooldridge, Eds., Kluwer Academic

Publishers, Dordrecht, The Netherlands, pp. 227-262, 1998.

[21] N. R. Jennings, K. Sycara, and M. Wooldridge, "A roadmap of agent research

and development," Autonomous Agents and Multi-Agent Systems, vol. 1, pp. 275-306,

1998.

[22] E. Sonenberg, G. Tidhar, E. Werner, D. Kinny, M. Ljungberg, and A. Rao,

"Planned team activity," Australian Artificial Intelligence Institute, Melbourne,

Australia, Technical Notes 26 1992.

[23] E. Salas, C. Prince, D. Baker, L. Shrestha., "Situation awareness in team

performance: Implications for measurement and training," Human Factors, vol. 37, no.

 78

1, pp. 123-136, 1995.

[24] J. M. Orasanu, "Shared mental models and crew decision making," Cognitive

Sciences Laboratory, Princeton, NJ, CSL Report 46, 1990.

[25] P. Stone and M. Veloso, "Task decomposition, dynamic role assignment, and

low-bandwidth communication for real-time strategic teamwork," Artificial Intelligence,

vol. 110, no. 2, pp. 241-273, 1999.

[26] K. E. Biggers and T. R. Ioerger, "Automatic generation of communication and

teamwork within multi-agent teams," Applied Artificial Intelligence, vol. 15, pp. 875-

916, 2001.

[27] S. Kripke, "Semantical analysis of modal logic.," Zeitschrift für Mathematische

Logik und Grundlagen der Mathematik, vol. 9, pp. 67-96, 1963.

[28] J. Hintikka, Knowledge and Belief. Ithaca, NY: Cornell University Press, 1962.

[29] J. Yen, X. Fan, and R. A. Volz, "On proactive delivery of needed information to

teammates," AAMAS Workshop on Teamwork and Coalition Formation, pp. 53-61,

2002.

[30] R. E. Fikes and N. J. Nilsson, "STRIPS: A new approach to the application of

theorem proving to problem solving," Artificial Intelligence, vol. 2, pp. 189-208, 1971.

[31] M. Paolucci, D. Kalp, A. S. Pannu, O. Shehory, and K. Sycara, "A planning

component for RETSINA agents," in Lecture Notes in Artificial Intelligence, Intelligent

Agents VI, Springer, New York, 1999.

 79

APPENDIX A

MALLET SYNTAX

/**
 * Mallet 2
 * Created: 08/15/2001
 */

(agent <agentName>)

(object-type <name>)

(role <roleName> (<agentName>+))

(capable <agentName> <operName>)

<pred> ::= (<predName> <argument>*)
<cond> ::= <pred> | (not <pred>)
<var> ::= ?<string>

(i-oper <operName> (<var>*)
 [(pre-cond <cond>+)]
 [(effects <cond>+)])

(t-oper <operName> (<var>*)
 [(pre-cond <cond>+)]
 [(effects <cond>+)]
 [(share-type AND|OR|XOR)]) // default share-type = OR

(plan <planName> (<var>*)
 [(pre-cond <cond>+)]
 [(effects <cond>+)]
 (term-cond [FAILURE|SUCCESS] <cond>+) // default is FAILURE
 (process (<proc>+)) // procedures in process
 // are implicitly sequential
<team-plan> ::=
 (team-plan <name> (<var>+)
 [(pre-cond <cond>+)]
 [(term-cond [SUCCESS|FAILURE] <cond>+)]
 [(effects <cond>+)]
 (process <tproc>)
)

<proc> ::=
 (seq <proc>+) |
 (par <proc>+) |
 (if (cond <cond>+) <proc> [<proc>]) |
 (while (cond <cond>+) <proc>) |
 (foreach <cond> <proc>) |
 (forall <cond> <proc>) |
 (choice <proc>+) |

 80

 (do <agentName>|<roleVar> <call>) |
 (select-role <roleVar> <roleName> [(constraint <c ond>+)] <proc>)

<call> ::= (<planName>|<operName> <args>*)

<tproc> ::=
 (seq <tproc>+) |
 (par tproc>+) |
 (do <agent> <proc>) // agent specified by <agent> is to do <proc>

 81

APPENDIX B

GRAPH ALGORITHM FOR OPTIMAL COMMUNICATION

Set T = ∅

Set Comm = ∅

for each fact node fi in F

 T = T ∪ minedge=(a,f,t)(incoming-edges(fi) | edge.t ≠ -1)

T = sortt(T)

for each edge=(ai,fi,ti)∈ T

 for each aj in outgoing-edge(fi)=(fi->aj)

 if(ai ≠ aj) Comm = Comm ∪ tell(ai, aj, fi, ti)

return Comm

 82

APPENDIX C

MALLET PLAN FOR MILITARY AIRCRAFT TEAM

Note that the files for all five agents are identical except for the first line which asserts

the ‘self’ fact, letting the agent know which one they are.

; boa belief reasoning
(declare (self b1))
(declare (agents s1 s2 p1 b1 b2))

; initialize flight location
(init (bel s1 (loc loc1 (234 543))))
(init (bel s2 (loc loc2 (553 543))))
(init (bel b1 (loc loc3 (232 546))))
(init (bel b2 (loc loc4 (432 543))))
(init (bel p1 (loc loc5 (332 432))))

; information need persist
(persist (bel ?ag (assets safe)))
(persist (bel ?ag (threat ?threat (?lat ?long ?alt))))
(persist (bel ?ag (loc ?obj ?loc)))
(persist (bel ?ag (num-forces ?num)))

; says that when we know that agent ?ag tells agent ?to
; message ?msg then we know that ?to knows ?msg
(action (do ?ag (say ?to ?msg))
 (effects (bel ?to ?msg)))
; when you hear someone broadcast that they are don e
; you know the task is done
(action (do ?ag (say (complete ?id)))
 (effects (complete ?id)))

; done persists
(persist (bel ?ag (complete ?any)))

; info needs persist
(persist (bel ?ag (do-id ?id ?parent ?who ?what)))
(persist (bel ?ag (info-need ?type ?do-id ?fact)))
(persist (bel ?ag (done ?any)))

; individual operators (atomic actions in the world)
(i-oper fly-to (?loc)
 (pre-cond (loc ?loc (?lat ?long))))
(i-oper deploy-payload (?lat ?long ?alt))
(i-oper say (?to ?msg))
(i-oper broadcast (?msg))

; main team plan

 83

(team-plan bombing-run ()
 (process
 (par
 (do p1 (protect-assets))
 (seq
 (par
 (do s1 (fly-to loc1))
 (do s2 (fly-to loc2))
 (do b1 (fly-to loc3))
 (do b2 (fly-to loc4))
 (do p1 (fly-to loc5))
)
 (par
 (do s1 (scout-for-radar))
 (do s1 (scout-for-num-forces))
 (do s2 (scout-for-air-defense))
 (do b1 (strike-target target1))
 (do b2 (strike-target target2))
)
 (par
 (do s1 (fly-to base))
 (do s2 (fly-to base))
 (do p1 (fly-to base))
 (do b1 (fly-to base))
 (do b2 (fly-to base))
)
)
)
)
)

(plan protect-assets ()
 (term-cond SUCCESS (assets safe))
 (process
 (while (cond (= 1 1))
 (if (cond (threat ?threat ?loc))
 (print (INTERCEPTING ?threat AT ?loc))
 (NOP)
)
)
)
)

(plan scout-for-radar ()
 (term-cond SUCCESS (loc radar1 ?loc1)(loc radar2 ?loc2)(loc radar3
?loc3))
 (process
 (while (cond (= 1 1))
 (NOP) ; scout around
)
)
)

(plan scout-for-num-forces ()

 84

 (term-cond SUCCESS (num-forces ?num))
 (process
 (while (cond (= 1 1))
 (NOP) ; scout around
)
)
)

(plan scout-for-air-defense ()
 (term-cond SUCCESS (loc defense1 ?loc1)(loc defen se2 ?loc2))
 (process
 (while (cond (= 1 1))
 (NOP) ; scout around
)
)
)

(plan strike-target (?target)
 (term-cond SUCCESS (done ?agent (deploy-payload d eploy-payload ?a ?b
?c)))
 (process
 (while (cond (= 1 1))
 (if (cond (loc ?target (?lat ?long ?alt)))
 (deploy-payload ?lat ?long ?alt)
 (NOP)
)
)
)
)

(plan active-inform (?id)
 (pre-cond (do-id ?id ?parent ?agent ?proc))
 (term-cond SUCCESS (complete ?proc))
 (effects (not (do-id ?id ?parent ?agent ?proc))
 (not (info-need ?type ?id ?pred)))
 (process
 (par
 ; active-inform all info needs of this plan
 (forall ((info-need ?type ?id ?info-need))
 (seq
 (while (cond (not ?info-need)(needs-info ?agent ?type ?id
?info-need)) (NOP))
 (if (cond ?info-need (needs-info ?agent ? type ?id ?info-
need)) (say ?agent ?info-need))
 ;(if (cond (success-cond ?type)) (assert (finshed ?id))) ;
see boa rule success-cond below
)
)
 ; create another active inform plan for all c hildren of this plan
 (forall ((do-id ?child-id ?id ?child-agent ?c hild-spec))
 (active-inform ?child-id)
)
)
)

 85

)

(defrule (needs-info ?agent ?type ?id ?info-need) (do-id ?id ?parent
?agent ?proc) (info-need ?type ?id ?info-need) (not (bel ?agent ?info-
need)) (not (bel ?agent (whether ?info-need))))

; 1) if you hear the agent tell you he is done
(defrule (done ?id)(hear (done ?proc))(do-id ?id ?p arent ?agent ?proc))

 86

APPENDIX D

INFORMATION EXCHANGE FILE FOR MILITARY AIRCRAFT DOMAIN

A=s1,s2,b1,b2,p1
F=(assets safe),(threat t1 (200 300 12000)),(threat t2 (600 135
15000)),(loc radar1 (200 100 0)),(loc radar2 (456 8 76 0)),(loc radar3
(123 985 0)),(num-forces 300),(loc defense1 (276 44 76 0)),(loc defense2
(112 2321 0)),(loc target1 (2234 9932 1)),(loc targ et2 (235 7754
1)),(loc loc1 (234 543)),(loc loc2 (553 543)),(loc loc3 (232 546)),(loc
loc4 (432 543)),(loc loc5 (332 432))
info-need-1=4,5,6,7,12
info-need-2=8,9,13
info-need-3=10,14
info-need-4=11,15
info-need-5=1,2,3,16
event-1=21,-1,6,10,17,9,8,-1,-1,15,-1,1,-1,-1,-1,-1
event-2=21,10,-1,-1,13,-1,-1,-1,4,-1,10,-1,1,-1,-1, -1
event-3=21,6,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1, -1
event-4=21,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1 ,-1
event-5=20,12,7,-1,-1,-1,-1,5,-1,-1,-1,-1,-1,-1,-1, 1

 87

APPENDIX E

PROCESS MANAGER TREE FOR AIRCRAFT AGENT

This is a picture of the process manager tree for the aircraft agent, the size of the

graphic prohibits the reading of text inside each

node.

 88

APPENDIX F

KNOWLEDGE BASE AND PROCESS MANAGER STATES IN THE AIRCRAFT
DOMAIN

Agent p1 time 5

******** KB **********
2:(bel b1 (loc loc3 (232 546)))
2:(bel b2 (loc loc4 (432 543)))
2:(bel p1 (complete (fly-to loc1)))
2:(bel p1 (complete (fly-to loc4)))
2:(bel p1 (complete (fly-to loc2)))
2:(bel p1 (complete (fly-to loc5)))

2:(bel p1 (complete (fly-to loc3)))
2:(bel p1 (loc loc5 (332 432)))
7:(bel p1 (agent s1))
7:(bel p1 (agent s2))
7:(bel p1 (agent p1))
7:(bel p1 (agent b1))
7:(bel p1 (agent b2))
7:(bel p1 (self p1))
2:(bel p1 (unknown (info-need PRE 0 (loc loc1 (?lat ?long)))))
2:(bel p1 (unknown (info-need PRE 1 (loc loc2 (?lat ?long)))))
2:(bel p1 (unknown (info-need PRE 2 (loc loc3 (?lat ?long)))))
2:(bel p1 (unknown (info-need PRE 3 (loc loc4 (?lat ?long)))))
2:(bel p1 (info-need TERM 4 (loc radar1 ?loc1)))
2:(bel p1 (info-need TERM 4 (loc radar2 ?loc2)))
2:(bel p1 (info-need TERM 4 (loc radar3 ?loc3)))
2:(bel p1 (info-need TERM 5 (num-forces ?num)))
2:(bel p1 (info-need TERM 6 (loc defense1 ?loc1)))
2:(bel p1 (info-need TERM 6 (loc defense2 ?loc2)))
2:(bel p1 (info-need TERM 7 (done ?agent (deploy-pa yload deploy-payload
?a ?b ?c))))
2:(bel p1 (info-need PROC 7 (loc target1 (?lat ?lon g ?alt))))
2:(bel p1 (info-need TERM 8 (done ?agent (deploy-pa yload deploy-payload
?a ?b ?c))))
2:(bel p1 (info-need PROC 8 (loc target2 (?lat ?lon g ?alt))))
2:(bel p1 (unknown (do-id 0 null s1 (fly-to loc1))))
2:(bel p1 (unknown (do-id 1 null s2 (fly-to loc2))))
2:(bel p1 (unknown (do-id 2 null b1 (fly-to loc3))))
2:(bel p1 (unknown (do-id 3 null b2 (fly-to loc4))))

2:(bel p1 (do-id 4 null s1 (scout-for-radar)))
2:(bel p1 (do-id 5 null s1 (scout-for-num-forces)))
2:(bel p1 (do-id 6 null s2 (scout-for-air-defense)))
2:(bel p1 (do-id 7 null b1 (strike-target target1)))
2:(bel p1 (do-id 8 null b2 (strike-target target2)))
3:(bel p1 (needs-info s1 TERM 4 (loc radar1 ?loc1)))
3:(bel p1 (needs-info s1 TERM 4 (loc radar2 ?loc2)))
3:(bel p1 (needs-info s1 TERM 4 (loc radar3 ?loc3)))

 89

3:(bel p1 (needs-info s1 TERM 5 (num-forces ?num)))
3:(bel p1 (needs-info s2 TERM 6 (loc defense1 ?loc1)))
3:(bel p1 (needs-info s2 TERM 6 (loc defense2 ?loc2)))
3:(bel p1 (needs-info b1 TERM 7 (done ?agent (deplo y-payload deploy-
payload ?a ?b ?c))))
3:(bel p1 (needs-info b1 PROC 7 (loc target1 (?lat ?long ?alt))))
3:(bel p1 (needs-info b2 TERM 8 (done ?agent (deplo y-payload deploy-
payload ?a ?b ?c))))
3:(bel p1 (needs-info b2 PROC 8 (loc target2 (?lat ?long ?alt))))
2:(bel s1 (loc loc1 (234 543)))
2:(bel s2 (loc loc2 (553 543)))

******** Process Manager **********
0[0]: MALLET team-plan node: bombing-run []
 1[0]: par node
 2[0]: MALLET do node: [do, p1, [protect-assets]]
 3[0]: seq node
 4[0]: MALLET plan node: protect-assets
 5[0]: while node: [cond, [=, 1, 1]]
 126[?]: if node: [cond, [threat, ?threa t, ?loc]]
 8[0]: seq node
 57[0]: par node
 58[0]: MALLET do node: [do, s1, [scout-for- radar]]
 59[0]: MALLET plan node: active-inform 4
 60[0]: par node
 61[0]: forall node : [[info-need, ?ty pe, 4, ?info-need]]
 62[0]: seq node
 63[0]: while node: [cond, [not, [loc, radar1,
?loc1]], [needs-info, s1, TERM, 4, [loc, radar1, ?l oc1]]]
 127[?]: (NOP)
 65[0]: seq node
 66[0]: while node: [cond, [not, [loc, radar2,
?loc2]], [needs-info, s1, TERM, 4, [loc, radar2, ?l oc2]]]
 128[?]: (NOP)
 68[0]: seq node
 69[0]: while node: [cond, [not, [loc, radar3,
?loc3]], [needs-info, s1, TERM, 4, [loc, radar3, ?l oc3]]]
 129[?]: (NOP)
 72[0]: MALLET do node: [do, s1, [scout-for- num-forces]]
 73[0]: MALLET plan node: active-inform 5
 74[0]: par node
 75[0]: forall node : [[info-need, ?ty pe, 5, ?info-need]]
 76[0]: seq node
 77[0]: while node: [cond, [not, [num-forces, ?num]],
[needs-info, s1, TERM, 5, [num-forces, ?num]]]
 130[?]: (NOP)
 80[0]: MALLET do node: [do, s2, [scout-for- air-defense]]
 81[0]: MALLET plan node: active-inform 6
 82[0]: par node
 83[0]: forall node : [[info-need, ?ty pe, 6, ?info-need]]
 84[0]: seq node
 85[0]: while node: [cond, [not, [loc, defense1,
?loc1]], [needs-info, s2, TERM, 6, [loc, defense1, ?loc1]]]

 90

 131[?]: (NOP)
 87[0]: seq node
 88[0]: while node: [cond, [not, [loc, defense2,
?loc2]], [needs-info, s2, TERM, 6, [loc, defense2, ?loc2]]]
 132[?]: (NOP)
 91[0]: MALLET do node: [do, b1, [strike-tar get, target1]]
 92[0]: MALLET plan node: active-inform 7
 93[0]: par node
 94[0]: forall node : [[info-need, ?ty pe, 7, ?info-need]]
 95[0]: seq node
 96[0]: while node: [cond, [not, [done, b1, [deploy-
payload, deploy-payload, ?a, ?b, ?c]]], [needs-info , b1, TERM, 7,
[done, b1, [deploy-payload, deploy-payload, ?a, ?b, ?c]]]]
 133[?]: (NOP)
 98[0]: seq node
 99[0]: while node: [cond, [not, [loc, target1, [?lat,
?long, ?alt]]], [needs-info, b1, PROC, 7, [loc, tar get1, [?lat, ?long,
?alt]]]]
 134[?]: (NOP)
 102[0]: MALLET do node: [do, b2, [strike-ta rget, target2]]
 103[0]: MALLET plan node: active-inform 8
 104[0]: par node
 105[0]: forall node : [[info-need, ?t ype, 8, ?info-need]]
 106[0]: seq node
 107[0]: while node: [cond, [not, [done, b2, [deploy-
payload, deploy-payload, ?a, ?b, ?c]]], [needs-info , b2, TERM, 8,
[done, b2, [deploy-payload, deploy-payload, ?a, ?b, ?c]]]]
 135[?]: (NOP)
 109[0]: seq node
 110[0]: while node: [cond, [not, [loc, target2,
[?lat, ?long, ?alt]]], [needs-info, b2, PROC, 8, [l oc, target2, [?lat,
?long, ?alt]]]]
 136[?]: (NOP)

Agent p1 time 6

******** KB **********
2:(bel b1 (loc loc3 (232 546)))
2:(bel b2 (loc loc4 (432 543)))
2:(bel p1 (complete (fly-to loc1)))
2:(bel p1 (complete (fly-to loc4)))
2:(bel p1 (complete (fly-to loc2)))
2:(bel p1 (complete (fly-to loc5)))

2:(bel p1 (complete (fly-to loc3)))
2:(bel p1 (loc loc5 (332 432)))
2:(bel p1 (loc defense1 (276 4476 0)))
7:(bel p1 (agent s1))
7:(bel p1 (agent s2))
7:(bel p1 (agent p1))
7:(bel p1 (agent b1))
7:(bel p1 (agent b2))
7:(bel p1 (self p1))
2:(bel p1 (unknown (info-need PRE 0 (loc loc1 (?lat ?long)))))

 91

2:(bel p1 (unknown (info-need PRE 1 (loc loc2 (?lat ?long)))))
2:(bel p1 (unknown (info-need PRE 2 (loc loc3 (?lat ?long)))))
2:(bel p1 (unknown (info-need PRE 3 (loc loc4 (?lat ?long)))))
2:(bel p1 (info-need TERM 4 (loc radar1 ?loc1)))
2:(bel p1 (info-need TERM 4 (loc radar2 ?loc2)))
2:(bel p1 (info-need TERM 4 (loc radar3 ?loc3)))
2:(bel p1 (info-need TERM 5 (num-forces ?num)))
2:(bel p1 (info-need TERM 6 (loc defense1 ?loc1)))
2:(bel p1 (info-need TERM 6 (loc defense2 ?loc2)))
2:(bel p1 (info-need TERM 7 (done ?agent (deploy-pa yload deploy-payload
?a ?b ?c))))
2:(bel p1 (info-need PROC 7 (loc target1 (?lat ?lon g ?alt))))
2:(bel p1 (info-need TERM 8 (done ?agent (deploy-pa yload deploy-payload
?a ?b ?c))))
2:(bel p1 (info-need PROC 8 (loc target2 (?lat ?lon g ?alt))))
2:(bel p1 (unknown (do-id 0 null s1 (fly-to loc1))))
2:(bel p1 (unknown (do-id 1 null s2 (fly-to loc2))))
2:(bel p1 (unknown (do-id 2 null b1 (fly-to loc3))))
2:(bel p1 (unknown (do-id 3 null b2 (fly-to loc4))))
2:(bel p1 (do-id 4 null s1 (scout-for-radar)))
2:(bel p1 (do-id 5 null s1 (scout-for-num-forces)))
2:(bel p1 (do-id 6 null s2 (scout-for-air-defense)))
2:(bel p1 (do-id 7 null b1 (strike-target target1)))
2:(bel p1 (do-id 8 null b2 (strike-target target2)))
3:(bel p1 (needs-info s1 TERM 4 (loc radar1 ?loc1)))
3:(bel p1 (needs-info s1 TERM 4 (loc radar2 ?loc2)))
3:(bel p1 (needs-info s1 TERM 4 (loc radar3 ?loc3)))
3:(bel p1 (needs-info s1 TERM 5 (num-forces ?num)))
3:(bel p1 (needs-info s2 TERM 6 (loc defense1 ?loc1)))
3:(bel p1 (needs-info s2 TERM 6 (loc defense2 ?loc2)))
3:(bel p1 (needs-info b1 TERM 7 (done ?agent (deplo y-payload deploy-
payload ?a ?b ?c))))
3:(bel p1 (needs-info b1 PROC 7 (loc target1 (?lat ?long ?alt))))
3:(bel p1 (needs-info b2 TERM 8 (done ?agent (deplo y-payload deploy-
payload ?a ?b ?c))))
3:(bel p1 (needs-info b2 PROC 8 (loc target2 (?lat ?long ?alt))))
2:(bel s1 (loc loc1 (234 543)))
2:(bel s2 (loc loc2 (553 543)))

******** Process Manager **********
0[0]: MALLET team-plan node: bombing-run []
 1[0]: par node
 2[0]: MALLET do node: [do, p1, [protect-assets]]
 3[0]: seq node
 4[0]: MALLET plan node: protect-assets
 5[0]: while node: [cond, [=, 1, 1]]
 138[?]: if node: [cond, [threat, ?threa t, ?loc]]
 8[0]: seq node
 57[0]: par node
 58[0]: MALLET do node: [do, s1, [scout-for- radar]]
 59[0]: MALLET plan node: active-inform 4
 60[0]: par node
 61[0]: forall node : [[info-need, ?ty pe, 4, ?info-need]]

 92

 62[0]: seq node
 63[0]: while node: [cond, [not, [loc, radar1,
?loc1]], [needs-info, s1, TERM, 4, [loc, radar1, ?l oc1]]]
 139[?]: (NOP)
 65[0]: seq node
 66[0]: while node: [cond, [not, [loc, radar2,
?loc2]], [needs-info, s1, TERM, 4, [loc, radar2, ?l oc2]]]
 140[?]: (NOP)
 68[0]: seq node
 69[0]: while node: [cond, [not, [loc, radar3,
?loc3]], [needs-info, s1, TERM, 4, [loc, radar3, ?l oc3]]]
 141[?]: (NOP)
 72[0]: MALLET do node: [do, s1, [scout-for- num-forces]]
 73[0]: MALLET plan node: active-inform 5
 74[0]: par node
 75[0]: forall node : [[info-need, ?ty pe, 5, ?info-need]]
 76[0]: seq node
 77[0]: while node: [cond, [not, [num-forces, ?num]],
[needs-info, s1, TERM, 5, [num-forces, ?num]]]
 142[?]: (NOP)
 80[0]: MALLET do node: [do, s2, [scout-for- air-defense]]
 81[0]: MALLET plan node: active-inform 6
 82[0]: par node
 83[0]: forall node : [[info-need, ?ty pe, 6, ?info-need]]
 84[0]: seq node
 143[0]: if node: [cond, [loc, defense1, ?loc1],
[needs-info, s2, TERM, 6, [loc, defense1, ?loc1]]]
 144[0]: MALLET ioper node: (say s2 (loc defense1
(276 4476 0)))
 87[0]: seq node
 88[0]: while node: [cond, [not, [loc, defense2,
?loc2]], [needs-info, s2, TERM, 6, [loc, defense2, ?loc2]]]
 145[?]: (NOP)
 91[0]: MALLET do node: [do, b1, [strike-tar get, target1]]
 92[0]: MALLET plan node: active-inform 7
 93[0]: par node
 94[0]: forall node : [[info-need, ?ty pe, 7, ?info-need]]
 95[0]: seq node
 96[0]: while node: [cond, [not, [done, b1, [deploy-
payload, deploy-payload, ?a, ?b, ?c]]], [needs-info , b1, TERM, 7,
[done, b1, [deploy-payload, deploy-payload, ?a, ?b, ?c]]]]
 146[?]: (NOP)
 98[0]: seq node
 99[0]: while node: [cond, [not, [loc, target1, [?lat,
?long, ?alt]]], [needs-info, b1, PROC, 7, [loc, tar get1, [?lat, ?long,
?alt]]]]
 147[?]: (NOP)
 102[0]: MALLET do node: [do, b2, [strike-ta rget, target2]]
 103[0]: MALLET plan node: active-inform 8
 104[0]: par node
 105[0]: forall node : [[info-need, ?t ype, 8, ?info-need]]
 106[0]: seq node

 93

 107[0]: while node: [cond, [not, [done, b2, [deploy-
payload, deploy-payload, ?a, ?b, ?c]]], [needs-info , b2, TERM, 8,
[done, b2, [deploy-payload, deploy-payload, ?a, ?b, ?c]]]]
 148[?]: (NOP)
 109[0]: seq node
 110[0]: while node: [cond, [not, [loc, target2,
[?lat, ?long, ?alt]]], [needs-info, b2, PROC, 8, [l oc, target2, [?lat,
?long, ?alt]]]]
 149[?]: (NOP)

 94

APPENDIX G

BOA SYNTAX AND NOTES

BOA - Multi-agent Belief Maintenance and Theorem-Prover
Ryan Rozich

3/19/2003

Introduction
The multi-agent belief maintenance module was specified and implemented in Java by Dr.
Thomas Ioerger. This document was written by Ryan Rozich as a set of personal notes for
learning how to use this software. This document might be turned into a quick start guide
for anyone looking to use this software as a multi-agent belief maintenance module for
intelligent agents. This does not go into the formal specifications or semantics of the belief
reasoning process; Dr. Ioerger has written two papers (currently unpublished) about the
formal semantics for this system.

Why do we need this specialized theorem prover for belief-maintenance? Can’t we just
implement a specialized predicate “bel” in a normal theorem-prover like JARE to get the
same effect? Or why can’t we implement more theoretical models of belief like modal-
logics in order to do belief reasoning. Using a generic theorem prover to do belief reasoning
by adding some special predicates masks some of the intricacies of performing belief
reasoning and maintenance in a multi-agent environment. There are two things that make
multi-agent belief reasoning difficult. First, many times agents will come to conflicting
conclusions about a certain belief, for instance the agent may receive a communication
message that the light is off in the room when the agent happens to be in the room and can
see that the light is on. Resolving conflicting values for belief predicates involves reasoning
about the justification for that belief. Second, certain belief predicates are dependant upon
the values of other predicates and therefore must be sorted by dependency before being
evaluated. These two aspects of belief maintenance/reasoning make it difficult to use a
generic theorem prover for this task.

On the other hand, a large chunk of the belief reasoning literature involves using modal
logics to reason about beliefs. While this is a powerful theoretical tool for reasoning about
belief, the task of implementing these formal logics is difficult and we are not aware of any
practical implementations of them at this time.

While not as powerful as the formal models of belief based on modal logics (i.e. this does
not handle things like nested belief), this is a practical, pragmatic implementation with a
formal semantics for reasoning about beliefs of others and ourselves. It handles things such
as assumptions, persistence, inference, it models the belief state of a predicate as true, false,
unknown, or knows-whether-or-not, it handles different types of justifications and

 95

dependencies among different beliefs. This module was written in Java and is designed to
be a drop-in replacement for the JARE theorem-prover.

1. Concepts
1a. Belief
A Belief is a fact (what) belonging to an agent (who) that has a strength (credibility of the
belief), and finally the belief has a status (known, unknown, whether) and a value (true,
false, or other value). If a belief is a normal fact then the value will be either true or false, a
belief can also be a function that can take on my values such as (val (room-temp) 65), the
value in this case is not true or false, it is 65. The agent’s beliefs (about his own or others
beliefs) are contained in the BeliefDB.

The syntax for a belief in this module is:

<bel> ::= (bel <agt> <bel-pf>) | <bel-pf>
<bel-pf> ::= <bel-p> | <bel-f>
<bel-p> ::= <pred> | (not <pred>) | (unknown <pred>) | (whether <pred>)
<bel-f> ::= (val <pred> <any>) | (val <pred> known) | (val <pred>
unknown)
<pred> ::= (<name> <arg>*)

One of the first things that you will notice as a new feature of this system (over theorem

provers like JARE) is that beliefs can explicitly be tagged false (not) unknown, or

whether. Also there is the addition of values (functions) which do not evaluate to true or

false but some other value.

Syntax Note: The status flag for functions are treated differently:

(VAL <PRED> KNOWN) → STATUS=WHETHER

(VAL <PRED> UNKNOWN) → STATUS=UNKNOWN

(VAL <PRED> <VALUE>) → STATUS=KNOWN

 96

In other words, if you want to define the function value as unknown or whether use these

constructs and not something that looks like this:

(unknown (val <pred>)) ; wrong

(whether (val <pred)) ; wrong

1b.BeliefDB
The BeleifDB holds, for a single agent, all of his own beliefs and his model of other agents
beliefs. This object allows us to insert new beliefs in a consistent way and also query for the
beliefs of others or ourselves. The BeliefDB is the drop-in replacement for JARE as a
theorem prover. While the API calls to JARE and BeliefDB are identical, the file formats
are slightly different and some work needs to be done to convert the syntax of JARE files
into BeliefDB files.

1c. Justifications
Justifications are a property of any new fact/belief that is about to be added to a beliefDB, it
can be thought of as what reason (justification) does this agent have to believe this fact.
This is needed because agents might believe this because they just observed it, they inferred
it form other facts in their KB, they simply persist in believing the fact over time (in the
absence of other information). Justifications provide a way for certain facts to take
precedence over others in order to maintain a consistent KB (to avoid the KB from
containing conflicting information). That is, beliefs backed by justifications of higher
strength are never overwritten by beliefs of lower strength.

Justifications listed in order of strength (see the section below for more detailed syntax and
semantics):

Default - Believed in absence of any other information
Persist - These facts persist from one moment to the next
Infer - Define rules to derive new facts from know information
Action- Define what agents know about the effects of others actions
Obs - Define what agents can observe in the environment
DirObs - Define facts that we can directly infer from our senses
Fact - Tautological facts in the world.
Init - Things that are initially true in the world. Is this really a stronger form of belief than
fact?? Why don’t init justs show up when I do a (showj)??

 97

Direct Assertion - Things directly asserted

Expanded versus unexpanded justifications??

1d. File Header

First lines must be

(declare (agents <agent names>))

(declare (self <self-name>))

1e. Special Facts
(fact (agent Ag1))

(fact (agent Ag2))

(fact (self Ag1))

2. Belief Maintenance Shell
The belief maintenance shell is a way to experiment and test the functionality of this belief
maintenance module interactively by giving commands interactively to the shell.

2a. Running the Shell

>java Jare.Bel

2c. Commands
The following is a list of commands available to the user of the shell:

1. load – load a belief file into the system
<load> ::= (load <filename>)

For example
(load rules.txt)

2. quit – Exit the shell

<quit> ::= quit

3. query – query the database
<query> ::= (query <bel>)
<bel> ::= (bel <agt> <bel-pf>) | <bel-pf>
<bel-pf> ::= <bel-p> | <bel-f>
<bel-p> ::= <pred> | (not <pred>) | (unknown <pred>) | (whether <pred>)
<bel-f> ::= (val <pred> <any>) | (val <pred> known)| (val <pred>
unknown)

 98

Some examples

(query (color red))
(query (color ?x))
(query (bel Ag1 (color ?x)))
(query (bel ?ag (color ?x)))
(query (unknown (alive ?x)))
(query (bel Ag1 (unknown (alive ?x))))
(query (val (loc Ag2) ?loc))
(query (bel Ag1 (val (loc Ag2) ?loc)))

4. update - Creates a new beliefDB from the current beliefDB and current beliefs.
<update> :: = “(update)”

5. assert – Assert a direct-assertion belief into the database
<assert> ::= (assert <bel>)
<bel> ::= (bel <agt> <bel-pf>) | <bel-pf>
<bel-pf> ::= <bel-p> | <bel-f>
<bel-p> ::= <pred> | (not <pred>) | (unknown <pred>) | (whether <pred>)
<bel-f> ::= (val <pred> <any>) | (val <pred> known)| (val <pred>
unknown)
<pred> ::= (<name> <arg>*)

6. showb - Lists all of the beliefs for all of the agents. Sorted by agent.

<showb> ::= ”(showb)”

Output is of the form

8:(bel Ag1 (unknown (alive wumpus)))
8:(bel Ag1 (Q))
8:(bel Ag1 (val (loc Ag2) roomA))
8:(bel Ag1 (val (loc Ag1) roomB))
8:(bel Ag1 (not (light-on roomA)))
8:(bel Ag1 (light-on roomB))
7:(bel Ag1 (color red))
7:(bel Ag1 (color green))
7:(bel Ag1 (color blue))
7:(bel Ag1 (self Ag1))
7:(bel Ag1 (agent Ag1))
7:(bel Ag1 (agent Ag2))
3:(bel Ag1 (not (P)))
7:(bel Ag2 (color red))
5:(bel Ag2 (not (light-on roomA)))

The first number is the strength of the justification (See Justifications section
above) followed by (bel <agent> <pred>) where <agent> is the name of the agent
that believes <pred>.

 99

7. showj – Show all justifications
<showj> :== (showj)

8. defrule – Create an inference justification

(defrule <bel> <cond>)
<bel> ::= (bel <agt> <bel-pf>) | <bel-pf>
<bel-pf> ::= <bel-p> | <bel-f>
<bel-p> ::= <pred> | (not <pred>) | (unknown <pred>) | (whether <pred>)
<bel-f> ::= (val <pred> <any>) | (val <pred> known)| (val <pred>
unknown)
<pred> ::= (<name> <arg>*)
<cond> ::= <bel>* // note: for >1, use no AND or extra parens

9. fact – Create a fact justification
Tautological facts in the world. These cannot be changed. For instance if we
define (fact (color red)) and later try to (assert (not (color red))), (not (color red))
will not be asserted because it conflicts with the previous fact.

(fact <bel>) // just a rule with 0 antecedents
<bel> ::= (bel <agt> <bel-pf>) | <bel-pf>
<bel-pf> ::= <bel-p> | <bel-f>
<bel-p> ::= <pred> | (not <pred>) | (unknown <pred>) | (whether <pred>)
<bel-f> ::= (val <pred> <any>) | (val <pred> known)| (val <pred>
unknown)
<pred> ::= (<name> <arg>*)

10. init – Create an init justification
(init <bel>)
<bel> ::= (bel <agt> <bel-pf>) | <bel-pf>
<bel-pf> ::= <bel-p> | <bel-f>
<bel-p> ::= <pred> | (not <pred>) | (unknown <pred>) | (whether <pred>)
<bel-f> ::= (val <pred> <any>) | (val <pred> known)| (val <pred>
unknown)
<pred> ::= (<name> <arg>*)

11. default – Create a default justification

<default> :: = (default <bel>)
<bel> ::= (bel <agt> <bel-pf>) | <bel-pf>
<bel-pf> ::= <bel-p> | <bel-f>
<bel-p> ::= <pred> | (not <pred>) | (unknown <pred>) | (whether <pred>)
<bel-f> ::= (val <pred> <any>) | (val <pred> known)| (val <pred>
unknown)
<pred> ::= (<name> <arg>*)

12. persist – Create a persist justification

Persist specifies the predicates whose values persist from one moment to the
next. Notice that instead of taking a <bel> like the other constructs, this takes an
<unspec-b> which basically indicates the name of the predicate whose truth
value persists, without giving the actual truth value. For instance if we specify
that:

(persist (bel ?ag (wumpus-state dead)))

 100

than any beliefs (wumpus-state dead) or (not (wumpus-state dead)) persist from
one moment to the next (i.e. they do not go away). Therefore, it is not nessesary
(and bad form) to declare (persist (bel ?ag (not (wumpus-state

dead)))) . This also works for values, just leave the value off of the end, such as:

(persist (bel ?ag (val (room-temp))))

Therefore (val (room-temp) 65) (val (room-temp) 70) etc, etc will all
persist in all agents KB as a result of this statement.

<persist> :: = (persist <unspec-b>)
<unspec> ::= <pred> | (val <pred>) // doesn't commit to value
<unspec-b> ::= (bel <ag> <unspec>)

13. obs – Create an observability justification

Obs is used to track other agents (i.e. not the self agents) beliefs based on
conditions in which that agents can observe things.

<obs> ::= (obs (bel <ag> <unspec>) <cond>)//new: must name believer,
assume not self
<unspec> ::= <pred> | (val <pred>) // doesn't commit to value

14. direct-obs – Create a direct-observability justification

Direct-obs is used to track the self agents own beliefs (i.e. not beliefs of other
agents – use ‘obs’ for that). <bel-pf> is asserted if the agent receives the given
<sense> and if the condition <cond> unifies.

<direct-obs> ::= (direct-obs <sense> <bel-pf> <cond>)
<bel-pf> ::= <bel-p> | <bel-f>
<bel-p> ::= <pred> | (not <pred>) | (unknown <pred>) | (whether <pred>)
<bel-f> ::= (val <pred> <any>) | (val <pred> known)| (val <pred>
unknown)
<cond> ::= <bel>* // note: for >1, use no AND or extra parens
<bel> ::= (bel <agt> <bel-pf>) | <bel-pf>

?? when I make an assertion and do a ‘(showj)’ the ‘cond’ portion of the of the
DirectObs justification does not have the sense predicate in it. It seems like it
shoud ??

15. action – Create an action justification
<action> ::=
 (action <act> [(context <cond>)] [(pre-cond <cond>)] [(effects
<cond>)])
<act> ::= (do <ag> <pred>)
<bel> ::= (bel <agt> <bel-pf>) | <bel-pf>
<bel-pf> ::= <bel-p> | <bel-f>
<bel-p> ::= <pred> | (not <pred>) | (unknown <pred>) | (whether <pred>)
<bel-f> ::= (val <pred> <any>) | (val <pred> known)| (val <pred>
unknown)

 101

<pred> ::= (<name> <arg>*)
<cond> ::= <bel>* // note: for >1, use no AND or extra parens

16. declare - ??

3. Belief File Format
Taken from the comments in Dr. Ioergers Bel.java code:

Syntax
 the first two expressions of the file must be:

 (declare (agents <name>*))

 (declare (self <name>))

(defrule <bel> <cond>)

(fact <bel>) // just a rule with 0 anteced ents

(init <bel>)

(default <bel>)

(persist <unspec-b>)

(obs (bel <ag> <unspec>) <cond>)//new: must name be liever, assume not
self

(direct-obs <sense> <bel-pf> <cond>)

(action <act> [(context <cond>)] [(pre-cond <cond>)] [(effects
<cond>)])

<bel> ::= (bel <agt> <bel-pf>) | <bel-pf>

<bel-pf> ::= <bel-p> | <bel-f>

<bel-p> ::= <pred> | (not <pred>) | (unknown <pred>) | (whether <pred>)

<bel-f> ::= (val <pred> <any>) | (val <pred> known) | (val <pred>
unknown)

<pred> ::= (<name> <arg>*)

<cond> ::= <bel>* // note: for >1, use no A ND or extra parens

<unspec> ::= <pred> | (val <pred>) // doesn't comm it to value

<unspec-b> ::= (bel <ag> <unspec>)

<act> ::= (do <ag> <pred>)

 102

Note: if head of rule specifies a believer, then it will only be applied to the model of that
agent's beliefs; however, the KE is responsible for ensuring that antecedents don't depend
on other agent's beliefs (except for possibly self)

Also, if bel has agent variable, then it must only depend on other beliefs of same variable in
antecedents, or possibly self

Whole rule can have at most one agent variable otherwise would have to take cross product
of dependencies (Ag x Ag) just make a special check on this and punt if detected

Suffix symbol with :ns, as in ?ag:ns will get recognized during macro expansion (would
have liked to use ?ag/ns, but this causes parser to not halt...)

 103

VITA

Born in Joliet, Illinois, Ryan Rozich received his B.S. degree from the Department of

Computer Science at Texas A&M University in 2001. As an undergraduate, he was a

research assistant, working on “FURL” (for Fuzzy Rule Learner) a machine

learning/theory revision approach to learning fuzzy rules. This work was published in

IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 2002. As a graduate

student at Texas A&M, he worked as a research assistant with the MURI (Multi

University Research Initiative) team, on multi-agent systems for team training. During

this time, he worked on “Process Manager” an individual agent kernel and “CAST-PM”

which is an implementation of that CAST (Collaborative Agents Simulating Teamwork)

multi-agent architecture which builds on the Process Manager kernel. He also worked on

the MALLET team process language and the BOA multi-agent belief maintenance

system.

His research interests include artificial intelligence, machine learning/data mining, and

multi-agent systems.

Ryan Rozich

12445 Alameda Trace Circle Apt. 936

Austin, TX 78727

