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ABSTRACT 

 

Characterization and Stabilization of Arsenic in 

Water Treatment Residuals. (August 2003) 

Hun Young Wee, B.Eng., Chungbuk National University 

Chair of Advisory Committee: Dr. Timothy A. Kramer 

 

The characterization of water treatment residuals containing arsenic was 

investigated in the first study. Arsenic desorption and leachability from the residuals 

were the focus of this study. Arsenic leaching from water treatment residuals was found 

to be underestimated by the toxicity characteristic leaching test (TCLP) due to the pH of 

the leachates being favorable for As(V) adsorption. Competitive desorption of arsenic 

with phosphate was significant because phosphate tends to compete with As(V) on the 

surface of the metal hydroxide for adsorption sites. However, arsenic desorption by the 

competition of sulfate and chloride was found to be negligible. The pH in the leachate 

was a critical variable in controlling arsenic stability in the residuals. The release of 

arsenic from the residuals was elevated at low and high pH due to the increase 

dissolution of the adsorbents such as Fe and Al hydroxides.  

In the second phase of the study, the stabilization techniques for arsenic 

contained residuals were examined to develop methods to suitably stabilize arsenic to 

eliminate and/or minimize leaching. A decrease of arsenic leaching was achieved by the 

addition of lime to the residuals and believed to be due to the formation of less soluble 
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and stable calcium-arsenic compounds. However, it is suggested that the ordinary 

Portland cement (OPC) should be added with the lime for the long term stabilization 

because lime can be slowly consumed when directly exposed to atmospheric CO2. The 

solidification and stabilization (S/S) technique with lime and OPC was shown to be 

successfully applied to the immobilization of a wide variety of arsenic tainted water 

treatment residuals.  
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CHAPTER I 

INTRODUCTION 

 

Arsenic is commonly recognized as a toxic and carcinogenic metal compound 

(Bates et al, 1992; Smith et al, 1992). The adverse health effects when humans are 

exposed to arsenic compounds are well documented (USEPA, 2000). Anthropogenic and 

natural sources of arsenic are present in the environment. Human activities generate 

anthropogenic arsenic compounds through the formulation of herbicides, pesticides, and 

fertilizers (Ferguson & Gavis, 1972). Riveros et al (2001) rigorously reviewed the 

arsenic generation problems and disposal practices of the metallurgical industry. Arsenic 

waste generated from various metal extractions and refining operations is a serious 

problem (Dutre & Vandecasteele, 1998). Arsenic can be generated naturally in rocks, 

soil, water, and air. Natural water can be contaminated by the discharge of arsenic 

through geochemical processes: dissolution of iron oxyhydroxides containing arsenic 

under reducing conditions, oxidation of arsenic-bearing minerals, and desorption of 

arsenic by a competing ligand, e.g., phosphate (Bose & Sharma, 2002; Mariner & 

Willey, 1976).  

 

        

This thesis follows the style and format of the Journal American Water Works 
Association. 
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Arsenic contamination of groundwater and/or drinking water has been reported 

as a critical water quality issue in Vietnam, Bangladesh, and West Bengal, India (Berg et 

al, 2001; Chakraborti et al, 1999; Nickson et al, 1998). In particular, 70 million people in 

Bangladesh have been poisoned due to naturally occurring arsenic in wells used for 

drinking water sources (Lepkowski, 1998). Highly elevated concentrations of arsenic 

(greater than 1 mg/L) have been commonly detected in the area.  

Consequently, arsenic treatment of contaminated surface and groundwater is very 

important in order to supply people with good standing drinking water. Recently, more 

attention has been paid to arsenic removal in water treatment due to the U.S. 

Environmental Protection Agency (USEPA) lowering the Maximum Contaminant Level 

(MCL) from 50 to 10 µg/L, effective in 2006 (USEPA, 2001). Therefore, it is expected 

that many water treatment plants (WTPs) may require additional treatment technologies 

or modification of existing treatment technologies to meet the revised arsenic MCL. 

Precipitation/coprecipitation with ferric salts is considered to be the “ Best Demonstrated 

Available Technology” (BDAT) for the removal of arsenic in water by U.S. EPA 

(USEPA, 1990) and has been successfully applied to treat arsenic in groundwater, 

surface water, mine drainage, drinking water, and industrial wastewater (USEPA, 2002). 

To meet the revised MCL for arsenic, additional or retrofit treatment may be required at 

many water treatment plants (WTPs). Thus, appreciable volumes of arsenic-

contaminated residuals are expected to be produced which may require further treatment 

and handling prior to ultimate disposal.   
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From an economic viewpoint, recovery of arsenic from WTPs residuals is not 

attractive since demand is low and arsenic has been eliminated for usage in agriculture. 

Landfill disposal is generally considered to be the best choice for arsenic-contaminated 

residuals, but treatment of the residuals may be necessary to meet landfill regulations: 

1.0 mg/L leachable arsenic measured by the toxicity characteristic leaching procedure 

(TCLP). Solidification/stabilization (S/S) processes are widely applied to arsenic bearing 

wastes and soils (USEPA, 2002; Miller, 1996). Arsenic behavior in soils and wastes are 

similar to residuals since both are solid-phase media. Therefore, S/S processes can be 

utilized for arsenic immobilization in WTP residuals. 

The general objectives of this study were : 

1. To characterize field samples of arsenic containing residuals to understand the 

release of arsenic in natural environments  

2. To develop methods to suitably bind the arsenic in order to eliminate or minimize 

leaching  

3. To investigate the feasibility of applying solidification/stabilization (S/S) for 

arsenic bearing residuals. 
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CHAPTER II 

BACKGROUND 

 

2.1 CHEMISTRY OF ARSENIC 

 

2.1.1 Species and Structures 

 

Arsenic chemistry in the aqueous phase is complicated due to the various 

oxidation states of atomic arsenic. The primary valence states for arsenic are +5, +3, 0 

and –3. Both organic and inorganic arsenic species can exist in solution. Major organic 

arsenic species are monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) 

(Tamaki & Frankenberger, 1992). However, organo-arsenical compounds are generally 

accepted as a minor fraction of the total dissolved As. Thus, organic species (methylated 

arsenic) are commonly considered to be of little significance in waters compared with 

the inorganic species (Sadiq, 1997; Anderson & Bruland, 1991). The trivalent form of 

inorganic arsenic [As(III), called arsenite] and the pentavalent forms [As(V), called 

arsenate] are the inorganic species which tend to be more prevalent in water than the 

organic arsenic species (Ferguson & Gavis, 1972). Figure 2.1 shows the structural 

difference between arsenate and arsenite. Arsenic compounds exist in common aqueous 

environments as oxygen combined forms due to the high affinity (Langmuir, 1997a). 

Thus, arsenic is present as an anionic form.  
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FIGURE 2.1 Arsenic species in water  
 
 

 

 
Source: Smith, 1973 
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2.1.2 Effect of pH and Eh on the Distribution of Arsenic Species 

 

 The distribution and mobility of dissolved arsenic species are dependent on the 

pH and redox potential (Eh) conditions.  The pH and Eh relationship is very important in 

understanding arsenic removal from water, arsenic immobilization/stabilization on solid 

phases as well as the distribution of arsenic species in water. Figure 2.2 illustrates the 

effect of pH and Eh (or pE) on major arsenic species at equilibrium conditions (Welch et 

al, 1988).  

 As shown in Figure 2.2, As(V) species are dominant under oxidizing conditions 

and As(III) is thermodynamically stable under mildly reducing conditions (Masscheleyn 

et al, 1991; Cherry et al, 1979). Normally, the Eh values of surface water and ground 

water are high and low, respectively. Thus, As(V) is more likely to occur in surface 

waters and As(III) tends to occur more frequently in ground waters.  

As(III) is more mobile because it is present as a neutral form at the pH of most 

natural environments ( < pH 9) so it is less strongly adsorbed on mineral surfaces (Korte 

& Fernando, 1991).  Meng et al (2001) pointed out that three redox zones can be divided 

according to the arsenic mobility: “an adsorption zone at pe > 0, a mobilization 

(transition) zone at –4.0 < pe < 0, and a reductive fixation zone at pe < -4.0”. Arsenic 

mobility is the greatest in the mobilization zone due to the reduction of ferric 

oxyhydroxides, main adsorbents for arsenic, to ferrous iron and As(V) to As(III). The 

three redox zones (oxidizing, mildly reducing, and very reducing) for arsenic mobility 



 7

like the above were also suggested by several investigators (Carbonell-Barrachina et al, 

1999; Masscheleyn et al, 1991). 

 

 

FIGURE 2.2 pE/pH diagram for the As-H2O system at 25°C 
 

Source: Welch et al, 1988 
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Figure 2.2 is useful to understand the many complicated reactions related to 

arsenic, but it does not consider several other important factors. For example, the effects 

of coexisting solutes such as iron, aluminum, phosphates, silicates, carbonates, organic 

arsenic, and biotic redox reactions are not considered. The assumption of equilibrium at 

a low temperature is also oversimplified.  

 Several field investigations demonstrated that the pE/pH diagram for arsenic 

were oversimplified or were not accurately described (Williams et al, 1996; Korte & 

Fernando, 1991; Cullen & Reimer, 1989). As(III) and As(V) are detected in both 

oxidizing (e.g., surface waters) and reducing (e.g., groundwaters) environments. Several 

researchers explaine that the control of redox reactions, kinetically slow, might result in 

this disagreement (Peterson & Carpenter, 1983; Andreae, 1981). As(III) may be 

precipitated with sulfides at low Eh and iron oxyhydroxides would remove both As(III) 

and As(V) in oxidizing conditions. Therefore, under the coexistence of oxidized sulfur 

and reduced iron simultaneously, a substantial concentration of soluble arsenic can be 

present (Korte & Fernando, 1991).  

Table 2.1 shows approximate values for the pKa of inorganic arsenic species. It is 

concluded that ionization steps of As(III) and As(V) are significantly different. At 

normal natural pH environments (pH 4-9), HAsO4
2- and H2AsO4

- are the dominant 

species for As(V) and H3AsO3
0 is for As(III) (Sadiq, 1997). Based on the data of Table 

2.1, the mole fraction of total dissolved As(III) and As(V) as a function of pH can be 

drawn as shown in Figure 2.3. 
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TABLE 2.1 The pKa values of inorganic arsenic species 
 

Arsenic species pK1 pK2 PK3 
 

As(III): Arsenites 
 

9.2 
 

12.1 
 
- 

 
As(V): Arsenates 

 
2.2 

 
6.96 

 
11.5 

    
Source: Cherry et al, 1979 

 

2.1.3 Toxicity 

 

 As(III) and As(V) are the most common toxic forms of inorganic arsenic present 

in drinking water. Biologically, As(III) is generally recognized to be more toxic than 

As(V) (Knowles & Benson, 1983). To humans, arsenite is about 60 times more toxic 

than arsenate (Ferguson & Gavis, 1972). When taken by humans and animals, inorganic 

As(V) is transformed to As(III), followed by methylation to monomethyl arsenic 

(MMA) and dimethyl arsenic (DMA) which are much less toxic forms (Jain & Ali, 

2000). The toxicity order of arsenic species is arsenite > arsenate > MMA > DMA.  
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FIGURE 2.3 Mole fraction of total dissolved As as a function of pH in water at 
25°C: (A) As(III), and (B) As(V) 
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2.2 TECHNOLOGIES TO REMOVE ARSENIC FROM WATER 

 

 Numerous treatment technologies have been developed and applied to arsenic 

removal from various contaminated waters. Based on the two references (USEPA, 2002; 

Amy et al, 2000), commonly used and applied treatment technologies have been selected 

and summarized in Table 2.2.  

 

TABLE 2.2 The commonly applied technologies for arsenic removal from water 
 
Technology Brief description 

 
Precipitative 

processes 

 
Coagulation, enhanced coagulation, and lime softening are included this 
category.  Metal hydroxides such as ferric salts, alum, and lime are used 
as precipitants. Preoxidation of As(III) to As(V) might be needed. 
Affecting factors on performance are precipitant type and dosage, 
arsenic oxidation state, pH, and competing compounds. 

 
Membrane 
processes 

 
Nanofiltration (NF) and reverse osmosis (RO) membranes can be the 
only membranes applied due to the low molecular weight of the arsenic 
species. Generation of a large volume of residuals is expected. The 
presence of solids and colloids, oxidation state of arsenic, pH, and 
temperature can be the factors affecting the removal performance. 

 
Adsorptive 
processes 

 
The typical adsorbents are activated alumina (AA), activated carbon 
(AC), and iron-based adsorbents such as, granular ferric hydroxide 
(GFH), and iron oxide-coated sand (IOCS). Each adsorbent has different 
conditions for arsenic removal. Currently, the most effective adsorbent is 
AA.  Factors such as pH, oxidation state of arsenic, competing ions, and 
empty bed contact time (EBCT) have effects on the removal efficiency. 

 
Ion Exchange 

 
Strong base resins have been typically used. Important factors affecting 
performance are pH, competing ions, resin type, alkalinity, and arsenic 
oxidation state.  
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2.2.1 Coagulation with Ferric Salts 

 

 Coagulation (also called, precipitation/coprecipitation) with metal oxyhydroxides 

is the most effective, frequently used, and practical existing technology for arsenic 

removal (USEPA, 2002) and thus, this removal method is only selected and reviewed in 

this section. Ferric salts (e.g., ferric chloride), alum, and calcium are commonly 

employed as a coagulant. Currently, arsenic is treated by ferric oxyhydroxides via 

surface complexation at many water treatment plants (WTPs).  

 Dissolved colloidal or suspended contaminants are transformed to insoluble 

solids by the addition of ferric salts. Inclusion, adsorption, occlusion, solid-solution 

formation, or a combination of them can be the arsenic removal mechanism by 

coagulation with metal oxyhydroxides (Benefield & Morgan, 1990). Coagulation and 

adsorption studies with ferric salts and alum were conducted and very similar results of 

the two studies were observed (Hering & Elimelech, 1996). Therefore, it is inferred that 

the main controlling mechanism of arsenic removal by coagulation is adsorption.  

 The main factors affecting arsenic removal by coagulation are arsenic oxidation 

state, pH, coagulant dosage, and the presence of other inorganic solutes (USEPA, 2002; 

Hering & Elimelech, 1996). As(V) removal efficiency is normally greater than As(III) 

by coagulation with ferric salts. The effect of the pH range of 4 to 9 on As(V) removal in 

coagulation is insignificant, but As(III) removal is very much dependent on pH (Hering 

et al, 1996). In general, arsenic removal efficiencies can be improved with increased 

coagulant dosages (Cheng, et al, 1994; Edwards, 1994; Gulledge & O’Conner, 1973). 



 13

Hering et al (1996) examined the effects of sulfate and calcium on the arsenic removal. 

The results indicated that As(III) was much more poorly removed than As(V) at pH < 7 

in the presence of sulfate and at high pH, removal efficiency of As(V) was increased in 

the presence of calcium. Competitive adsorption of As(V) and phosphate on iron 

minerals has been reported (Hongshao & Stanforth, 2001; Jain & Loeppert, 2000).  

 

2.3 ARSENIC STABILIZATION TECHNOLOGIES IN RESIDUALS 

 

2.3.1 Characterization of Arsenic Contained Residuals 

 

 Very little work has been conducted on the characterization and stabilization of 

arsenic containing residuals. Amy et al (2000) investigated arsenic leachability in 

various water treatment plant (WTP) residuals by the toxicity characteristic leaching 

procedure (TCLP). The results showed that the arsenic concentration in the residuals 

generated from WTPs was vastly different and soluble arsenic concentrations in the 

leachates also varied depending on residuals. However, the concentrations of arsenic in 

the leachates were not over the limit of 100 times of maximum contaminant level (MCL) 

for arsenic. Thus, the landfill disposal alternative was recommend for arsenic containing 

WTP residuals. However, arsenic residuals should be treated to avoid the possibility of 

leaching prior to disposal.  
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2.3.2 Toxicity Characteristics Leaching Procedure (TCLP) 

 

The Toxicity Characteristics Leaching Procedure (TCLP), a regulatory test, is 

employed to determine whether a particular contaminant can be disposed in a landfill 

(USEPA, 1992). Evaluation of stabilization techniques has been broadly conducted 

using the TCLP method (LaGrega et al, 1994). In the TCLP method, target solid 

materials are crushed to small size, mixing with an extraction liquid, and agitated in a 

rotary reactor for 18 hours. Subsequently, insoluble and soluble phases are separated 

through a filter (USEPA, 1992). However, it was reported that TCLP would not be a 

suitable leaching test to predict the release of contaminants (oxoanion-forming elements) 

from municipal solid wastes (Hooper et al, 1998). Loeppert et al (2003) suggested that 

arsenic leaching could be higher than those predicted by the TCLP test.  

 

2.3.3 Solidification and Stabilization (S/S) 

 

 USEPA (2002) introduced several treatment technologies for arsenic in soils and 

wastes: solidification and stabilization (S/S), vitrification, soil washing/acid extraction, 

pyrometallurgical recovery, and in situ soil flushing.  S/S has been widely applied to 

arsenic treatment (immobilization) in soils (Miller, 1996; Voigt et al, 1996), industrial 

wastes (Fuessle & Taylor, 2000; Palfy et al, 1999; Yaziz et al, 1999; Dutre & 

Vandecasteele, 1998; Dutre & Vandecasteele, 1995), and residuals (Kameswari et al, 

2001; Roy et al, 1992). In practice, only solidification and stabilization can be applicable 
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to arsenic treatment in WTP residuals. Arsenic behavior in soils and wastes are similar to 

residuals since both are solid-phase media. Therefore, S/S processes can be utilized for 

arsenic immobilization in residuals.  

 Through physical and chemical means by S/S, hazardous substances and 

contaminants are stabilized within harden structures and will not be released. In general, 

S/S is designed to achieve one or more of the followings: (a) to improve the handling 

and physical characteristics of wastes, (b) to decrease the surface area of waste mass, (c) 

to limit the solubility of hazardous contaminants, and (d) to detoxify contained 

contaminants (LaGrega et al, 1994).   

 Several additives (binders) may be employed in the stabilization processes. 

Commonly used additives are cement (typically ordinary Portland cement (OPC)), lime, 

pozzolans such as, fly ash, slag, and kiln dust, and organically modified clays (LaGrega 

et al, 1994). The following materials have frequently been used as binders and reagents 

for the stabilization of arsenic tainted soils and wastes: Portland cement, lime, ferrous 

sulfate, ferric salts, and fly ash.  

 

Portland cement. Cement is the most frequently used binder for 

solidification/stabilization for arsenic (USEPA, 2002). Type I ordinary Portland cement 

(OPC) typically consists of about 50% of tricalcium silicate (3CaO•SiO2), about 25% of 

dicalcium silicate (2CaO•SiO2), about 10% of tricalcium alminate (3CaO•Al2O3), about 

10% of tetraccalcium aluminoferrite (4CaO•Al2O3FeO3), and 5% other oxides by weight 
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basis (Conner, 1993). Tricalcium silicate and dicalcium silicate of hydration can be 

expressed by the following reactions (Taylor, 1997):   

 

 2(3CaO•SiO2)  +  6H2O    3CaO•2SiO2•3H2O  +  3Ca(OH)2  (2.1) 

 2(2CaO•SiO2)  +  4H2O    3CaO•2SiO2•3H2O  +  3Ca(OH)2  (2.2) 

 

It takes around 1 year to complete 95 to 98% of cement hydration. Calcium silicate 

hydrate (C-S-H) and portlandite (Ca(OH)2) are the two main products of cement 

hydration. C-S-H represents about 60 to 70%, Ca(OH)2 about 20 to 25%, and the other 

solid phases account for about 5 to 15% of the cement hydrates (Glasser, 1993).  

 

 Lime. Lime (calcium oxide, CaO) has been used as a material to stabilize arsenic 

contaminated wastes, residuals, and soils (Kim et al, 2003; Kameswari et al, 2001; Bothe 

& Brown, 1999; Dutre & Vandecasteele, 1998). The calcium arsenate precipitates 

(Ca4(OH)2(AsO4)2•4H2O, Ca5(AsO4)3OH, and Ca3(AsO4)2•2H2O) are generated as 

stable compounds for As(V) immobilization (Bothe & Brown, 1999). Dutre & 

Vandecasteele (1998) added cement and calcium to minimize the arsenic leaching in 

industrial wastes containing arsenic in high concentrations. They explained that the main 

reason why arsenic concentration in the leachate was lowered enormously was that 

CaHAsO3, a stable and less soluble calcium-arsenic compound, was formed. Kim et al 

(2003) studied the stabilization of arsenic in mine tailings using iron. The results 

indicated that lower arsenic concentration in the leachate at a pH range of 3 to 6 was 
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observed when Ca(OH)2 rather than NaOH was used for pH adjustment. When higher 

initial Fe(III) concentration was added, this trend was more obvious. However, the 

solidified solids treated by lime only will decompose slowly when exposed to 

atmospheric CO2 to form CaCO3 and soluble arsenic species (Riveros et al, 2001).  

 

 Ferrous sulfate. The addition of a ferrous sulfate (FeSO4•4H2O) solution to 

arsenic contaminated solids produces ferric arsenate (FeAsO4), an insoluble compound 

or ferric hydroxide (Fe(OH)3) precipitates which adsorb arsenic. However, the ferric 

arsenate generation mechanism by ferrous iron has not been well documented (Voigt et 

al, 1996). Sandesara (1978) recommended the use of ferrous sulfate rather than ferric 

sulfate due to the interferences with the curing of the cement. Indeed, ferrous sulfate has 

been employed for large-scale remediation of arsenic contaminated sites (USEPA, 1998; 

Miller, 1996). Sulfate can adversely influence the solids characteristics of wastes/cement 

matrices. Sulfate ions can results in ettringite formation, which causes the development 

of cracks in solidified solids (Taylor, 1997). 

 

 Ferric salts. Kim et al (2003) used ferric and ferrous salts to stabilize arsenic in 

mine tailings and concluded that the effectiveness of ferric sulfate is better than that of 

ferrous sulfate. However, ferrous S/S was recommended due to the greater solubility of 

ferrous hydroxide as compared to ferric hydroxide and the generation of larger molecule 

of ferric hydroxy-arsenic complex than ferrous arsenic compounds (Fuessle & Taylor, 

2000). 
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 Fly ash.  Fly ash as an additive has been employed with other binders such as 

cement and lime (Kameswari et al, 2001; Fuessle & Taylor, 2000). Akhter et al (1997) 

tested solidifiation/stabilization of arsenic treated using various sets of binders over a 

period of four years. The performance of the combination of OPC and fly ash (Class F) 

was significantly lowered and the leached arsenic concentration of OPC and fly ash 

matrix became progressively greater over time.   

  

2.4 ARSENIC ANALYSIS 

 

 Currently, arsenic analytical techniques for quantification as described in the 

Standard Methods (APHA et al, 1998) are  

- Electrothermal Atomic Absorption Spectrometry – Standard Method 3113B  

- Hydride Generation/Atomic Absorption Spectrometry (HG/AAS) – Standard 

Method 3114B and 3114C  

- Inductively Coupled Plasma (ICP) Method – Standard Method 3120B  

- Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) Method – Standard 

Method 3125B  

Thus, furnace atomic absorption spectrometry (FAAS), HG/AAS, ICP, or ICP/MS is 

required to analyze arsenic concentration in waters. Affordable instruments in most 

water treatment plants and laboratories are FAAS and HG/AAS when comparing the 

prices of equipment and supplies. In this section, arsenic analysis by hydride generation 
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with atomic absorption spectrometry (HG/AAS) is described in detail. In particular, the 

three standard curve method for arsenic speciation is illustrated. 

  

2.4.1 Arsenic Analysis by Hydride Generation 

  

 The inorganic arsenic forms (As(V) and As(III)) must be converted (reduced) to 

arsine (AsH3) to be analyzed by HG/AAS. A mixture of sodium borohydride (NaBH4) 

and HCl is employed as reducing agents to generate AsH3 from As(V) or As(III) (Hering 

& Elimelech, 1996; Korte & Fernando, 1991; Schmidt & Royer, 1973). 

 As(V) is first reduced to As(III), followed by transformation to AsH3 (called two 

electron reduction), but As(III) can be directly reduced to AsH3. Therefore, the reduction 

rate of As(V) is slower than that of As(III). This difference in kinetic reactions is more 

obvious at high pH. Thus, reduction rate is slower at high pH than at low pH. By 

controlling the pH of the reaction solution, inorganic arsenic speciation can be achieved 

(Aggett & Aspell, 1976; Braman & Foreback, 1973). 

 From the difference of reduction kinetics of As(III) versus As(V), two different 

approaches can be employed for arsenic analysis in As(III) and As(V) mixture systems. 

First, As(V) is prereduced with a prereductant such as potassium iodide (KI) or L-

cysteine to overcome the incomplete generation of AsH3 from As(V) by NaBH4. 

However, the concentrations of both As(III) and As(V) cannot be determined by this 

approach. The second approach is “the three standard curve method” that can amend the 
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difference of reduction kinetics and finally allows for the speciation of As(III) and As(V) 

(Loeppert & Biswas, Unpublished).  

 

2.4.2 Three Standard Curve Method for Arsenic Speciation 

 

 The three standard curve method for inorganic arsenic speciation was prepared 

and developed by Loeppert & Biswas (Unpublished).  The description of the theory and 

the procedure is summarized in this section.  

 

 Theory. The analytical absorbance (A) of a mixture of As(III) and As(V) by 

hydride generation with atomic absorption spectrophotometry (HG/AAS) is equal to the 

absorbance attributable to each As(III) and As(V). Thus, at pH 6.5 or pH 1.0 can be 

expressed by: 

 

5.6pH),V(As5.6pH),III(As5.6 AAA +=       (2.3) 

0.1pH),V(As0.1pH),III(As0.1 AAA +=       (2.4) 

 

The slope of the standard curve is written by: 

  

C
A

ionconcentrat
absorbanceSlope ==        (2.5) 
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FIGURE 2.4 Example for the relationship of slop versus concentration and 
absorbance 
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Figure 2.4 is one of the examples, which show the relationship of standard concentration 

versus absorbance. Equation 2.5 can be substituted into equations 2.3 and 2.4 and arsine 

formation from As(V) is zero at pH6.5. Therefore, equations 2.3 and 2.4 can be 

simplified to,  

 

          (2.6) )III(As5.6 aCA =

        (2.7)   )V(As)III(As0.1 dCcCA +=

where, a = slope of As(III) standard curve at pH 6.5 

 c = slope of As(III) standard curve at pH 1.0 

 d = slope of As(V) standard curve at pH 1.0 

 

Equations 2.6 and 2.7 can be further modified to: 

 
a

A
C 5.6

)III(As =          (2.8) 
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d

)}C(cA{[
C )III(As0.1

)V(As

−
=        (2.9) 

 

Each As(III) and As(V) concentration can be determined by equations 2.8 and 2.9, 

respectively, and total As concentration is the sum of As(III) and As(V) concentrations. 

 

Procedure. Primary As(III) and As(V) stock solutions (1 g/L) should be prepared 

from As2O3 and As2O5 (or Na2HAsO4•H2O), respectively. The detailed preparation 

procedure is in Standard Method 3114B (APHA et al, 1998).  The secondary stock 

solution (10 mg/L) is prepared by the dilution of the primary stock solution. Analytical 

standard solutions are prepared using the secondary stock solutions. The concentrations 

can be 0 (blank), 5, 10, 20, 40 µg/L. The reagents used are summarized in Table 2.3. 

Concentration of each reagent can be altered depending on the analytical instrument. The 

sample/acid, reductant, and carrier gas flow rates should be determined by preliminary 

tests for each specific analytical instrument.  

 

TABLE 2.3 Reagents used for arsenic analysis 
 

Parameter Value 
 
Borohydride concentration 

 
1.5% (m/v) NaBH4 in 0.5% NaOH 

 
Phosphate buffer 

 
0.2 M NaH2PO4 (monobasic), 
pH 3.0 adjusted by phosphoric acid 

 
HCl concentration 
 

 
5.0 M 
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Analysis with the mixture of borohydride solution and phosphate buffer 

corresponds to the reaction of pH 6.5 and the reaction from mixture of borohydride and 

HCl solutions is referred to the reaction of pH 1.0. It is possible to accurately analyze the 

As(III), As(V), and total As concentration from the three standard method.  First, (i) 

As(III) standards and samples should be analyzed with the mixture of borohydride 

solution and phosphate buffer. From the As(III) standard calibration curve, the 

concentration of each sample can be calculated using the equation 2.8. Subsequently, (ii) 

As(III) and As(V) standards and samples (the same as those used in (i)) are subject to 

analyze with a mixture of borohydride and HCl solutions. The two calibration curves for 

As(III) and As(V) standards are obtained. Using the equation 2.9, As(V) concentration 

of each sample can be also determined. Total As concentration is the sum of As(III) and 

As(V) concentrations. Basically, three standard curves, As(III) standard curve obtained 

from analysis with a mixture of borohydride solution and phosphate buffer, and As(III) 

and As(V) standard curves obtained from analysis with a mixture of borohydride and 

HCl solutions, will be gained from this analysis.  
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CHAPTER III 

MATERIALS AND METHODS 

 

3.1 ANALYSIS  

 

 In this section, arsenic analysis and speciation and Fe, Al, Ca, and Mn analyses 

were described. Atomic absorption spectrometry (AAS) was the main instrument 

employed for the analyses. 

 

3.1.1 Arsenic Analysis and Speciation 

 

Continuous hydride generation with the atomic absorption spectrometric method 

(HG/AAS) (Standard method 3114, APHA et al, 1998) was employed to determine 

arsenic concentrations. Preparation of arsenic stock solutions for As(III) and As(V) from 

arsenic trioxide, As2O3 (Fisher, A.C.S. reagent grade), and arsenic pentoxide, As2O5 

(Aldrich), respectively, were followed using the standard method 3114B (APHA et al, 

1998). For the speciation of inorganic As(III) and As(V), the three standard curve 

method was used as described in Chapter 2. First, As(III) concentration was determined 

using a phosphate buffer and then As(III) and As(V) mixed analysis was conducted 

using hydrochloric acid. The reductant (sodium borohydride) was freshly prepared at 

every analysis. The concentrations of analytical standards used were 0 (blank), 5, 10, 20, 

and 40 µg/L. Arsenic standards were kept and used for one week after preparing. All 
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arsenic samples were stored in a refrigerator (4°C) until analyzed. Arsenic analysis was 

conducted within 48 hours after collecting samples. Dilution of arsenic standards and 

samples were carried out using distilled (DI) water. The detailed information of reagents 

and gases used for arsenic analysis were summarized in Table 3.1.  Figure 3.1 shows the 

schematic diagram of a continuous hydride generation system.  

 

TABLE 3.1 Reagents and gases used for arsenic analysis 
 
 
Hdrochloric acid: 

 
5M HCl, diluted from conc. HCl, trace-metal grade, Fisher  

 
Borohydride 
reagent: 

 
1.5% (m/v) NaBH4 (sodium borohydride), A.C.S. reagent grade, EM  
0.5% (m/v) NaOH (sodium hydroxide), A.C.S. reagent grade, Fisher 

 
Phosphate 
buffer: 

 
0.2 M NaH2PO4 (monobasic) (sodium phosphate), A.C.S. reagent 
grade, EM 
pH 3.0 adjusted by H3PO4 (phosphoric acid), trace-metal grade, EM 

 
Stock solutions:  

 
1 g/L As2O3(s), A.C.S. reagent grade, Fisher 
1 g/L As2O5(s), A.C.S. reagent grade, Aldrich 

 
Gases: 
 

 
Air (AAS grade), C2H2 (acetylene), Argon gas. 
 

 

 

The apparatus used for the arsenic analysis was a flame atomic absorption 

spectrometer (FLAAS) (model name: Thermo Elemental, Solar M6 AA) and a 

continuous hydride generation system (model name: Thermo Elemental, VP90). The 

operating parameters used are summarized in Table 3.2. Using software package, called 

SOLAAR M, installed in the controlling computer, all analysis procedures and 

parameters can be controlled and monitored. Also, the software can draw the calibration 
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curve of standard solutions and automatically calculate the concentration of each 

measurement sample. Acceptance limit for the linear coefficient of calibration curve was 

R2 = 0.995. 

 

 

FIGURE 3.1 Schematic diagram of a continuous hydride generation system 
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TABLE 3.2 Operating parameters for arsenic analysis using HG/AAS 
 

Parameter Description 
 
Element: 

 
As 

 
Lamp: 

 
Hollow Cathode Lamp (HCL) 
Coded lamp supplied by Unicam Atomic Absorption 

 
Pressure of gases: 

 
Air (30 psi) and Acetylene (9 psi) for flame 
Argon (5 psi) for carrier gas 

 
Wavelength: 

 
193.7 nm 

 
Bandpass: 

 
0.5 nm 

 
Measurement time:  

 
3 seconds 

 
Number of measurement: 

 
3 times (fast resamples) 

 
Carrier gas (argon) flow: 

 
250 mL/min 

 
Background correction: 

 
No 

 
Signal: 
 

 
40 µg/L gives about 0.2 Abs 
 

 

 

3.1.2 Other Elemental Analyses 

 

Methods for analysis of total iron, aluminum, calcium, and manganese are 

summarized in Table 3.3. All analytical standards of the four elements were prepared 

with DI water from stock solutions (Spex), repectively. Analyses of these elements were 

completed within three days after collecting samples. Acceptance limit for the 

calibration curve for the standards was R2 = 0.995.  
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TABLE 3.3 Parameters for other elemental analyses 
 

 
Method: 

 
Direct Air-Acetylene Flame method, standard method 
3111B, (APHA, AWWA, and WEF, 1998) 

Range of standards: 0 (blank), 1, 2.5, and 5 mg/L 
Wavelength: 248.3 nm 

 
Fe  

Bandpass: 0.2 nm 
 
Method: 

 
Direct Nitrous Oxide-Acetylene Flame method, standard 
method 3111D, (APHA, AWWA, and WEF, 1998) 

Range of standards: 0, 5, 10, and 20 mg/L 
Wavelength: 309.3 nm 

 
Al  

Bandpass: 0.5 nm 
 
Method: 

 
Direct Nitrous Oxide-Acetylene Flame method, standard 
method 3111D, (APHA, AWWA, and WEF, 1998) 

Range of standards: 0, 0.5, 1, and 1.5 mg/L 
Wavelength: 422.7 nm 

 
Ca 

Bandpass: 0.5 nm 
 
Method:  

 
Direct Air-Acetylene Flame method, standard method 
3111B, (APHA, AWWA, and WEF, 1998) 

Range of standards: 0, 0.5, 1, and 2 mg/L 
Wavelength: 279.5 nm 

 
Mn 

Bandpass: 
 

0.2 nm 
 

 

 

3.2 CHARACTERIZATION TESTS OF FIELD RESIDUALS 

 

3.2.1 Residual Handling 

 

Three residuals samples from water treatment plants and three residuals samples 

from pilot plants were utilized as target materials in this study. Free liquid in residuals 
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were removed by air-drying for the characterization studies (Kameswari et al, 2001). 

Each residual was placed in a clean vinyl-coated paper and dried under laboratory 

conditions for 24 hours. Subsequently, air-dried residuals were crushed, passed through 

a 2 mm sieve and mixed well to produce homogeneous conditions and minimize errors. 

Polyethylene bottles were used to contain the residuals.  

 

3.2.2 General Physical and Chemical Tests 

 

Solid content. Standard method 2540B (APHA et al, 1998) was used to 

determine total solids in each residual. Some (around 10 g) of each residual was taken 

and dried in an oven at 105°C for 24 hours. Calculation for the percent of dry solids is 

conducted using equation 3.1. 

 

Percent of dry solids (%) = 100
A

)BC(
×

−     (3.1) 

where, A = weight of raw waste (g) 

  B = weight of evaporating dish (g) 

        C = weight of dried waste + evaporating dish (g) 

 

 Acid digestion. Acid digestion of sediments, sludges, and solis, (USEPA method 

3050B, USEPA, 1992) was used to establish the initial concentration of total arsenic, 

total iron, aluminum, calcium, and manganese in each residual. One gram (dry weight) 
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of the sample was placed in a digestion vessel on a hot plate and digested with repeated 

additions of nitric acid (HNO3) and hydrogen peroxide (H2O2). Each digested result was 

filtered using a filter paper and diluted with DI water to make a final volume of 100 mL. 

Analyses were conducted for total As, total Fe, Al, Ca, and Mn using the atomic 

absorption spectrometry (AAS).  

 

pH measurement. Soil and waste pH, (USEPA method 9045C, USEPA, 1992) 

was employed to determine the pH of each residual. Twenty grams (dry weight) of a 

residual was completely mixed with 20 mL of DI water for 20 minutes, and the pH of 

the suspension was measured. 

 

3.2.3 Toxicity Characteristic Leaching Procedure 

 

 Toxicity characteristic leaching procedure (TCLP) (USEPA 1311, USEPA, 

1992) was conducted on all of the samples using the accepted and regulated protocol. 

Two TCLP extraction fluids were used: fluid #1 (0.1 M acetic acid & 0.064 M NaOH, 

pH 4.93) and fluid #2 (0.1M acetic acid, pH 2.88). However, fluid #1 is basically 

employed for acidic wastes and fluid #2 for basic ones. Ten grams of air-dried residual 

was mixed with 200 mL of leachant (liquid to solid weight ratio of 20:1) due to the small 

amounts of sample available. Sample and liquid mixture were placed in a polyethylene 

bottle and put into a rotary agitation apparatus and reaction of the leaching test was 

continuously run for 24 hours instead of 18 at room temperature (22±2°C). After the 
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reaction, solid and liquid was separated using a 0.2 µm pore-size filter. The filtrate is 

defined as the TCLP extract. The pH of each extract was measured and recorded. All 

experiments were conducted in duplicate. All extracts were kept under refrigeration 

(4°C) until analyzed. Arsenic concentration and speciation were analyzed by hydride 

generation with atomic absorption spectrometry (HG/AAS). Iron, aluminum, and 

calcium concentrations were also determined using flame atomic absorption 

spectrometry (FLAAS). 

 

3.2.4 Competitive Desorption 

 

Desorption versus phosphate. Based on previous work by the researchers, 

phosphate tends to compete with As(V) on the surface of the iron (oxy)hydroxides for 

sorption sites and thus, tends to leach the arsenic compounds. Ten grams of air-dried 

residual was mixed with 200 mL of DI water, 10 mM NaNO3 as an ionic strength buffer, 

and 0.1 M NaH2PO4•H2O (EM, A.C.S. reagent grade) as a phosphate source. The pH of 

the leachant used was adjusted to 7 by the addition of HNO3 or NaOH as needed. 

Leaching reactions subsequently were conducted for 24 hours at room temperature. All 

leaching suspensions were filtered through a 0.2 µm pore size membrane.   

 

Desorption versus sulfate. 0.1 M Na2SO4 (Fisher, A.C.S. reagent grade) as a 

sulfate source was mixed with 10 g of air-dried residual. The other experimental 

conditions were the same as those of desorption versus phosphate.  
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Desorption versus chloride. These studies were conducted by the addition of 0.1 

M NaCl (Fisher, A.C.S. reagent grade) to a solution of 10 g of air-dried residual, 200 mL 

of DI water, and 10 mM NaNO3 as an ionic strength buffer. The other experimental 

conditions were the same as those of desorption versus phosphate. 

 

3.2.5 Effect of pH on Arsenic Leaching 

 

 Ten grams of each residual sample was added to 200 mL of DI water with the pH 

adjusted by adding either NaOH or HNO3 as needed to achieve the desired final pH. An 

ionic strength buffer, 10 mM of NaNO3, was added to each mixture. A range of pH was 

investigated at 4, 6, 8, and 10. Sodium acetate (NaCH3COO, 10 mM) (Fisher, A.C.S. 

reagent grade) was employed as a pH buffer for pH 4 and 6. Sodium bicarbonate 

(NaHCO3, 10 mM) (Fisher, A.C.S. reagent grade) was also used as a pH buffer for pH 8 

and 10. A mixture of the residuals and leachant was mixed in a polyethylene bottle and 

reacted by a rotary apparatus for 24 hours at room temperature (22±2°C). After the 

reaction was completed, leached suspensions were filtered through a 0.2 µm pore size 

membrane to separate solids and liquids. Arsenic speciation was determined using 

HG/AAS and total Fe, Al, and Ca concentrations were analyzed using FLAAS. 
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3.3 SOLIDIFICATION AND STABILIZATION (S/S) TECHNIQUES OF FIELD 

RESIDUALS 

 

 The general goals of this study were not only to analyze a variety of water 

treatment residuals containing arsenic, but also to develop suitable technical methods to 

immobilize the arsenic in the residuals.  

Free liquid in the residuals was removed by air-drying for the solidification and 

stabilization (S/S) experiment (Kameswari et al, 2001). Air-dried residuals were crushed, 

passed through a 2 mm sieve and thoroughly mixed to produce homogeneous conditions 

and minimize errors. All S/S experiments were carried out on the basis of 10 g of air-

dried residual. Added-water to residuals ratio was 0.5 to 1, depending on the amount of 

binder used. Residuals and binder(s) were mixed thoroughly by hand with an acid-

washed glass bar before addition of the water. The sludge-binder mixture was placed in 

an acid-washed plastic cup and cured at room temperature for 7 days. After curing, all 

solidified samples were crushed to the particle size < 2 mm (using 2 mm sieve) and kept 

in polyethylene bottles separately until subjected to extraction tests. All experiments 

were performed in duplicate. 

Based on the preliminary experiments, calcium hydroxide and ordinary Portland 

cement were selected as binders for S/S studies. 
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3.3.1 Addition of Lime Only 

 

 Quicklime (CaO, calcium oxide) is mainly employed for S/S in field scale 

applications due to economic aspects. Mixing CaO and water produces a slurry of 

Ca(OH)2. This process is called slaking, 

 

CaO  +  H2O  =  Ca(OH)2  +  heat      (3.2) 

 

which is an exothermic reaction. Great care must be taken when CaO is handled since 

high heat is generated (Davis & Cornwell, 1998). Due to this safety problem, hydrated 

lime (Ca(OH)2) was used in this study. Similar results were obtained when Ca(OH)2 was 

used instead of CaO for S/S of arsenic in waste (Dutre & Vandecasteele, 1995). 

 Ca(OH)2 (EM, A.C.S. reagent grade) was investigated by adding increasing 

amounts (1 to 10g/10g of air-dried residual) to the residuals, respectively. After curing 

for 7 days, extraction tests were conducted to determine the optimum amount of lime 

added for the control of arsenic leaching. 

 

3.3.2 Addition of OPC Only 

 

 Ordinary Portland cement (OPC) is usually used as a main material for cement-

based stabilization. The OPC used in this study was supplied by the Quikrete Company. 
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Different ratios of cement to residual (weight basis) were used: 0.1, 0.2, 0.3, and 0.5. and 

the optimum amount of cement added determined.    

 

3.3.3 Addition of Lime and OPC 

 

 Based on the amount of lime and OPC determined in steps ‘addition of cement 

only’ and ‘addition of OPC only’, the optimum amount of lime and OPC added were 

selected and added to each residual sample.  

 

3.3.4 Extraction Tests 

 

 To examine the effectiveness of the S/S of each residual sample, extraction tests 

were performed. Untreated residuals and all solidified solids were subjected to two 

extraction tests: TCLP #2 (0.1 M acetic acid, pH = 2.88) extraction solution, and the 

worst-case arsenic leaching condition (0.1 M NaH2PO4, pH = 10). The liquid to solid 

weight ratio was 20: 200 mL of leachant and 10 g of air-dried residual (weight of binders 

added was ignored for the comparison of leaching of raw residual to that of a solidified 

solid). All solidified specimens were pulverized to the particle size < 2 mm. The 

extraction period was 24 hours for all extraction tests. Leaching reactions were 

conducted in polyethylene bottles by a rotary shaker. After extraction, the leached 

suspensions were filtered to separate liquid and solids with a 0.2 µm membrane filter. 

Arsenic speciation and Fe, Al, and Ca concentrations were determined according to the 
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analytical methods described above. The variables used in the extraction tests and 

subsequent analyses conducted are summarized in Table 3.4. 

 

TABLE 3.4 Extraction tests examined and subsequent analyses conducted 
 

Parameter Description 
 
Types of leachant 

 
(i) TCLP extraction #2 (0.1 M acetic acid, pH = 2.88) 
(ii) Phosphate extraction (0.1 M NaH2PO4, pH = 10) 
 

Leachant-to-residual ratio 
 

20:1 (200 mL: 10 g) 
 

Surface area of residual 
 

Particle size smaller than 2.00 mm 
 

Extraction period 
 

24 hours 

Extraction vessel  
 

Polyethylene bottle 

Temperature 
 

Room temperature (22±3°C) 

Separation of liquid and solids 
 

0.2-µm pore size membrane filter with syringe 

Storage of samples 
 

In a refrigerator (4°C) 

Arsenic speciation 
 

Using HG/AAS within 2 days after collecting samples  

Fe, Al, Ca analyses 
 

Using FLAAS with 3 days after collecting samples 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1 CHARACTERIZATION OF THE FIELD RESIDUALS 

 

Water treatment residuals used for this study were supplied by three water 

treatment plants and two pilot plants. Most arsenic containing residuals are generated 

from iron- or alum-based coagulation, adsorption (mainly by activated alumina), 

membrane filtration and lime-based softening. The water treatment plants supplying 

residuals were El Paso Water Utilities (El Paso, TX), Public Utilities Department of City 

of Billings (Billings, MT), and Helena Water Treatment Utilities (Helena, MT). The 

three water treatment residuals were named after their origin. The other three arsenic 

contaminated residual samples were two types of adsorption media from two pilot 

plants. These two adsorption media were utilized during pilot studies at Naval Air 

Station Fallon (NASF) (Fallon, NV) and CH2MHILL – El Paso (El Paso, TX) for 

arsenic removal from groundwater. The pilot plant residuals from NASF were a granular 

ferric hydroxide material (GFH) and CH2MHILL – El Paso supplied two different types 

of adsorption media, GFH and ALCAN FS50, an alumina based media. All the 

adsorption media were exhausted, which means arsenic concentration in the water going 

out of the adsorption column was above the MCL of 10 µg/L. The residuals from the 

pilot plants were named after the media type and origin. 
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Granular ferric hydroxide (GFH) is an emerging removal technology for arsenic 

by adsorption in fixed bed reactors (Driehaus et al, 1998). This technique combines the 

advantages of the coagulation-filtration process and the fixed bed adsorption such as 

activated alumina. The processing of this technology is simple and operation can be run 

without the need for pH adjustment or preoxidation (Simms et al, 2000). Therefore, an 

unskilled person can operate the water treatment system. The process may be an 

acceptable treatment alternative for small-scale systems.  

ALCAN FS50 is activated alumina promoted with a proprietary additive 

engineered to accomplish enhanced arsenic removal (Alcan Chemicals, 1998). The 

arsenic adsorption capacity of ALCAN FS50 proved to be five times greater than 

unpromoted activated alumina.  

The information of water treatment facilities and residual samples is summarized 

in Table 4.1. 

 

TABLE 4.1 Information summary of water treatment facilities and residual 
samples 

 
Residual  Type Name of the facility 
   
GFH – Fallon GFH Naval Air Station Fallon (NASF) – Fallon, NV 
AA – El Paso AA CH2MHILL – El Paso, TX 
GFH – El Paso GFH CH2MHILL – El Paso, TX 
El Paso Alum El Paso Water Utilities – El Paso, TX 
Billings Ferric Public Utilities Department – Billings, MT 
Helena Alum Helena Water Treatment – Helena, MT  
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4.1.1 General Physical and Chemical Properties 

 

Digestion results. The major elements, which can strongly influence the arsenic 

behavior (sorption, release, and oxidation) in residuals, are iron, aluminum, calcium and 

manganese (Sadiq, 1997). Therefore, the concentrations of these elements initially 

contained in each residual sample were determined by acid digestion. The concentrations 

of major metals obtained from the six residuals are shown in Table 4.2. 

 

TABLE 4.2 Concentrations of major metals in residuals 
 

Total As Total Fe Total Al Total Ca Total Mn Residual 
(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 

  
GFH – Fallon 2680 521000 212 1510 741 
AA – El Paso 33.2 20600 298000 5640 10.5 
GFH – El Paso 2290 503000 993 5690 852 
El Paso 15.3 24000 18100 35800 425 
Billings 148 50000 30300 18400 713 
Helena 402 20300 45800 1860 1350 
      
 

As expected, the highly elevated concentrations of total arsenic and total iron in 

GFHs of the pilot plant studies were detected due to the high arsenic adsorption capacity 

and the adsorption media being made principally from ferric hydroxide. From Table 4.2, 

the content of arsenic in the GFH was greater than that in the AA on the basis of weight. 

Chemicals added typically vary in water treatment facilities. Therefore, it is hard to find 

solid relationships between the arsenic removal type of media and digestion results. A 
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high portion of Fe, Al, and Ca were found in the residuals from the water treatment 

plants.  

 

 Results of pH and solid content. The pH and solid content of each air-dried 

residual is shown in Table 4.3. Water treatment residuals are usually dewatered prior to 

disposing into a landfill. Commonly used dewatering processes for water treatment 

residuals are air-drying and mechanical dewatering (Hsieh & Raghu, 1997). The most 

typical air-drying types are sand drying beds and lagoons. Belt filter presses, centrifuges, 

pressure filter presses, and vacuum filters are the mechanical dewatering devices.  

 

TABLE 4.3 pH and solid content of residuals 
 

Residual pH Solid content 
(%) 

   
GFH – Fallon 7.27 69.1 
AA – El Paso 7.55 83.6 
GFH – El Paso 7.85 67.9 
El Paso 7.85 96.5 
Billings 7.44 91.9 
Helena 7.93 80.9 
   

 

 It is critical to know the pH to predict arsenic behavior in a residual because 

arsenic adsorption and release reactions are very pH dependent. The pH values of the 

residual samples were measured according to the USEPA method 9045C (USEPA, 

1992). However, the values are only estimates. All of the pH values of residuals were 

found to be around neutral (between 7 and 8).   
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4.1.2 TCLP Analysis 

 

The field residuals were subjected two types of leaching solutions for the toxicity 

characteristics leaching procedure (TCLP). TCLP extraction solution #1 (pH=4.93) is 

designed for acidic solid wastes and TCLP extraction solution #2 (pH=2.88) is for basic 

ones. However, TCLP #1 and TCLP #2 were used for all residuals because pH values for 

residuals obtained were around neutral. Results of TCLP #1 and TCLP #2 are presented 

in Table 4.4 and Table 4.5, respectively. 

 

TABLE 4.4 Results of TCLP extraction solution #1 
 

Residual Final pH As(III) 
(mg/kg) 

As(V) 
(mg/kg) 

Fe 
(mg/kg) 

Al 
(mg/kg) 

Ca 
(mg/kg) 

 
GFH – Fallon 5.44 < 0.02 0.37 < 1 < 20 1070 
AA – El Paso 5.18 0.10 0.07 0.60 157 5340 
GFH – El Paso 5.14 0.29 0.15 < 1 < 20 8410 
El Paso 6.61 0.06 0.24 < 1 < 20 11100 
Billings 5.94 0.31 0.79 3.12 < 20 8530 
Helena 5.48 2.49 6.13 47.8 151 817 
       

 

 As(III) and As(V) concentrations in the extracted solutions were both higher with 

TCLP #2 than with TCLP #1, except the GFH – El Paso in which leached As(V) 

concentration decreased. As(III) was the major As species of total soluble As in AA – El 

Paso and GFH – El Paso residuals even though redox status of the system of mixed 

TCLP extraction and residuals was generally assumed to be oxidizing. It is thought that 
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the main reason why the results were obtained is that AA and GFH media were utilized 

during pilot plant studies in El Paso for arsenic removal from groundwater and thus, it is 

assumed they contained much larger portion of As(III). However, As(V) was the 

dominant As species released in the other residuals. When higher As was released in a 

residual, higher concentration of a soluble major adsorbent, such as Fe or Al hydroxide, 

was observed. Therefore, it is concluded that As desorption behavior is controlled by Fe 

or Al hydroxides. Soluble Ca concentration was high in al residuals through both TCLP 

tests because the solubility of Ca(OH)2 and CaCO3 is high at low pH. Mn concentrations 

of the residuals were relatively lower than other elements (ref. Table 4.2) and Mn 

concentrations in the leachates were very low. Thus, measurement of Mn concentration 

was not conducted in further tests. The final pH of each extract was lower for TCLP #2 

than TCLP #1 as expected.  

 

TABLE 4.5 Results of TCLP extraction solution #2 
 

Residual Final pH As(III) 
(mg/kg) 

As(V) 
(mg/kg) 

Fe 
(mg/kg) 

Al 
(mg/kg) 

Ca 
(mg/kg) 

 
GFH – Fallon 3.50 < 0.02 0.62 132 < 20 1447 
AA – El Paso 4.01 0.16 < 0.02 6.38 3611 3521 
GFH – El Paso 3.76 0.33 < 0.02 2.83 < 20 5821 
El Paso 4.93 0.07 0.20 286 < 20 28510 
Billings 4.30 0.72 1.74 3409 203 12300 
Helena 3.97 4.97 14.2 919 4511 877 
       
 

From these data, it is concluded that pH is critical for the release of As, Fe, Al, 

and Ca. In oxidized systems, the solubility, adsorption and movement of arsenic (As(III) 
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and As(V) both) is controlled predominantly by adsorption reactions with oxide minerals 

such as Fe and Al oxides (Loeppert et al, 2003; Sadiq, 1997; Masscheleyn et al, 1991; 

Artiola et al, 1990). At low pH (3-5), solubility of the Fe and Al oxides increases and 

thus, the concentration of inorganic arsenic released in the leachates is expected to be 

also increased. However, maximum As(V) adsorption on Fe and Al hydroxides is 

usually achieved at low pH (4-5) (Raven et al, 1998; Anderson et al, 1976). Therefore, it 

is considered that arsenic leaching might be underestimated through the use of TCLP. 

Ca may precipitate As in the form of calcium arsenate at high pH. However, as 

shown in Tables 4.4 and 4.5, released Ca concentrations were significant due to the low 

pH of the leachates. Ca carbonates are soluble and unstable at low pH conditions and 

consequently, they play a minor role for arsenic solubility in acidic residuals (Sadiq, 

1997).  

 

4.1.3 Competitive Desorption Analysis  

 

 Competitive desorption with phosphate. The mobilization of bound arsenic on 

adsorbents such as Fe and Al hydroxides is strongly influenced by the presence of 

ligands that can compete with arsenic for surface sorption sites. In particular, phosphate 

tends to compete with As(V) for sorption sites on the surface of the metal hydroxide 

(equation 4.1) and thus, tends to extract the As(V) compounds (Loeppert et al, 2003; 

Hongshao & Stanforth, 2001; Hiemstra & Riemsdijk, 1999; Hingston et al, 1971).  
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 Fe-oxide-AsO4H  +  HPO4
2-    Fe-oxide-PO4H  +  HAsO4

2-  (4.1) 

 

FIGURE 4.1 Competitive desorption with phosphate: (A) soluble As 
concentration, and (B) soluble Fe, Al, and Ca concentrations 
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The adsorption behavior of phosphate and As(III) are very different, and a 

significantly higher concentration of bound As(III) compared to As(V) was observed on 

iron minerals in the presence of 0.1 M sodium phosphate (Jackson & Miller, 2000; Jain 

& Loeppert, 2000). These studies indicated that there might be specific sites for As(III) 

on the iron oxide minerals.   

Figure 4.1 presents the soluble concentrations of As(III) and As(V) (a) and 

soluble concentrations of Fe, Al, and Ca (b) released by the competition with phosphate. 

As noted, extraction solutions were adjusted to pH 7 and the final pH values after 24 

hours of reaction were between 7.2 and 7.6. The results indicated that As(V) was the 

dominant arsenic species extracted by phosphate. GFH – Fallon and GFH – El Paso 

residuals contained high concentration of total arsenic (ref. Table 4.2) and thus, the 

concentration of As(V) released in the two residuals was much higher than that in the 

other residuals. It was very difficult to find a reason to explain why much higher soluble 

Ca concentration was observed in GFH – El Paso residual. Arsenic concentrations 

extracted by the phosphate competition on Fe oxide minerals usually increase at low and 

high pH conditions (Loeppert et al, 2003). Therefore, it is expected that higher As 

concentration would be released at low and high pH than the leached As concentration 

obtained in this study.  

 

Competitive desorption with sulfate and chloride. The results of arsenic leaching 

in the presence of sulfate and chloride are shown in Figure 4.2. Any supporting data in 

which the presence of sulfate ions can influence the release of As were not found. 
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However, it was reported that As(III) and As(V) adsorption was decreased in the 

presence of sulfate, and this trend was more obvious at lower pH (Wilkie & Hering, 

1996). It is concluded that the effect of sulfate on As desorption is minor even though it 

can influence adversely on As sorption. Any relationships for the release of arsenic and 

the presence of chloride were also not observed in Figure 4.3. The amount of As released 

in the presence of sulfate and chloride was much lower than that in the presence of 

phosphate when comparing Figures 4.1 to 4.2 and Figures 4.1 to 4.3.   

 

FIGURE 4.2 Competitive desorption with sulfate: soluble As concentration 
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FIGURE 4.3 Competitive desorption with chloride: soluble As concentration 
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4.1.4 Effect of pH on Arsenic Leaching Analysis 

 

Figure 4.4 shows the soluble As(III) and As(V) concentration and Tables 4.6, 

4.7, and 4.8 present the influence of pH on leached Fe, Al, and Ca concentrations, 

respectively. Soluble arsenic and the other major metal (Fe, Al, and Ca) concentrations 

depended on the pH of the system.  
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FIGURE 4.4 Effect of pH on arsenic leaching: (A) As(III), and (B) As(V) 
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TABLE 4.6 Effect of pH on leaching: Fe 
 

pH 
GFH – 
Fallon 

(mg/kg) 

AA –  
El Paso 
(mg/kg) 

GFH –  
El Paso 
(mg/kg) 

El Paso 
(mg/kg) 

Billings 
(mg/kg) 

Helena 
(mg/kg) 

       
4 < 1 < 1 < 1 1572 2262 504 
6 < 1 < 1 < 1 < 1 < 1 4 
8 < 1 < 1 < 1 < 1 < 1 < 1 
10 457 < 1 1356 < 1 < 1 12 
       

 

 
TABLE 4.7 Effect of pH on leaching: Al 
 

pH 
GFH – 
Fallon 

(mg/kg) 

AA –  
El Paso 
(mg/kg) 

GFH –  
El Paso 
(mg/kg) 

El Paso 
(mg/kg) 

Billings 
(mg/kg) 

Helena 
(mg/kg) 

       
4 < 20 1143 < 20 85 304 1669 
6 < 20 < 20 < 20 < 20 < 20 < 20 
8 < 20 < 20 < 20 < 20 < 20 < 20 
10 < 20 72 < 20 < 20 36 658 
       

 

 
TABLE 4.8 Effect of pH on leaching: Ca 
 

pH 
GFH – 
Fallon 

(mg/kg) 

AA –  
El Paso 
(mg/kg) 

GFH –  
El Paso 
(mg/kg) 

El Paso 
(mg/kg) 

Billings 
(mg/kg) 

Helena 
(mg/kg) 

 
4 1636 7434 9421 31487 13263 1054 
6 684 4299 6757 25344 4925 510 
8 16 959 944 432 755 183 
10 10 108 179 133 112 100 
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Higher arsenic concentrations were observed at low and high pH (4 and 10). 

As(III) concentrations were highest at pH 4, and soluble As(V) concentrations were 

highest at pH 10. The maximum adsorption for As(V) and As(III) usually occurs around 

pH 5 and around 9, respectively. Results of soluble Fe and Al concentrations were 

similar to those of arsenic. Interestingly, higher leached Fe and As(V) concentrations in 

GFH – Fallon and GFH – El Paso residuals were observed simultaneously at pH 10 

because dissolution of Fe hydroxides occurred and, subsequently, As(V) was released. 

Higher soluble Al concentrations were observed at pH 4 than at low pH 10. Leached Ca 

concentrations were substantially increased as pH decreased due to the increase of Ca 

solubility.  The results obtained in this study were very similar to those of other 

investigators (Carbonell-Barrachina et al, 1999; Masscheleyn et al, 1991) 

The As(III) and As(V) desorption trends can be explained by the dissolution of 

Fe and Al hydroxides (i.e., increase of solubility) and the charge of arsenic species. The 

solubility diagrams of the Fe hydroxides as a function of pH are shown in Figure 4.5, 

which was constructed based on the hydrolysis constants in Table 4.9. Activity 

coefficients for the species were ignored, so activities and concentrations were assumed 

to be equal. 

In the Table 4.9, *β is the hydrolysis constant. For the general reaction,  

 

   M  +  iHL  = MLi  +  iH+     (4.2) 

where, M = metal, and L = ligand.  
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i

i
i

i
*

]HL][M[
]H][ML[ +

=β       (4.3) 

 

TABLE 4.9 The hydrolysis constants for the Fe hydroxides (Langmuir, 1997b) 
 

Reaction -log*βi 
  
Fe3+ + H2O = FeOH2+ + H+ 2.19 
Fe3+ + 2H2O = Fe(OH)2

+ + 2H+ 5.67 
Fe3+ + 3H2O = Fe(OH)3

0 + 3H+ 12.56 
Fe3+ + 4H2O = Fe(OH)4

- + 4H+ 21.6 
  

 
 
 
FIGURE 4.5 Solubility of amorphous Fe(OH)3, Ksp = 10-37.1, as a function of pH at 

25°C 
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 The solubility of Al hydroxide as a function of pH (Figure 4.6) was drawn using 

the same method used for the solubility of Fe hydroxide. Hydrolysis constants are 

summarized in Table 4.10. 

The phenomenon of the increase in solubility of the solids, such as Fe and Al 

hydroxides, at low and high pHs is termed amphoteric behavior. By the amphoteric 

behavior, the solids are dissolved to form cationic species at low pH and to form anionic 

species at high pH (Langmuir, 1997b).  

 

TABLE 4.10 The hydrolysis constants for the Al hydroxides (Langmuir, 1997b) 
 

Reaction -log*βi 
  
Al3+ + H2O = AlOH2+ + H+ 5 
Al3+ + 2H2O = Al(OH)2

+ + 2H+ 10.1 
Al3+ + 3H2O = Al(OH)3

0 + 3H+ 16.9 
Al3+ + 4H2O = Al(OH)4

- + 4H+ 22.7 
 
 

 

An equation for the H+ enhanced dissolution reaction can be expressed as in 

equation 4.4 (Loeppert et al, 2003).  This equation basically describes the formation of 

cationic species by the dissolution of metal hydroxides. 

 

M-oxide-AsO4  +  H+    M3+  +  H2O  + Asaq   (4.4)   
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FIGURE 4.6 Solubility of amorphous Al(OH)3, Ksp = 10-31.2, as a function of pH at 
25°C 

pH
0 2 4 6 8 10 12 14

Lo
gA

l(I
II

)(
m

ol
/k

g)

-8

-7

-6

-5

-4

-3

-2

-1

0

1

TOT Al(aq)

Al(OH)4
-

Al3+ Al(OH)2+ Al(OH)2
+

Al(OH)3
0

 
 

During the dissolution of Fe and Al hydroxides, surface arsenic species can also 

be dissolved. At pH 4, the predominant As(III) species is H3AsO3
0, which has a neutral 

charge. The surfaces of Fe and Al hydroxides are positively charge at low pH (equation 

4.4) and the charge of dominant As(III) species, which is neutral. Therefore, the 

dissolution of metal hydroxides, and at pH 4, positively charged surfaces of metal 

hydroxides and a neutral charge of dominant As(III) species facilitate the release of 

bound arsenic, and readsorption of leached As(III) cannot readily occur. At pH 4, the 

prevalent species for As(V) is H2AsO4
-, which can be easily adsorbed onto the metal 
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hydroxides. Therefore, soluble As(V) concentration in the leachate was lower than that 

of As(III) at low pH (pH 4).  

At high pH, anionic species of Fe and Al hydroxides are increased by the OH- 

enhanced dissolution process, which can be expressed as in equation 4.5 (Loeppert et al, 

2003; Jackson & Miller, 2000). 

 

M-oxide-AsO4 + OH-     M-(OH)4
- + Asaq    (4.5) 

  

The surfaces of Fe and Al hydroxides are negatively charged at high pH. 

Therefore, the increasingly negative surface potential with increasing pH makes for 

unfavorable conditions for the adsorption of anionic arsenic species such as HAsO4
-2 for 

As(V) and H3AsO3 and H2AsO3
- for As(III) at pH 10. Finally, arsenic ions are leached 

from the sorption sites. In brief, the increasing negative surface charge of the metal 

hydroxides with increasing pH promote the desorption of As(V). The neutrally and 

negatively charged species of As(III) are predominant at pH 10 and thus, As(III) should 

be released due to repulsion from the negatively charged surface of metal hydroxides. It 

is expected that, at pH 10, the reason why leached As(III) concentrations were less than 

As(V) might be the lower concentrations of As(III) contained in the residuals and the 

presence of neutrally charged species of As(III).  

 At neutral pH (pH 6 and 8), the released arsenic concentrations and soluble Fe 

and Al concentrations were very low due to the insolubility of the Fe and Al hydroxides 

and the predominant arsenic species. When the disposal of the arsenic tainted residuals is 



 55

planned without any post-treatment such as S/S, the neutral pH condition of the system 

should be maintained to minimize arsenic solubility and mobilization. 

  

4.2. SOLIDIFICATION AND STABILIZATION OF FIELD RESIDUALS 

 

 The residuals employed for solidification and stabilization (S/S) treatment were 

GFH – Fallon and AA – El Paso. The selection criteria were arsenic concentration and 

the available amount of residual. In this section, GFH – Fallon was noted as GFH and 

AA – El Paso as AA. Lime (hydrated lime, Ca(OH)2) and ordinary Portland cement 

(OPC) were utilized as binders for S/S. TCLP extraction solution #2 (0.1 M acetic acid, 

pH = 2.88), noted as TCLP #2, and phosphate solution (0.1 M NaH2PO4, pH=10), noted 

as 0.1M phosphate, were used for the extraction studies.  

 

4.2.1 Addition of Lime Only 

 

 Granular Ferric Hydroxide (GFH). In the first step for the optimization of the 

solidification and stabilization (S/S) procedure, Ca(OH)2 was added to the residual in 1 g 

increment per 10 g of air-dried residual and the solidified materials were cured for 7 

days under laboratory conditions. The effects of lime addition on arsenic leaching of 

GFH are shown in Table 4.11 and Table 4.12. 
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TABLE 4.11 Extracted As, Fe, and Ca concentrations and final pH by TCLP #2 
depending on lime addition: GFH 

 
Lime addition 

(g) 
As(III) 
(µg/L) 

As(V) 
(µg/L) 

Fe 
(mg/L) 

Ca 
(mg/L) Final pH 

      
0 < 1 23 2 56 3.53 
1 < 1 9 < 0.05 1616 6.30 
2 < 1 4 < 0.05 1574 8.36 
3 < 1 3 < 0.05 1574 11.08 
4 < 1 3 < 0.05 1923 11.09 
5 < 1 2 < 0.05 1816 11.22 
6 < 1 2 < 0.05 2014 11.28 
7 < 1 1 < 0.05 1970 11.32 
8 < 1 2 < 0.05 1880 11.35 
9 < 1 2 < 0.05 1987 11.37 
10 < 1 1 < 0.05 2076 11.38 

     
 

 

As shown in Table 4.11, leached arsenic concentrations were very low by the 

extraction test of TCLP #2 (pH=2.88). Therefore, it was almost impossible to find any 

effect of lime addition on arsenic leaching. However, the effect of lime addition was 

obvious when solidified materials were subject to a 0.1 M phosphate extraction solution 

(pH=10). The final pH of leachate by phosphate extraction was in the range of 10.2 to 

13.2 depending on the lime addition. The soluble total As and Ca concentrations in the 

leachate by phosphate extraction as a function of lime addition is drawn in Figure 4.7. 
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TABLE 4.12 Extracted As, Fe, and Ca concentrations and final pH by 0.1 M 
phosphate depending on lime addition: GFH 

 
Lime addition 

(g) 
As(III) 
(µg/L) 

As(V) 
(µg/L) 

Fe 
(mg/L) 

Ca 
(mg/L) Final pH 

      
0 150 14783 3 1 9.17 
1 321 21354 < 0.05 5 10.24 
2 529 47047 < 0.05 2 11.80 
3 422 41271 < 0.05 1 12.72 
4 362 32776 < 0.05 1 12.95 
5 210 20286 < 0.05 3 13.01 
6 < 1 5 < 0.05 180 13.11 
7 < 1 1 < 0.05 174 13.15 
8 < 1 1 < 0.05 187 13.15 
9 < 1 1 < 0.05 191 13.16 
10 < 1 1 < 0.05 182 13.17 
      

 

 

 The leached arsenic concentrations when compared to the no addition of lime 

(untreated GFH) increased when 1 to 5 g of lime was added. The behavior may be 

explained in that the pH values of the treatment increased with increasing lime addition, 

which might have made for unfavorable conditions for As(V) adsorption. However, 

soluble arsenic concentrations in the leachate were reduced when 6 g of lime was added. 

From the lime addition of 6 to 10 g, desorbed arsenic concentrations were not detected. 

At the range of 6 to 10 g of lime addition, excessive calcium, which did not join in any 

reactions, was found.  
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FIGURE 4.7 Soluble total As and Ca concentrations by 0.1M phosphate extraction 
as function of lime addition: GFH 
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There are three possible explanations for the results observed in Table 4.12. The 

first is that phosphate in the extraction solution was precipitated with the lime (Marani et 

al, 1997) or with calcite (CaCO3) (Donnert & Salecker, 1999). In wastewater treatment, 

lime has been frequently used to remove phosphorous. During the curing for 7 days, 

lime can react with atmospheric CO2 and calcite (CaCO3) generation might be possible. 

The pK values for phosphate are 2.2 for pK1, 7.2 for pK2, and 12.4 for pK3. Thus, PO4
3- 

is the predominant species of phosphate ions due to the high pH in the suspensions. 

Ca4H(PO4)3 and /or Ca5(PO4)3OH could be generated as precipitated forms even though 

this should be determined by X-ray diffraction analysis. It appears that this explanation 

is likely. However, at high pH, the release of As(V) and Fe should be substantial, but the 

results obtained did not follow this expected trend. In brief, little or very low 
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concentrations of As(V) and Fe were observed in the leachates even though the system 

pH was over 12. However, the removal of phosphate by precipitation should not be 

discounted.  

The second explanation is that calcium-iron-arsenic compounds were generated 

by calcium hydration during the 7-day curing period. The final pH of leachates was very 

high. Thus, iron hydroxides are supposed to be dissolved as Fe(OH)4
-. However, no 

soluble iron was detected. It is expected that calcium could play a critical role to prevent 

the iron leaching by the formation of calcium-iron compounds (Wilkie & Hering, 1996). 

Therefore, the bound arsenic on the surface of the iron hydroxides was not extracted due 

to the formation of calcium-iron compounds and maintenance of positive surfaces even 

though pH of the system was over 12. Wilkie & Hering (1996) suggested the cooperative 

effect of calcium on the adsorption of As(V) at high pH. According to their description, 

the adsorption of Ca2+ onto iron hydroxides resulted in a positive surface charge of the 

adsorbents in the high pH range.  Thus, this made for favorable conditions for As(V) 

adsorption. The change of surface charge on Fe hydroxides in the presence or absence of 

calcium is illustrated in Figure 4.7. The suggested surface ractions for the complexation 

of Fe hydroxide and calcium and intrinsic adsorption constants (Schecher & McAvoy, 

1994) are : 

 

≡FewOH  +  Ca2+  =  ≡FewOCa+  +  H+ Log Kint = -5.85   (4.6) 

≡FesOH  +  Ca2+  =  ≡FesOHCa2+  Log Kint = 4.97  (4.7) 
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FIGURE 4.8 Surface charge density of Fe hydroxide as affected by calcium: Model 
predictions for TOT Fe = 50 µM in 0.01 M NaNO3  

 
 

 

3.0mM calcium 

No calcium

Source: Wilkie & Hering, 1996 
 

 

The cooperative effect of calcium was found in the phosphate adsorption on 

goethite in seawater, i.e. the enhancement of phosphate adsorption was observed in the 

presence of calcium at high pH (Hawke et al, 1989). The cooperative effect of calcium 

also has a drawback to be applied to the solidification with lime, because the effect was 

observed when both Ca(OH)2 and Fe hydroxides were added together to remove As(V). 

In the systems studied in this research, lime was mixed with the GFH that already 

contained arsenic compounds. Therefore, it is not clear what portion of calcium was 

bound on the surface of the GFH with 7 days of curing time. The chemistry of the 

phosphate extraction system for GFH residuals solidified by lime is complex. Therefore, 
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a variety of experiments, analyses and supporting data are absolutely required in order to 

obtain an explanation.   

The last reason for the reduction of soluble arsenic concentration in the leachate 

is from the formation of less soluble calcium-arsenic compounds at high pH: calcium 

arsenate (Ca4(OH)2(AsO4)2•4H2O and Ca4(AsO4)3OH) or calcium arsenite (CaHAsO3) 

(Kameswari et al, 2001; Bothe & Brown, 1999; Dutre & Vandecasteele, 1995). 

Solubility of iron hydroxides increases with the increase of system pH. Thus, the 

possibility of arsenic leaching was extended. However, calcium hydroxide solubility is 

low at high pH so calcium might precipitate with the arsenic and form less soluble 

calcium-arsenic compounds. This explanation is expected to be the most feasible one to 

interpret Figure 4.7.  Bothe & Brown (1999) studied the effects of phosphate on the 

possible release of As(V) solidified with lime. They reported the control of solution 

phase composition by arsenate apatite (Ca5(AsO4)3OH) in the suspensions containing 

phosphate, the formation of arsenate apatite at the expense of phosphate apatite 

(Ca5(PO4)3OH), and no observation of solid solution transition between Ca5(AsO4)3OH 

and Ca5(PO4)3OH under the ambient conditions.  

 

 Activated Alumina (AA). The solidification/stabilization (S/S) of AA with the 

addition of lime only was also carried out, and S/S procedures, curing, and extraction 

tests were applied as those to GFH. Tables 4.13 and 4.14 present the soluble As(III), 

As(V), Al, and Ca concentrations and final pHs in leachates by TCLP #2 extraction and 

0.1 M phosphate extraction, respectively. In general, very low concentrations of As(III) 
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and As(V) were leached by the TCLP as shown in Table 4.13. Therefore, the extraction 

method is not suitable to show the effects of lime addition for the reduction of arsenic 

leaching. 

 

TABLE 4.13 Extracted As, Al, and Ca concentrations and final pH by TCLP #2 
depending on lime addition: AA 

 
Lime addition 

(g) 
As(III) 
(µg/L) 

As(V) 
(µg/L) 

Al 
(mg/L) 

Ca 
(mg/L) Final pH 

      
0 12 1 101 166 4.12 
1 3 4 1 1932 6.19 
2 < 1 3 10 1776 10.20 
3 < 1 1 2 2074 12.03 
4 < 1 < 1 1 2742 12.37 
5 < 1 < 1 1 2738 12.39 
6 < 1 < 1 1 2395 12.41 
7 < 1 < 1 1 2360 12.42 
8 < 1 < 1 2 2768 12.46 
9 < 1 < 1 2 2331 12.49 
10 < 1 < 1 2 2326 12.50 

     
 

As(V) was the predominant species of released arsenic due to the very high pH. 

Arsenic leaching increased as the amount of lime added was increased from 1 to 3, 

slowly reduced when 4 and 5 g of lime was added, and finally rapidly dropped when 6 

and 7 g of lime was added. The arsenic leaching trend for AA was similar to that for 

GFH. The tendency of leached Al concentrations followed that of arsenic as shown in 

Table 4.14. This trend was obviously different than that of leached Fe concentrations, 

which were not detected for GFH. The tendency of Ca concentrations detected in 



 63

leachates was opposite to that of arsenic. It is expected that excessive amounts of Ca, 

which were not used for arsenic stabilization and dissolved in solution, were detected. 

 

TABLE 4.14 Extracted As, Al, and Ca concentrations and final pH by 0.1 M 
phosphate depending on lime addition: AA 

 
Lime addition 

(g) 
As(III) 
(µg/L) 

As(V) 
(µg/L) 

Al 
(mg/L) 

Ca 
(mg/L) Final pH 

      
0 10 1491 1 6 9.10 
1 10 2106 12 4 10.29 
2 4 2193 301 4 10.09 
3 4 2766 360 7 12.50 
4 2 1775 426 12 12.67 
5 1 950 349 1 12.76 
6 < 1 93 65 10 12.81 
7 < 1 < 1 4 148 12.87 
8 < 1 4 5 161 12.91 
9 < 1 < 1 4 167 12.94 
10 < 1 < 1 4 176 12.96 

 

 It is suggested that the main mechanism for the prevention of arsenic leaching 

from AA was the precipitation of arsenic with lime, which generated stable calcium-

arsenic compounds.   

 

4.2.2 Addition of OPC Only 

 

 Granular Ferric Hydroxide (GFH). Ordinary Portland cement (OPC) is 

commonly employed as a binder for cement-based solidification and stabilization (S/S). 

In this study, OPC was mixed at 1, 2, 3, and 5 g with 10 g of residual to determine the 
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effects of OPC addition on arsenic leaching. The leached As(III), As(V), Fe, and Ca 

concentrations and final pH in leachates by TCLP and 0.1 M phosphate leaching tests 

are shown in Tables 4.15 and 4.16, respectively.  

 

TABLE 4.15 Extracted As, Fe, and Ca concentrations and final pH by TCLP #2 
depending on OPC addition: GFH 

 
OPC addition 

(g) 
As(III) 
(µg/L) 

As(V) 
(µg/L) 

Fe 
(mg/L) 

Ca 
(mg/L) Final pH 

      
0 < 1 23 2     56   3.53 
1 < 1   7 < 0.05 1517   6.20 
2 < 1 13 < 0.05 1587   7.26 
3 < 1 32 < 0.05 1533   8.74 
5 < 1 17 < 0.05 1518 11.05 
   

 

 The arsenic concentrations detected in the leachates by the TCLP test were very 

low. The Ca concentrations found were relatively constant. Therefore, it is thought that 

calcium might not play any role in arsenic immobilization due to the presence of very 

low soluble arsenic concentrations. A relationship between arsenic leaching and OPC 

addition was not evident.  

In the phosphate leaching study, it was obvious that OPC addition did not present 

a positive influence on arsenic immobilization as shown in Table 4.16. The results might 

be explained by two reasons: the available amount of Ca and pH. About 20 to 25% of 

Ca(OH)2 from OPC by weight is normally generated from cement hydration (Glasser, 

1993). Therefore, the available amount of calcium, which can precipitate arsenic and 

form stable calcium-arsenic compounds, was absolutely lower when compared to the 
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results of lime addition. Thus, the released arsenic concentrations were considerable. To 

overcome this problem, higher amount of OPC would be required. As shown in Table 

4.16, the final pH of leachates was high and this made for an unfavorable condition for 

As(V) adsorption. The relationship of total As concentration released and OPC addition 

is described in Figure 4.9. 

 

TABLE 4.16 Extracted As, Fe, and Ca concentrations and final pH by 0.1 M 
phosphate depending on OPC addition: GFH 

 
OPC addition 

(g) 
As(III) 
(µg/L) 

As(V) 
(µg/L) 

Fe 
(mg/L) 

Ca 
(mg/L) Final pH 

      
0 150 14783 3 1   9.17 
1 199 17257 < 0.05 4 10.10 
2 226 24970 < 0.05 2 10.83 
3 325 34043 < 0.05 1 11.71 
5 297 32510 < 0.05 1 12.65 
   

 

FIGURE 4.9 Soluble total As and Ca concentrations by 0.1 M phosphate as 
function of OPC addition: GFH 
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 Activated Alumina (AA). The results of S/S with the addition of OPC only for 

AA are shown in Tables 4.17 and 4.18. The TCLP extraction test did not demonstrate 

any effects of OPC addition on arsenic leaching; the same as for GFH.  

 

TABLE 4.17 Extracted As, Al, and Ca concentrations and final pH by TCLP #2 
depending on OPC addition: AA 

 
OPC addition 

(g) 
As(III) 
(µg/L) 

As(V) 
(µg/L) 

Al 
(mg/L) 

Ca 
(mg/L) Final pH 

      
0 12 1 101 166 4.12 
1 3 1 1 1601 5.96 
2 1 7 1 1731 7.03 
3 < 1 11 1 1782 10.25 
5 < 1 2 1 1845 11.17 
   

 

The main reason for the high soluble As(V) concentrations detected in the 

leachates is that the concentration of calcium in the system was not high enough.   

 

TABLE 4.18 Extracted As, Al, and Ca concentrations and final pH by 0.1 M 
phosphate depending on OPC addition: AA 

 
OPC addition 

(g) 
As(III) 
(µg/L) 

As(V) 
(µg/L) 

Al 
(mg/L) 

Ca 
(mg/L) Final pH 

      
0 10 1491 1 6 9.08 
1 9 2040 1 3 10.08 
2 10 3304 2 3 10.89 
3 12 2309 9 2 11.62 
5 8 2352 41 1 12.46 
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 From the S/S study with the addition of OPC only to GFH and AA, it is 

suggested that OPC may not contribute positively to the immobilization of arsenic in 

residuals (Dutre & Vandecasteele, 1995). However, OPC should be used to improve the 

handling and the physical characteristics of the residuals (LaGrega et al, 1994).  

 

4.2.3 Addition of Lime and OPC 

 

 Granular Ferric Hydroxide (GFH). Six grams of lime and 3 and 5 g of OPC 

were selected based on the addition of lime only and OPC only studies and added to 10 g 

of residual. The results of TCLP and phosphate leaching tests are shown in Table 4.19. 

Two sets of binder-residual mixtures (6 g of lime + 3 g of OPC and 6 g of lime + 5 g of 

OPC) gave very similar results for arsenic leaching as expected. 

 

TABLE 4.19 Extracted As, Fe, and Ca concentrations by TCLP #2 and 0.1M 
phosphate extraction depending on lime and OPC addition: GFH 

 

TCLP Lime 
(g) 

OPC 
(g) 

As(III) 
(µg/L) 

As(V) 
(µg/L) 

Fe 
(mg/L) 

Ca 
(mg/L) 

       
6 3 < 0.1 4 0.1 5162 
6 5 < 0.1 3 0.1 1202 

       

Phosphate Lime 
(g) 

OPC 
(g) 

As(III) 
(µg/L) 

As(V) 
(µg/L) 

Fe 
(mg/L) 

Ca 
(mg/L) 

       
6 3 < 0.1 18 < 0.05 151 
6 5 < 0.1 24 < 0.05 127 
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When comparing the above results with those for the addition of lime only, there 

were no statistical differences for arsenic immobilization. However, the addition of lime 

only for the S/S of arsenic containing residuals has a problem because calcium-arsenic 

compounds may decompose slowly when exposed to atmospheric CO2 (Riveros et al, 

2001). The generally accepted equation for the reaction is 

 

Ca3(AsO4)2  +  3CO2  +  3H2O    3CaCO3  + 2H3ASO4   (4.8) 

 

Therefore, any barriers which can block contact between the calcium-arsenic compounds 

and atmospheric CO2 will be necessary for the management of arsenic immobilization in 

the residuals for a long period of time.  

 

 Activated Alumina (AA). Four sets of binder-residual mixtures were chosen 

based on the addition of lime only and OPC only studies. The results of the S/S with 

lime and OPC for AA are shown in Table 4.20. 

From the above studies, it is suggested that the arsenic in the residuals can be 

successfully immobilized by the addition of lime and OPC. However, aging extraction 

tests for long time periods (e.g. over one year) are obviously necessary to demonstrate 

the efficiency of the stabilization of arsenic in water treatment residuals by lime and 

OPC addition.  
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TABLE 4.20 Extracted As, Al, and Ca concentrations by TCLP and phosphate 
extraction depending on lime and OPC addition: AA 

 

TCLP Lime 
(g) 

OPC 
(g) 

As(III) 
(µg/L) 

As(V) 
(µg/L) 

Al 
(mg/L) 

Ca 
(mg/L) 

       
6 3 < 1 < 1 2 2086 
6 5 < 1 < 1 3 2064 
7 3 < 1 < 1 2 2143 
7 5 < 1 < 1 3 2179 

       

Phosphate Lime 
(g) 

OPC 
(g) 

As(III) 
(µg/L) 

As(V) 
(µg/L) 

Al 
(mg/L) 

Ca 
(mg/L) 

       
6 3 < 1 1 7 139 
6 5 < 1 1 7 143 
7 3 < 1 1 8 141 
7 5 < 1 < 1 6 150 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

5.1 CHARACTERIZATION OF FIELD RESIDUALS 

 

 The arsenic leaching in water treatment residuals by the toxicity characteristic 

leaching test (TCLP) was underestimated due to the pH of the leachates, which are 

favorable for As(V) adsorption. The pH values in the leachates for TCLP extraction 

solutions #1 and #2 were 5.1 to 6.6 and 3.5 to 4.9 depending on the residual types, 

respectively. The released arsenic concentrations by TCLP #2 were generally higher 

than those by TCLP #1.  

 The presence of phosphate could produce an unfavorable condition for the 

binding of arsenic onto the adsorbents. The extracted As(V) concentrations by phosphate 

competition were substantial for each of the water treatment residuals. The effects of 

sulfate and chloride were negligible.  

 The pH values of the leachates were the most important factor in controlling 

arsenic behavior in the residuals. High concentrations of arsenic released were detected 

at low and high pH due to the increase in solubility of adsorbents such as Fe and Al 

hydroxides and the predominant arsenic species at that pH range.  

 The results obtained suggest that maintaining neutral pH in the environment for 

the residuals and minimizing the influent of arsenic competing ions such as phosphate 



 71

are very important to enhance the stability of arsenic when arsenic containing residuals 

are disposed into a landfill without post-treatment.  

 

5.2. SOLIDIFICATION AND STABILIZATION OF FIELD RESIDUALS 

 

 The reduction of arsenic concentration in the leachate can be obtained by the 

addition of lime to the residuals due to the formation of less soluble and stable calcium 

arsenic compounds. In practical aspects, solidified materials treated only by lime are not 

stable for the long term since the buffering effects of lime are decreased by dissolution 

and carbonation when exposed to atmospheric CO2. Therefore, it is suggested that 

cement should be added with the lime in order to prevent and minimize the arsenic 

leaching over the long term. 

 It is thought that the immobilization of arsenic in residuals can be achieved 

through the formation of less soluble calcium arsenic compounds using lime and cement. 

Therefore, solidification and stabilization (S/S) techniques with lime and cement can be 

successfully applied to the immobilization of elevated arsenic concentrations in water 

treatment residuals. 
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