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ABSTRACT 

 
The Development of Scratch Test Methodology and Characterization of Surface Damage 

of Polypropylene. (August 2003) 

Min Hao Wong, B.S., Nanyang Technological University 

Chair of Advisory Committee: Dr. Hung-Jue Sue 

 

 A new scratch test methodology is proposed.  The new test methodology is 

developed based on the principles of materials science and solid mechanics, which 

include the consideration of material parameters, use of microscopy for image analysis 

and the finite element method (FEM).  The consistency and reproducibility of test results 

are shown using a new scratch test device on two sets of neat and talc-filled 

polypropylene (PP) systems.  Three different test conditions, i.e., linear load increase 

under constant rate, constant load under constant rate, and linear rate increase under 

constant load, have been conducted to determine the most effective, informative test 

conditions for evaluation of scratch resistance of polymers.  Experimental observations 

and FEM results show a good qualitative correlation.  The unique advantages of the new 

scratch test method for evaluating scratch resistance of polymers are discussed.  A 

systematic study of surface damage effected by a progressive scratching load is 

performed on model polypropylene (PP) systems.  Mar-scratch and stress-whitening 

transitions can be readily observed, and the corresponding critical loads determined.  

Distinctive scratch hardnesses and surface damage features are found for different 

material systems.  Visibility of scratched surface is quantified using gray level analysis 

via a flatbed scanner and a commercial image analysis tool. It is found that the onset of 

scratch visibility can be determined accurately and reproducibly using the custom-built 

scratcher under progressive loading condition.  Talc particles are found to be responsible 

for the increased light scattering, leading to greatly increased visibility.  The observed 

scratch visibility is also found to be related to the measured frictional force profiles.  

Approaches for producing scratch resistant PP are discussed. 
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CHAPTER I  
 

INTRODUCTION 
 

 

1.1 Background  

 

 

Scratch deformation of polymeric surfaces has become an important area of 

research in the field of materials science and mechanics.  The use of polymers in an ever 

widening range of products has brought attention to the ability of the polymers to 

withstand damages during service life.  Electronics components, such as notebook 

casings and compact discs, to automotive parts, such as car interior instrument panels 

and console modules to lenses and paint coatings are some applications where polymers 

act as a physical protection from whatever damage that daily use will entail. Being low 

cost and light-weight, and having the capability to be molded into desired shapes and 

surface textures, it is not surprising to find that polymers are rapidly replacing, or being 

used with metals in many applications.  With the growing demands for low cost 

thermoplastic olefins (TPO), researchers now face new challenges to ensure the 

satisfactory performance of the polymeric products.  The resistance of polymers to 

surface damage is one such challenge.   

 

 

 

 

 

 

                                                 
  This thesis follows the style of Wear. 
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1.2 Scratch Test Methodologies 

 

 

There are a variety of ways and methods to perform scratch resistance evaluation on 

polymers.  Depending on the issues of concern, a given test method designed to evaluate 

scratch resistance based on scratch hardness, tangential hardness, scratch visibility, wear 

and deformation mechanisms.  Although most scratch tests have been developed for 

metals and ceramics, these tests cannot be applied to polymers without some 

modifications.  This is mainly because of the differences in mechanical behaviors 

between metals/ceramics and polymers, where viscoelastic effects are significant.   

Due to the lack of a standard for scratch tests, many companies have to come up 

with their own version of scratch tests.  Often the tests are limited in scope and only pay 

attention to one material characteristic, or give a relative ranking of hardness.  Some 

examples are the Mohs’ mineral hardness test, which is used by gemologists in 

comparing the relative hardness of minerals.  Another test uses a range of pencils from 

6B to 9H.  The hardest pencil lead that does not leave a scratch groove is recorded.  A 

crockmeter tests the ability of paints or colorings to adhere to textile by rubbing it with a 

stylus.  Both methods are popular in the paint and coatings industry because of their 

simplicity.  A more systematic method that is popular among automotive–related 

companies is the Ford five-finger test.  This method employs stainless steel styli to 

scratch TPOs that are mainly used in the interior of a car and to determine its ranking of 

scratch resistance. 

Scientists and researchers prefer a more rigorous approach in determining scratch 

resistance.  Although a few commercial products are available, many of them prefer to 

design and build their own apparatus.  The numerous factors that can influence scratch 

imply that different scratch experiments have to be designed in order to investigate the 

appropriate factor(s).  Using different geometry, such as cone, ball, pyramidal tips, or 

flat punch will generate scratch patterns that are often difficult to compare among one 

another.  Other factors, such as size, speed, normal load, temperature and lubrication, 
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compound to the complexity of the problem.  Ideally, all of the abovementioned factors 

should be controlled tightly to generate reproducible data.  In practice, different devices 

are built which have vastly different capabilities.  As a result, test data are not always 

comparable.  Hence, the main objective of this research is to propose a standardized test, 

which has sufficient flexibility to accommodate a range of test conditions, the relevant 

factors will be easily controlled, and because of the identical setup, there is a basis of 

comparison.   

 

 

1.3 Characterization of Surface Damage due to Scratch in Polymers 

 

 

Current efforts in studying scratch are mainly focused on observing the types of 

phenomena that occurs under changing conditions.  An example might be varying the 

conical angle of a cone-shaped tip and noting the type of scratch damage produced.  The 

results provide a general understanding in how the severity of damage is dependent on 

different conical angle.  Yet, this does not enhance significantly our ability to predict the 

type of damages, which may occur in different scratch conditions.  The severity of 

scratch damage in polymers is related to the failure mode of the polymeric surface under 

a given test condition.  Whether the polymeric surface undergoes ironing, ductile 

drawing, brittle cracking, machining or fragmentation, it will be intricately linked to the 

degree of physical damage, i.e., the depth and width of the scratch groove.  Other effects, 

such as melting due to surface heat generation and filler debonding, may also occur.  The 

key in predicting scratch damage phenomena is to quantify scratch damage.  

Development in this area is still in its infancy, partly due to the lack of a standardized 

test method.  Thus, another major objective of this research is to provide a means of 

quantifying scratch.   

To accurately measure the amount of deformation that occurs during scratch is 

not as straightforward as it seems.  The width of scratch can be measured easily during 
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or in the aftermath of scratching.  However, the depth is a more difficult issue.  

Expensive and sophisticated equipment, such as profilometers, depth sensing equipment, 

and scanning probe microscopes, are required to measure depth. 

Scratch visibility is gaining more importance because of demands for aesthetics 

for many applications.  Scratch visibility is a quality obvious to any human eyes but 

difficult to quantify in the laboratory.  The main reason why the perception of scratch 

visibility differs from person to person is because it is affected by both environmental 

(light intensities, angle, surface roughness) and human (different sensitivities to 

wavelength and surface texture) factors.  In spite of this, many attempts have been made 

to quantify visibility by measuring the differences in light reflectance of the surface.  

This method has had limited success so far, mainly because the relationship between the 

results obtained and human perception of scratch is still unclear.  It is hoped that this 

research will enable an establishment of a test method that allows the quantification of 

scratch resistance via both the physical surface damage dimensions approach and the 

scratch visibility approach. 

 

 

1.4 Objectives of Research 

 

 

The objective of this study is to devise a new methodology to investigate surface 

damage of polymers.  This study will focus on developing a set of appropriate 

procedures and conditions of the scratch test.  The results from different procedures will 

be examined and the optimal procedure will be selected.  The surface damage from the 

selected procedures will be studied in detail.  Direct experimental observations and 

measurements based on frictional force, geometrical measurements and scratch visibility 

will be devised and assessed.  The ultimate goal of this research is to propose a 

comprehensive methodology that will address many of the concerns in industry and 
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academia on scratch of polymers by producing reliable and reproducible test data for 

quantitative evaluation of scratch resistance. 

 

 

1.5 Overview of Research 

 

 

A brief review of the theory of scratch will be given in Chapter II.  It will also 

include a review of past and present methods used in the study of scratch.  Chapter III 

gives a review on the quantification techniques employed in assessing scratch damage 

and visibility. 

The basics of the new scratch apparatus built specifically for this research will be 

explained in Chapter IV.  The methods and results from using different test conditions 

will also be presented in the same chapter.  Discussion for the selection of the best test 

method will also be given. 

New analytical tools in the evaluation of scratch will be used in Chapter V.  The 

methods employed will include analyzing frictional profile during scratch, scratch 

visibility and surface study of the scratch groove.  Different materials will be tested to 

characterize their scratch behavior.  Methods on improving scratch resistance will also 

be discussed.  
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CHAPTER II  

AN OVERVIEW OF SCRATCH  

 

 

2.1 Introduction  

 

 

In this chapter, the definition of scratch will be introduced along with the 

fundamental theory of scratch.  A brief review of the scratch tests currently available 

will follow. 

 

 

2.2 Theory of Scratch 

 

 

When a hard object is placed in contact on a surface and moves across the 

surface, a scratch groove is created (Figure 2.1).  This process is termed scratching.  

Scratch is a part of tribology, which is defined as “the science and technology of 

interacting surfaces in relative motion”.  It involves the study of friction, wear and 

lubrication [1].  There are two quantities, friction and hardness, which are often linked to 

scratch.  Friction may be understood as the resistance encountered when one body 

moves over another.  In sliding friction, the sliding coefficient of friction, µ, is defined 

as  

µ =
F
W  (2.1) 

where F is the tangential force required to move the body over the counterface and W is 

the normal load. The value of µ of polymeric surfaces can range from 0.06 for PTFE 

(polytetrafluoroethylene) to larger than 2 in rubbers [2]. 
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Many materials are found to obey the three Laws of Friction, which may be stated as 

follows: 

1. the friction force is proportional to the normal load. 

2. the friction force is independent of the apparent area of contact. 

3. the friction force is independent of the sliding velocity. 

 

The reliability of these three Laws of Friction is not consistent.  It is often only 

applicable in a limited range of test conditions and differs greatly for different materials.  

However, the three laws do provide useful generalizations of empirical observations.  

Polymers often do not follow the First and Second Laws, because of its viscoelastic 

behavior and indentation softness.  Further explanations on how the three Laws arise can 

be found in the monograph by Hutchings [1]. 
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V
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Figure 2.1: Schematic of a scratching process.
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The contributions to friction can be classified under two categories, i.e, friction 

due to adhesion, Fadh, and deformation, Fdef.  The adhesion contribution arises from the 

molecular attractive forces that operate at the asperities that exist on each surface.  These 

asperities are the tiniest points that provide the actual contact between surfaces.  In 

polymers, the strength of adhesion will depend on the size of the asperities and chemical 

groups present in the polymer chain.  The size of the asperities will determine whether 

van der Waals or capillary forces dominate [3].  Secondary bonds formed through 

hydrogen bonding and van der Waals forces will also contribute to the polymer adhesion.  

The strength of the bonds formed will vary according to the chemical structure of the 

polymer; generally polar molecules will produce the larger adhesion forces.  

The deformation term comes from any process that deforms the surface and 

dissipates energy while sliding over it.  In polymers, the two major contributions are 

plastic deformation and viscoelastic deformation.  An asperity can be modeled as a 

conical point with semi-angle α.  A tangential force, often taken to be the shear strength 

of the softer material, will be required to slide the conical asperity across the surface, 

thus causing the plastic deformation.  The coefficient of friction that arises will be:

      

2 cotplasticF
W

µ α
π
 = =  
 

 conical asperity   

(2.2) 

cotplasticF
W

µ α= =   wedge asperity 

 

The wedge asperity form of equation is used in a plane strain model, where the asperity 

is taken to be a wedge of semi-angle α. 

 In a viscoelastic material, energy will be dissipated as heat during viscoelastic 

deformation.  The energy dissipated per unit distance during this process will contribute 

to friction.  If a cylindrical roller of radius R, is rolled over the viscoelastic material 
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under normal load W, the deformation can be isolated to include viscoelastic 

deformation only.  The frictional force Fviscoelastic is given as: 

 
4/3 2/3 2 1/3 1/30.17 (1 )viscoelasticF W R Eβ υ− −= −      (2.3) 

 
Here υ is Poisson’s ratio, E is the real part of Young’s modulus, β is the fraction of the 

total energy that is dissipated.  

In an indentation hardness test where a spherical indenter is applied under 

constant load on to a smooth surface of a perfectly plastic material, the Meyer hardness 

is defined as the ratio of the load, W, to the projected area of the indentation.  Thus, if d 

is the diameter of depression left behind after the indenter has lifted away from the 

surface, the Meyer hardness is given as [4]: 

π
= 2
4

M
WH d

     (2.4) 

This relationship is true even for indenters of conical or pyramidal geometry.  For metals 

and ceramics, hardness and depth are found to obey the following relationship 

   
nW kd=      (2.5) 

which is known as Meyer’s law. k and n are constants to be found for the material being 

studied, while W and d has the usual meaning.  The value of n generally exceeds 2 and 

for many materials it is found to lie between 2 to 2.5.  Many authors have found that n = 

2 for glassy polymers such as poly (methyl methacrylate) (PMMA) [5,6] and polystyrene 

(PS) [7]. Similar results were also found for semicrystalline polymers such as PP [8].    

Scratch hardness is defined as the normal load of the indenter over the load 

bearing area.  It is normally taken to be equivalent to the indentation mean pressure pm 

exerted on the material during scratch.  For a viscoelastic-plastic material, such as 

polymers, elastic recovery is almost instantaneous and the load bearing area can be 

approximated as a circle with its diameter the same as the scratch width.  Thus scratch 

hardness Hs can be defined as 

π
= 2
4

s
WH d      (2.6)   



10 

Notice that it has identical form to the Meyer hardness defined earlier.  It was also 

argued by Briscoe et al. [9] that viscoelastic recovery of polymers does not affect scratch 

width significantly.  Thus it is reasonable to measure the scratch width after the test to 

obtain scratch hardness.   

The ratio of tangential force, F, over the normal load, W, is herein defined as the 

scratching coefficient of friction, µsc [10] 

µ =sc
F
W      (2.7) 

This is to distinguish the parameter obtained using this test method as opposed to the 

coefficient of friction normally found by the sliding of two planar surfaces, mentioned in 

earlier paragraphs. 

 There are a number of other hardness values which are also used by researchers 

to quantify scratch-related hardness; these will be discussed briefly in the next chapter, 

although they will not be used in this work.  

 

 

2.3 Classification of Scratch Tests 

 

 

Over the years, numerous scratch test devices have been built commercially or 

custom-built by researchers to study scratch responses of polymers at various length 

scales.  In the following sections, a brief description of each test will be given.  The 

range and functionality of each type of test will be mentioned. 

It is generally recognized that there are two types of surface damage – mar and 

scratch.  A mar is a mark caused by a sliding body that is too shallow to be perceived by 

the casual human eyes alone but nevertheless does become visible when present in large 

quantities.  A good example is the typical damage found on sand-abraded paint coats.  A 

scratch is a mark that forms visible grooves and/or surface damage; this is the typical 

damage mode for surfaces that withstand heavy moving loads by swivels, ball bearings, 

etc.  Many tests exist today that characterizes mar, scratch or both.  A detailed overview 
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of these test methods found in the open literature and over the web is presented below.  

It should be understood that despite the attempt to be as comprehensive as possible, there 

are probably many more scratch test methods that are not covered here.  In general, the 

numerous scratch machines that were designed can be classified into the type of scratch 

tests being conducted; (A) single-stylus scratch test, (B) multiple-stylus scratch test, (C) 

pendulum sclerometer test, (D) pin-on-disc test and (E) nanoscratch test.   

 

A. Single-stylus scratch test— this method employs a single stylus to slide over the 

polymer surface.  The geometry of the stylus tip is commonly spherical and conical, 

uncommon tips such as knife edges and screwdriver blades are also used. 

B. Mohs’ hardness test [4,11].  The Mohs’ hardness test for minerals has been used 

since 1822.  If a solid is able to scratch the surface of a selected mineral, it will have 

the same hardness rating as that mineral.  The hardness scale simply consists of 10 

minerals arranged in order from 1 to 10.  Diamond is rated as the hardest and is 

indexed as 10; talc as the softest with index number 1.  Each mineral in the scale will 

scratch all those below it as shown in Table 2.1.  This method is not of much use to 

the materials engineer as the scale is not evenly space and polymers will occupy the 

lower range. 

 
 

Table 2.1. Mohs’ hardness scale 
 

 

 

 

 

 

 

 

 

Mineral Mohs’ Hardness Scale 
Diamond 10 

Corundum 9 
Topaz 8 
Quartz 7 

Orthoclase (Feldspar) 6 
Apatite 5 
Fluorite 4 
Calcite 3 

Gypsum 2 
Talc 1 
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• Pencil hardness test [12,13]. Similar to the Mohs’ hardness test and adopted by 

the paint and coating industries, the pencil hardness test is used to evaluate the 

scratch resistance of coatings.  Pencil leads of various hardnesses (6B – 9H) are 

pushed across the surface of specimens at an angle of 45°.  The hardest pencil 

lead that does not break and does not leave any scratch mark gives the scratch 

resistance rating of the specimens. 

• Needle test [14].  On a tensile testing machine, Ramsteiner et al. installed a 

fixture where a needle with a conical tip is attached at one end.  As the tensile 

machine moves vertically with a speed of 0.083 mm/s, the needle makes vertical 

scratches on the specimens.  The normal load for the scratches is controlled by 

weights in the range of 0.1 – 1.1 N and the needles used had included angles of 

60°, 97° and 120°. 

• Scratching machine by Briscoe et al. [15-18].  The scratching machine consists 

of a rigid, adjustable but non-moving arm that houses the indenter.  Specimens 

are placed on a moving stage whose motion is controlled by a computer.  

Piezoelectric force transducers are installed at the indenter holder to record the 

frictional forces and a heating cell has been incorporated to carry out tests at 

various temperatures.  Dead weights are placed on the conical and spherical 

indenters to impose normal loads onto the specimens.  The scratch rates used 

range from 0.001 to 40 mm/s. 

• Scratch Apparatus by Gauthier and Schirrer  [19].  Using an Instron tensile test 

machine and a commercial servo mechanism, the scratch apparatus consists of a 

temperature-controlled (-70 to 120°C) box containing the samples and moving 

tips.  An external computer is used to control the motion of the tips and to record 

the normal and tangential loads, speeds of tips and temperatures of the tests.  The 

constant normal load can range from 0.05 to 5 N and the scratch rates can be 

increased in step-size from 0.01 to 100 mm/s within the same scratch pass.  

Conical diamond indenter was used with a spherical tip of 20 – 400 µm in 

diameter. 
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• Scratch test rig by Wang et al. [20].  The test rig built can perform tests using 

normal loads from 1 to 100 N, either applied constantly or linearly increased over 

the scratch length and at constant scratch rates ranging from 1 to 200 mm/s.  Data 

like the normal and tangential loads and indentation depth are acquired using the 

digital output to the computer and a heated stage was included for tests at 

elevated temperatures.  Diamond conical tip (of 120° included angle), steel 

spherical tip of 1 mm in diameter and 0.8-mm chisel-point tip were used. 

• In-house scratch test apparatus by Ni and Faou [21].   The in-house scratch 

apparatus can perform scratch tests with loads from 1 – 8 N, in intervals of 1 N 

and at constant scratch rates of 0.011 – 0.46 mm/s.  Sapphire and diamond 

spherical indenters with diameters of 0.15 and 1.168 mm were adopted for their 

study. 

• Revetest scratch tester [22,23].  This commercially built scratch test device can 

perform several modes of scratch tests including frictional-force-controlled and 

penetration-depth-controlled.  Optical microscope objectives are mounted on the 

machine to scan pre- and post-scratch profiles with a software package to provide 

real-time data display.  The load range (both normal and frictional) of the 

machine is from 1 to 200 N and the scratch rate is from 0.003 to 6.667 mm/s.  

The machine is also capable of carrying out progressive load (0.01 – 30 N) and 

multi-pass scratch tests using Vickers, Knoop and spherical indenters 

 

B. Multiple-stylus test— this is a variation of the single stylus method.  The Ford five-

finger test is a representative example.  

• Ford five-finger test [24-27]. Used widely in the automotive industry, the test is 

used to evaluate the scratch visibility on a scale of 1 to 5, with higher values 

indicating more surface damages.  Up to five spherical scratch tips of 1 or 7 mm 

can be used for testing and the normal dead load can vary from 0.6 to 20 N by 

adding weight plates.  The rate at which the scratches are made is controlled by a 

compressed air pump and is approximately 100 mm/s.  This method gives a 
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relative ranking on the damage formed during scratch but does not quantify nor 

identify any critical values. 

 

C. Pin-on-disc test— the Taber pin-on-disc wear test is a commonly used method in 

determining the wear properties of a material.  However some researchers have 

modified it to perform scratch tests instead of wear tests. 

• Taber test & Pin-on-disc machine [28,29]. Kody and Martin [28] adopted the 

Teledyne-Taber shear/scratch tester in their study to examine the scratch damage 

of talc-filled polypropylene.  Placed on a rotating base, flat samples are scratched 

by a conical diamond tip attached at the end of a cantilever arm, along which 

weight can be adjusted from 0 to 10 N.  The conical tip has an included angle of 

90° and a diameter of 152 µm at its point and the scratch rate used was 1.8 mm/s.  

For the study of Chanda et al. [29], they employed a similar pin-on-disc machine 

and used a load range of 10 – 40 N and scratch rates of 1.04 – 2.08 m/s. 

• Scratch resistance testing machine [30].  This device consists of conical diamond 

stylus of radius 15 µm and 60° angle with a rotary stage.  The normal load is 

supplied via a hydraulic setup using water as mass.  The specimen is mounted on 

the stage and rotated at a constant rate.  The stylus scratches either in a spiral or 

concentric manner.  Scratch tests can be done under increasing load or constant.  

Typical load range is 0 – 60 g, sample diameter is 50 – 70 mm. 

 

 

D. Pendulum Sclerometer—this method uses a pendulum to slide against the surface of 

the specimen.  

• Single-pass pendulum sclerometer [31-34].  The pendulum machine comprises of 

a rigid swinging bar that is pivoted at one end with an indenter or disc blade and 

dead weights attached at the other end.  By releasing the free end of the bar from 

a height, scratches are made on the test specimens at the lowest point of the 

swinging trajectory.  The length and depth of the scratches can be adjusted by 
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moving the machine stage where the test specimens are secured.  The indenters 

used are conical in shape with various included angles (30° to 120°) and with tips 

of 6 – 14 µm in diameter.  Disc blades of 30 mm in diameter and different 

included angles (30° to 120°) were also used in their study.  The calculation of 

the normal load applied will be much more complicated and the scratch groove 

formed is different from that of the above two methods. 

 

E. Nanoscratch test— this category of scratch tests is defined by the scale of damage 

formed during scratch.  An instrument such as the atomic force microscope (AFM) 

[35-38] is used to produce scratches with widths in the sub-micron to nanometer 

range.  Scratch damage features exhibit very different behavior compared to those 

formed using the tests mentioned earlier.  This test is relevant in probing the micro- 

and nanoscale surface damage behavior of polymers 

• Scratch tester by Jardret et al. [39].  Unlike other scratch test devices that carry 

out load-controlled tests, this scratch tester built can perform displacement-

controlled scratch tests.  Scratches are made on the specimens by the movement 

of the indenter and a piezoelectric transducer is installed next to the indenter to 

record all the forces.  In their study, Berkovich indenters had been used.  There 

are also other customized test machines built by researchers for their work [40-

43]. 

• Commercial instruments— Micro and Nano Scratch Testers [44,45], Nano 

Indenter® XP [46], Nano Indenter® XPW [47] and Triboindenter® [48,49]  

• Scanning probe microscopy (SPM) instruments— the advent of atomic force 

microscopes has given researchers the ability to manipulate objects at the 

nanoscale.  They have become a popular method for researchers to conduct 

nanoscratch experiments [35-38].  Related instruments such as the point contact 

microscope and the frictional force microscope [36] are also used in nanoscratch 

experiments. 
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2.4 Summary 
 

 

The basic theory of scratch is presented here.  Two key concepts are introduced, 

which are friction and hardness of scratch.  It will be seen later that these two quantities 

provide a valuable means to characterize scratch damage and resistance. 

The review of scratch test devices for the macroscopic testing presented clearly 

reveals that the ranges of normal loads and scratch rates for most devices are rather 

limited while some of them may only be good for the evaluation of mar studies and thus 

insufficient for scratch studies.  All the current test devices reviewed cannot judiciously 

determine the exact scratching condition (i.e., load and rate) that can cause certain 

scratch and mar damage using a simple scratch test.  This problem, however, may be 

overcome if the test device is built with the capability to execute increasing load or rate 

tests over a scratch length.  With that, one can readily resolve the critical load or rate 

over which an expected surface damage occurs.  This will inevitably save laboratory 

time and labor to determine and compare the scratch resistance for a given set of 

polymers.   
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CHAPTER III  

EVALUATION AND QUANTIFICATION OF SCRATCH 
 

 

3.1 Introduction 

 

 

The great attention paid on aesthetics of polymer surfaces in recent years has led 

to significant interests in the scratch resistance and visibility of polymers.  To this end, 

reliable methods to quantify scratch resistance and visibility become the top priority.  

The methods used in the quantification of scratch properties are mainly grouped under 

two categories depending on the parameter that is being measured.  They are the 

measurement of physical dimensions, i.e., scratch depth and width, and surface 

reflectivity.  This chapter will focus on discussing the methods available to achieve the 

above measurements.  Current developments on quantification of surface damage and 

scratch evaluation will also be addressed. 

 

 

3.2 The Surface Phenomena of Scratch 

 

 

A paper titled “The hardness of poly(methylmethacrylate)” (PMMA) published 

by Briscoe et al. [9] in 1996 proposed the basic theoretical background in analyzing 

scratch on polymers.  Using the work done on metals by Bowden and Tabor [50], 

Briscoe et al. investigated the scratch properties of PMMA.  Conical steel indenters of 

semi-angle ranging from 60° to 150° and at different loads were used to perform scratch 

on PMMA.  The paper presented a scratch map of PMMA, whereby the different 

damage mechanisms were delineated in the map.  The following mechanisms were 
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recognized: 1) ductile ploughing, 2) viscoelastic-plastic ploughing, 3) brittle cracking, 4) 

brittle deformation and 5) machining.  

The ploughing process is also sensitive to many other factors, such as rate and 

temperature that further complicate the effort to predict such phenomena.  Cutting and 

fragmentation are modes of material removal.  Cutting produces ribbons of material in 

front of the scratching tip and is associated with ductile failure; whereas machining or 

fragmentation1 produces fragmented debris from the substrate and is associated with 

brittle failure [51].   

By measuring scratch hardness and indentation hardness, the authors were able to 

discern a linear relationship when conical angle is high.  The effect of lubrication was 

also investigated and was found that lubrication increased the scratch hardness but 

decreases the indentation hardness.  The scratch map that was the result of this work is 

useful in predicting the type of damage that might occur under different conical angles 

and load. 

Other attempts by researcher to classify the different scratch behaviors that 

polymers exhibit have resulted in the construction of different scratch maps [16,38].  The 

scratch maps allow prediction of scratch behavior of specific polymers at different 

conditions such as cone angle, normal load, scratch width and tip geometry.  It should be 

worth noting that Bertrand-Lambotte et al. [38] used the fracture energy and sample size 

criteria to predict ductile/brittle transition in nanoscratch of automotive clear-coats.  A 

scratch map was constructed based on this work seemed to explain scratch behavior 

reasonably well.   

Researchers have also sought to analyze scratch by classifying the many different 

types of surface damage features observed.  Ironing denotes the scratch behavior which 

results in smooth featureless grooves that are due to plastic or viscoelastic/viscoplastic 

deformation.  When the scratching process moves into the ploughing regime, wave-like 

pattern [21], cracking [16], plastic drawing [52] and bamboo-like feature [53] are some 

of the damage features observed in experiments.  The cause(s) for each type of damage 

                                                 
1 Some authors use the term micromachining to describe machining at very small scale. 
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feature can be due to brittle or ductile mode of deformation, or both.  Clearly, a wide 

range of surface damage phenomena can be observed during scratching of polymers, 

making it a major obstacle in fundamental understanding and prediction of scratch-

induced damage in polymers. 

At present, there is no definitive way to evaluate scratch resistance or surface 

damage of polymers.  Analytical models for scratch has been developed that are based 

on concepts analogous to indentation hardness [54].  Quantities such as scratch and 

ploughing hardnesses have been used to characterize the scratch resistance of metals.  

Briscoe and his colleagues [31] redefined the ploughing hardness as tangential hardness 

to include the adhesive contribution and specified another new hardness parameter called 

dynamic hardness for the purpose of their study or some authors refer to it as specific 

grooving energy [33].  To understand the terms given above, a list of definitions is given 

below in Table 3.1: 

 

 

 

Table 3.1 :List of definitions of hardness 

Term Definition Units 
Indentation Hardness [54] Normal load over 

projected load bearing 

area  

MPa or Kgmm-2 

Scratch Hardness [54] Normal load over 

projected load bearing 

area 

MPa or Kgmm-2 

Ploughing Hardness [54] or 

Tangential Hardness [31] 

Tangential force over 

projected area 

MPa or Kgmm-2 

Dynamic Hardness  [31] or 

Specific Grooving Energy [33] 

Energy loss per unit 

deformed volume 

N mm-2 
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Thus, determining the scratch depth or width of a scratch groove will enable one 

to obtain the desired hardness value by calculating the relevant contact area.  This 

provides an important tool for quantifying the scratch resistance of a polymer.  Scanning 

electron microscopes (SEM) and optical microscopes are the common instruments used 

in inspecting the scratch surface of a material.  This allows minute deformation 

mechanism(s) to be observed.  Scratch widths can be measured using these methods.  

Scratch width measurement is by far the most popular method because of its ease of 

observation.  On the other hand, precise depth measurements are not possible.  

To overcome this, 3D laser profilometry and laser scanning confocal microscopy 

(LSCM) allow the 3D imaging of the sample surface.  A huge advantage is gained by 

being able to analyze damage feature in 3-D.  Not only can we make physical 

measurements (such as depth and heights), any pattern that can be observed using 

conventional SEM and optical microscopes can also be observed using this method.  

Atomic force microscopy (AFM) and scanning probe microscopy (SPM) are also used to 

obtain surface imaging.  However, this method is limited to the nanometer and 

micrometer ranges.  

 

3.3 The Visibility of  Scratch 
 

 

A scratched surface will reflect light in a different manner from an unscratched 

surface.  By measuring the difference in the average intensity of the light reflected 

(reflectivity), scratch damage and visibility can be quantified [55].   

Kody and Martin [28] used polarized light on a reflective optical microscope 

(Nikon Optiphot) to measure the reflectivity of surfaces.  A Sony DXC-101 video 

camera was used to capture the reflected light after it has passed through the polarizer.  

The signal from the camera was digitized using a Scion Video Image 1000 8-bit frame 

grabber board and analyzed with NIH Image version 1.37 software.  Figure 3.1 shows 

the basic principle of this method.  The intensity of the reflected light was measured 
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when the scratch direction is parallel to the incident polarized light (where β = 0°) and 

when it is at 45° (where β = 45°). The two quantities were named B and D, respectively. 

Using the following definitions  

( ) / 2
( )

a

d

S B D
S B D

= +
= −

   (3.1) 

It is possible to correlate Sa to the void formation during deformation and Sd to 

anisotropy caused by polymer chain alignment.  Thus, visibility of the scratch and the 

contribution due to stress whitening was quantified by measuring the reflectivity. 

 

 

 
 

 

A recent paper by Rangarajan et al. [56] describes using bidirectional reflectance 

distribution function (BRDF) experiments in quantifying scratch visibility. The 

experiments involve a laser light source to bounce off a specimen surface at -30° to the 

normal.  A black and white charge coupled device (CCD) is placed +30° to the normal 

above the scratch surface to collect the specular reflected light.  Another CCD is placed 

Figure 3.1: Schematic of light-scattering measuring 
apparatus (Kody et al. [28]). 
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at -10° to measure off-specular scattering.  The former measurement gives information 

on the scratch size and surface specular reflectance.  The latter measurement gives 

information on color and gloss of the scratch. 

A third method used by Wang et al. [20] measured the light intensity reflected off 

a scratched surface using an optical flatbed scanner (ASTRA 1200S), then processed the 

information by digitizing the data using Scion Image 2 software and plotted a gray level 

profile across the scratches.  The imaging software would assign values from 0 to 255 

for each level of intensity.  A profile plot over the scratch can be obtained.  This method 

can be applied over a certain point on the scratch or over the whole length.  It was found 

that scratch visibility was largely due to stress-whitening, and increases with normal load 

and addition of talc.  This is a convenient way of comparing the scratch visibility level, 

and it can be done simultaneously over many scratches.  Different variations of this 

method were also used by Chu et al [24-26] and Grasmeder [27] to obtain gray level 

plots. 

 

 

3.3.1 VIEEW®  
 

 

Light that is reflected off a surface can be separated into two components, 

namely, diffuse and specular reflections.  The diffuse component is responsible for the 

perception of color.  Thus, any changes in color due to scratching can be measured by 

detecting the changes in diffuse reflection.  The specular component is responsible for 

gloss of a surface.  Any changes in surface roughness and topography will affect gloss.  

A commercial image analysis tool, VIEEW® (Atlas Material Testing Technology) [57] 

has the capability to produce ideal diffuse light condition via red, green and blue light-

emitting diodes (LED).  The amount of color in the diffuse light can be precisely 

controlled by changing the intensity of the LEDs.  This is useful in characterizing any 
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stress-whitening that occurs.  VIEEW® can also produce a beam of white light projecting 

90° onto the surface.  By measuring the light that is directly reflected back, the machine 

is able to detect edges of the scratch groove, thereby providing an accurate measure of 

scratch width.  This analytical tool will be employed in the present study concerning 

scratch visibility. 

 

 

3.4 Issues Concerning Evaluation and Quantification of Scratch 
 

 

Polymers present a unique case in scratch.  Unlike metals and ceramics, 

viscoelastic effects allow polymers to recover quickly after scratch.  Scratching of 

polymer surfaces can often produce different surface features concurrently or 

sequentially [21,53].  Fillers and additives can add to the complexity of the surface 

damage features observed, where stress-whitening often occur due to the formation of 

voids and exposure of filler particles [20,58,59].  

Polymers undergo ironing, ploughing, cutting and fragmentation like metals do.  

Determination of types of damages occur during scratch is of great concern to 

tribologists.  Ability to identify a criterion or a set of criteria to predict the type of 

damage feature during a scratch process is of paramount importance to polymer 

scientists today.  This knowledge has implications in applications where polymers are 

used as structural or coating materials.  Introducing scratches on the surface can result in 

a drop in fracture toughness of the polymer.  In coating materials, delamination will 

occur if the scratch extends too deep into the coating layer. The severity of the scratch is 

dependent on the type of scratch damage that occurs, thus the ability to predict scratch 

behavior will allow polymer scientists to greatly extend the utilization of polymers for 

new engineering and value-added applications.   
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An additional problem in the study of scratch on polymers is the multitude of test 

methods employed.  Differences in test conditions and methodology will produce very 

different scratch behavior and damage features.  This concern has been raised by Wong 

et al. [52].  It has been proposed that the progressive load test be employed as a 

standardized scratch test, which allows for a better link to material parameters and for 

easier comparison of results.  The present work will thus follow the newly proposed test 

method to study the scratch behavior of polymers.  

Another major concern to polymer scientists and engineers is the visibility of 

scratches on polymer surfaces.  Polymers in automotive interior and exterior parts are 

susceptible to mars and scratches that vastly degrade their appearances.  Polymers that 

exhibit high scratch resistance are highly desirable. Visibility is a complex issue as it 

involves many different unquantifiable parameters that can affect how a viewer 

perceives a scratch.  Many attempts have been made to quantify scratch visibility by 

measuring the surface reflectivity of the scratch [20,27,28,55,60].  Due to the diverse 

techniques employed and the lack of a systematic study to correlate scratch features with 

visibility [61], the results obtained for one set of study is often valid only within a set of 

narrowly defined conditions [55].  It remains to be seen which of these methods, if any, 

will prove to be the most useful in characterizing scratch visibility. 

 

 

3.5 Summary 
 

 

A comparison of the different evaluation techniques discussed is given in Table 

3.2.  The merits and disadvantages of each method are also briefly discussed.  In 

summary, scratch hardness is the most relevant technique in quantifying scratch 

resistance because it can be measured easily and applied to any material.  Various 

techniques can be employed to acquire force and scratch width and depth data to obtain 

scratch hardness.  Scratch visibility is a much more complicated issue, as there is no 
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simple relationship to link reflectance of a surface to human perception of a scratch 

groove.  For PP, it has been shown that stress-whitening is the major contributing factor 

to scratch visibility, thus VIEEW® , which is especially useful in quantifying stress-

whitening, will be used in this work. 

 

 

Table 3.2: Comparison of various techniques used in evaluation of scratch. 

 

Technique What it can be used for Advantages Disadvantages 
Light /laser 
Interferometry 

Measuring scratch depth 
and width, cross-section 
profile 

Fast, noncontact 
scanning, 

2D scanning 

Stylus 
Profilometry  

Measuring scratch depth 
and width, cross-section 
profile 

Fast 2D scanning, 
deforms 
specimen, low res. 

Digital Image 
Analysis 

Gray level profile, stress-
whitening 

Fast, low cost Relative values 
only 

Optical 
Microscopy 

Scratch surface features, 
scratch width 

Fast, low cost Surface scanning, 
low magnification, 
Subjective 

Scanning Electron 
Microscopy 
(SEM) 

Scratch surface features, 
scratch width 

High 
magnification 

Surface scanning, 
Subjective 

3D Laser 
profilometry 

Scratch depth and width, 
reflectivity, 3D imaging 

3D scanning, 
noncontact 
scanning, high 
resolution 

High cost 

LSCM Scratch depth and width, 
reflectivity, 3D imaging, 
subsurface imaging 

3D scanning, 
noncontact 
scanning, high 
resolution 

High cost 

AFM Scratch depth and width, 3D 
imaging 

3D scanning,  
nanoscale 
resolution 

High cost, slow 

VIEEW® Stress-whitening, scratch 
width 

Easy operation, 
fast 

High cost 
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CHAPTER IV 
 

A NEW SCRATCH TEST METHODOLOGY FOR POLYMERS 
 

 

4.1 Introduction 

 

 

A new scratch test methodology is developed here.  Different test conditions are 

used in conducting the scratch tests.  The results is compared and assessed to determine 

the best method.  Results from a concurrent study using finite element analysis (FEA) 

will also be presented. 

 

 

4.2 Experimental  

 

 

4.2.1 Custom-Built Scratch Test Device 

 

 

A new scratch device was developed for this research [62].  Though the focus of 

the research is mainly on automotive applications, the custom-built scratch device shown 

in Figure 4.1 is designed with various functionalities to address macroscopic scratch 

issues for a wide range of applications.  These various functionalities are discussed 

below. 

The scratch test device is built with the capability to execute multi-pass, multi-

indenter, constant load, constant rate, increasing load and increasing rate tests under 

various operating temperatures.  The scratch test unit comprises of a servo gear-driven 

motor that drives the scratch tips or styli with constant or linearly increased rates.  For 
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constant rates, the stylus can move in a range from 0 to 400 mm/s.  As for linearly 

increased rates, the stylus can be set to move from a zero rate to a peak rate of 400 mm/s.  

A choice of up to five scratching styli can be used for the scratch test device to perform 

single- or multi-pass tests.  The test device is also designed to conduct tests with dead 

weights or load-controlled spring loads.  This allows the test device to have a wider load 

range for testing: 0 – 50 N for dead weights and 0 – 100 N for spring loads with a load 

control accuracy of 0.01 N.  The reasons for incorporating spring loads are not only to 

allow for operation of increasing-load tests but also to prevent the occurrence of 

chattering of indenters as found in the dead weights loading case [63].   

The test device is also equipped with sensing and data acquisition functions to 

record vital test data during testing, such as the tangential force acting on the stylus with 

an accuracy of 0.1 N for a load range up to 1,000 N.  The data acquired for depth, 

horizontal position and velocity of the stylus have accuracies of 0.5 µm, 0.5 µm and 10 

µm/s, respectively.  During tests, these test data will be fed to an external computer for 

data storage and processing.  Test parameters, such as number of scratch passes, start 

and end positions and rates of the stylus, are controlled through an on-board 

microprocessor housed in an instrumentation unit.  An environmental chamber has been 

incorporated into the design of the test device (not shown in Figure 4.1) to allow scratch 

tests to be conducted under specified temperatures (-50°C to 100°C). Table 4.1 shows 

the comparison of the functionalities between our test device and the selected devices in 

the literature [15-21, 23, 30].  It is clear that the new machine compares favorably to the 

other existing devices.  More importantly, researchers can use the new scratch test 

device to design a variety of scratch tests on different polymeric bulk or coating systems 

through its various intended functionalities; some of these suggested tests are shown in 

Table 4.2. 

Several of the suggested tests are applied to the model polypropylene (PP) 

systems to illustrate their usefulness in scratch characterization.  In the description of the 

scratch tests, emphasis will be placed on the test procedure and scratch damage 

quantification to help establish a standard test method for scratch evaluation of polymers. 
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(a) Schematic of the spring-loaded 
scratch tip. 

(b) Schematic of control system of 
scratch unit and data acquisition unit

Figure 4.1: Design of the custom-built scratch test device. 



 

Table 4.1:  Comparison of functionalities of different scratch devices. 

Functionality 

Scratching 
machine by  

Briscoe et al. 
 [15-18] 

Scratch 
Apparatus by 
Gauthier & 

Schirrer  [19] 

Scratch test 
 rig by 

 Wang et al. [20] 

In-house scratch 
 test apparatus by 

Ni & Faou [21] 

Revetest  
Scratch Tester 

[23] 

Scratch  
Resistance 
Tester [30] 

Current  
Custom-Built 

Scratch Device

Constant Load  
Test (Range) 

Yes – dead 
weights 

Yes 
(0.05 – 5N) 

Yes 
(1 – 100N) 

Yes 
(0.1 – 10N) 

Yes 
(1 – 200N) 

Yes 
 (0–0.59N) 

Yes 
(0 – 50N : dead 

weight) 
(5 – 100N : spring 

load) 

Constant Rate 
 Test (Range) 

Yes 
(0.001 – 
40mm/s) 

Yes 
(0.01 – 100mm/s)

Yes 
(1 – 200mm/s) 

Yes 
(0.011 – 0.46mm/s) 

Yes 
(0.003 – 

6.67mm/s) 

Yes 
 (8.33–166.67 

mm/s) 

Yes 
(0 – 400mm/s) 

Increasing Load  
Test (Range) No No Yes 

(1 – 100N) No Yes 
(0.01 – 30N) 

Yes 
(0–0.59N) 

Yes 
(5 – 100N) 

Increasing Rate 
 Test (Range) No Yes 

(0.01 - 100mm/s) No No No 
Yes 

(8.33– 
166.67 mm/s) 

Yes 
(0 – 400mm/s) 

Temperature 
Control (Range) Yes Yes 

(-70 to 120°C) Yes No No No Yes 
(-50 to 100°C) 

Multi-Indenter Test No No No No No No Yes 
Data Acquisition Yes Yes Yes Yes Yes No Yes 

Optical  
Observation 

 Device 
No No No No Yes No 

No 
 (provision 

provided for 
upgrading) 

29
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Table 4.2: Suggested tests for scratch characterization. 

 

 

Table 4.3: Composition of PP systems. 

 

 

 

4.2.2. Model Material System and Test Procedures  

 

 

In this study, four PP-based material systems are selected and their 

compositions are shown in Table 4.3.  For these material systems, the PP resin 

and a dark gray coloring pigment was provided and blended by Solvay 

Engineered Polymers.  Talc additive was provided by Luzenac.  Injection 

molding of the plaques, having dimensions of 340 mm × 180 mm × 3 mm, was 

performed by Advanced Composites, Inc.  For testing, the plaques were cut and 

Important Scratch 

Characterization 

Suggested tests 

Effect of scratch rate Increasing rate tests 

Effect of scratch load Increasing load tests 

Effect of temperatures Scratch tests with environmental 

chamber 

Influence of multiple scratches Multiple-indenter tests 

Material 

System 

PP type Filler (wt. %) Coloring Compound (wt. %) 

1 Homopolymer — 2NCA (2%) 

2 Homopolymer Talc (20%) 2NCA (2%) 

3 Copolymer — 2NCA (2%) 

4 Copolymer Talc (20%) 2NCA (2%) 
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machined into dimensions of 140 mm × 1 mm × 3 mm.  All test specimens were 

prepared according to ASTM D 618-00 Procedure A [64].  

Three sets of scratch tests (Tests A – C) were conducted.  In Test A, a 

constant stylus rate of 100 mm/s with a linear increasing normal load of 0 to 50 

N was performed.  While in Test B, a 30 N dead load was utilized with a 

constant stylus rate of 100 mm/s, which is consistent with the Ford five-finger 

test.  Finally for Test C, a dead weight of 30 N was used with a linearly 

accelerated stylus rate of 0 to 140 mm/s.  The scratch lengths of all tests were 

set to be 100 mm and tests were conducted at room temperature.  Stainless steel 

ball with a diameter of 1 mm was used as the scratch stylus tip. 

 
 

4.2.3. Evaluation of Scratch Damage  

 

 

Transmission optical microscopy (TOM) observation, using an 

Olympus® BX60 microscope, of thin sections of PP systems was performed to 

study the scratch damage of selected cross-sections along and across the scratch 

groove.  The thin sections were prepared by cutting the polymer strips into 2-

cm long rectangular blocks, and mounted in an epoxy resin.  The mounted 

polymer block was glued onto a microslide and further cut down to a 2-mm 

thick section by an ISOMET® 1000 diamond saw.  The thick sections were then 

polished to a thickness of 100–150 µm, using polishing papers stepwise with 

roughness from grit 800 to grit 4000 (grain size 5 µm) to achieve the final 

polish.  

Scanning electron microscopy (SEM) was also performed to study the 

microscale surface damage features using a JEOL JSM-6400 system.  A flatbed 

scanner with a resolution of 1,200 dpi was used to scan the test specimens and 

generate digital images for the quantification of scratch damage. 
To quantify the scratch damage, measurements were taken from the 

TOM, SEM and scanned images using the definitions of scratch widths and 

depths by Kotaki et al. [65], as shown in Figure 4.2.  SW1 represents the inner 
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width of the scratch groove.  SW2 represents the outer width of the scratch 

groove, i.e., the distance between the points where the slopes of the hills meet 

the unscratched plane.  SD1 represents the depth of the scratch groove 

calculated from the unscratched plane.  SD2 is the height of the peak to the 

trough of the scratch groove.  For spherical indenters, the scratch grooves 

generally show a symmetric cross-sectional profile.  In cases where asymmetry 

occurs, i.e., one side of the pile-up is higher than the other; the higher point was 

taken to obtain scratch depths.  
 

 

4.3. Finite Element Analysis  

 

 

In the concurrent work by Goy Teck Lim [52], in the mechanics of 

scratch, the finite element method [66] is used as the numerical tool to help 

elucidate the phenomena observed in the experiments.  A well-established 

commercial package ABAQUS/Explicit® [67] has been adopted to perform the 

finite element analysis (FEA) of the concerned problem.  

The modeling work is primarily set out to model the scratch problem as 

closely and realistically as possible to the actual testing conditions.  A 

computational model of 50 mm × 10 mm × 3 mm was first considered.  By 

exploiting the plane of symmetry, the computational model was reduced to the 

dimensions of 50 mm × 5 mm × 3 mm, as illustrated in Figure 4.3.  Not only 

will it save computational resources, the results of the reduced computational 

model can be extended to those of the original model.  For a more detailed 

discussion of the boundary and loading conditions of the computational model 

and various considerations of the FEA, one can refer to the literature [52, 68, 

69]. 
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4.4. Results and Discussion 

 

 

4.4.1. Experimental Results 

 

The scratch damage cross-sectional profile is reported based on an 

average of five specimens for each test condition. For Test A, the cross-section 

was taken at a location equivalent to 30 N load.  While for Test C, the cross 

section was taken at a location equivalent to 100 mm/s speed.  In this way, the 

three tests could be compared under the same loads and speeds of 30 N and 100 

mm/s. 

Following the definition specified in Figure 2, the trend suggests that the 

scratch width is the greatest for Test C, followed by Test B and Test A (Figure 

4.3a).  This trend has also been observed in FEA modeling (Figure 4.3b), which 

will be discussed in the next section.  For Test C, the accelerating scratch tip 

will induce both horizontal (in the direction of scratch) and vertical inertias 

(acting downwards).  The vertical inertia induced is due to the frictional effect.  

Both of the inertia will increase the normal and tangential forces acting on the 

substrate, thereby increasing the scratch width and depth.  While the increasing 

load imposed in Test A also induced additional vertical inertia, the magnitude of 

Figure 4.2: (a) Definitions of scratch widths and scratch depths; (b) Actual 
cross section of a scratch groove. 

SD1 
SD2 

SW1 

SW2 

(b)
(a)
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the induced inertia is much smaller than that for Test C.  With the presence of 

induced inertia, it is however contrary to the engineering intuition that the 

scratch width for Test A is smaller than that for Test B, where there should not 

be any additional inertia induced.  One possible reason for such an anomaly is 

because of the pre-existing high penetration depth due to the high initial dead 

load for Test B, which leads to a much higher resistance against horizontal 

sliding.  This, in turn, induces a higher ‘scratching force’ required to drive the 

scratch tip to maintain a constant speed of 100 mm/s, when compared to Test A.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Comparing the scanned images of the scratch morphology of a talc-

filled PP copolymer under the three test conditions, the scratch width remains 

constant along the scratch path for Test B and C conditions; while there is a 

gradual increase in scratch width along the scratch path for Test A (Figure 4.4).  

The damage induced in the scratch groove undergoes a transition as the scratch 

progresses in Test A.  Minimal surface features are observed in the beginning 

while severe damage with prominent ripple marks is present toward the end of 

the scratch.  It is found that the ripple marks are actually curved fracture lines 

Figure 4.3: Comparison of  (a) experimental and  (b) FEA results. 

(a) (b) 
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that appear periodically.  The same phenomena are also observed in other 

model PP systems.  It should be noted that the existing initial scratch width of 

0.33 ~ 0.45 mm found in specimens is caused by the pre-existing small mass of 

the scratch tip and the load control unit, which measures about 5 N.  Future 

improvement to the test device will be made to minimize such a pre-existing 

dead load prior to testing. 

It is apparent that the linear load increase test, i.e., Test A, is a more 

sensible test method in characterizing scratch damage resistance in polymers.  

Subsequent tests done on different material systems will demonstrate the 

usefulness and effectiveness of this test.  The test has shown that copolymer 

systems suffer more damage than homopolymer systems (Figure 4.5).  This is 

to be expected as the Young’s modulus and yield strength of copolymer PP are 

lower than those of the homopolymer PP [70].  Interestingly, the addition of talc 

does not cause significant changes in the size of scratch damage as quantified 

by the scratch depths and scratch widths.  The test also found that all scratch 

depths and scratch widths show the same general trend between the copolymer 

and homopolymer PP, and between neat and talc-filled PP systems.  

Figures 4.6 and 4.7 illustrate a typical complex surface feature and its 

sub-surface damage profile after a scratch is performed on a polymer.  It is 

evident that complex surface damage mechanisms, such as plastic ironing, 

brittle fracture, fibril drawing, filler debonding, stick-slip, etc., can evolve, 

causing the scratch depths to vary within the same scratch pass.  Thus, it is 

recommended that scratch widths, as opposed to scratch depths, be considered 

as a more reliable and consistent measure to quantify scratch damage.  

Adopting the scratch widths as a measure of severity of surface damage can be 

quite practical since flatbed scanners can be used for the measurement.  

However, it should be highlighted that the scanned images generally have a 

relatively lower resolution than TOM or SEM images.  Hence, one cannot 

easily distinguish between SW1 and SW2 from the scratch widths measured 

from scanned images.  Nevertheless, scanned images allow one to have a quick 

assessment of the scratch damage.  More sophisticated imaging tools can 

always be used for a more detailed study, if needed. 
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Scratch Direction 

(a) 

(c) 

Figure 4.4 : Talc-filled copolymers scratched under different conditions. (a) 
Linear load increase and constant speed, (b) constant speed and load and (c) 
linear rate increase and constant load. 

(b) 

Figure 4.5 : Scratch widths and depths from linear load increase 
test condition on four different model PP systems. 
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Figure 4.6: SEM of talc-filled homopolymer scratched under Test 
A conditions. 

Scratch Direction  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

 

 

 

 

 

Scratch ridges 

Figure 4.7: Variation of scratch depth along scratch groove in 
talc-filled copolymer. 
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Figure 4.9: Mar-scratch damage transition of (a) 
homopolymer and (b) talc-filled homopolymer in Test A 

Line of transition

(a) 

(b) 

Figure 4.8: Variation of scratch width with normal load. 



39 

 

To establish a relationship between scratch widths and normal loads, the 

linear load increase test as in Test A can be used.  Figure 4.8 shows a plot of the 

nominal normal loads applied by the spring load against the scratch widths 

measured by the scanner for various PP systems.  For all PP systems, the 

scratch width follows a reasonable linear relationship with normal load, with 

the copolymer PP exhibiting larger scratch widths than homopolymer PP.  

Figure 4.8 is a useful plot for revealing the load needed to form a given scratch 

width for a given polymer.  Since it has been shown that scratch width 

correlates well with scratch visibility as well as the severity of surface damage 

if the surface damage characteristics stay the same [25], it is therefore possible 

to easily determine the critical load needed to cause such a surface damage 

based on the scratch widths data shown in Fig. 4.8.  Most significantly, this plot 

will also allow material designers to quantitatively formulate a workable system 

to achieve specified surface damage resistance for a given polymeric system 

under a given testing condition. 

 Furthermore, the Test A method permits a mar-scratch transition to be 

identified.  This will help determine the critical normal load for such a 

transition.  For illustration, scratched specimens from Test A were scrutinized 

for the exact load and location along the scratch path where the scratch groove 

becomes highly visible.  SEM images that show the mar-scratch transition for 

homopolymer and talc-filled homopolymer are given in Figure 4.9.  The 

distance and normal load for the mar-scratch transition are also listed in Table 

4.4.  The damage modes for homopolymer and talc-filled homopolymer are 

observed to be distinctly different.  For homopolymer PP, the surface is smooth 

with no prominent features except for the faintly discernable edges before the 

line of transition (see Figure 4.9a).  After the line of transition, curved fracture 

lines appear and are closely spaced together, indicating an increase in the 

severity of surface damage.  In addition, a change in damage mode from plastic 

ironing to plastic drawing and cracking is found as the load increases.  For talc-

filled homopolymer PP, before the line of transition, the surface damage is 

barely observable where a very shallow depression is formed due to the sliding 

of the scratch tip (Figure 4.9b).  The scratch groove is so shallow that it is more  
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Table 4.4: Mar-scratch transition values. 

 

 

 

consistent with mar damage.  After the line of transition, surface drawing and 

large-scale plastic deformation occur, creating the damage features that scatter 

light more significantly from the scratch groove.   

The two SEM micrographs contrast the differences in surface damage 

mechanisms that occur during the mar-scratch transition.  Homopolymer PP 

exhibits a more brittle damage mode, which is evidenced by the regular plastic 

drawing and crack lines; whereas talc-filled homopolymer shows more plastic 

drawing.  This finding suggests that the addition of talc will alter the mode of 

scratch damage.  This study also indicates that the addition of talc into PP will 

lower the normal load required to cause mar-scratch transition by about 3 N 

(Table 4.4).  It should be noted that the critical load for the stress-whitening 

transition, which does not necessarily coincide with mar-scratch transition 

described above, can also be determined using the linear load increase test.  The 

findings have been demonstrated by using a commercial image analysis tool, 

VIEEW®.  The details of the results and their significance will be discussed in a 

separate paper. 

The scratches performed under Test B and Test C do not exhibit such a 

transition.  This is mainly due to the pre-existing severe initial indentation 

caused by the 30 N dead weight (Figure 4.4).  From the width measurements 

and the gray level analysis via a scanner, it can be shown that the scratch width 

does not vary significantly along the scratch grooves for Test B and Test C.  In 

contrast, the linear load increase test (Test A) does not introduce such a severe 

initial indentation because of its minimal starting load.  The transition in 

damage can thus be observed.  A scanned image shown in Figure 4.10 clearly 

 Homopolymer Homopolymer + Talc 

Mar-Scratch Transition 
Distance (cm) 2.65 1.90 

Mar-Scratch Transition Load 
(N) 18 15 
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illustrates the transitions as the scratch groove progresses.  Both the mar-scratch 

and the stress-whitening transitions can be observed.  

Another advantage of using the linear load increase test is the prevention 

of “chattering” of the scratch tip.  In the work done by Kita et al. [63], it has 

been found that at constant speed and constant dead weight test, the scratch tip 

has a tendency of skipping or jumping during scratching, depending on the 

polymer type and the testing conditions applied.  The same effect has also been 

observed in scratch tests done under similar conditions in our study.  This effect 

probably comes about when the tip ploughs too deep.  When ploughing 

resistance becomes higher than scratching force, skipping occurs as the tip can 

only continue the forward motion by climbing up vertically.  The linear load 

increase test eliminates this effect because the scratch depth is shallower and 

the frictional force that entails will not overcome the scratching force.   

Figure 4.11 shows the normal load of the scratch stylus as it traverses a 

neat PP specimen.  Notice that the load plot is linear and well-behaved without 

any large spikes, proving that severe chattering did not occur during the linear 

load increase scratch test.  

 

 

 

 
 

 

(d) Severe  (c) Stress-whitening 
transition

(b) Mar-scratch 

(a) 

Figure 4.10: Scanned image showing scratch damage transition in a talc-filled 
homopolymer under Test A conditions. (a) Entire scratch length, (b), (c) and (d) 
are enlarged details showing transition in scratch damage. 
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Figure 4.12 : Percentage standard deviation for scratch widths and 
depths in the linear load increase test. 

Figure 4.11 : Normal load profile of neat PP under linear load 
increase test during scratch. 
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4.4.2. Repeatability 

 

 

The scratch tests performed above show that our custom-built scratching 

machine, if executed with care, can generate results that are highly repeatable.  

To show the repeatability of test results, standard deviation of the scratch 

widths and depths from Test A are calculated and plotted in Figure 4.12  From 

Figure 4.12, the percentage standard deviation is found to be lowest for SW1 

and SW2, while it can go as high as 33% for SD1.  This further suggests that 

the scratch widths give a more reliable measure of scratch damage.  Apart from 

scanned images, the repeatability of test results in terms of scratch widths and 

depths has also been evaluated using a commercial image analysis system, 

VIEEW® and the findings are very similar to the analysis given above.  

 

 

4.4.3. Numerical Analysis Findings 

 

 

To evaluate the effect of loading conditions and scratch rates on the 

stress field of the computational model, three different load cases that are 

similar to the three tests performed in the experimental section (Tests A – C) 

were considered for the present FEA work.  The three load cases1 are: (a) 

linearly increasing load (10 – 30 N) under constant scratch rate, (b) dead load 

(30 N) under constant scratch rate, and (c) linearly increasing scratch rate under 

dead load (30 N).  Using the same scratch damage quantification in Section 

4.2.3, the scratch widths, SW1 and SW2 predicted by FEA at sections where the 

normal load and the scratch rate are the same for the three load cases, are shown 

in Figure 4.3.  Good qualitative correlation can be noted.   

                                                 
1 Note that the use of the reduced computational model in FEA (refer to [52]) requires the 
normal loads specified to  be reduced by half [67].  The computed FEA results remain valid for 
the normal loads as stated. 
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Figure 4.13: von Mises stress distribution for different load cases. 
(after Lim [52]) 

Higher Stress 

Lower Stress 

(c) Accelerated scratch rate 
and dead load (30N) 

(b) Dead load (30N) and 
scratch rate  

(a) Increasing load (10-30N) 
and constant scratch rate 

Figure 4.14: von Mises stress distribution for different load cases, cross –
section view. (after Lim [52]) 

(a) Increasing load (10-30N) and constant scratch rate (b) Dead load (30N) and scratch rate  

(c) Accelerated scratch rate and dead load (30N)
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Similar to the earlier experimental findings, the scratch widths are found to be 

the smallest for load case (a), i.e., Test A, followed by load case (b), i.e., Test B, 

and load case (c), i.e., Test C.  There is, however, a noted quantitative 

difference between both sets of results and may be due to the material model 

adopted in the FEA, which may require further refinement. 

The von Mises stress distribution of the computational model for the 

three test conditions are plotted in Figure 4.13(a-c).  By contrasting the three 

contour plots, one can readily see that the computational model undergoes the 

least amount of plastic yielding for load case (a), followed by load case (b) and 

the most severe for load case (c).  To have a more reasonable comparison of the 

von Mises stress distribution, the contour plots across the appropriate cross-

sections where the normal load and the scratch rate will concur at the same 

value in all three load cases are presented in Figure 4.14.  As shown in these 

figures, the change in the loading and scratch rates has a profound effect on the 

extent of von Mises stress distribution.  To distinguish the differences in the 

loading effect, a viewing box is drawn over each stress zone, with the load case 

(b) taken as the reference.  Through these viewing boxes, the increasing loading 

rate during scratch as in load case (a) will render the stress zone to extend 

slightly deeper into the substrate.  By accelerating the scratch rate, as in load 

case (c), within the same scratch pass, the more critical stress zone not only 

deepens, but also widens.  For a detailed explanation on the FEA results, refer 

to the papers by Lim et al. [52]. 

 

 

4.5. Conclusions 

 

 

In the present work, a new scratch test method has been introduced to 

evaluate polymer scratch resistance.  The proposed scratch test method is used 

to investigate four sets of model PP systems.  By employing the linear load 

increase method, the chattering phenomena commonly seen in dead weight 

methods are eliminated, and the scratch damage resistance of different PP 
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systems can be quantified.  It is found that copolymer PP suffers greater scratch 

damage than homopolymer PP.  Addition of talc does not change scratch widths 

and depths of both homopolymer and copolymer significantly.  Good 

repeatability in all three test conditions is also found using our custom-built 

scratcher.  The proposed linear load increase test enables the observation of 

mar-scratch and stress-whitening transitions during scratch. 

From the three-dimensional FEA, a better understanding of several 

influencing factors, such as the change in the loading and scratching rates and 

stress distribution around the indenter, is gained.  Through the correlation 

between the FEA and experimental results, it is indicative that the FEA is able 

to qualitatively capture the important characteristics of the scratch process, and 

hence warrants further utilization of FEA for fundamental understanding of 

scratch behavior of polymers.  
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CHAPTER V  
 

STUDY OF SURFACE DAMAGE OF POLYPROPYLENE UNDER 
PROGRESSIVE LOAD 

 
 
 

5.1 Introduction 

 

 

The main objective of the current work is to investigate the relationship between 

the surface damage features observed during scratch and the material parameters.  It is 

intuitive that surface damage features and damage mechanisms transitions can be linked 

to the material characteristics and the stress state the material experiences.  The frictional 

force exerted during scratching was recorded.  Through the comparison of the frictional 

force profile and the damage features of the scratched surfaces, direct correlation among 

damage features, visibility and applied force can be achieved. 

 

 

 

 
 

 

0
20
40

60
80

100
120

140
160

0 20 40 60 80 100 120
Pixels

G
ra

yl
ev

el

Figure 5.1: Gray level plot of scratch groove from scanner image. 
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5.2 Experimental  

 

 

5.2.1 Experimental Approach and Materials 

 

 

The experimental procedure and materials used are as described in Section 4.2.2.  

In this case, only specimens from the progressive load condition (Test A) were studied. 

A second variation of the experimental procedure was introduced.  Selected 

samples of the scratched specimens were immersed in water and sonicated for 30 min in 

a Bransonic® ultrasonic cleaner with an output power of 70 W at 42 KHz.  The energy 

generated by the ultrasonic vibration is expected to preferentially remove remnant from 

the damage regions in the scratch groove that are highly stressed.  The use of this 

technique will thus reveal regions where scratch induces the most damage.  

 

 

5.2.2 Quantification of Scratch Damage 

 

 

Scanning electron microscopy (SEM) was performed to study the microscale 

surface damage features using a JEOL JSM-6400 system.  A flatbed scanner with a 

resolution of 1,200 dpi was used to scan the scratched surfaces to quantify scratch 

damage.  A commercial image analysis tool, VIEEW®, was also used to scan and 

quantify surface damage of the specimens.   

Quantification of damage was performed in accordance to the earlier method 

described in Section 4.2.3.  Thin sections were used in taking cross-polarized 

micrographs using the BX60 Olympus® microscope. 
For scratch visibility evaluation via scanner, the scratched specimens were laid 

and scanned together with a piece of white Xerox paper.  The scanned image was then 
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processed by adjusting brightness and contrast of the image so that the piece of white 

paper in the image has a value of 255 in grayscale.  The gray level of the image is then 

measured using Scion Image Beta 4.0.2.  The length of the scratch groove was divided 

into five equal sections, each with 2 cm in length.  Figure 5.1 shows the gray level plot 

of two specimens that were scanned together.  The values shown are the average gray 

level along the scratch groove within the 2 cm section.  The peaks (indicated by arrows) 

show that higher amounts of light were reflected off the scratch groove than the 

surrounding areas.  

In addition, VIEEW® was used to define areas that were stress-whitened during 

scratching.  The onset of stress-whitening could thus be measured reliably.  The 

corresponding critical distance and critical load can be obtained via this method.  

 

 

5.3 Results and Discussion 

 

 

5.3.1 Homopolymer Surface Features 

 

 

Figures 5.2 and 5.3 show the scanned images of neat homopolymer and talc-

filled homopolymer scratched under progressive loading.  Various regions of interests 

are highlighted and SEM micrographs of these locations are also displayed in Figures 

5.2(b)-(e) and 5.3(b)-(e).  In Figure 5.2, Region 1 shows the characteristic wave-like 

deformation, which is seen in PP scratched under low loads and low speeds [24, 25, 70].  

It has been shown by Tang and Martin [71] that these wave-like patterns are likely the 

result of shear bands formed near the surface of the scratch groove.  Region 2 shows a 

transition in damage feature, the width of the groove increases more rapidly, the regular 

parabolic lines are no longer present and are replaced by irregular brittle type of failure.  

This suggests that shear banding is no longer the major mode of deformation.  Fracture 
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lines are clearly visible, which are indicated by arrows in the micrograph.  The scanned 

image also shows an increase in visibility because of the increase in whiteness of the 

groove.  Interestingly, the damage pattern settles into a regular sigmoidal pattern after it 

has reached the maximum width (indicated by dashed line) and gradually fades away 

into a smoother groove.  Region 3 shows another type of transition.  In this case damage 

becomes more severe and the deformed material forms ‘lips’ that overflows to the side 

of the groove.  This indicates an increase of pileup in the scratch groove.  In the later 

stage of the scratch, surface damage is predominantly random fracture lines (indicated 

by arrows).  Regions 4 and 5 shows that the damage features remain unchanged.  Region 

5 was subjected to sonication before SEM analysis.  An anomaly that is attributed to the 

sonication process is observed in Region 5.  More on this anomaly will be discussed in a 

later section.  

Figure 5.3 shows a similar progression in severity of surface damage of a talc-

filled homopolymer.  However, there are some obvious differences.  Firstly, a clear 

transition from mar to scratch is seen in Region 1.  The surface damage is barely 

perceptible before transition except for a slight difference in surface texture from the 

unscratched surface.  After the transition, a dramatic change in damage mode occurs 

with large plastic drawing.  Region 2 shows a very similar type of transition as shown 

before in the homopolymer.  Region 3 shows a rougher surface with debris (encircled in 

white), in contrast to the relatively smooth surface in Figure 5.2.  It is observed that a 

segmented type of pattern appears in region 3, which suggests the occurrence of a stick-

slip process.  In region 4, the scratched surface shows a very rough texture with debris, 

fibrils and large pileups on the side.  Thus, the evidence seems to suggest that the 

addition of talc affects the damage mode during scratch by inducing ductile deformation.  

Region 5 was subjected to sonication like in the previous example.  Again, anomalous 

features were found that is attributed to the sonication process. 
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(d)
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(a) 

(f) (b) 

Figure 5.2: (a) Scanned image of scratched homopolymer, (b) region 1, (c) region 2, (d) region 3, (e) 
region 4 and (f) region 5 are SEM micrographs of highlighted regions in the scratch groove.  Note that that 
region 5 shows fibril breakage after sonication.
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(b) 

(c) 

(d)

(e)

(a) 

(f)

Figure 5.3: (a) Scanned image of scratched talc-filled homopolymer, (b) region 1, (c) region 2, (d) region 3, (e) region 
4 and (f) region 5 are SEM micrographs of highlighted regions in the scratch groove.  Note that that region 5 shows 
fibril breakage after sonication.
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 The scratch distance, which is measured from the start of scratch, of each region 

shown in Figure 5.2 and 5.3 is recorded.  The maximum width in each region was 

measured using digital image processing software, and the corresponding tangential 

force and normal load were derived from the frictional plot obtained during testing.  

Scratching coefficient of friction and scratch hardness is calculated and tabulated in 

Table 5.1.  A comparison of both materials reveals some interesting trends.  It is 

observed that scratching coefficient of friction increases with scratch distance in both 

homopolymer and talc-filled homopolymer; whereas the opposite is true for scratch 

hardness.  However, the decrease in scratch hardness is much more drastic in talc-filled 

homopolymer.  Although talc allows the polymer to resist deformation better at small 

loads, the material rapidly degrades and becomes weaker.  The reason for such a 

behavior is discussed in later sections. 

 

 

Table 5.1: Significant parameters of highlighted regions in Figures 5.2 & 5.3. 

 Homopolymer           

Region 

Scratch 
Distance 

(mm) 
Width 
(mm) 

Tangential  
Force (N) 

Normal  
Load (N) 

Scratching 
Coefficient 
of Friction 

Scratch 
Hardness 
 Hs (MPa) 

1 23.80 0.368 2.82 16.6 0.17 156 
2 28.09 0.414 2.94 18.7 0.20 139 
3 50.90 0.539 8.94 29.8 0.35 130 
4 59.36 0.616 8.90 33.9 0.26 114 
5 68.7 0.600 12.9 38.5 0.30 128 

   
 Talc-filled Homopolymer      

Region 

Scratch 
Distance 

 (mm) 
Width 
(mm) 

Tangential  
Force (N) 

Normal  
Load (N) 

Scratching 
Coefficient 
of Friction 

Scratch 
Hardness 
Hs (MPa) 

1 23.22 0.243 2.68 16.5 0.16 355 
2 31.39 0.430 4.87 20.5 0.24 141 
3 43.40 0.497 7.68 26.5 0.29 119 
4 58.57 0.608 8.84 33.9 0.26 117 
5 91.5 0.746 20.6 50.2 0.41 115 
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 The observed softening of the polymer under higher loads is contrary to intuition.  

In metals, hardness is expected to increase with normal load due to work hardening 

[4,50].  In addition, Equations 2.4 and 2.5 implies a quadratic relationship between 

normal load and indentation width for a spherical indenter indenting under quasistatic 

conditions, provided that n =2.  Scratch hardness is expected to at least remain constant 

if work hardening does not take place.  However, no such simple relationship can be 

found in this case.  Stick-slip motion might be a possible reason for such a behavior.  It 

is observed that stick-slip involves a buildup of stress and gross plastic deformation in 

front of the tip (see Section 5.3.5), followed by a sudden release of strain energy.  This 

renders Meyer’s law invalid because the load bearing area is no longer simply related to 

d2.  Figure 5.4 shows the data obtained by measuring the width of the scratch groove as 

shown in the SEM images in Figures 5.2 and 5.3.  Measurements from Region 3 of 

homopolymer and talc-filled homopolymer are presented here.  It can be seen that the 

stick-slip events are denoted by the spikes in width.  It is noted that the scratch width of 

homopolymer is less than talc-filled homopolymer, which contradicts the findings in 

Figure 4.8.  This is because of the difficulty in defining the peaks of the pileup on both 

sides of the scratch groove simply by a 2D micrograph.  Talc-filled homopolymer tends 

to produce larger pileups than neat homopolymer, which obscures the actual position of 

the peaks. 

 

 

 

Table 5.2: Mechanical Properties of PP systems 
 

 

 

 

 

 

 

 Tensile Modulus (GPa) Yield Strength (MPa) 
Homopolymer 1.73 33.47 
Homopolymer + Talc 2.73 35.30 
Copolymer 1.07 22.55 
Copolymer + Talc 1.55 23.28 
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Table 5.2 gives the tensile moduli and yield strengths of the PP systems used.  

The addition of talc increases both properties when compared to unfilled polymers.  This 

explains in part the large scratch hardness observed initially in talc-filled homopolymer. 

However, the question as to why its performance degrades so rapidly remains.  A 

possible reason is due to the skin-core morphology that is present in the PP system used 

in the current study.  Skin-core is formed in injection-molded thermoplastics.  A faster 

cooling rate exists next to the mold surface, this induces the polymer in the outer skin to 

form amorphous phase preferentially, whereas large crystallites and possibly, spherulites 

are formed in the core of the bulk polymer.  A transition zone exists between skin and 

core that is composed of smaller spherulites.  The cross-polarized optical micrograph in 

Figure 5.5 illustrates an example of skin-core morphology of the system used.  The 

abovementioned zones are indicated in the micrographs.  It is possible that as the scratch 

progresses and reach deeper into the substrate, the change in hardness reflects the 

different mechanical properties in the layers.  Closer inspection on the depth of each 

layer as shown in Table 5.3, however, disproves this hypothesis.  Firstly, the values 

obtained for skin depth does not seem to correspond well with the observed scratch 

depths in each micrograph.  It is also well-known that polymer crystalline phase is 

harder than amorphous phase.  Changes in hardness, if any, should show an increment 

instead of decrement [72].  
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Table 5.3: Skin-core depths of PP 

 

 

 

 

 

 

 
 

 

Material Skin/Transition Depth  (µm) Transition/Core Depth (µm)

Homopolymer 345.24 594.31 
Homopolymer + Talc 729.94 1134.37 

Copolymer 231.81 586.91 
Copolymer + Talc 429.09 1102.31 
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Figure 5.4:  Scratch width of regions shown in Figure 5.2 & 
5.3.  Spikes denote stick-slip events.    
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Figure 5.5:  Skin-core morphology of (a) homopolymer, (b) talc-filled 
homopolymer, (c) copolymer and (d) talc-filled copolymer. Note that the cross-
section of scratch groove on each surface corresponds to that at 30N normal 
load.
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5.3.2 Scratch Hardness 

 

Scratch widths of the scratched specimens of the four PP systems and 

polycarbonate were measured from VIEEW® direct-light images.  Scratch widths from 

the initial and end regions of the scratch groove were ignored due to instability of scratch 

in those regions.  The projected load-bearing area is then calculated according to the 

formula, πd2/4. The resultant graphs of normal loads against projected load-bearing area 

were plotted as shown in Figure 5.6.  Equation 2.6 suggests that if scratch hardness is 

constant over a range of loads, then the slope of the linear fit from the above graphs will 

give the scratch hardness of the material.  Indeed, this was the case for the materials 

tested in this work and all the plots gave very good linear fit.  The slope was found easily 

and the results are shown in Table 5.4.  The scratch hardness values from Table 5.4 are 

in wide disagreement from those found earlier.  This disagreement is very likely due to 

the initial load exerted by the stylus before scratching.  The source of this initial load is 

due to imprecise setting up of initial conditions before scratching.  If initial load is zero, 

the resultant graph will begin at the origin; however, if the initial load is more than zero, 

the graph will be shifted upwards vertically, as is observed in Figure 5.6.  The immediate 

consequence of this effect is an incorrect scratch hardness when Equation 2.6 is applied 

to each discrete point.  Scratch hardness will be overestimated due to the erroneously 

steeper than actual slope.  Thus the observed softening in scratch hardness found earlier 

is not real; it is simply due to the inappropriate application of the scratch hardness 

equation.  Employing the graphical method to obtain scratch hardness will eliminate the 

error induced by the initial load. 

The true scratch hardness as shown in Table 5.4 shows the effect of talc on 

scratch hardness unequivocally.  Talc increases scratch hardness in both homopolymer 

and copolymer PP systems.  This is in agreement with the conclusion found in 

comparing the mechanical properties of the PP systems in Table 5.2.  This is a very 

useful observation, as we can now correlate mechanical properties such as stiffness and 
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tensile strength with scratch hardness directly.  A comparison also shows that the present 

homopolymer PP systems have comparable scratch resistance to polycarbonate. 

 

 

 
 

 

 
Table 5.4: Scratch hardness obtained from graphical method. 

 
Material Scratch Hardness (MPa) 

Polycarbonate 55.8 

Homopolymer 55.8 

Homopolymer + Talc 59.4 

Copolymer 27.4 

Copolymer + Talc 29.6 

Figure 5.6: Graphical method of obtaining scratch hardness.  
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Figure 5.7:  Frictional force profile from scratch test of (a) 
homopolymer and (b) talc-filled homopolymer.  
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5.3.3 Homopolymer Frictional Force Profile 

 

Figure 5.7 (a) and (b) show the frictional force profile for the specimens 

displayed in Figures 5.2 and 5.3, respectively.  Tangential force as measured by the 

scratch machine is represented by solid lines, while scratching coefficient of friction is 

represented by dashed lines.  The scratching coefficient of friction shows a gradual 

increase as the scratch distance and normal load increases. A similar behavior was 

observed in polycarbonate by Rats et al [73].  In their experiments, a Rockwell C type 

stylus was used to scratch polycarbonate over a load range from zero to ten newtons.  

This is in clear violation of the First Law of Friction, which is probably due to the fact 

that such a process violates the basic assumption of no plastic deformation.  The usual 

sense of “coefficient of friction” does not apply here because of this effect.  The 

contribution from the ploughing resistance during scratch becomes significant and the 

measured “coefficient of friction” is no longer simply a function of interfacial 

interactions.  Thus the term scratching coefficient of friction is used to recognize this 

distinction. 

 The profile is characteristically marked by fluctuations that are obviously due to 

the irregularities encountered during scratching.  It is noteworthy to mention here that if 

the distance, as represented by the dashed vertical lines in the plots, that corresponds to 

the highlighted regions shown previously in Figures 5.2 and 5.3 are marked on the 

profile, we can see spikes in some of them.  Regions 2 and 3 of Figure 5.2 and Regions 1, 

2 and 3 of Figure 5.3 correspond to large spikes in the force profile.  Reviewing the SEM 

micrographs will show that the transitions are sudden, signifying a change in damage 

mode.  This clearly shows the ability of this method to capture important frictional force 

data that relates to the physical changes during scratch. 

 

 

 



62 

 
 

 

 

 

The scratching coefficient of friction is calculated from the linear increase in 

normal load and the tangential force recorded, derived via Equation 2.7.  This second 

plot is useful in contrasting the spikes and fluctuations that exist in the frictional force 

plot.  The plot is marked initially by instabilities that occur during the start of the 

scratching process, hence resulting in exaggerated spikes as seen in the plot.  The graph 

stabilizes rapidly and produces a predictable trend.  It is noted that there seems to be 

distinct regions in the profile as scratch progresses.  Straight lines are overlaid onto the 

plot to better distinguish the three distinct regions shown in Figure 5.7(a).  Region A 

denotes a gradual increase in scratching coefficient then it approaches a gentler slope in 

Region B, which leads to another change in slope in Region C.  This curve fitting when 

coupled with the observations in the SEM micrographs suggests that the varying rate of 

increase in scratching coefficient is the result of different physical damage mode 
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Figure 5.8: Frictional force profile of PC showing constant slope in both 
curves. 
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occurring during scratch.  However, it should be cautioned that the above results should 

not be construed as evidence that the profile actually increases linearly in each phase, 

nevertheless it serves as a useful tool in understanding the scratch behavior.  For 

comparison purposes, the frictional profile of a polycarbonate (PC) specimen is shown in 

Figure 5.8.  The scratch groove of the PC specimen showed no transition at all and 

smooth ploughing took place over the entire scratch length.  The scratch test was done 

under identical conditions as PP.  The frictional force plot shows a constant slope over 

the entire scratch process. 

 

 

5.3.4 Copolymer Surface Features 

 

 

The frictional profiles of the scratched PP system thus seem to show a behavior 

that is incongruent with any previously known theory.  To explain the apparent change 

in the slope of the scratching coefficient, copolymer and talc-filled copolymer systems 

were sonicated.  It is hypothesized that localized regions of the scratched surface are 

highly strained during the scratch; a controlled burst of energy supplied by the vibration 

of water during sonication might be able to induce failure in these regions.   It was hoped 

that the copolymer systems, having a lower stiffness and higher ductility, will show 

sonication-induced failure more readily.  Copolymer does not show any induced failure 

from the sonication (Figure 5.9).  Region 1 shows a gradual transition from regularly 

spaced wave-like lines, due to formation of shear bands, to irregular deformation lines.  

Region 2 shows extensive deformation that marks the beginning of the stress-whitened 

zone. 



 

 
 

 

(b) 

(a) 

(c)

Transition zone

Figure 5.9: (a) Scanned image of scratched copolymer that was sonicated, (b) region 1 and (c) region 2 
shows extensive deformation indicated by box. 
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Figure 5.10: (a) Scanned image of scratched talc-filled copolymer that was sonicated, (b) region 1 and 
(c) close up of a pit in region 1.  



66 

Talc-filled copolymer, however, shows a very different surface feature after 

sonication.  Figure 5.10 shows the appearance of pits on the surface that correspond to 

highly visible marks in the scanned image.  The pits exhibit remnants of broken fibrils at 

the edges.  The pits appear to be made up of concentric circles of layers of polymer.  In 

fact, the step-like features allows easy counting of the number of layers in each pit.  As 

the scratch progresses, the pit grows by increasing the number of steps.  Eventually the 

pits give way to large scale failure that creates the feature seen on the right of the pits.  It 

is of significance to note that the substrate material forms layers, each with a different 

amount of stretching during the scratch process.  It is proposed that this process is 

similar to the biaxial stretching of polymer films. The inter-pit distance is plotted and the 

data shown in Figure 5.11.  It is apparent that inter-pit distance increases with increasing 

scratch distance, which accounts for the larger deformation observed as scratch distance 

increases. 
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Figure 5.11: Inter-pit distance shows an increase against scratch distance. 
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Encouraged by the results shown in talc-filled copolymer, the homopolymer 

systems were revisited and sections that correspond to the later portion of the scratch 

were also sonicated.  It is anticipated that sections under higher loads should provide a 

better chance in showing highly strained regions.  It is found in Figures 5.2(f) and 5.3(f) 

that remnants of broken fibrils were formed on the side walls of the groove.  This 

indicates that the region most highly strained in homopolymers are on the side of the 

groove, in contrast to copolymers, where the most strained regions are at the center of 

the groove.  Figure 5.12 (a) and (b) show the formation of fibrils in homopolymer and 

talc-filled homopolymer, respectively.  The presence of fibrils offers another explanation 

to the observed change in coefficient of friction of PP.  Fibrils are formed during cold-

drawing of the polymer.  Figure 5.13 shows a tensile engineering stress-strain graph 

typical of a material that yields and cold-draw.  Cold-drawing occurs within the plateau 

region.  It can be seen that stress remains relatively constant while strain increases 

dramatically within this region.   
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(a) 

(b)

Figure 5.12: Fibrils in (a) homopolymer and (b) talc-filled homopolymer. 
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5.3.5 Copolymer Frictional Force Profile 

 

 

Frictional force profile for copolymer systems is in general similar to that of 

homopolymer systems.  Four distinct regions can be seen and they behave in a similar 

manner as mentioned in section 5.3.3.  Figure 5.14(a) and (b) shows the frictional force 

profile of copolymer and talc-filled copolymer respectively.  Regions 1 and 2 shown in 

Figure 5.9 are marked in 5.14(a).  Region 2 shows a spike that corresponds to the 

observed deformation event.  Figure 5.14(c) shows the detailed profile of (b) that 

corresponds to the surface features observed in Figure 5.10(b).  Each dashed line in the 

cluster of lines on the left of the graph indicates a pit in the SEM.  It can be seen that 

each pit corresponds to a peak in the frictional force profile.  There is an unaccounted 

spike in between the ninth and tenth line that does not appear to correspond to any 

physical feature observed.  The two larger peaks on the right of the graph correspond to 

the two large-scale deformation regions observed in the SEM.  Thus the above results 

further corroborates that the pits are the highly strained regions.  The fidelity of the 

frictional force profile to the SEM images is also demonstrated in this study. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.13: Engineering stress-strain graph of a material that yields and cold-
draws.  (after McCrum et al. [74]) 
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Figure 5.14:  Frictional force profile from scratch test of (a) copolymer and (b) 
talc-filled copolymer. (c) shows the detailed profile of (b) that corresponds to 
Figure 5.10 (b). 
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Figure 5.15: SEM micrograph of exposed talc particles in a talc-filled 
homopolymer.  Arrow indicates scratch direction. 

Figure 5.14. Continued 
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5.3.6 Scratch Visibility 

 

 

5.3.6.1 Stress-whitening 

 

 

It is well-known that crazing produces voids which could contribute to stress 

whitening.  Rengarajan et al. [75] found that PP which contained impact modifiers that 

promote shear deformation exhibits less stress-whitening than PP containing impact 

modifiers that promote crazing and void formation.  Tang and Martin [71] had provided 

evidence of void nucleation from the rubber phase in PP.  The current copolymer 

actually contains a rubber phase, and thus stress-whitening can occur either by voiding 

or crazing induced by the rubber phase.  This explains why the copolymer system has a 

lower critical load to onset of stress-whitening.  A stronger rubber phase-matrix bonding 

may reduce the nucleation of voids and stress-whitening. 

Talc, if not properly modified, is well-known to increase stress-whitening of 

polymers.  The SEM micrograph in Figure 5.15 shows exposed talc particles after 

scratch at 30 N and 100 mm/s in the homopolymer.  Figure 5.16 (a) shows an image that 

was obtained from VIEEW®.  Blue and green diffuse light were used during the 

scanning of the images as it was found that visibility of the scratch grooves in talc-filled 

systems were most prominent at these particular wavelengths.  Holoubek et al.[59] 

showed that in a stress-whitened polypropylene, light scattering due to voids is relatively 

insensitive to different wavelengths of the visible light.  Whereas, light scattering due to 

ethylene-propylene-diene monomer (EPDM) rubber particles embedded in 

polypropylene is most effective at wavelengths around 400 nm (violet), which gradually 

drops off as wavelength increases.  Although talc particles, not EPDM particles, are 

present in the talc-filled homopolymer PP, the fact that scratch visibility is sensitive to 

wavelength of light suggests that talc plays an important role in causing such 

pronounced increase in scratch visibility.   
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The highlighted region in Figure 5.16(a) represents the area that was stress-

whitened.  When this image is superimposed onto the frictional force profile, a 

correlation between the onset of stress-whitening and a steep drop in frictional force is 

easily seen.  This coincidence in onset of stress-whitening and drop in frictional force is 

observed in all polymer systems except for homopolymer PP, where no appreciable 

stress-whitening was detected.  Another feature that seems to be recurring is the higher 

probability of large amplitude fluctuations that manifests after this steep drop in friction.  

The large fluctuations would seem to suggest that the damage mechanism has changed 

such that a smooth sliding motion across the surface becomes less likely.  Yielding, 

fracture or stick-slip events as evidenced in the earlier micrographs are possible reasons 

for the observed fluctuations.  The drop in friction is probably a result of a sudden failure 

by yielding or fracture, which can result in the formation of voids or exposure of talc 

particles.  It has been suggested that talc particles in PP play no role in shear band 

formation during scratch [71].  In the present case, the presence of talc particles 

aggravates the damage by the debonding of particle-matrix interface and matrix drawing, 

as seen in Figures 5.3 and 5.15. 

A set of three specimens from each material was scanned using the VIEEW® 

system, the critical load to onset of stress-whitening was obtained and the results are 

given in Figure 5.17.  The results show that the magnitude of critical load to stress-

whitening occurs in the following descending order: homopolymer, talc-filled 

homopolymer, copolymer, talc-filled copolymer.  We see that scratch visibility is partly 

dependent on mechanical properties, such as tensile modulus and yield strength (Table 

5.2).  Lower moduli and lower yield strength give a lower critical load for unfilled PP 

systems.  Figure 5.18 shows the size of the area that was stress-whitened for each 

material system.  Talc-filled polymers show a larger affected area.  It is apparent that talc 

not only decreases the critical load to stress-whitening, it also dramatically increases the 

amount of stress-whitening.   
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Figure 5.16: (a) Image from VIEEW®, white region indicates stress-whitening, 
(b) frictional profile for this talc-filled copolymer specimen, dashed line shows 
excellent correlation with onset of stress-whitening.  

Figure 5.17: Critical load to onset of stress-whitening. 
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Figure 5.18: Area of scratch groove that was stress-whitened. 

Figure 5.19: Gray level plot of scanned image of a copolymer via flatbed scanner. 
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The evidence presented points strongly to the role of filler particles in scratch 

visibility.  It is thus proposed that the real reason for the difference in scratch visibility 

between the current PP materials used is the tendency of the material to form light 

scattering voids or to expose talc particles at the critical load.  Logically, this load will 

probably be dependent on some yielding or fracture criteria, depending on the specific 

failure mode that occurred.  To illustrate this point, homopolymer is found to fail by 

fracture without any observable voids (Figure 5.2). On the other hand, talc-filled 

homopolymer fails via debonding of talc particles and drawing of the matrix as 

evidenced.  Voids and debonding occur as a direct consequence of this change in 

damage mode, and these are the causes for significant light scattering.  Accordingly, for 

homopolymer PP, it is suggested that minimal stress-whitening will take place as long as 

the failure mode do not change.  The approach to the reduction of scratch visibility can 

be partially answered.  Preventing the material from reaching a deleterious mode of 

failure, i.e., extensive fibrillation of the matrix or debonding should reduce scratch 

visibility.  This can be achieved by applying hard coats on top of the polymer, by using 

polymers with high yield strength and fracture strength, or by improving interfacial 

strength between filler particle and polymer matrix.   

Figure 5.19 presents the gray level analysis via scanner method described earlier.  

A graph of the gray levels of unscratched surface was plotted to contrast that of the 

scratch groove.  The graph of the unscratched surface remains constant throughout the 

scratch length, while the scratch groove shows a gradual increase in gray level.  Owing 

to the fact that the scanner can only show a monotonic increase without any prominent 

peaks or change in value, it will not be very useful in characterizing scratch visibility. 
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5.3.6.2 Ductile vs. Brittle Failure 

 

 

The present work suggests that stress-whitening is mainly due to the surface 

drawing of the scratched polymer.  The ductile drawing is caused by void formation and 

debonding of rubber phase and talc particles from the matrix.  Evidence of large tracts of 

material being removed (peeling) can also be seen in Figures 5.9(c) and 5.10(b).  In 

contrast, materials that failed in a localized brittle manner, i.e., homopolymer and talc-

filled homopolymer, display minimal stress-whitening.  Previous work done by other 

authors, such as Lin et al. [76] and Bertrand-Lambotte et al. [38], support the view that 

brittle failure will increase scratch visibility.  It is reasoned that brittle failure will 

increase surface roughness of the scratch groove because of the formation of cracks, 

while ductile failure gives a smooth polished surface.  Subsequently, as the eye is more 

sensitive to the change in surface roughness, scratch visibility is increased.  However, it 

must be noted that the aforementioned authors came to this conclusion from scratch tests 

done on automotive clearcoats that produces scratch deformation in the microscale range 

of up to 20 µm.  Thenceforth, it is applicable to situations where marring occurs, an 

example being mars produced by minuscule sand particles.  In the present case, where 

the dominant mechanism that produces large surface roughness is ductile failure due to 

voiding and debonding, a diametrically opposite conclusion is obtained.  These 

contrasting conclusions show that scratch visibility cannot be described as simply related 

to ductile or brittle failure.  The effect of the mode of failure to scratch visibility is 

sensitive to the type of material and possibly size of the scratches. 
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5.4 Conclusions 

 

It has been shown that different surface damage features are present as scratch 

progresses under linear load increase.  The surface damage transitions, such as mar-

scratch and stress-whitening, can be correlated to transitions in the frictional force 

profile and scratching coefficient of friction.  Using sonication to induce failure in highly 

strained regions, it was found that highly strained regions in homopolymers occur on the 

side of the groove.  For copolymers, highly strained regions occur in the center of the 

groove.  Subsurface of polymer appears to form layers when scratched and in talc-filled 

copolymer under high strain and high stress, the affected zone forms a spherical volume, 

which manifests as pits after sonication. 

High fidelity of the frictional force profile to SEM images was demonstrated.  

Significant features found in SEM can always be corroborated to the peaks in the 

frictional force profile.  It was found that stress-whitening is always followed by a drop 

in friction.  This observation provides a useful criterion in defining the initiation of 

stress-whitening in PP.  Talc, if not properly modified, was found to have a deleterious 

role in terms of scratch visibility, even though it increases scratch hardness.  Talc is 

responsible for lowering the critical load to onset of stress-whitening and for increasing 

the amount of stress whitening.  Based on the observations in the present paper, it is 

suggested that to reduce scratch visibility, it requires the suppression of undesirable 

failure mechanisms during scratch, such as localized plastic drawing and debonding of 

filler particles. 

VIEEW® was found to be a useful method in quantifying scratch visibility.  The 

critical load to the onset of stress-whitening can be found easily.  It was also found that 

localized ductile drawing promotes stress-whitening and thus increases stress visibility. 

Critical parameters of scratch were obtained and surface damage study revealed 

important information regarding scratch damage mechanism.  In conclusion, the present 

test method has been shown to be very useful in characterizing scratch properties of 

polymers.   
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CHAPTER VI  
 

CONCLUSIONS 
 

 

6.1 Summary 
 

 

In this study, a new scratch test methodology was proposed and evaluated.  It 

was found that the progressive load test was the most useful method.  FE analysis was 

able to correlate experimental results qualitatively well, thus allowing for gaining 

fundamental knowledge using FE modeling.  Tests have shown that the progressive load 

test was able to determine critical values for damage formation during scratching of 

polymers.  Surface studies from the scratched samples indicate that scratch resistance 

and visibility can be described quantitatively using the corresponding critical load, thus 

allowing for quantitative and meaningful ranking and comparison among polymers. 

It was found that the scratch hardness of PP remains constant at the range of 

loads used in this experiment.  The graphical approach was used to avoid errors induced 

by the initial load of the scratch stylus.  The different materials exhibit distinct scratch 

hardness values that can be correlated to tensile strength and stiffness.  Talc was found 

to increase scratch hardness, which is similar to the effect seen in tensile strength and 

stiffness.  This method is a useful way to rank materials according to scratch hardness.  

It is suggested that, based on the evidence presented by sonication-induced failure of the 

scratch-damage surface, cold drawing of polymers during scratch that homopolymer and 

copolymer systems have different scratch-induced damage patterns. 

It was also found that the present method was able to capture frictional force data 

accurately.  Surface features that indicated transitions in damage mode could be deduced 

from the frictional force profile alone.  In particular, stress-whitening of polypropylene 

(PP) could be accurately deduced from the scratching coefficient of friction plot.  This 
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has important implications in the study and design of polymers to delay or eliminate 

stress-whitening.  So far, this is the only method known that can correlate stress-

whitening of PP due to scratch in a simple test.  

Talc, if not properly modified, was found to play an important role in scratch 

damage behavior of PP.  It was found to alter the failure mode during scratch, thereby 

inducing larger amount of stress-whitening compared to neat PP.  It is thought that the 

major reason for the degradation in scratch resistance is due to the debonding of the 

particle- polymer interface.  It was also found that localized ductile drawing (fibrillation) 

during scratch would result in more stress-whitening. 

It was shown that the effect of the filler is very important and might overcome 

any benefits that are brought about by increased scratch hardness.  It is suggested that to 

reduce stress-whitening, thereby reducing scratch visibility, particle-matrix interface 

should be strengthened, particle size should be reduced, and the polymeric matrix should 

not fail via fibrillation caused by cold drawing during scratching.   

 

 

6.2 Recommendations for Future Research 

 

 

The results from this study have led to a better understanding of how PP behaves 

during scratch.  The combination of mechanics and materials science study has been a 

fruitful endeavor and resulted in giving us a more complete picture of the process of 

scratch in polymers.  The frictional force plot has the potential of becoming an important 

tool in predicting scratch behavior.  The different highly strained damage zones observed 

in homopolymer and copolymer systems pose an interesting question in the mechanics 

of scratch in these materials.  Further FE modeling should be done to provide an 

explanation to this phenomenon.  It is also recommended that intense study on the 

frictional force plot of various test conditions and materials be carried out.  The effect of 

lubricant is one possibility that could provide us with more understanding of the scratch 
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process.  Scratching under different temperatures will also be a worthwhile experiment, 

where ductile-brittle transition of the polymer is expected to produce interesting results.  

This work has also shown the importance of filler on scratch hardness and scratch 

visibility.  Further work should be done to study the effect of fillers on these two aspects 

of scratch. 
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