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ABSTRACT 
 

The Application of Eccentric Rotating Cylinder Apparatus 

for the Improved Study of Particle Coagulation. (August 2003) 

Chun Woo Lee, B.S., Pukyung National University, Korea 

Chair of Advisory Committee: Dr. Timothy A. Kramer 

 

Concentric rotating cylinder and turbulent mixing devices have been frequently 

used in studying mixing and particle coagulation. However, these apparatus develop 

simple laminar flow (concentric rotating cylinders) or do not have well-defined flow 

(turbulent mixing devices). In this work, the eccentric rotating cylinder apparatus was 

investigated to find applicability for the improved study of coagulation based on the 

modified analytical solution of Ballal and Rivlin.  

Various eccentricity ratios, rotation speeds and viscosities were simulated to 

obtain optimum operating conditions. Inertial forces working on the fluid increased as 

the eccentricity ratio and rotation speed increase. As inertial forces increase, the eddy 

developed in wide clearance was more skewed in the direction of rotation. Both root-

mean-square velocity gradient ( G ) and average principal strain–rate ( maxa ), were 

increased by increasing eccentricity ratio. maxa values linearly increased as rotation 

speed increases, which suggested that maxa  value can properly represent mixing 

intensity. Comparison of G  and maxa  revealed that G  overestimated mixing intensity 

and its error increased as eccentricity ratio increases.  



 iv

This study showed that the eccentric rotating cylinder apparatus has a non-

uniform velocity distribution with well-defined fluid dynamics. Therefore, the eccentric 

rotating cylinder apparatus can be applicable as a model flocculator. However, in order 

to achieve reliable model predictability, the fluid Reynolds number must be below 200. 
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CHAPTER I  

INTRODUCTION 

 

Colloidal matter, which cannot be readily removed, exists in most water 

resources, including groundwater. In water and wastewater treatment, particle separation 

is vital to meet drinking water and water effluent quality regulations. As a pretreatment 

followed by sand filtration, sedimentation, or recently membrane filtration, flocculation 

has been used to increase the size of colloid particles. Flocculation can be subdivided 

into three mechanisms, perikinetic, differential sedimentation, and orthokinetic. 

Perikinetic flocculation is induced by Brownian particle motion. The perikinetic 

mechanism is dominant when diameters of particles are less than 1 .mµ  Differential 

sedimentation occurs due to particles settling with different velocities, because they have 

different size or density. This causes particle collisions. Orthokinetic flocculation is 

induced by fluid motions and is the most important mechanism in the water treatment 

process.  

Orthokinetic flocculation is the growth of floc aggregates generated by flow 

induced collisions of smaller particles suspended in the fluid. The most common way to 

initiate destabilization and aggregation of particles is to add coagulant chemicals, which 

reduce the electrostatic double layer repulsive forces. Particle destabilization is followed 

by agitation to induce particle collisions. Aggregate characteristics in flocculation are 

affected not only by the chemical composition of the fluid such as ionic strength and pH,  

This thesis is follows the style and format of Journal of Environmental Engineering. 

DHill
Line



 2

but also by the dynamic properties of the fluid such as local velocity gradients or strain- 

rates, which are characteristics of the fluid motions. In other words, exact analysis of 

flow dynamic conditions must be known to properly examine flocculation and develop 

predictive capability.  

Many experimental devices have been used to study orthokinetic flocculation. 

Representative apparatus include rotating impellers, which generate turbulent flow and 

concentric rotating cylinders, which generate homogeneous laminar flow. However, 

rotating impeller mixers do not have a well-characterized flow. The concentric rotating 

cylinder apparatus generates a laminar shearing flow, which is very simplistic.  

A method to create a more realistic and characterized flow is to eccentrically 

locate the inner cylinder in the rotating cylinder apparatus. This device has the unique 

feature of developing spatially varying flow while having a known analytical solution to 

predict the flow behavior. Use of the eccentric rotating cylinder apparatus originated 

from lubrication experiments in fluid dynamics for investigating journal bearing 

problems. The apparatus can generate pressure gradients,and eddies in the region of the 

largest clearance, can have shear and extensional flow coexist, and can display spatially 

varying dynamic conditions. Ballal and Rivlin (1976) derived exact solutions for 

velocities, pressures, and streamlines for the eccentric geometry with and without inertial 

forces. These spatially varying flow conditions are more realistic than concentric 

rotating cylinders and have better characterized flow than a rotating impeller mixer, i.e. a 

known analytical solution for the fluid motion. However, complete verification of their 

solutions by comparison of experiment and simulation has not been conducted. Further, 
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investigations of orthokinetic coagulation using the eccentric device has not been 

conducted. The objective of this thesis is the development and application of the 

eccentric rotating cylinder apparatus for the improved study of particle flocculation. To 

approach more realistic conditions, analytical solutions with and without inertial terms 

will be analyzed with changing angular velocity, inner cylinder radius, and eccentricity. 

These comparisons will verify the accuracy of Ballal and Rivlin’s analytical solutions 

and provide methods to produce a more realistic model flocculator. Based on these 

analytical solutions, fluid velocity, strain-arte, and Camp and Stein’s velocity gradients 

are obtained by modifying stream functions. Computed streamlines will be presented 

and compared to experimental data in a physical device. Finally, optimum operating 

conditions will be presented for future work using the eccentric rotating cylinder 

apparatus in flocculation. 

To achieve these goals, a rigorous review of the relevant literature in the subject 

area will be presented. This includes problems associated with velocity gradients, 

particle breakup, and fractal dimension investigations using conventional apparatus, 

concentric cylinders and rotating impellers. The characteristics of each type of flow will 

be compared to approach more realistic turbulent conditions. Analytical solutions 

derived by Ballal and Rivlin will be modified to obtain information related to strain-rate 

distributions and velocity gradients. To investigate the validity of the analytical solutions 

of Ballal and Rivlin streamlines, generated using different eccentricity ratios, angular 

velocities, and inner cylinder radiuses will be compared with model results.  
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CHAPTER II  

BACKGROUND 

 

2.1 Introduction 

Flocculation modeling was suggested by Smoluchowski (1917), who proposed 

two flocculation mechanisms, perikinetic and orthokinetic flocculation. Diffusive 

movements of colloid particles, termed Brownian motion, induce perikinetic flocculation. 

Orthokinetic flocculation is the growth mechanism of aggregates or floc by flow induced 

particle collisions. In engineering practices, orthokinetic flocculation is used to produce 

larger aggregates and facilitate separation from the fluid by sedimentation and/or 

filtration. The kinetic equation of Smoluchowski for orthokinetic flocculation is given as  

 ∑ ∑
=+ =

+−+=







kji j
kjkjijji

k nnrr
dx
dunnrr

dx
du

dt
dn max

1

33 )(
3
4)(

3
4

2
1  (1) 

where ri, rj and rk refer to the radius of i, j, and k class particles, n is number density of 

the particles, and du/dx is a local velocity gradient or strain-rate. The first equation on 

the right hand side is the rate of increase in particle size k by flocculation with particle 

sizes i and j. The second term on the right hand side is the rate of decrease in particle 

size k by flocculation with particle size j and k. Equation (1) assumes that all primary 

particles are perfect spheres. The aggregates formed are assumed to be spherical, no 

aggregates breakup, and all particle collisions lead to attachment and aggregate growth 

by neglecting particle interactions.  
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In recent years, particular progresses concerning aggregate morphology, breakup, 

hydrodynamic interactions, and fluid flow induced particle collisions have been made to 

improve Smoluchowski’s assumptions. Smoluchowski assumed that when two different 

particles with radii of r  and , collide the resulting radius of the aggregate is 

. This is called droplet coalescence. However, in reality most aggregates 

formed in nature and by engineered processes have irregular geometries and porosities, 

which mean that the assumption of droplet coalescence underestimates real aggregate 

size (Gmachowski, 2000). Instead of assuming perfect spheres for the primary particles 

and aggregates, fractal dimensions were introduced to describe morphology and spatial 

structure of aggregates. Equation (1) indicates that particles collide and form aggregates 

without breakup. However, numerous investigations have shown that aggregates are 

eroded or fragmented into smaller sized particles and, that breakup plays an important 

role in determining particle size distribution. Thus, in order to consider aggregate 

breakup in coagulation modeling, breakup kinetics and a maximum aggregate size were 

introduced. Particle collisions and attachment with and without various interactive forces 

around colliding particles have been investigated with curvilinear and rectilinear models 

as shown in Fig. 1. Smoluchowski’s assumption neglecting particle interactions is 

rectilinear model. The rectilinear model assumes that when a moving particle of radius, 

, passes within the radius, r , the particle will collide with stationary particle 

( ). However, streamlines passing circular cylinder showed that hydrodynamic 

interactions between moving and stationary particles can affect particle collisions 

i jr

mr=

3/133 )( jik rrr +=

mr

sr

st r+
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(Batchelor, 1967). The curvilinear model takes account of these interactive forces in 

particle collisions. The curvilinear model assumes that even if the moving particle 

( )passes within r , not all particles will collide with the stationary particle 

( ). Finally, particle collisions induced by two-dimensional laminar shearing motion 

were developed to consider multi-directional fluid strain-rate. Kramer and Clark (1997)  

mr

sr

smt rr +=

 

 
 

(a) 
 

 
 

(b) 
 

 

FIG. 1. Particle Collision Models with Hydrodynamic Interactions: (a) The Classical 

Rectilinear Model; (b) The Curvilinear Model 
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(a) 
 

(b) 
 

FIG. 2. Flow Induced Particle Collisions: (a) Particle Collisions under Two-dimensional 

Laminar Shear Strain-rate; (b) Multidirectional Particle Collisions by Shear and Normal 

Strain-rate (Kramer and Clark, 1997)  

 

suggested that particle collisions are induced by fluid strain-rate as presented in Fig. 2.  

Among the current developments, the analysis of particle collisions, aggregate breakup, 

and fractal dimension are known to be highly dependent on the fluid dynamics of the 

flocculation system. The next chapter will review the fluid dynamic effects on 

aggregation, aggregate breakup and morphology, and discuss the problems of 

conventional flocculation system for studying particle aggregation. 
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2.2. General Description of Orthokinetic Coagulation 

2.2.1 Flow Induced Particle Agglomeration 

Fluid motion associated with othokinetic flocculation can be described by the 

local velocity gradient or strain-rate. When one particle approaches a stationary particle, 

fluid shearing motions induce particle collisions. However, two-dimensional shearing 

motion only considers one directional particle movement and cannot explain 

complicated particle collisions. Camp and Stein (1943) conducted a three-dimensional 

analysis on velocity gradient’s role in particle collisions based on shearing motions of 

fluid. Camp and Stein suggested that energy consumed by the fluid shearing movement 

is dissipated as heat. Thus, an absolute velocity gradient,G , is obtained using energy 

dissipation with system fluid volume for laminar flow. Camp and Stein hypothesized 

that a local velocity gradient (du/dx) was equivalent to their absolute velocity 

gradient, . However, the practical flocculator contains turbulent flow, which has a 

more complicated and spatial varying velocity gradient distributions. To overcome 

complexity of fluid flow, Camp and Stein introduced defined their root-mean-square 

velocity gradient, 

G

G . 

Many studies have revealed that G  does not accurately estimate velocity 

gradient on particle collisions in flocculators both theoretically and experimentally. 

Cleasby (1984) pointed out the deficiency of G  for turbulent flow conditions by 

analysis of turbulent motions, especially studied use of absolute viscosity for G . 

Comparisons of previous studies revealed that G  is only applicable to laminar flow and 

limited cases of turbulent flow in which the size of the aggregate is smaller than the 
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Kolmogoroff microscale. Clark (1986) examined tensor approaches and found that 

application of an absolute velocity gradient, G, and root-mean-square velocity gradient, 

G , into three-dimensional flow is fundamentally incorrect. Graber (1994) showed that 

energy dissipation is not a function of only shear stress, but functions of both normal and 

shear stress. Kramer and Clark (1997) examined effects of the strain-rate on particle 

collisions and the effects of the spatial flow variance on average velocity gradient. 

Kramer and Clark showed that distorted fluid elements in which particles are located 

make particle collisions by shear and normal strain, but rotational motion affects only 

the orientation of the particle. Population variance investigation on root-mean-square 

velocity gradient showed that the error of G  is more severe as spatial flow variance 

increases.  

Experiments have been conducted comparing experimental data at the same G  

value with different geometries and mixing devices. Oldhsue and Mady (1978, 1979) 

examined turbidity removal with different types of mixing impellers at various impeller 

diameters and mixing tank diameter ratios. Their results indicated that maximum 

turbidity removal was accomplished at different G values, even though each impeller 

had the same configuration. Another investigation of turbidity removal with different 

impellers showed that impeller type is important in determining the optimum mixing 

intensity (McConnachie, 1991). Spicer et al. (1996) investigated average floc size with 

three different types of impellers: 1) ruston for generating radial flow having longer 

exposure time to high velocity gradients around the impeller blade, 2) a fluid foil 

impeller for generating axial flow, which produces a shorter exposure time to intensive  
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                  (a)                                                  (b)                                               (c)   
 

FIG. 3. Representative Types of Impellers for Flocculation: (a) Rushton Turbine (RT); 

(b) Fluid Foil Impeller (A310); (c) Pitched Blade Turbine (PBT) 

 

velocity gradients, and 3) a four-blade impeller, which has axial and radial flow pattern 

as displayed in Fig. 3. They observed that aggregate size distributions were different for 

each impeller at constant G vaules. A310 fluid foil showed that smaller aggregates were 

produced with increasing flocculator volume. The ruston impeller produced smaller 

aggregates than the A310 fluid foil impeller (Ducoste and Clark, 1998). This result is in 

agreement with Spicer et al. (1996). Many investigators have recognized the problems of 

G in correlating mixing variables and flocculator geometries both theoretically and 

experimentally, however, most flocculation studies conducted have been based on root-

mean-square velocity gradient. Because G  provides a basis for comparison for previous 

studies, it continues to be applied to flocculation studies. 
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2.2.2 Flow Induced Aggregate Breakup   

As the floc grow, they become susceptible to fluid stresses and possibly fracture 

into smaller aggregates. This floc breakup produces reduced sizes of aggregates which 

cause poor settlement in sedimentation and increased fouling in filtration processes. 

There are two perceived modes of particle breakup, surface erosion and fragmentation. 

Surface erosion of floc structure will occur when the weakest bonds are distributed on 

the periphery of the floc aggregate. The driving force for surface erosion is believed to 

be local shear stresses. Fragmentation can be caused by a distribution of the weak bonds 

within the body of the aggregate where the fragmenting force is due to pressure 

gradients or normal stresses (Thomas, 1964; Parker et al. 1972; Argaman and Kaufman, 

1970; Blaser, 2000). The forces exerted on aggregates are dependent on the local fluid 

motions. According to Kramer and Clark (1997, 1999), the local velocity gradient 

induced by fluid motions affects not only particle collisions but also aggregate breakup. 

Thus, the analysis of the local fluid dynamic characteristics around particles is required 

to understand the complex aggregate breakup phenomena.  

The motions of a local fluid element are described by the local velocity gradient 

tensor. The velocity gradient tensor ( ∇ ) consists of the rate of deformation tensor and 

the rate of rotation material vector. The rate of deformation (E) called strain-rate is a 

symmetric tensor. The orientation of the material vector having rotational component or 

vorticity ( ) has an antisymmetric form. If the Cartesian coordinates have two-

dimensional components,  and , the equations of velocity gradient ( ∇ ), strain-rate 

(E), and vorticity tensor ( ) are defined as  

u

Ω

lx

Ω

mx u
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where  and  represent  and  direction velocities respectively. The 

characteristics of the velocity gradient tensor are dependent on flow types. There are two 

representative flow motions; laminar flow and turbulent flow, which have been used to 

study aggregate breakup behavior and mechanisms. According to the ratio of strain-rate 

(E) and vorticity tensor ( Ω ), characteristics of flow are subdivided into pure shear and 

extensional flow. Pure shear flow can be generated using concentric rotating cylinders 

which consists of one stationary and one rotating cylinder either inner or outer cylinder 

or both cylinders rotating, or a plane Couette device in which there is fluid between two 

parallel plates that are moving in opposite directions. Since half of the fluid energy is 

consumed to the vorticity, shear flow can be called weak rotational flow and has a weak 

rate of deformation (Boller and Blaser, 1998). Pure extensional flow can be developed 

using a four-roll-mill device which was introduced by Taylor (1934). Pure extensional 

flow, called strong flow or irrotational flow, has no rotational component and strong 

deformation rate. Detailed derivations of velocity gradient, strain-rate, and vorticity 

tensors are presented in Appendix I.   

lu mu lx mx
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Many studies have been reported about the behavior of aggregates in shear and 

extensional flow. Fig. 4 display aggregate breakup modes by shear flow conditions. The 

aggregate movements in shear flow show that the aggregate rotates with no deformation 

at a low velocity gradient, but as velocity reaches a critical point, the disintegration of 

the primary particle on the surface of the aggregate is observed. Surface erosion in shear 

flow is located at 45o and 225o planes on the aggregate surface. This is in an agreement 

with the maximum principal stress for shear flow (Kao and Mason, 1975; Powell and 

Mason, 1982; Boller and Blaser, 1998; Blaser, 2000). The angular velocity of aggregate 

rotation matched with (2) transforming half of the velocity gradient into a rotational 

component, or vorticity (Boller and Blaser, 1998).  

The behavior of aggregates in the extensional flow shows more rapid 

disintegration (Kao and Mason, 1975). As shown in Fig. 5 Blaser (2000) presented the 

consecutive motions of breakup of aggregate in extensional flow and showed that floc 

does not rotate, but it is extended or compressed and fragmented into small aggregates. 

Fig. 6 shows consecutive motions of aggregates from Blaser (2000). Blaser explained 

that the first row of picture shows surface erosion but it appears to be more like 

aggregate fragmentation. Experimental observation (Kao and Mason, 1975) and 

simulation (Higashitani and Iimura, 1998) indicate that extensional flow is more 

disintegrate aggregates. Because extensional flow has irrotational characteristics, thus, 

energy from fluid motions is consumed only for material deformation. 

Pure shear and extensional flow are components of instantaneous local flow, but 

turbulence is a macroscopic flow condition and possesses very complicated flow  
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(b) 

 
 

FIG. 4. Aggregate Behavior in Shear Flow: (a) Concentric Rotating Cylinder and Plane 

Couette Device; (b) Aggregate Movement in Shear Flow and Breakup 

 

dynamics. Simulations of incompressible isotropic turbulent structure are presented in 

Fig. 7 and they showed four kinds of flow structure: rotation in eddies, convergence-

divergence (extensional-compressional) zones, shear zones, and streams (Wray and Hunt,  

1990). Eddies are whirl motions of flow in which fluid particles have a long retention 

time. Convergence-divergence zones contain compressional and extensional strain-rates 

without rotating fluid elements. Shear zones consist of shear strain-rates and rotational 
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(a) 
 
 

 
(b) 

 
 

FIG. 5. Aggregate Behavior in Extensional Flow: (a) Four-Roll-Mill Device; b) 

Aggregate Movement in Extensional Flow and Breakup 

 

 vorticity without interchanging flow. Streams show weak strain-rates and irrotational 

characteristics. Dominant stresses on fluid particles for each flow showed that 

convergent-divergent and shear flow have normal and shear strain-rates, and rotation in 

eddies have vorticity. Among these stresses, only two of them, normal and shear strain-

rate, work on particle collisions as the driving forces (Kramer and Clark, 1997). Particle 

rotation does not influence particle collisions. It only affects the orientation of 
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aggregates (Kramer and Clark, 1997), and has an insignificant effect on aggregate 

deformation and breakup (Thomas, 1964).  

Many investigators have proposed different mechanisms for aggregate breakup 

mode in turbulent flow, which determines particle size distributions. Argaman and 

Kaufman (1970) suggested that the fundamental aggregate breakup mechanism in 

turbulent flow is the surface erosion of flocs by fluid surface shearing movements. 

Parker et al. (1972) reported that Argaman and Kaufman’s proposal is more reasonable 

in the case of biological floc than aggregate fragmentation. Experiments using a flow 

chamber to observe aggregate breakup showed that disintegration of aggregates is 

distributed on the periphery of the floc, which is believed to be surface erosion (Glasgow 

and Liu, 1991). Thomas (1964) suggested that aggregate fragmentation in turbulent flow 

is caused by pressure gradients on opposite sides of the aggregate. Kramer and Clark 

(1999) used a system of classification of mechanical failure to describe aggregate 

breakup by assuming that breakup of aggregates is caused by flow induced stress. 

Kramer and Clark proposed that the principle mode of aggregate breakup is 

fragmentation by normal stress. Boller and Blaser (1998) compared behaviors and stress 

distribution on the surface of an aggregate in simple shear and extensional flow. Boller 

and Blaser suggested that the fragmentation of aggregates caused by normal stress plays 

a crucial role in determining particle size distribution in turbulent flow. 
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FIG. 6. Breakup of Ferric Hydroxide in a Two-dimensional Extensional Flow (Blaser, 

2000)  

 

FIG. 7.Turbulent Structure Classification (Wray and Hunt, 1990) 
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2.2.3 Geometric Description of an Aggregate 

Aggregate geometric structure has been recognized to influence the strength of 

floc and their potential for breakup. Therefore, characterization of floc or aggregate 

geometry is required to understand particle collisions and flocculation. However, it was 

very difficult to define the geometric characteristics of aggregates due to their highly 

irregular and disordered shape. Attempts to quantify the geometry of aggregates using a 

shape factor, porosity, or settlement velocity were not sufficient to describe the complex 

shapes and spatially varying structures of aggregates.   

Fractal theory developed by Mandelbrot (1983) made it possible to characterize 

geometric irregularity and complexity. Mandelbrot introduced a non-integer dimensional 

value called the fractal dimension to describe mathematically complex and irregular 

geometric characteristics in nature such as the branches of trees, coastlines, and clouds. 

The geometry of aggregates also shows a highly irregular, complex, and disordered 

shape. Fractal dimensions of flocs have been reported to be able to characterize mass-

size relationships, density, porosity, irregularity and settling velocity (Jiang and Logan, 

1996; Meakin, 1998).  

The measurements of fractal dimension of a system are obtained from geometric 

properties of aggregates. The longest width (df), perimeter (P), projected area (A), floc 

volume (Vf ), and number density (N) are used to express one-dimensional (D1), two-

dimensional (D2), two-dimensional perimeter based (Dpf), and three-dimensional (D3), 

fractal dimensions as described in Fig. 8. The equation for determination of a one-

dimensional fractal is shown as 
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  (5) 1D
fdP ∝

Regular perimeters such as squares and circles, termed Euclidean objects, show D  is 

equal to one. However, floc aggregates present higher  values than Euclidean objects, 

which means  can represent irregular characteristics of the aggregate perimeter. Two-

dimensional and perimeter based fractal dimensions can be expressed as 

1

1D

1D

  (6) 2D
fdA ∝

  pfDPA ∝  (7) 

Two-dimensional fractal dimension of Euclidean objects is equal to two. D2 and Dpf can 

represent structures of floc aggregates such as porosity, settling velocity, and density. , 

, and D

1D

2D pf can be measured with image analysis systems. Three-dimensional fractal 

dimension can be expressed as  

  or  (8) 3D
ff dV ∝ 3D

fdN ∝

Meakin (1988) suggested that if the  value is less than 2, then  and  must be the 

same. However, Jiang and Logan (1996) showed that this is not always the same. Jiang 

and Logan presented the two-slope method to more accurately quantify three-

dimensional fractal dimensions. Since there is difficulty in determining steady state 

conditions during coagulation, the longest width and volume based cumulative size 

distribution is used to quantify D . Three-dimensional fractal dimension with the two-

slope method can be shown as  

3D 2D 3D

3
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FIG. 8. Schematic Picture of Aggregate Fractal Dimensions: (a) One-Dimensional 

Fractal Dimension ( ); (b) Two-Dimensional Fractal Dimension ( ); (c) Perimeter-

Based Fractal Dimension (D

1D 2D

pf); (d) Three-Dimensional Fractal Dimension ( ) 3D

 

f

f

V

d

S

S
D =3  (9) 

in which S and represent the exponents of the cumulative size distribution based 

on aggregate width and volume. Detailed analysis of the two-slope method can be found 

in Jiang and Logan (1991, 1996) 

fd fVS

Aggregate fractal dimensions during coagulation depend on the types of 

coagulant, pH, and mixing intensity. Different coagulants and pH values generate 
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various fractal values ( ), in the range of 1.64 ~ 1.95 (Smoczynski and Wardzynska, 

1996). It is well known that ionic strength, which is controlled by the amount of 

coagulant, plays a crucial role in determining fractal dimension. Diffusion-Limited-

Aggregation (DLA) in which there is sufficient ionic strength to suppress repulsive 

forces, shows lower density structures with fractal dimensions around 1.7~1.8 (Lin et al., 

1989). Reaction-Limited-Aggregation (RLA) in which there is insufficient ionic strength 

to suppress repulsive force, thus, strong repulsive forces exist, shows higher density and 

fractal dimension is around 2.0~2.1 (Meakin, 1988; Lin et al., 1989). In orthokinetic 

coagulation, fractal dimensions are highly dependent on the system mixing intensity, 

which is determined by the fluid dynamic conditions of the flocculator. Experiments 

using concentric rotating cylinders, which generate homogeneous laminar shear flow, 

showed that at shear strain-rate range of 25~50  fractal dimensions do not change 

with increasing 

3D

1sec−

G  (Oles, 1992; Serra and Casamitjana, 1998). However, turbulent 

mixing conditions (which develop intensive fluid movements around the blade) showed 

that fractal dimensions increased as G  increased even at a low range of 15~50  

(Spicer et al., 1996). At higher 

1sec−

G  range over 60~150sec , fractal dimensions slightly 

increased in concentric rotating cylinders (Oles, 1992), but turbulent devices showed a 

clearly increasing tendency of fractal dimensions (Gruy, 2001; Thill et al., 2001). Clark 

and Flora (1991) showed that introducing breakup process between flocculation and 

reflocculation can generate improved particle density structure and fractal dimension.  

1−
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2.2.4 Summary 

Since the introduction of Smoluchowski’s coagulation equation (1), many 

investigations have been conducted to understand particle collision mechanisms and how 

they are affected by velocity gradients, aggregate breakup and fractal dimensions. The 

studies of velocity gradients, aggregate breakup, and fractal dimensions showed that if a 

flocculation system has well-defined fluid dynamics, more realistic flocculation models 

may be developed. For example, the study of Kramer and Clark (1997) applied the 

maximum strain-rate to describe fluid motions that generate particle collisions. However, 

the investigation of Kramer and Clark is a theoretically based hypothesis and has not yet 

been proven experimentally. The studies of aggregate breakup conducted with indirect 

methods using a flow chamber, photographic observation, and particle size distributions, 

have been carried out without calculating exact in-site stresses exerted on aggregates. 

Fractal dimension studies showed that the geometry of floc aggregates is highly 

dependent on mixing intensity and system fluid dynamics. However, since it is difficult 

to obtain a well-defined fluid dynamic conditions in a coagulation system, inappropriate 

estimates such as Camp and Stein’s root-mean-square velocity gradient are used to 

represent mixing intensity and fluid dynamic conditions. Therefore, a model flocculator 

system that has well-defined fluid dynamics and more realistic flow conditions i.e. 

spatial variations, is required to achieve a better understanding of particle collisions and 

aggregation. 
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2.3 Conventional Flocculation System 

2.3.1 Concentric Rotating Cylinders 
 

 Concentric rotating cylinders have been frequently used in studying mixing and 

flocculation in two-dimensional laminar flow. Hubley et al. (1950) used a concentric 

cylinder device (which has an outer cylinder rotation and stationary inner cylinder 

configuration) in order to generate reproducible conditions under which particles can 

undergo collisions. Trevelyan and Mason (1951) used a concentric cylinder device in 

which the outer and inner cylinders were rotated in opposite directions. This system 

made it possible to observe particle behavior in shear flow with a microscope as the 

opposite rotation of the two cylinders holds particles stationary within the field of vision 

of the microscope while applying shear stress on the particle surface. Swift and 

Friedlander (1964) applied a configuration with stationary outer cylinder and rotating 

inner cylinder to generate simple shear flow in order to validate Smoluchowski’s 

equations by predicting flocculation in simple shear flow. Smith and Kitchener (1978) 

used a concentric rotating cylinder device for measuring the strength of floc, because the 

apparatus can provide predictable shear stress in laminar flow. To evaluate the efficiency 

of orthokinetic flocculation for fixed bed and fluidized bed flocculators, Ives and 

Dibouni (1979) applied the concentric cylinder device to acquire well-defined velocity 

gradients. Zollars and Ali (1986) applied the concentric rotating cylinder apparatus 

(which had rotating outer cylinder rotation and stationary inner cylinder) in order to 

provide sufficient shear stress and initiate flocculation in the presence of repulsive forces.  
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Extensive developments of the concentric rotating cylinder configurations for 

orthokinetic coagulation studies were conducted by van Durren (1968). The flow 

between two rotating cylinders (or one rotating and one stationary) is referred to as 

axisymmetric torsional flow. This torsional flow has a nonzero tangential velocity (u ) 

and two zero velocity components, (u

θ

r) and (uz). The streamlines of concentric rotating 

cylinder flow are circles centered at the axis of symmetry. Fig. 9 displays the geometry 

of the concentric rotating cylinder apparatus. From the definition of axisymmetric flow 

conditions ( 0/ =∂∂ θθu ) the continuity equation for incompressible flow in cylindrical 

coordinates can be expressed as 

 ( ) 011 =
∂
∂

+
∂
∂

+
∂
∂

z
uu

r
ru

rr
z

r θ
θ  (10) 

The momentum equations for the tangential component can be simplified as  

 ( ) 01 =







θru
dr
d

rdr
d  (11) 

The boundary conditions are given as  

 ii Ru ωθ =  at r = Ri, 

                                    oo Ru ωθ =  at r = Ro 

By solving the simplified Navier-Stokes equations (momentum equations) with 

boundary conditions, general solutions for the flow can be obtained. These solutions for 

the configuration with rotating outer cylinder rotation and stationary inner cylinder 

configuration are given as  
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In equations (12) and (14), Ri is the inner cylinder radius, Ro outer cylinder radius, oω  is 

angular velocity of outer cylinder, µ  is viscosity, and r is radial distance. Due to 

axisymmetric flow conditions, normal stress ( θθτ and rrτ ) and radial direction velocity 

( ) are negligible.  ru

 Instead of using the difference between the rate of change in velocity and the 

relative particle velocity to calculate root-mean-square velocity gradient Kramer and 

Clark (1997) obtained root-mean-square velocity gradients with power input using local 

flow strain-rate. The shear strain-rate, a , stress, θr θτ r , and torque, T, on the outer 

cylinder are given as    
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The mechanical power required to turn the cylinder is expressed as 

 oW TP ω=  (18) 
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According to Camp and Stein, the root-mean-square velocity gradient, G , can be 

measured as 

 ( )22
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io

ioo
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==

ω
µ

 (19) 

The root-mean-square velocity gradient of the concentric rotating cylinder device using 

total power input to the system is good agreement with Durren’s study (1968).  

However, concentric rotating cylinder flow is not always laminar (Taylor, 1923). 

If the fluid velocity between two cylinders exceeds a critical limit, the homogeneous 

motions of the fluid streamline may become unstable and generate eddies, which 

destabilize fluid conditions. Taylor performed stability studies using concentric cylinder 

apparatus. He found the torque on the outer cylinder increased linearly with the angular 

speed of inner cylinder until flow destabilized at which point there was an abrupt 

increase in torque. Eddies generated at these unstable conditions are termed Taylor 

vortices. A criterion for torque at which eddies begin to be formed was defined as 
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Taylor suggested that a system with a rotating outer cylinder rotation and a stationary 

inner cylinder is more stable than one in which the inner cylinder rotates. Serra et al. 

(1997) used the development of Taylor vortices in a concentric rotating cylinder device 

to simulate isotropic turbulence in order to observe particle aggregation and breakup. 

Selomulya et al. (2002) a applied concentric rotating cylinder to produce shear particle 
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collisions between two parallel plates and produce a more isotropic turbulent flow than 

other mixing apparatus.  
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FIG. 9. Geometry of the Concentric Rotating Cylinder Apparatus Using on Cylindrical 

Coordinates 
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2.3.2 Turbulent Mixing Devices 
 
Most flow mixing environments for particle aggregation are turbulent. Turbulent 

flow has spatial variations of fluid properties such as velocity, pressure and temperature, 

which are fluctuating in three dimensions. Turbulent flow has unstable and irregular 

movements, which produce complex fluid structures such as rotational eddies, shear 

strains, normal strains and stream flow (Wray and Hunt, 1990). One of the important 

characteristics of turbulent flow is eddy motion. Turbulent flow can sustain itself by 

generating new eddies, which mix and fill the shear layer. Turbulent eddy motion 

improves diffusion of mass, momentum and energy by three-dimensional movements 

and velocity gradients. Characterization of turbulent flow is defined by an energy flux 

from turbulent energy dissipation by eddy motions (Levich 1962). Kinetic energy of 

large scale eddies is converted into thermal energy by smaller sized eddies. The smallest 

eddies are those with the size of the Kolmogorov micro length scale, which is defined as 

a 

 
4/13
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where η  is Kolmogorov micro length scale, ε  is the turbulent energy dissipation rate 

and v is the kinematic viscosity. The turbulent energy dissipation rate for a flocculator is 

estimated as a function of impeller geometry, velocity, and flocculator volume (Spicer et 

al. 1996).  
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where Np is the impeller power number, ω  is the impeller speed, V is the stirred tank 

volume, and D the impeller diameter.  

Camp and Stein (1943) suggested a collision frequency function ( β ) for 

orthokinetic collisions between particles in the turbulent flow. The collision frequency 

function was expressed with mean energy dissipation function ( Φ ). This represents the 

average work of shear stress per unit of volume per unit of time at given system. The 

collision frequency function are suggested as  

  ( )
µ

β Φ+= 3

3
4

ji rr  (23) 

Saffman and Turner (1956) defined two particle flocculation mechanisms in turbulent 

flow in terms of the spatially varying velocities and the difference of inertia between the 

particles and bulk fluid. Saffman and Turner suggested that the inertial forces on 

particles play a less important role in neutrally buoyant conditions, i.e between equal 

size particles, and the small relative inertia between particles and the bulk fluid. 

Collision frequency functions can be expressed as a function of the turbulent energy 

dissipation (ε ), which is assumed normally distributed, is given as  

 ( )
v

rr ji
επβ 3

15
8 +=  (24) 

Levich (1962) presented that particle collision mechanisms are caused by density 

gradients between the particles and fluid in terms of a turbulent energy dispersion. 

However, density gradients between the liquid bulk and particles are small, thus, the 

main mechanism of particle collisions in turbulent flow is generated by turbulent eddy 
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dispersion. Levich assumed that particles contact and flocculation occur only when 

particle size is smaller than the Kolmogorov microscale, and that flow characteristics are 

homogeneous isotropic turbulence. Particle collision frequency is suggested by Levich 

as   

 ( )
v

rr ji
επβ 312 +=  (25) 

Experiment and model comparisons by Higashitani et al. (1983) revealed that Saffman 

and Turner’s study overestimates particle collision in turbulent flow and suggested mean 

strain-rate as a 

 
vdx

du
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15
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Many studies have suggested different particle collision frequency functions for the 

turbulent particle aggregation. However, turbulent energy dissipation rate ( ε ) is 

recognized in all studies as being an important parameter in determining coagulation 

frequency. Therefore, it is important to consider the exact fluid dynamic characteristics 

of a flocculator in order to investigate particle collision frequency. 

Fluid dynamics in a turbulent flocculator are governed by the types of mixing 

impeller. There are two general types of fluid flow that can be developed by mixing 

impellers; radial and axial flow. Rushton turbines, bar turbines, and anchor impellers 

develop radial flow, in which flow is discharged along the impeller radius and in a 

horizontal direction towards the flocculator wall. The characteristics of discharge flow in 

the radial impeller region are achieved by evaluation of the radial and tangential 

components of flow velocity (Ducoste, 1996). Radial fluid velocity is equal to 0.6~0.8 
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times impeller tip velocity and the maximum tangential velocity behind rotating impeller 

is equal to 1.2 times impeller tip speed. Foil impellers, marine propellers, pitched-blade 

turbines, and double spiral impellers are all axial flow impellers and are designed on the 

basis of screw theory. They all generate parallel flow to the impeller shaft, along the 

impeller axis. Argaman and Kaufman (1970) conducted turbulent flocculation 

experiments with two different types of mixing devices, a turbine (radial flow) impeller 

and a stake and stator (axial flow) impeller. Turbulent characteristics of the two 

impellers, measured with a hot-wire anemometer probe, indicated that the volume 

weighted mean-square-velocity fluctuation for stake and stator impellers was higher than 

for the turbine impeller. Root-mean-square velocity gradient comparisons between axial 

flow with a foil impeller and radial flow with a Rushton turbine, revealed that the foil 

impeller had lower values of G  than the Rushton turbine at the same impeller speed 

(Weetman and Oldsue, 1988). To achieve the same G , higher impeller speed is required 

for an axial flow impeller, which means that floc aggregates are exposed to more severe 

flow conditions. Spicer et al. (1996) showed that when a steady-state condition is 

reached, the radial flow impeller generates larger sizes of aggregates than the axial flow 

impeller at the same G value and that the axial flow impeller produces larger aggregate 

at the same impeller speed. Spicer et al. suggested that these results are caused by the 

exposure frequency of the aggregates to the impeller discharge region. Axial flow 

impellers discharge fluid flow in the axial direction, resulting in faster recirculation and 

often subjecting the floc aggregates to higher flow velocity than the radial flow impellers. 

Fig. 10 displays the flow pattern of each type of impeller. The investigation of fluid 
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dynamics in a flocculator tank to examine the influence of geometric variations on 

particle aggregation revealed that applied G  could not explain geometric variations in 

flocculators, especially tank size and impeller designs (Ducoste and Clark, 1998). 

Ducoste and Clark suggested that different geometric parameters such as impeller tip 

speed and dimensionless impeller power number would be better parameters than G in 

coagulation modeling. McConnachie (1991) investigated the turbulence effects produced 

by three different impellers; a picket gate, two blade paddle, and a branched paddle, on 

turbidity removal. Turbulent characterization was achieved with LDV (Laser Doppler 

Velocimetery). McConnachie showed that the G  value needed to achieve the maximum 

turbidity removal varied based on impeller type. Bouyer et al. (2001) used PIV (Particle 

Image Velocimetry) to analyze hydrodynamic environments and particle trajectories. 

Bouyer et al. showed that floc characteristics are dependent on an instantaneous velocity 

field after passage of the impeller blade by studying floc size and steady-state particle 

size Therefore, knowledge about the behavior of the flocculator impellers of different 

geometry geometries is required to achieve a better understanding of particle collisions 

and flocculation in turbulent fluid flow. 
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(a) 

 

 
(b) 

 
 

FIG. 10. Turbulent Impeller Flow Patterns: (a) Axial Flow and the Bottom View; (b) 

Radial Flow and the Bottom View 
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2.3.3 Summary  

Many experimental devices have been applied to the study of orthokinetic 

flocculation. Representative apparatus reviewed include a rotating impeller, which 

generates turbulent flow, and concentric rotating cylinders, which develop uniform 

laminar flow. However, rotating impeller mixers do not have a well-characterized flow 

and it is difficult to characterize fluid dynamics in them. In contrast, the concentric 

rotating cylinder apparatus generates a well-defined flow, but it is simple laminar 

shearing flow, which is not found water treatment. Therefore, both well-established fluid 

dynamic characteristics and more realistic flow conditions such as spatial variations are 

required to understand particle aggregation and aggregate breakup mechanisms. 

A method to create a more realistic and well-characterized flow is achieved by 

eccentrically locating the inner cylinder in the rotating cylinder apparatus. The eccentric 

rotating cylinder device has the unique features of developing spatially varying flow 

while having a known analytical solution to predict the flow behavior. The eccentric 

rotating cylinder apparatus originated from lubrication experiments in fluid dynamics for 

investigating journal bearing problems. This apparatus can generate pressure gradients, 

eddies in the region of the largest clearance, shear and extensional flow simultaneously, 

and spatially varying dynamic conditions. Ballal and Rivlin (1976) derived exact 

solutions for velocities, pressures, and streamlines with and without inertial forces. The 

eccentric rotating cylinder device developing spatially varying flow is more realistic than 

the concentric rotating cylinders generating simple shear flow. It also has a better 

characterized flow than a rotating impeller mixer. 
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CHAPTER III  

THE ECCENTRIC ROTATING CYLINDER SYSTEM 

 

3.1 Background 

The concentric rotating cylinder apparatus generates uniform state of shearing 

flow. However, this uniform flow is different than typical mixing flow, which has spatial 

variation. One way to generate spatially varying flow is to eccentrically locate one 

cylinder between two parallel cylinder devices. Streamlines of concentric and eccentric 

rotating cylinders are displayed on Fig 11. Streamlines for concentric rotating cylinders 

are developed by (12) and for eccentric rotating cylinders are based on Ballal and Rivlin 

(1976)’s analytical solutions. These figures show that concentric rotating cylinders 

generate simple streamlines, but eccentric rotating apparatus develop complex laminar 

flow. Even though eccentric rotating cylinders generate spatially varying flow this 

spatially varying flow has known analytical solutions for the flow velocities, strain-rates, 

pressures and streamlines.  

By simply displacing one of the cylinders to an eccentric location, the eccentric rotating 

apparatus develops pressure gradients, Taylor vortices, and eddies (Kamal, 1966). These 

fluid dynamic properties and motions provide valuable data for particle coagulation and 

breakup studies. Pressure gradients generated by the tendency to restore concentricity 

are important in the study of aggregate breakup mechanisms as floc rupture is caused by 

pressure differences around the aggregates (Thomas, 1964). It has been known that 

concentric rotating cylinder apparatus does not develop spatial varying fluid flow. The  
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(a) (b) 

FIG. 11. Streamline Developments ( = 7.62 cm,  = 3.175 cm, or ir ω = 60 RPM): (a) 

Concentric Rotating Cylinders; (b) Eccentric Rotating Cylinders ( v = 1 , sec/2cm ε = 0.8) 

 

normal components of strain-rate in concentric cylinders are neglected, because only the 

angular direction velocity ( ) is non-zero. Thus, concentric rotating apparatus is often 

used to develop pure shear strain-rate flow. However, eddy development in the eccentric 

rotating cylinder can provide not only spatial variation of fluid dynamics but also normal 

stain-rate. Therefore, applications of eccentric rotating apparatus will achieve more 

realistic mixing conditions with known analytical solutions and will be very beneficial 

for studying particle coagulation and aggregate breakup.  

θu

In an early study on eccentric rotating cylinder apparatus, Wannier (1950) 

examined the relationship between conventional lubrication theories of the Stokes and 

Reynolds approximation, and presented solutions of eccentric cylinder flow without 

restricting the geometry. Wood (1957) used modified bipolar coordinates to reduce the 
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geometry to polar coordinates where the eccentricity is equated to zero. Linearization of 

the Navier-Stokes equations for small displacements of the inner cylinder was conducted 

with perturbation analysis incorporating Bessel functions of the first order and higher 

order corrections. Kamal (1966) compared three approximate solutions of the Navier-

Stokes equations; Reynolds, Stokes, and an inertial approximation. The Reynolds 

approximation is limited application to the case of small clearances in which the 

curvature effects on the streamlines are negligible. Stokes approximation is only 

applicable when the Reynolds number is small, usually below one. Kamal employed a 

bipolar coordinate system to simplify the boundary conditions. The inertial 

approximation conducted by Kamal was a first attempt that considered inertial forces on 

the streamline curvature, and separation and reattachment points in the eccentric rotating 

cylinder flow. Ashino and Yoshida (1975) obtained solutions for the slow viscous flow 

between eccentric rotating cylinders with stream functions using bipolar coordinates. 

Ashino and Yoshida suggested that the Stokes approximation is only applicable when 

Reynolds number is less than 7. When the Reynolds number is greater than 7, the Stokes 

approximation cannot clearly describe fluid dynamics in eccentric cylinders, as inertial 

forces are larger than viscous forces. Thus, inertial approximations are required to 

understand high Reynolds number flow in eccentric rotating cylinder apparatus.  

Studies have been reported for eccentric rotating cylinder apparatus operating 

conditions. They have increasingly higher rotating speed and Reynolds number for the 

eccentric devices covered both laminar and the turbulent flow regions. Flow stability 

studies showed that critical Taylor number for system with rotating outer cylinder, which 
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indicates transition laminar into turbulent flow, is much higher than for ones with 

stationary outer cylinder rotation for both eccentric (Yamada and Nakabayshi, 1968) and 

concentric cylinder devices (van Durren, 1968). However, few studies have been 

conducted for the a system with rotating outer cylinder rotation and stationary inner 

cylinder so data for a wide range of cylinder angular velocities and Reynolds numbers 

are not available. Yamada and Nakabayashi (1968) examined a system with rotating 

outer cylinder rotation and stationary inner cylinder using plain slider bearing analysis. 

The effects of eccentricity and clearance ratio on inertial forces showed that as clearance 

ratio increased and eccentricity decreased the inertial effects were increased. By taking 

inertial forces into consideration, pressure distributions changed from symmetric to 

asymmetric. Diprima and Stuart (1972) obtained solutions for the first-order linearized 

inertial correction at small clearance and modified the Reynolds number using a 

modified bipolar coordinate system. Unlike previous investigations that focused on the 

limited eccentricity and single stationary cylinder cases, Diprima and Stuart considered 

either the outer cylinder, inner cylinder, or both cylinders rotating, and there was no limit 

on eccentricity. Ballal and Rivlin (1976) derived two exact solutions for eccentric 

rotating cylinder geometries. Ballal and Rivlin analyzed two cases for arbitrary 

geometries in which both or only one of the cylinders are rotating. They obtained 

resultant forces acting on the inner and outer cylinders, normal and tangential force 

distributions, and streamline patterns. The solution of Ballal and Rivlin is based on 

bipolar coordinates, which converts the eccentric geometry in Euclidean space into a 

concentric one in complex space. San Andres and Szeri (1984) compared Ballal and 
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Rivlin’s analytical solutions to their numerical approaches using Galerkin’s method with 

B-spline test functions. At increasing eccentricity an eddy is developed in the large gap 

between the two cylinders in both cases. Along with eddy formation, separation and 

reattachment of flow is generated. San Andres and Szeri showed that the separation 

point when only one of cylinders is rotating, moves in the direction of cylinder rotation. 

However, Ballal and Rivlin’s results showed that the separation point moves in the 

opposite direction of cylinder rotation when the inner cylinder is rotating and the outer 

cylinder is stationary. In the case of outer cylinder rotation and inner cylinder stationary, 

the separation point is dependent on eccentricity. When the eccentricity is between 0.27 

and 0.57, the separation point moves opposite to rotation direction. However, the 

separation point moves in the same direction as the eccentricity is between 0.57and 1.0. 

San Andres and Szeri did not provide any experimental verification for their results. The 

Stokes approximation analysis of Ballal and Rivlin was verified by comparing 

computational data and experimental measurements (Thomas, 1999). The measurement 

of Thomas indicated that measurement of the accuracy of the Stokes approximation by 

the Ballal and Rivlin solution is highly dependent on fluid viscosity and cylinder angular 

velocity. For a low viscosity fluid such as pure water, the development of small eddies 

break streamline creation. When the fluid viscosity reached 1.86 cm2/sec, theoretical 

computation and experimental measurement were identical at small eccentricities. 

Photographic observations indicated that inertial forces acting on the streamlines are 

quite appreciable. However, more computational work on the linearized inertial 

correction analysis of Ballal and Rivlin were not conducted.  
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3.2 Governing Equations and Analytical Solutions 

The flow between two cylinders is studied where the outer cylinder is rotating, 

and inner cylinder is stationary. Their axes are parallel but one of cylinders is offset. In 

general, flow development between two parallel cylinders will be three-dimensional. 

However, the flow movements in the z direction caused by end effects can be neglected 

by assuming that the length of cylinder is infinitely long. Thus, fluid motions between 

the annuls will be true two-dimensional flow, whose equations of motion can be 

described by the continuity equation and the two components of the Navier-Stokes 

equations. In the Cartesian coordinates the continuity equation and Navier-Stokes 

equations in x and y components are expressed as  
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(27) is satisfied by introducing Lagrange’s stream function, ),( yxψ , which is useful to 

describe streamlines in bi-directional flow. Velocities of x and y directions are presented 

with stream function as  

 
ydt

dxux ∂
∂−== ψ      

xdt
dyuy ∂

∂== ψ  (30) 

By differentiating (28) and (29) with respect to y and x, and by subtracting one equation 

from the other, the equation can be rewritten as a forth-order partial differential equation. 
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where the Laplace operator ( ) in Cartesian coordinates is defined as  2∇

 2

2

2

2
2

yx ∂
∂+

∂
∂≡∇  (32) 

When the Reynolds number is within the Stokes regime, the viscous effects are larger 

than the inertial forces. Then inertial effects can be neglected and the equation reduces to 

the biharmonic or Stokes equation, 

 0  (33) )0(4 ≡∇ ψ

where  is the Stokes stream function neglecting the inertial forces. The no-slip 

boundary conditions for (33), with the inner cylinder stationary and outer cylinder 

rotating, is 
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where l is distance from O to C, and x and y are generic points of outer cylinder in Fig. 

12. If the Reynolds number is large, inertial forces cannot be neglected. Then, by 
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introducing , which is the inertial stream function, the equation defining two-

dimensional flow with inertial forces can be obtained as 
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with boundary conditions  
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Thus, the stream function with viscous and inertial effects is defined as summation of 

both Stokes and inertial stream functions 

 )1()0( 1ψψψ
v
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However, the eccentric rotating cylinder apparatus that offsets one of the cylinders has 

nonparallel boundaries, which means that the Navier-Stokes equations cannot be 

linearized, and exact solutions are very difficult in the Cartesian coordinates. Thus, 

Ballal and Rivlin introduced a bipolar coordinates, which is an exact match with the 

geometry of the eccentric rotating cylinder apparatus. The eccentric rotating cylinder 

geometry based on bipolar coordinates is presented in Fig. 12. The transformation of 

from Cartesian coordinates to complex bipolar coordinates can be expressed as  
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FIG. 12. Geometry of Eccentric Rotating Cylin

 

With boundary conditions io ξξξ ≤≤  and 0 ≤
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 )coth( obc ξ−=  (44) 

 ( iob )ξξε cothcoth −−=  (45) 

To solve the biharmonic equation for the noninertial stream function with complex 

coordinates, the Laplace operator must be defined in bipolar coordinates as  
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where scale factors  for bipolar coordinates are defined as  
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Then, biharmonic equation is rewritten as  
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For the case where the inner cylinder is stationary and the outer cylinder is rotating, the 

boundary conditions become 
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where ψ  is a function of the radius of the inner cylinder, radius of the outer cylinder and 

angular velocity. The solution of the Stokes stream functions neglecting the inertial 

forces can be expressed as 

  (51) )0()0( φψ h=
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where  is a function dependent on the eccentricity ratio ( e ), radius ratio, )0(φ c/ oi RR , 

and outer cylinder angular velocity, .oω  For the case of the governing inertial forces, 

(36) must be rewritten in bipolar coordinates. Transformation of (36) and t(37) with (46) 

and (48) are  
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Thus, the stream function with consideration of inertial forces can be expressed as  

  (53) )1()1( φψ h=

where  is also function that depends on the eccentricity ratio ( ), radius ratio, )1(φ ce /

oi RR , and outer cylinder angular velocity, oω . Detailed analytical solutions are 

displayed in Appendix III.  

Since the investigation of Ballal and Rivlin (1976) only focused on streamline 

computations in eccentric rotating cylinder apparatus, it is inappropriate to directly apply 

Ballal and Rivlin’s analytical solutions for the study of the coagulation. In this thesis, I 

will modify Ballal and Rivlin’s analytical solutions for the application of eccentric 

rotating cylinder apparatus for the coagulation study. Modifications will be conducted 

based on relationships between stream function and velocity vector, and generalized 

two-dimensional strain-rate system. Using the modified analytical solutions, fluid 

velocities, strain-rates, mean principal strain-rates and root-mean-velocity gradients can 

be obtained for the various geometries and rotation speeds of a system. 
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3.3 Fluid Dynamics of Eccentric Rotating Cylinder Apparatus 

A streamline is a line in a flow field that is everywhere tangent to the velocity 

vector at each point along the streamline for any instant of time. Thus, the component of 

the velocity normal to a streamline is always equal to zero so that there is no mass flux 

across a streamline. Fluid velocities of eccentric rotating cylinder apparatus are obtained 

based on two stream functions (51) and (53). Fluid velocities for the radial, ξ , and 

angular, η , directions in viscous and inertial flow are calculated with (30) and expressed 

as.  
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Strain-rate is used to define the intensity and direction of the deformation at a 

given point with respect to a specified plane within a fluid element. The strain-rate in 

Cartesian coordinates is derived in Appendix I. However, Ballal and Rivlin’s stream 

functions are based on complex bipolar coordinates. In order to derive strain-rate based 

on bipolar coordinates it may be useful to develop generalized two-dimensional system. 

It is known that tensor equations are valid in any generalized coordinate system. 

However, in order to express physical phenomena, which are invariant and independent 

of the coordinate system, tensor equations must be expanded with proper physical 

components. Detailed analysis of generalized two-dimensional strain-rate is presented in 
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Appendix II. By assuming an orthogonal coordinate system the normal component 

( and a ) and shear component ( a and ) strain-rate tensor is expressed as ξξa ηη ξη ηξa
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Representative characteristics of fluid dynamics such as streamline, velocity, 

strain-rate were analyzed, however, the main focus of this study is in applications of the 

eccentric rotating cylinder apparatus for the investigation of particle coagulation and 

flocculation. To contribute to the study of coagulation, mean principal strain-rate and 

Camp and Stein’s velocity gradient are also derived. According to Kramer and Clark 

(1997, 2000), a local principal strain-rate is obtained from the diagonalization of the 

strain-rate tensor without a loss of information. The 2  strain-rate (E) is a symmetric 

matrix, therefore there exists an orthogonal matrix P such that 
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where col1(P) and col2(P) are linearly independent eigenvectors of E. Since E is 

symmetric matrix, TP  is equal to 1−P . The diagonal elements of Emax are expressed with 

the eigenvalues of E associated with eigenvectors as a  

  (61) EPPEPPE T== −1
max

where 1−P  is the inverse matrix of P and TP  is the transpose of matrix P. Then, the 

diagonalized matrix ( ) is  maxE
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A local principal strain-rate is equivalent to the absolute maximum principal strain-rate 

(Kramer and Clark, 1997). Thus, a local principal strain-rate for the eccentric rotating 

apparatus is given as  
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Root-mean-square velocity gradient can be derived from the required mechanical 

power input to turn the outer cylinder with (18) and the volume of the fluid system. To 

estimate theoretical torque, total shear stress force exerted on the cylinder surface is 

required. For Stokes flow, average shear stress over πη 2≤≤0 on the outer cylinder 

( )0(τ ) is suggested as 

 oϖµλτ )0()0( 2=  (64) 

where  is the dimensionless function of inner and outer cylinder radius. For inertial 

flow, average shear stress, 

)0(λ

)1(τ , is given by 
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where  is a dimensionless functions of )1(λ η , which depend on the geometry of the 

system. Root-mean-square velocity gradient is derived from (19) with (64) and (65) 
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In this work, Matlab (Mathworks, Inc) was used to perform the calculations due 

to the complexity of the analytical solution. The streamlines, velocities, strain-rates and 

root-mean-square velocity gradients from the analytical solutions were directly coded 

into the Matlab source code. In order to produce contour plots for the streamlines, an 

array of specified ξ  and η  coordinates are required. Thus, 200 × 200 grids are set up by 

ξ  and η  values. The ξ  values ranging from 1ξ  to 2ξ  and the η  values ranging from 

π−  to π+  each incremented into 200 steps. The calculated data was saved to a file and 

transferred to another software package to create streamlines. The data was transferred 

from the data file into Techplot 9.0 (Amtech Engineering, Inc) and plotted streamlines. 

The mean principal strain-rate is obtained from the total sum of local principal strain-rate 

divided by the number of data. However, as shown in Fig. 13 a), data distribution 

displays that the narrow gap region is denser than large gap location due to bipolar 

coordinates. Thus, the total sum of local principal strain-rate divided by the number of 

data may overestimate the mean principal strain-rate because narrow gap has faster fluid 

velocity than wide gap. In order to compensate unbalanced data distributions, 

computational grid are generated and presented in Fig. 13. However, computational 

meshes are also shows that smaller in elements exist in the narrow gap region, while  
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FIG. 13. a) Data Distribution and b) Computational Grids for Eccentric Rotating 
Cylinders 
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FIG. 14. Specific Fluid Element Coordinates 
 

 

larger size elements are found in wide gap area. To avoid overestimation of the mean 

principal strain-rate, area weight methods are applied. The total principal strain-rate on a 

specific fluid element is divided by the area of each fluid element. The computation of 

the mean principal strain-rate of a mesh using weighted method is presented in Fig 14. 

The mean principal strain-rate is defined as  
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where S indicate one specific element and the subscript number is the fluid element 

coordinate.  
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1 Introduction 

The objective of this investigation was to evaluate the eccentric rotating cylinder 

apparatus for the improved study of particle coagulation. Conventional apparatuses have 

limitations. The concentric rotating cylinders are developing uniform laminar flow and 

turbulent mixing device do not have well-defined fluid dynamics. Many types of 

coagulation studies would be improved if an apparatus with well-defined fluid dynamics 

and spatially varying flow were developed. For this reason, this investigation presents 

computed streamlines, velocities and strain-rates to show well-defined fluid dynamics 

for the eccentric rotating cylinder apparatus. The spatial variations of the eccentric 

rotating apparatus are obtained by presenting streamlines and velocity variations as 

eccentricity ratio changes. The root-mean-square velocity gradient and mean principal 

strain-rate are obtained for its application to coagulation. These computed data, which 

are based on Ballal and Rivlin’s solution, are compared to previous experimental data 

(Thomas, 1999) to insure the validity and accuracy of the computational work of this 

investigation. All of computational works performed with MATLAB (Mathworks, Inc) 

and streamlines were plotted with Techplot 9.0 (Amtech Engineering, Inc). 
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4.2 Determination of Analytical Solution 

Since Ballal and Rivlin (1976) suggested two analytical solutions, Stokes and 

inertial method, it is required to determine a preferable solution for the study of the 

coagulation. The difference between Stokes and inertial method is governing forces. 

When Reynolds number is close to zero, viscous forces overwhelm inertial forces. Thus, 

Stokes method is used to consider viscose forces on fluid dynamics. Fig. 15 shows 

comparison of streamlines developed by the Stokes and inertial method. Both methods 

are simulated under the same conditions but the inertial method is included kinematic 

viscosity for inertial forces. For Stokes flow the eddy position does not skew to the 

direction of rotation with eccentricity (see Fig. 15(a)). The eddy development is 

symmetric at all values of Reynolds number. However, as the fluid viscosity is decreased 

and mixing intensity is increased (Reynolds number is increased over one) inertial forces 

cannot be neglected. The effects of inertial force on streamline developments are 

presented in Fig. 15(b). The eccentric rotating cylinder device is assumed to contain a 

fluid with kinematic viscosity 1 cm and to rotate its outer cylinder at 30 RPM. 

Both Stokes and inertial methods develop an eddy in the wide clearance. Stokes flow 

shows that a developed eddy is symmetric. However, for inertial flow the eddy is 

skewed in the rotating direction by inertial forces. More detailed analysis of inertial 

force effects on fluid dynamics are presented in Fig. 16 and 17. Contour plots in Fig. 16 

show inertial effects on angular (

sec/2

η ) and radial (ξ ) velocity distributions. Angular and 

radial velocity distributions are symmetric for the Stokes flow. However, inertial forces 

break down the symmetric balance for inertial flow. Normal and shear strain-rate 
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distributions are also shifted in the rotating directions by inertial forces in Fig. 17. 

Generally, coagulation studies require various rotating speeds and kinematic viscosities. 

Inertial effects cannot be neglected, even at low angular velocity. Therefore, the 

following results are computed considering inertial forces. 

 

 
 

(a) 
 

 
 

(b) 
 
FIG. 15. Streamline developments with (a) Stokes; (b) inertial (ν = 1 cm ,  = 

7.62 cm, = 5.08 cm, 

sec/2
oR

iR ω = 30 RPM, ε = 0.7) 
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(i) (ii) 

 
(a) 

 

(i) (ii) 
 

(b) 
 

 
 
FIG. 16. (i) Angular velocity and (ii) radial velocity distributions in (a) Stokes; (b) inertial 

(ν = 1 , sec/2cm ω = 30 RPM, ε = 0.7) 
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(i) (ii) 
 

(a) 
 

(i) (ii) 
 

(b) 
 

 

FIG. 17. (i) Shear strain and (ii) normal strain-rate distributions in (a) Stokes; (b) inertial 

(ν = 1 , sec/2cm ω = 30 RPM, ε = 0.7) 
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4.3 Fluid Dynamics 

One of the advantages of using the eccentric rotating cylinder apparatus that it 

has well-defined fluid dynamics. The stability of the fluid flow for the eccentric rotating 

cylinder apparatus is governed by eddy development in the wide clearance area. The 

eddy development is related to the geometry of the inner cylinder. The geometry of the 

inner cylinder is determined by the eccentricity (e) or eccentricity ratio ( ). The 

inertial forces exerted on the fluid are estimated from the Reynolds number. Various 

equations to determine the Reynolds number for the eccentric rotating cylinder apparatus 

have been suggested in the literature. Table. 1 shows the various equations for Reynolds 

number for the eccentric rotating cylinder apparatus. In this research, Reynolds number 

is defined by the equation of Vohr (1968) and Pereira et al., (2001) as 

ce /

 
µ

ρω )(Re iooo RRR −=  (68) 

Values of the Reynolds numbers used in this investigation are presented in Table. 2. 

Fig. 18 shoes that how the development of eddies changes when the position of the inner 

cylinder changes. It shows that an eddy develops at a constant Reynolds number as the 

eccentricity ratio increases. At low eccentricity ratio, streamline developments are 

almost symmetric. However, as eccentricity ratio is increased the eddy develops in the 

largest clearance area and the position of the eddy shifts in the direction of rotation. This 

clearly indicates that inertial forces are increased as eccentricity ratio increases. Fig. 19 

shows the movement of eddy separation and reattachment points, as eccentricity ratio 

increases, with two different rotation speeds. At lower rotation speed  



 58

 

 

TABLE 1. Definitions of Reynolds number for Eccentric Rotating Cylinder Apparatus 

in Literatures 

Reference  Equation 

Ballal and Rivlin (1976) and Kumar and 

Homsy (1996) 
 

µ
ρω 2

Re ooR=  

Diprima and Stuart (1972) 
 

µ
αρω 22

Re ooR
=  

Vohr (1968) and Pereira et al., (2001)  µ
ρω )(Re iooo RRR −=  

 µ
ρω )(2Re iooo RRR −=  

(Bulk axial Reynolds number) 

Escudier et al., (2000) 

 µ
ρω )(Re iooo RRR −=   

(Rotational Reynolds number) 

α is the measure of clearance ratio which is dimensionless parameter. 
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TABLE. 2 Reynolds Number Used in the Simulation 

oR (cm) iR (cm) ω (RPM) Re  

10 20 

20 40 

30 60 

50 100 

5.08 

100 200 

10 35 

20 70 

30 106 

50 177 

7.62 

3.175 

100 355 

ν = 1  sec/2cm
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(Fig. 19(a)) the reattachment point moves in the opposite of the direction of rotation and 

the separation point shifts in the direction of the rotation. However, the reattachment 

point moves in the direction of the rotation at higher rotation speed (Fig. 19(b)). The 

separation point also shifts in the direction of rotation at higher rotation speed. San 

Andres and Szeri (1984) reported that the movements of the separation and reattachment 

points are governed by the eccentricity ratio. Between eccentricity ratios of 0.3 and 0.53, 

the separation point moves in the direction of rotation and the reattachment point moves 

in the opposite direction of rotation, which is similar to a low rotation speed case (Fig. 

19(a)). At eccentricity ratios over 0.53, both separation and reattachment point shift in 

the direction of rotation, which is found in the simulation data at a high rotation speed 

(Fig. 19(b)). However, Fig. 19 clearly indicates that the consideration of both Reynolds 

number and eccentricity ratio are required to predict the position of the separation and 

reattachment points.  

The eddy developments are also dependent on the radius ratio ( ) or mean 

clearance ( c ). Fig. 20 shows that application of larger mean clearance results 

in the earlier development of the eddy than smaller clearance. This earlier development 

of the eddy is explained in section 4.4. The center of the eddy is more skewed to the 

direction of rotation in Fig. 20(d) than in Fig. 18(d). These two figures are computed 

under the same conditions except at different inner cylinder radii. The difference of the 

position of the eddy center in Fig. 18(d) and 19(d) is explained by the different amount 

of inertial force exerted on the fluid flow. Applying a smaller inner cylinder radius ( = 

3.175 cm) increase the clearance and Reynolds number indicates greater importance of 

oi RR /

io RR −=

iR
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inertial forces. The eddy development and inertial force effects on fluid flow as rotation 

speed increases are shown in Fig. 21. This figure shows that the eddy grows and is 

shifted in the direction of rotation as the Reynolds number is increased with rotation 

speed. At lower rotation speed the position of eddy is almost symmetric, even at large 

eccentricity ratios. This means that the effect of fluid inertia is negligible. As the speed 

of the outer cylinder is increased, the fluid inertial force plays an important role in 

determining the position of the eddy.  

The influence of varying average velocity as eccentricity ratio increases is shown 

in Figs. 22 and 23. Fig. 22 simulates average angular velocity ( ) change as 

eccentricity ratio increases with three different rotation speeds for two different inner 

cylinder radii. For small mean clearance ( = 5.08 cm), average angular velocity is 

lowered as eccentricity ratio is increased. However, when the eccentricity ratio is over 

0.7 the average angular velocity does not change even when increasing eccentricity to 

0.9. The reason for the stable angular velocity at high eccentricity ratio is that fluid is 

trapped in the eddy area. When the eccentricity ratio is increased, the clearance between 

inner cylinder and outer cylinder tends to zero. Thus, almost all the fluid is contained in 

the eddy at the largest clearance. A similar tendency is observed when a small inner 

cylinder ( = 3.175 cm) is applied. However, at high rotation speed (see Fig. 22(c)), 

average angular velocity is not decreased or stable, but increased. Radial direction 

velocity ( ) in the eccentric rotation cylinder apparatus is small when compared to 

angular direction velocity ( ). However, this velocity increases in keeping with 

ηu

iR

iR

ξu

ηu
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eccentricity ratio. Fig. 23 shows how the average radial direction velocity changes as 

eccentricity ratio changes. The average radial direction velocity is increased as 

eccentricity ratio is increased.  

 

  
 
(a) 

 

 
(b)  

 

  
 
(c) 

 

 
(d) 

 
FIG. 18. Effects on streamlines of eccentricity ratio at fixed rotation speed 

( 1=ν sec/2cm , = 7.62 cm, = 5.08 cm, oR iR ω  = 20 RPM); (a) ε  = 0.2; (b) ε  = 0.4; (c) 

ε  = 0.5; (d) ε  = 0.7 
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(a) 
 

(b) 
 
 

FIG. 19. Movements of the separation and reattachment poin

increases ( 1=ν sec/2cm , = 7.62 cm, = 3.175 cm); (a) oR iR ω  =

RPM 

o 
eccentricity rati
 

 

ts as eccentricity ratio 

 10 RPM; (b) ω  = 50 
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(a) 
 

 
(b) 

 

  
 

(c) 
 

 
(d) 

 
 

FIG. 20. Effects on streamline of increasing eccentricity ratio at fixed rotation speed 

(ν = 1 cm , = 7.62 cm, = 3.175 cm, sec/2
oR iR ω  = 20 RPM); (a) ε = 0.2; (b) ε  = 0.4; 

(c) ε = 0.5; (d) ε = 0.7 
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(a) 

 
(b) 

  
 

(c) 
 

(d) 
 

 

FIG. 21. Effects on streamlines of increasing rotation speed at fixed eccentricity (ν = 

1 , = 7.62 cm, = 5.08 cm, sec/2cm oR iR ε  = 0.6); (a) ω  = 10 RPM; (b) ω  = 30 RPM; 

(c) ω  = 50 RPM; (d) ω  = 100 RPM 
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FIG. 22. Average angular direction velocity ( ) changes with increasing eccentricity 

ratio (

ηu

ν = 1.0 cm2/sec, = 7.62 cm); (a) 10 RPM; (b) 30 RPM; (c) 100 RPM oR
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FIG. 23. Average radial direction velocity (u ) as eccentricity ratio increases (ξ ν = 1.0 

cm2/sec, = 7.62 cm); (a) 30 RPM; (b) 100 RPM  oR
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4.4 Spatial Variance and Non-Uniform Velocity Distribution 

The spatial variance and non-uniform velocity distribution of the eccentric 

rotating cylinder apparatus are generated by the development of the eddy in the wide 

clearance. Szeri and Al-Sharif (1995) showed that the pressure gradients cause eddy 

development near the stationary inner cylinder as the eccentricity ratio or rotation speed 

increases, The size of the eddy is increased with eccentricity ratio at fixed rotation speed 

(see Fig. 18 and 20). It is expected that the growth of the eddy size increase non-uniform 

velocity distributions.  

Variance of angular velocity (u ) as eccentricity ratio increases with two inner cylinder 

radiuses is shown in Fig. 24. Large inner cylinder radius ( = 5.08 cm) shows that the 

variance of angular velocity changes as eccentricity ratio increases by 0.5. Beyond an 

eccentricity ratio of 0.5, the variance of angular velocity is decreased. This is similar to 

the growth of the eddy size by shifting the inner cylinder from the center of outer 

cylinder. With increasing eccentricity ratio, the eddy appears near the stationary inner 

cylinder and grows in size. As the eddy expands, fluid flow near the stationary inner 

cylinder is in the opposite direction of the outer cylinder rotation, which causes the 

variance of angular velocity to increase until eccentricity ratio is equal to 0.5. Decease of 

the variance of angular velocity at high eccentricity ratio (beyond 0.5) is caused by 

trapping fluid in the eddy. By increasing eccentricity ratio, the clearance between the 

outer cylinder and inner cylinder is decreased. The eddy recirculating fluid in the wide 

clearance does not go through the narrow clearance zone. Therefore, almost all the fluid 

is contained in the eddy. However, when a smaller inner cylinder radius ( = 3.175 cm) 

η

iR

oR
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is applied, the variance of angular velocity shows a different tendency. Rotation speed is 

increased at high eccentricity ratio between 0.5 and 0.9. As eccentricity ratio increases 

from 0.5 to 0.9, the variance of angular velocity is less.  
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FIG. 24. Variance of angular velocity as eccentricity ratio increases ( v = 1.0 cm2/sec, 

= 7.62 cm); (a) 10 RPM; (b) 30 RPM; (c) 100 RPM oR
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4.5 RMS Velocity Gradient and Mean Principal Strain-rate. 

The root-mean-square velocity gradient and average principal strain-rate were 

obtained in order to apply the eccentric rotating cylinder apparatus to coagulation studies. 

The root-mean-square velocity gradient is calculated from the mechanical power 

consumption that is needed to rotate the outer cylinder and the volume of fluid in 

eccentric rotating cylinder apparatus (see (67)). Fig. 25 shows that G  changes as 

eccentricity ratio and rotation speed increase. At low rotation speed (10 RPM), G  is not 

affected by the location of inner cylinder, even when eccentricity ratio is greater than 0.5 

for both R = 3.175 cm and R = 5.08 cm. However, rotation speed increases i i G  changes 

with eccentricity ratio. With = 5.08 cm, iR G  increases in keeping with eccentricity ratio. 

When eccentricity ratio reaches 0.8, G  shows a sudden increase. With R = 3.175 cm, i

G  shows similar behavior with eccentricity ratio. However, at 100 RPM, G  shows a 

rapid increase when eccentricity ratio is over 0.6. This is similar to the result of the 

variations of angular velocity with increasing eccentricity ratio in Fig. 24. Average 

principal strain-rate values are obtained in both Stokes and inertial flow with (64). Fig. 

26 shows that maxa  increases consistently with eccentricity ratio in Stokes flow. For 

inertial flow, maxa  slightly increase at low rotation speed 10 to 50 RPM. As rotation 

speed increases over 50 RPM, the increase of maxa  is divided in two regions. When 

eccentricity ratio is under 0.6, the increase of maxa  corresponds to low rotation speed 
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cases between 10 to 50 RPM. However, as eccentricity ratio is above 0.7, maxa  shows a 

sudden rise at 100 RPM. Fig. 27 shows that maxa  increases in keeping with rotation 

speed. 
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FIG. 25. Root-mean-square velocity gradient (G ) as a function of rotation speed and 

eccentricity ratio ( = 1 /sec, = 7.62 cm); (a) = 3.175 cm; (b) = 5.08 cm v 2cm oR iR iR
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FIG. 26. Average principal strain-rate ( maxa ) as a function of rotation speed and 

eccentricity ratio ( = 7.62 cm, = 3.175 cm); (a) Stokes flow; (b) Inertial flow (oR iR ν = 1 

) sec/2cm
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FIG. 27. Average principal strain-rate ( maxa ) with rotation speed; ( = 1 /sec, = 

7.62 cm); (a) = 3.175 cm; (b) = 5.08 cm 
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4.6 Comparison with Thomas (1999)  

Thomas (1999) conducted experiments to verify the Stokes method for the 

eccentric rotating cylinder apparatus. Flow visualization was achieved through use of a 

green dye and aluminum powder. The kinematic viscosity of the fluid was carefully 

controlled using a glycerin and water mixture. The dimensions of the apparatus used in 

Thomas (1999) are that an outer cylinder radius was 7.62 cm, and two inner cylinder 

radii were 3.175 cm and 5.08 cm. The depth of the cylinder was 20.32 cm and the ratio 

of length per outer cylinder diameter was 1.33 cm. Fig. 28(i) shows streamline 

development with ν = 0.6689 cm2/sec. Fig. 28(a) shows that when outer cylinder rotates 

30 RPM in the counterclockwise direction, the eddy formed is slightly skewed in the 

rotating direction by the inertial forces. Fig. 28(b) shows that the separation point shifts 

further to the rotation direction with increasing rotation speed. This is consistent with 

simulated streamlines in Fig. 21. The reattachment point moves in the direction opposite 

of the rotation in comparisons with Fig. 28 (a) and (b). This corresponds to Fig. 19 (a) 

for low rotation speed (10 RPM). Comparisons Fig. 28 (a) and (b) with Fig. 28(b) and 

(c) show that the size of eddy grows and more inertial forces work on fluid flow with 

eccentricity ratio. However, by applying small inner cylinder ( = 3.175 cm), the model 

fails to predict the streamlines accurately with increasing the mean clearance. Fig. 29 

shows that increasing the mean clearance causes the failure of the model prediction even 

at a small eccentricity ratio. The increase of the mean clearance ratio increases Reynolds 

number. As Reynolds number increases over 300, model cannot accurately predict the 

flow streamlines. The eccentricity ratio of Fig. 29(a) is 0.3 and (b) is 0.67. Both cases  

iR
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(i) (ii) 
(a) 

 

 
 

 

(i) (ii) 
(b) 

 

 
  

(i) (ii) 
(c) 

FIG. 28. Streamline Developments Comparisons of (i) Thomas (1999) and (ii) 

Simulation (ν = 0.6689 cm2/sec, = 7.62 cm, R = 5.08 cm); (a) oR i ε =0.39, ω = 30RPM, 

Re = 90; (b) ε = 0.39, ω = 60 RPM, Re = 182; (c) ε = 0.59, ω = 60 RPM, Re = 182 
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fail to predict streamlines. The failure of simulation results at high values of the 

Reynolds number is caused by the subsequent terms of the perturbation series and the 

series diverges in inertial analytical solution. As series are diverged, the error of the 

perturbation is increased. Comparison of computational simulation based on the 

modified solutions of Ballal and Rivlin (1976) with experimental results for fluid 

motions in an eccentric rotating cylinder apparatus shows good agreement for Reynolds 

number smaller than 200. 
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(i) (ii) 

 
(a) 

  
(i) (ii) 
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FIG. 29. Streamline Developments Comparisons of (i) Thomas (1999) and (ii) 

Simulation (ν = 0.6689 cm2/sec, = 7.62 cm, = 3.175 cm, Re = 318); (a) oR iR ε =0.34, 

ω = 60RPM; (b) ε = 0.67, ω = 60 RPM 
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CHAPTER IV 

 SUMMARY AND CONCLUSIONS 

 

van Duuren (1968) investigated concentric rotating cylinders as a model 

flocculator and suggested that a model flocculator must be easy to handle, generate two-

dimensional laminar flow, and develop shear velocity gradients. Finally, fluid dynamics 

in the flow must be well-defined. The eccentric rotating cylinders apparatus has two 

parallel cylinders like the concentric rotating cylinder device and is based on a journal 

bearing system (Swanson and Ottino, 1990). However, the only difference is that the 

inner cylinder is located eccentrically. Therefore, requisites for a model flocculator (easy 

to handle, two-dimensional laminar flow, and shear velocity gradients) are satisfied. In 

this study, fluid dynamics for the eccentric rotating cylinder apparatus were examined 

using the modified analytical solution of Ballal and Rivlin (1976) of  various eccentricity 

ratios and rotation speeds. 

The Stokes method was identified as not being an appropriate method for the 

study of coagulation, because general coagulation studies require various mixing 

intensities and fluid viscosities. As mixing intensity increases, inertial effects working on 

the fluid increase. Thus, the inclusion of the inertial approximation was determined as a 

proper method to investigate the fluid dynamics of the eccentric rotating cylinder. 

As eccentricity ratio increased at a fixed rotation speed, inertial forces working 

on the fluid caused the shifting of the position of the eddy in the direction of rotation. At 

low eccentricity ratio, the eddy was symmetric, however, as eccentricity increases the 
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position of the eddy was skewed to the direction of rotation. Inertial forces were 

increased by applying a smaller inner cylinder or increasing rotation speed. The 

simulation with a small inner cylinder radius ( = 3.175 cm showed that the eddy 

appeared earlier even at smaller eccentricity ratio and that the center of the eddy was 

more skewed in the direction of rotation than for the larger inner cylinder radius ( = 

5.08 cm). When the rotation speed was increased at a fixed eccentricity ratio, the 

position of the eddy was almost symmetric, even at a large eccentricity ratio. As the 

rotation speed reaches 100 RPM, the eddy moves in the direction of rotation and the 

separation point shifts to the narrow gap. These results clearly indicated that inertial 

forces working on the fluid could be estimated from Reynolds number, because the 

Reynolds number increases with rotation speed. 

iR

oR

The investigation of eddy separation and reattachment points with two different 

rotation speeds showed that at a low rotation speed (10 RPM) the separation point shifts 

in the direction of rotation. However, the reattachment point moved opposite the 

direction of rotation. At a high rotation speed (100 RPM), both the separation and 

reattachment point moved in the direction of rotation. Therefore, consideration of both 

eccentricity ratio and Reynolds number is required to predict the position of the 

separation and reattachment points. 

The average angular velocity showed that when the rotation speed was below 30 

RPM the average angular velocity decrease with increasing eccentricity ratio and 

reached a steady state. Average angular velocity (u ) was lowered as eccentricity ratio 

increases. However, when the eccentricity ratio was over 0.7 the average angular 

η
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velocity reached steady state even when eccentricity ratio was increased to 0.9. Variance 

of angular velocity also showed a certain pattern when the rotation speed is kept under 

30 RPM. The variance of angular velocity showed that variance increased as eccentricity 

ratio increased to 0.5. However, after 0.5, the variance of angular velocity declined. Both 

the steady state conditions of average angular velocity and the decreasing in the variance 

of angular velocity were caused by fluid entrapment inside of the eddy, when 

eccentricity ratio is beyond 0.7 and 0.5.  

The root-mean-square velocity gradient and average principal strain-rate 

increased in keeping with eccentricity ratio. This clearly indicated that increasing spatial 

variations of fluid dynamics increased both G  and maxa . maxa  increased linearly with 

rotation speed, which suggested that maxa  can properly represent mixing intensity. 

Finally, comparison of model streamlines and experimentally developed 

streamlines in Thomas (1999) showed that when larger inner cylinder radius ( = 5.08 

cm) was applied, the model generated streamlines were in good agreement with 

streamlines in Thomas (1999). However, when the smaller inner cylinder (  = 3.175 

cm) was simulated, the model failed to predict the proper development of the streamlines. 

This failure is caused by inaccuracies of perturbation series divergence in the inertial 

analytical solution of Ballal and Rivlin (1976) with increasing Reynolds number. 

iR

iR

In conclusion, the eccentric rotating cylinder apparatus was found to be 

applicable for the study of particle coagulation as a model flocculator. However, some 

operating limitations are required. 
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1. Fluid Reynolds number must keep below 200 in order to obtain reliable 

model simulation. 

2. It is recommended that small mean clearance ( ) should be 

applied in order to maintain low Reynolds number at various mixing 

intensities. 

io RR −

3. Using a large mean clearance requires the use of a high viscosity fluid 

to maintain low Reynolds number. 
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APPENDIX I 

 

Derivation of Velocity Gradient, Strain-Rate, Vorticity Tensor 

In order to derive the velocity gradient, strain-rate and vorticity tensors, consider 

the displacement and distortion of a fluid element due to fluid motion. When force is 

exerted on a fluid element, four different types of motion or deformation develop: 

translation, extensional or dilation, shear, and rotation. The distortions of a fluid element 

such as extensional, dilation and shear strain are called the strain-rate tensor, which is 

the rate of deformation by external fluid forces. The orientation of a material vector of a 

fluid element is named the vorticity tensor. Displacement and deformation of a fluid 

element by external fluid force is shown in Fig. I-1, which clearly displays the four 

motions (translation movement of reference corner A to E), dilation (EFGH looks a little 

bigger), shear strain (the lozenged shape of EFGH), and rotation (the change of angle 

BAC and BAG)). The displacement of ABCD into EFGH can be defined in matrix form. 
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To solve this matrix, the displacement of each of the points, A, B, C, and D in terms of a 

displacement field u  and  is required. The first consideration is 

displacement of A to E. By assuming that A has coordinate (x, y), then the E is defined 

. Then transformation of A to E is defined as  

),( yxu= ),( yxvv =

),( vyux ++
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FIG. I-1. Orientation and Distortion of a Fluid Element ABCD to EFGH 
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The transformation of B to E is expressed as a  

 ,   ( )ydxxudxxx ,+++=′ ),( ydxxvyy ++=′

By expanding u and v in a Taylor series approximation, transformed point F can be 

defined as a  
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By assuming that dx is sufficiently small (close to zero), the terms of higher order can be 

neglected. So transformation of B to F in matrix form is  

 






 +








=

















∂
∂++

∂
∂+++

y
dxx

OO
OO

dx
x
vvy

dx
x
udxux

2221

1211   (I.3) 

With the same approach, transformation of C and D into G and H are  
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and 
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respectively. The matrix (I.2), (I.3), (I.4), and (I.5) give rise to simultaneous equations 

and the solution is  

 


























∂
∂

∂
∂

∂
∂

∂
∂

+















=








′
′

y
x

y
v

x
v

y
u

x
u

y
x

OO
OO

y
x

2221

1211  (I.6) 



 91

where the first equation of right hand side represents identity matrix and the second 

matrix represents velocity gradient. A physical interpretation of velocity gradient 

(relative motion of a fluid element) is consisted of strain arte and vorticity and defined as 

a  
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where the first matrix on the right hand side is a symmetric matrix called strain-rate and 

the second is an antisymmetric matrix called vorticity. Strain-rate is divided into normal 

strain-rate and shear strain-rate. Normal strain-rate is defined as the rate of change of 

length per unit of original length. By assuming that the angle of α and β  are small, so 

normal strain-rate for a fluid element in Fig. I. 1 is expressed as  
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where a represents x direction and  for y direction. By considering deformation of a 

fluid element without extensional strain-rate and rotation, pure shear strain-rate will be 

obtained. Fig. I-2 shows a fluid element motions by pure strain-rate. The matrix 

equations for the deformed square a) and b) are given as  

11 22a
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respectively. The multiplication of matrix for a) and b) produces matrix for c) in Fig. I.2 

and expressed as  
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FIG. I-2. Distortion of a Fluid Element By Pure Shear Strain-rate 

 

The reason neglecting αβ  is that α  and β  are small, so αβ  approaches zero. Thus the 

shear strain-rate is equal to 

 βα +== 2112 22 aa  (I.9) 

From Fig.I.1, α  and β  are defined as  

 
x
v

dx
x
udx

dx
x
v

∂
∂≈

∂
∂+

∂
∂

=≈ )tan(αα  (I.10) 

 
y
u

dy
y
vdy

dy
y
u

∂
∂≈

∂
∂+

∂
∂

=≈ )tan(ββ  (I.11) 

By substituting (I.10) and (I.11) into (I.9), shear strain-rate is defined as a 
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The derivation of antisymetric vorticity is achieved by considering the pure rotation of a 

fluid element presented Fig. I.3. This shows a fluid element change its orientation 

without any normal and shear strain-rate. Transformations of a) and b) in Fig. I.3 are 

achieved by 
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FIG. I-3. Fluid Element Orientation by Pure Rotation Strain-rate 

 

The multiplication (I.13) defines c) in Fig. I-3, and expressed as a 
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By (I.10) and (I.11) antisymmetric vorticity for Fig. I-1 is expressed as a  
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By substituting (I.7), (I.12) and (I.15) into (I.6) velocity gradient matrix which describe 

relative motion or distortion of a fluid element is obtained as a 
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By introducing index notation, (I.16) can be expressed into 

 ( ) ( ijjiijjiji uuuuu ,,,,, 2
1

2
1 −++= ) (I.17) 

where i and j indicate coordinate direction indicies, the left hand side equation represents  

the velocity gradient tensor, the first right hand side equation is termed symmetric strain-

rate tensor and the second equation of right hand side is the vorticity tensor. 
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APPENDIX II  

 

Strain-Rate Derivation  

It is known that tensor equations are valid in any generalized coordinate system. 

However, in order to express physical phenomena, which are invariant and independent 

of the coordinate system, tensor equations must be expanded with proper physical 

components. From Appendix I, strain-rate tensor is defined as a 

 )(
2
1

,, ijjiij uua +=  (II.1) 

With the covariant components to velocity vector strain-rate tensor, (II.1), is expresses as 

a 

 )(
2
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t
ij

t
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By assuming an orthogonal coordinate system, a metric tensor that indicates the distance 

between any two points in a certain space is defined as a  

  (II.3) ijiijiiij hgg δδ 2==

where h  is scale factor and i ijδ  is the Kroneck delta. Before using any expanded tensor 

equations all the tensor components must be replaced by their corresponding physical 

components in order to make the homogeneous dimension. The physical components, 

, associated with the second order tensor, T , can be represented  )(ijT ij
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 96

and the physical components of velocity is expressed as a 

       no summation on i (II.5)      i
iuhiu =)(

Then, normal strain-rate, a , and shear strain-rate tensor, , are defined  ii ija

 
















+
∂
∂= m

i

t

itii u
mi
t

x
uga   no summation on i  (II.6) 

     ji
x
ug

x
uga i

t

jtj

t

itij ≠
∂
∂+

∂
∂=2  (II.7) 

By substituting physical components, (II.4) and (II.5) into (II.6) and (II.7), the expanded 

strain-rate tensor equations which are valid in any generalized two-dimensional 

coordinate system are defined as 
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For Example, with equations, (II-8) and (II-9), strain-rate tensors on Cartesian, polar and 

bipolar coordinates can be defined.  

 

1. Catesian coordinates  ( )yx,

 The scale factors for the Cartesian coordinates, when, i = x and j = y, are given 

as 

 1 (II.10) == yx hh
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By substituting (II.10) into (II.8) and (II.9), shear ( ) and normal (  and a ) strain-

rate are defined as 

xya xxa yy
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The matrix form of strain-rate is expressed as a 
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 (II.14) 

(II. 14) is corresponding to strain-rate tensor, equation (3). Therefore, the expanded 

strain-rate tensor equations generalized for any two-dimensional coordinate system are 

valid. 

 

2. Polar coordinates ( r , θ ) 

 The scale factors for the polar coordinates, when, i = r and j =θ , are given                     

 ,  (II.15) 1=rh rh =θ

By substituting (II.15) into (II.8) and (II.9), shear ( ) and normal (  and ) strain-

rate are defined as 

θra rra θθa
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3. Bipolar coordinates ( )ηξ ,  

 The scale factors for the bipolar coordinates, when, i =ξ  and j =η , are given                 

 2

2
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== bhh  (II.20) 

By substituting (II-19) into (II-8) and (II-9), shear ( ) and normal (  and ) 

strain-rate are defined as 
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APPENDIX III 

 

Analytical Solutions for The Eccentric Rotating Cylinder Apparatus 

Since two-dimensional momentum equations (28) and (29) cannot be linearized 

in Cartesian coordinates, Ballal and Rivlin (1976) adopted the bipolar coordinates. 

Transformation of the Cartesian coordinates (x, y) into the bipolar coordinates (ξ , η ) 

can be expressed as  

 
ηξ

η
ηξ

ξ
coscosh

sin,
coscosh

sinh
−

=
−

−= bybx  (III-1) 

The geometry transformation is shown in Fig. III-1. The Euclidean cylindrical 

coordinates R and θ  were transformed into an equivalent complex coordinate system. 

Boundary conditions are oξξ = on the outer cylinder, and iξξ =  on the inner cylinder, 

where iξ  and oξ are negatively valued constants the geometric characteristics of 

eccentric rotating cylinder such as outer cylinder radius, Ro, inner cylinder radius, Ri, 

eccentricity, e, and clearance, c, are defined  

 
)sinh( o

o
bR
ξ

−=  (III-2) 

 
)sinh( i

i
bR
ξ

−=  (III-3) 

 )coth( obc ξ−=  (III-4) 

 ( iobe )ξξ cothcoth −−=  (III-5) 

where b is the distance  between O and P in Fig. 12 and given by 
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2
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ioio RReRR
e

b −−+=  (III-6) 

 

FIG. III-1. Eccentric device in Euclidean (cylindrical) and complex coordinates (Kramer 

and Clark, 1997) 

 

To solve biharmonic equation for Stokes stream function with complex coordinates, 

Laplace operator must be defined in bipolar coordinates. 
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where h is defined as   

 
)cos()cosh( ηξξη −

=== bhhh  (III-8) 

Then, biharmonic equation, (33), is rewritten as a 
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For the case inner cylinder stationary and out cylinder rotating, the boundary conditions 

are 

 0  and )0( =ψ 0
)0(

=
∂

∂

iξ
ψ  on inner cylinder (III-10) 

 ψψ =)0(  and hR oo
o

ω
ξ

ψ −=
∂

∂ )0(

 on outer cylinder (III-11) 

where ψ  is a function of the radius of the inner cylinder, radius of the outer cylinder and 

angular velocity. 

 ( oo Rhb ω )
δ
δψ 1=  (III-12) 

where δ  and δ  are defined in (III-19).  

The solution of the Stokes stream functions neglecting the inertial forces can be 

expressed as 

  (III-13) )0()0( φψ h=

where  is function which depend on the eccentricity, e, radius ratio, )0(φ oi RR , and 

outer cylinder angular velocity, oω  and given as a 

  (III-14) )

)

cos()()( 10
)0( ηξξφ FF +=

where 

 sinh()()cosh()()( 00000 ξξξξξ DBCAF +++=   

 11111 )2sinh()2cosh()( DCBAF +++= ξξξξ   
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 oo RffffDCBA ω),,,(),,,( 75310000 =   
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and  

  0)(sinh)( 21
22

21 <−−−= ξξξξδ

 0)sinh()cosh()( 212121 >−−−−= ξξξξξξδ  

 ( ) 0)sinh)(sinh()sinh(sinhsinh2)sinh( 2
2

1
2

21212121 <+−−−−= ξξξξξξξξξξδ  

 0)sinh()sinh()sinh()( 2121211 >−−−= ξξξξξξh  

 0)sinh()()sinh()sinh( 121221213 >−−−= ξξξξξξξξh   
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For the case of governing inertial forces, (36) must be rewritten in bipolar 

coordinates. Transformation of (36) and its boundary conditions (37) with (46) and (48) 

in bipolar coordinates, are defined as  
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Then, inertial stream function is defined as  

  (III-18) )1()1( φψ h=

where  is also function which depend on the rate of eccentricity, e, radius ratio, )1(φ

oi RR , and outer cylinder angular velocity, oω  and defined as a 
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where )(ξng  (n = 1,2,3,4) are given by 
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