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ABSTRACT 
 
 

3D Multichannel Seismic Reflection Study of Variable-Flux Hydrocarbon Seeps, 

Continental Slope, Northern Gulf of Mexico.  (August 2003) 

Ryan Douglas Thomas, 

B.S.; B.A., Michigan State University 

Chair of Advisory Committee: Dr. William Sager 

 

 In the northern Gulf of Mexico, seafloor hydrocarbon fluid and gas seepage is an 

ubiquitous process on the continental margin.  Although seafloor seepage and seep-

related features (mud volcanoes, carbonate formation) have been studied for many years, 

little is known about their mechanisms of formation and the relationship of sub-surface 

structure to current seep activity.  In this study, we examined three seafloor seeps in the 

Garden Banks and Mississippi Canyon areas using exploration and reprocessed 3D 

multi-channel seismic (MCS) data augmented with side-scan sonar (Garden Banks site) 

to characterize hydrocarbon seep activity and develop an understanding of the processes 

that led to their formation.  Side-scan sonar data provided high resolution coverage of 

the seafloor while the exploration seismic data were used to image near and deep sub-

surface features.  Additionally, the 3D amplitude extraction maps were useful in 

delineating amplitude anomalies often associated with seep related activity.  The 

reprocessed 3D seismic data were used to map in greater detail near seafloor features 

and amplitude anomalies. 
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 Using remote sensing geophysical data, we were effectively able to map sub-

surface features such as salt topography, seep-related faults and geophysical indicators 

of hydrocarbons and correlate them with seafloor amplitude anomalies and fault traces in 

order to characterize seep activity level.  The southern mud volcano in the Garden Banks 

site is characterized as an established high flux seep vent owing to signs of active 

seepage and sediment flows as well as the build-up of hard grounds.  The northern mud 

volcano in the area, with greater hard ground build-up and fewer signs of active seepage 

represents an established low flux seep vent.  In the Mississippi Canyon area, the data 

suggest that the seep mound can be characterized as a mature high flux vent due to the 

extensive build-up of hard ground, evidence of gas hydrates and signs of active seepage 

and sediment flows.   

 The mechanisms of formation are similar between the two study sites.  

Upwelling salt appears to have fractured the sub-surface leading to the formation of fault 

induced depressions.  Mapping of geophysical indicators of hydrocarbons implies that 

hydrocarbon migration is occurring along bedding planes to the fault systems underlying 

the depressions.  Here they appear to migrate vertically to the seafloor creating the 

topographic features and seafloor amplitude anomalies that characterize the seeps.   
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CHAPTER I 

 
INTRODUCTION 

 
 Seafloor venting of hydrocarbon fluid and gas is a naturally occurring 

phenomenon on the continental margin in the northern Gulf of Mexico (Anderson and 

Bryant, 1987; Reilly et al., 1996).  If over-pressured fluids and gas deposits exist at 

depth in the sub-surface, they may migrate vertically and laterally through the sediment 

column along fault planes, sedimentary bedding planes, or through permeable 

stratigraphic units to create “seep mounds” or “mud volcanoes” on the seafloor (Hovland 

and Judd, 1988; Roberts, 1995; Kaluza and Doyle, 1996; Dimitrov, 2002; Orange et al., 

2002; Sager et al., 2003).  These seep mounds and their associated features are of 

interest because they occur in areas that may contain substantial accumulations of gas 

hydrate, a methane ice-like substance that is both a trophic source for chemosynthetic 

communities and a potential alternative energy source (Kvenvolden, 1993; Sassen et al., 

1998).  Additionally, every offshore petroleum field development site in the Gulf must 

be evaluated for potential geohazards as pressurized fluid and gas deposits as well as 

seep features pose a threat to offshore structure installations (Corthay, 1998; Roberts et 

al., 1999).  Evaluation and identification typically occurs through geophysical means 

(e.g. seismic, side-scan sonar) as geophysical data are able to show us a great deal about 

the structure and geology of a seep, which may enhance our understanding of seep 

processes and the environmental conditions that favor their formation. 

_________________ 
 
This thesis follows the style and format of the Bulletin of the American Association 
of Petroleum Geologists 
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In this study, I attempt to characterize hydrocarbon seep activity and develop an 

understanding of the processes that lead to seep formation.  Two areas observed to 

contain prolific seeps, Garden Banks lease blocks 424-425 and Mississippi Canyon lease 

blocks 852-853 (Figure 1) were surveyed using 3D exploration multi-channel seismic 

(MCS) (McDonald et al., 2000; Sassen et al, 1999b).  In this case, a high resolution MCS 

volume was reprocessed from the original exploration data to enhance the resolution of 

each data set.  Hydrocarbon fluid and gas seeps often exhibit well-known acoustic 

anomalies in the geophysical record such as seafloor reflection amplitude anomalies, 

zones of chaotic and attenuated reflectors as well as bright spots that may be associated 

with gas charged sediment, active venting and hard ground formation (Roberts, 1992; 

Roberts et al., 1996; Corthay, 1998; Riedel et al., 2002; Sager et al., 2003).  Indeed, the 

feasibility of using MCS data to interpret and characterize seafloor seeps and their 

associated anomalies has been established by previously published studies and site 

investigations (Trabant, 1996; Roberts et al., 1996; 1999; 2002; Riedel et al., 2002; 

Sager et al; 2003). 

 

Geologic Setting 

The slope of Texas and Louisiana is about 180 to 240 km wide covering an area 

from the continental shelf break south to the Sigsbee Escarpment with water depths 

ranging from 200 meters to 3400 meters below sea level (Bryant et al., 1990).  The 

uneven topography of the northern Gulf of Mexico is attributed to the mobilization of 

underlying Jurassic salt by sediment loading during times of low sea-stand (Bryant et al.,  
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1990; Schuster, 1995).  The weight of the overlying sediments causes the salt to extrude 

upwards or laterally in search of equilibrium, taking on a variety of morphologies, 

primarily salt diapirs on the shelf and upper slope and salt sheets on the middle and 

lower slope (Schuster, 1995; Rowan, 1995).  This halokinesis of allochthonous salt has 

led to the formation of the dome and basin morphologies that are found across the Gulf 

of Mexico’s northern slope (Schuster, 1995).  The domes represent the presence of salt 

in the shallow sub-surface, visible on sub-bottom and seismic records, whereas the basin 

and graben structures typically represent the withdrawal of salt from the area or flanking 

by surrounding salt diapirs (Bryant et al., 1990; Roberts et al., 1990; 1996).  Frequently 

the salt motion fractures the overlying sediment with regional growth faults and other 

more complex fault systems (Kaluza and Doyle, 1996; Rowan et al., 1999).  When these 

systems intersect with sub-surface reservoirs, pressurized hydrocarbons and gas may 

migrate along the faults from deep reservoirs to the seafloor leading to the wide 

spectrum of hydrocarbon seeps (volcanoes, carbonate mounds, craters) and related 

features (fluidized mud flows) that have been identified across the Gulf of Mexico’s 

northern slope (Anderson and Bryant, 1987; Neurauter and Bryant, 1990; Roberts and 

Carney, 1997).  

Garden Banks (GB) lease blocks 424-425 contain several seep features overlying 

a complex fault system on the southwestern flank of a large salt dome.  The two most 

prominent seeps, identified as active mud volcanoes, have been the focus of several prior 

studies involving high-resolution side-scan sonar and sub-bottom profiler systems to 

characterize surficial and near-surface features (Lee, 1995; Sager et al., 1999; 2003; 
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MacDonald et al., 2000; Mullins, 2001).  Submersible dives and piston core studies have 

been conducted to catalogue seep related features and more recently, exploration 3D 

MCS studies to map out regional structure and fault systems (Lee, 1995; Sager et al., 

1999; 2003). 

 The second area of focus, Mississippi Canyon (MC) lease blocks 852-853, is 

located on the western flank of the Mississippi Canyon atop a structural high over a 

relatively shallow (3.5 sec two-way travel time) salt body.  This site contains a large 

hydrocarbon fluid and gas seep mound that is located near the edge of a salt withdrawal 

basin and is thought to be the release site for fluid and gas migrating laterally along 

bedding planes out of the Ursa field petroleum basin located within and to the north of  

the survey area (Sassen, 1999b).  Coring studies in the area indicate that gas hydrate 

deposits are present and observations from submersible dives on the seep mound note 

the occurrence of carbonate outcrops and bacterial mats as well as active seepage 

(Sassen, 1999b; Milkov and Sassen, 2000). 

 

Classification of Seep Morphological Features 

A generalized relationship appears to exist between the flux rate of a seep and the 

vent-seep features that develop (Roberts and Carney, 1997).  Flux rates tend to be 

divided into three categories: (1) Low flux rates characterized by extensive authigenic 

carbonate formation and a lack of vent sites as well as mud flows, (2) transitional flux 

rates, which may lead to gas hydrate or carbonate formation as well as fluid and gas 

expulsion features and (3) high flux rates, which tends to lead to the formation of mud 
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volcanoes characterized by active vent sites and sediment flows (Roberts and Carney, 

1997; Sager et al., 2003).  Seeps exhibiting low to transitional flux rates may contain 

authigenic carbonates which are formed by the precipitation of calcium carbonate as a 

byproduct of microbial oxidation of hydrocarbons (Roberts et al., 1990; 1997).  They 

tend to occur in thin layers or as mound features in the shallow sub-surface or on the 

seafloor (Roberts et al., 1990).  

Gas hydrates, which may form at seeps characterized by transitional flux rates 

are compounds composed of natural gas locked in a crystalline lattice of water 

molecules.  They form on or within slope sediments where high pressure and low 

temperature favor their formation from hydrocarbon gas (Milkov and Sassen, 2000; 

Lowrie, 2002).  Hydrate mounds are considered to be mud volcanoes that contain gas 

hydrate, but in some cases the mounds themselves can be composed entirely of hydrate 

itself (Neurauter and Bryant, 1990; MacDonald et al., 1994; Kaluza and Doyle, 1996).  

They are assumed to be abundant on the Gulf’s northern continental slope because of the 

large amount of hydrocarbon gases that vent to the seafloor from the sub-surface (Sassen 

et al., 2002).  Unlike other continental margins, where gas hydrates are predominately of 

biogenic origin and occur at a depth of several hundred meters, the Gulf of Mexico’s 

massive fault systems allow thermogenic gasses and other fluids to rise rapidly to the 

seafloor resulting in the creation of hydrate bodies at or near the seafloor (MacDonald et 

al., 1994; 2000). 

 A third geological feature normally associated with high flux rates is the mud 

volcano, a generic term that also refers to mud mounds, mud ridges or mud diapirs, 
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depending on their mechanism of formation (Dimitrov, 2002).  Whatever the 

morphology, formation is typically dependent on over-pressured fluids, gases and 

unconsolidated sediment migrating along fault planes to the seafloor, resulting in cone 

shaped accumulations of mud (Neurauter, 1988; Roberts, 1995).  Mud mounds occur 

throughout the world’s oceans and continental lowlands, wherever sub-surface, over-

pressurized sediments find a conduit to the seafloor.  They are especially prevalent on 

the Gulf of Mexico’s continental slope and typical mounds can range from a few meters 

to over one kilometer in diameter with up to 150 meters of relief (Roberts, 1995; Kaluza 

and Doyle, 1996; Sager et al., 1998).  Many large mud mounds exhibit a rounded, 

irregular or flat-topped summit with a central caldera from which liquid mud may vent 

from the sub-surface (Roberts, 1995; Kaluza and Doyle, 1996).  Although their 

mechanism of formation is not well known, it is generally assumed that flat and round-

topped mounds occur through sedimentary volcanism, while irregular topped mounds 

may be related to mud diapirism (Kaluza and Doyle, 1996; Sager et al., 2003).   

It is thought that seep mounds go through a three stage self-sealing process 

culminating with a carbonate crust or mound forming over the main migration pathway 

(Hovland, 2002).  The first stage is the development of bacterial mats in the near to 

shallow sub-surface.  The second stage occurs when sediment becomes trapped in the 

migration pathways with the bacterial mats growing to exposure at the seafloor.  Finally, 

it is thought that the reduced flow or vertical flux allows carbonate to build up and block 

migration pathways, effectively sealing or capping the seep (Kaluza and Doyle, 1996; 

Hovland, 2002).   
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Active seeps do not always create vertical relief features, but almost all affect 

topography in some way or another.  Negative relief and no-relief seep-related features 

affect the topography in the form of pockmarks, craters, and fluidized-mud flows 

(Hovland and Judd, 1988; Roberts et al., 1990; Kaluza and Doyle, 1996).  According to 

Hovland and Judd (1988), pockmarks can be defined as the erosion or removal of 

sediment from the seafloor, usually in association with fluid or gas expulsion.  

Pockmarks exhibit a variety of shapes, mostly elliptical, circular, or asymmetrical and 

generally occur in the vicinity of salt domes and fault systems.  Sizes range from a few 

meters to hundreds of meters in diameter with a few meters negative relief (Hovland and 

Judd, 1988; Kaluza and Doyle, 1996). Large fluid expulsion features are commonly 

referred to as seafloor craters, which can be the result of over-pressured gas surging to 

the seafloor.  Large, explosive releases of gas can lead to craters hundreds of meters in 

diameter and hundreds of meters deep which may expel debris and fluid visible at the 

sea surface (Kaluza and Doyle, 1996).   

Another common seep related feature found on the northern slope are fluid vents 

from which flows of brine or watery sediment may originate.  Generally seen in side-

scan sonar records as an area of high acoustic backscatter, flows can occur in association 

with other features such as mud and hydrate mounds or originate from a fault on the 

seafloor.  Flows can be composed of viscous, brecciated sediment, which do not travel 

far, or low-viscosity fluidized mud, which may travel many kilometers before settling 

(Linimov et al., 1997).  While verification of a seep location can be conducted with 

sediment coring or by direct observation with submersibles or ROV, it is a seep’s 
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acoustic response or geophysical signature during high-resolution site surveys that leads 

to initial identification and classification. 

 

Geophysical Signatures of Fluid and Gas Seeps 

Although geophysical signatures of hydrocarbon fluid and gas seeps vary, 

common characteristics have been defined.  In seismic sections it is generally found that 

(1) seeps have an amorphous appearance in contrast with the surrounding stratified 

sediment, (2) the amorphous appearance gradually expands with depth until merging 

with regional chaotic sequences, (3) shallow sediment layers are up-turned along the 

seeps lateral boundaries, (4) most major seeps are linked to prominent faults and (5) 

large quantities of free gas are commonly present in and around the active seep locations 

(Neurauter and Bryant,1990; Roberts et al., 1990; 1999) 

There is a wide range of geophysical responses to hydrocarbon deposits 

including acoustic wipeout, bright spots, acoustic turbidity, velocity pull-downs and 

multiples (Table 1).   The most widely occurring anomaly is acoustic wipeout, in which 

the seismic signal may be attenuated or absorbed by free gas in the sub-surface allowing 

little or no energy to be reflected (Roberts, 1992; Sager et al., 2003).  Frequently, this 

response is associated with mound structures and seeps, but can also occur where large 

concentrations of gas are present in the sub-surface, such as in ancient river channels and 

estuarine environments (Anderson and Bryant, 1990).  Wipeout may also be caused by 

near total reflection of acoustic energy off a hard-bottom or other surface with a large  
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acoustic impedance contrast, in which little energy penetrates the boundary.  Water 

saturated sediments, when juxtaposed to gas saturated sediments, will sometimes lead to 

large acoustic impedance contrasts that produce localized amplitude enhancements or 

“bright spots” in the data which preserves horizons in the data but increases their 

amplitude.  Although other causes of impedance contrasts can lead to amplitude 

enhancement, a phase reversal at the bright spot is a strong indicator that free gas is 

responsible (Anderson and Bryant, 1990).   

Amorphous return or “acoustic turbidity”, as it is sometimes termed, generally 

occurs when sound is scattered by gas or debris in the upper sediment column, resulting 

in a cloudy or chaotic appearance (Hovland and Judd, 1988; Anderson and Bryant, 

1990). Another anomalous feature is velocity pull-down, in which the reflectors 

apparently dip downwards at the edge of a large gas body or gas chimney due to a 

reduction in sound velocity (Anderson and Bryant, 1990).  Finally, if a large acoustic-

impedance contrast is present at the seafloor or the sub-surface, be it carbonate hard 

ground, high gas concentrations or other seep related material, some of the acoustic 

energy could be reflected and then re-reflected at the sea surface with this pattern 

repeating itself until the acoustic signal energy has dissipated (Behrens, 1988; Sheriff 

and Geldart, 1995).  These reflections can mask real primary reflections on sub-bottom 

and seismic profile records and are generally referred to as “multiples”. Though not 

detected in the study areas presented in this paper, other anomalies may result in relation 

to gas and hydrocarbon seeps, such as bottom simulating reflectors and “ringing”. 
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It is important to note that the acoustic frequency of the acquisition system, 

hydrocarbon deposit characteristics as well as the presence of carbonates and other hard-

bottoms plays a major role in the type of anomaly or anomalies that may occur in the 

data record.  Acoustic wipeout, multiples, acoustic turbidity, bright spots and others are 

all dependant on the amount of gas, fluid and seep debris present in the sediment column 

as well as the density, distribution and the size of individual gas bubbles (Anderson and 

Bryant, 1990; Sheriff and Geldart, 1995).   

 When 3D MCS data are available, seeps can be found to produce reflection 

amplitude anomalies at the seafloor (Roberts et al., 1996; Mullins, 2001; Sager et al., 

2003).  Identifying anomalies involves mapping out the seafloor horizon in a 3D seismic 

data set, then displaying the seismic wave amplitude at the horizon in map view for 

interpretation.  Amplitude anomalies at the seafloor are caused by changes in the 

reflection coefficient of the seafloor and shallow horizons.  For example, positive 

amplitude anomalies most likely indicate an increase in seismic velocity, such as one 

would expect from a carbonate crust, gas hydrate or other dense material accumulation 

(Roberts et al., 1996, Reilly et al., 1996, Sager et al., 2003).  In prior studies, seismic 

amplitude attribute maps were used in conjunction with visual observations and coring 

to successfully locate and verify the presence of hard-bottoms in areas of positive 

amplitude anomalies, and gassy sediments in areas of low amplitude anomalies (Roberts 

et al., 1996; Reilly et al., 1996).  Dense data coverage and the ability of 3D seismic data 

to delineate gas charged sediments and areas of hard ground makes amplitude attribute 

maps a valuable reconnaissance and interpretative tool.  As more data correlating 
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seafloor features and their associated seismic response are collected and analyzed, we 

may be able to distinguish between different seep-related features based on the 

waveform of their seismic amplitude response alone (Roberts et al., 2002). 

 Side-scan sonar is also an effective geophysical tool when imaging seeps in that 

it has the ability to show differences in the properties of surficial sediments.  Sonars 

construct a seafloor image by sending out an acoustic pulse and displaying the amplitude 

of the sound returned from the seafloor backscatter.  Backscatter is a function of surface 

roughness and sediment grain size (Fish and Carr, 1990).  Therefore, at seep locations 

sonar data can delineate fluidized mudflows that have disturbed seafloor sediments, fault 

traces and fluid expulsion features (Kaluza and Doyle, 1996; Roberts and Doyle, 1998, 

Sager et al., 1998; 2003; Dimitrov, 2002).  Having somewhat similar response 

mechanisms, sonar features can be compared with those found in amplitude maps, the 

differences leading to a better understanding of seep surface characteristics. 
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CHAPTER II 

 
DATA AND METHODS 

 
The primary data used in this study were exploration and reprocessed 3D MCS 

data collected and reprocessed by Western Geco, Inc.  The original exploration data 

were processed at a 4 msec sampling rate and then interpolated to a common depth point 

(CDP) inline spacing of 12.5 x 25 m for the Garden Banks volume and 13.5 x 26.5 m for 

the Mississippi Canyon volume.  Frequency analysis determined the frequency range to 

be 6-128 kHz after filter application.  The short-offset 3D MCS volume was reprocessed 

from the original data tapes at a sampling rate of 2 msec and a high band pass filter was 

applied to produce a frequency range of 20 to 128 kHz.  Near incident traces were 

utilized in the reprocessed data to produce 9 fold stacks, as opposed to the 30 (GB) and 

51 (MC) fold stacks created in the original 3D MCS exploration data.  Additional 

acquisition parameters of the 3D MCS data are given in Table 2. 

 The Garden Banks site was also surveyed with 12 kHz side scan sonar.  Image 

swaths 3000 m in width were collected along north - south oriented ship tracks spaced 

1500 meters apart, resulting in 200% sonar coverage of the area (Sager et al., 1998).   

Sonar data were collected using differential GPS satellite navigation with accuracy of 

better than 5 meters.  An acoustic tracking system was used to determine layback of the 

fish, which was situated approximately 240 meters behind and 50 meters below the 

vessel (Sager et al., 1998).  
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Table 2.  Acquisition and reprocessing parameters of 3D MCS data 
               GB = Garden Banks, MC = Mississippi Canyon 

 
Description 

 

 
       Original 3D MCS 
 

 
Reprocessed 3D MCS 

 
 

Type of Source 
 

Dual Airguns 
 

Unchanged 
 

Recorded Sampling Interval 
Processed Sampling Intereval 

 

2 ms 
4 ms 

 

Unchanged 
2 ms 

 
Filter 

 

Lo Cut 
Hi Cut 

 

6 Hz 
128 Hz 

 

20 Hz 
128 Hz 

 

Shot Point Interval MC 
Receiver Interval MC 

 

40.0 meters 
26.6 meters 

 

Unchanged 
Unchanged 

 

Shot Point Interval GB 
Receiver Interval GB 

 

53.3 meters 
25.0 meters 

 

Unchanged 
Unchanged 

 

Nominal Fold MC 
3D Bin Size MC 

 

30 
53.3 x 13.3 meters 

 

9 
Unchanged 

 

Nominal Fold GB 
3D Bin Size GB 

 

51 
40.0 x 12.5 meters 

 

9 
Unchanged 
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The original and reprocessed 3D seismic volumes were examined using a seismic 

interpretive program, Kingdom Suite v. 6.2.  Seafloor time contour maps were created 

by manually interpreting every 5th in-line and cross-line at each study site.  Due to the 

large impedance contrast of the sediment-water interface creating a strong coherent 

reflector, the program was allowed to autopick infill lines across the seafloor of the study 

areas.  The resultant infill lines were then inspected for erroneous time (z) values and 

checked with time values from proximal lines.  Time data were converted to depth using 

a sound velocity of 1500 m/sec.  Due to the pervasive deformation and distortion of the 

geophysical record by the presence of gas and hydrocarbons in the sub-surface, a full 

structural analysis was not attempted.  Fault interpretation was done on cross section 

profiles as well as time slices and then compared with side scan sonar images, when 

available, to produce a final interpretation.    

 

 

 



    17

CHAPTER III 

 
RESULTS 

 
Garden Banks Lease Blocks 424-425 

 Bathymetry extracted from reprocessed 3D MCS data reveals the Garden Banks 

site as being dominated by two north-south oriented active vent features, a southern mud 

volcano (SMV) and a northern mud volcano (NMV) (Figure 2).  At a depth of 580 

meters, the SMV has a diameter of about 1.7 km and exhibits relief up to 80 meters 

above the surrounding seafloor.  The summit appears flat topped with a small area of 

positive relief (20 m) on the eastern side of the summit.  On the other hand, the NMV 

has a diameter of about 1.25 km with local relief up to 40 meters.  The NMV’s summit is 

uniformly flat with no apparent relief.  West of the volcanoes lies a shallow flat-floored 

depression trending north-south across the survey area with water depths ranging from 

640 to 670 meters.  Located directly east of the mounds is a southwestern dipping slope 

that extends past the 800 m isobath at the SE edge of the survey boundary.  An east-west 

trending salt-induced ridge characterizes the northern boundary of the study site with 

localized relief ranging from 10 to 100 meters and a maximum side-slope of about 12°.  

The south end of the survey site contains a westward dipping fault scarp separating the 

shallow depression to the west and the slope to the east.  The scarp is readily visible 

from the southern edge of the survey area northward to the southeastern flank of the 

SMV. 
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  Line 2636 

Figure 2.  Bathymetric map of the Garden Banks lease blocks 424-425 study 
site.  Bathymetric data were extracted from reprocessed 3D MCS data set for 
this area.  Contours at 10-meter intervals, calculated from two-way travel 
time using 1500 m/s.  Heavy dashed line shows profile in Figure 8.   
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Side-Scan Sonar Data 

The SMV was observed to be active by Sager and others (1999) and MacDonald 

and others (2000).  Sonar data shows the summit as an area of high backscatter except 

for two patches on the east and southwestern edges where low backscatter or dead spots 

are observed (Figure 3).  The flanks of the SMV appear to exhibit low to medium 

backscatter on all but the northern flank where two linear fault traces extend to the 

southern edge of the NMV.  

The NMV’s summit also exhibits high backscatter, suggesting that it is capped 

with carbonate or other coarse debris.  There exist small areas of low backscatter at the 

center and southwest edge of the summit, similar to the SMV’s east-side patch, which 

may indicate the presence of gas charged sediment or active venting since gas absorbs 

the acoustic pulse, resulting in low backscatter.  The flanks of the NMV return a higher 

backscatter than the SMV’s.  The NMV has not been the focus of any major studies; 

therefore coring or observational data is not available.   

Southeast of the two mud volcanoes, a north-south trending fault trace is 

discernable on the sonar record (GS/FT in Fig. 3).  Sediment disturbances associated 

with this fault appear as linear high backscatter features.  As the fault approaches the 

volcanoes, additional linear traces from discrete faults intersect with the main fault as it 

trends north.    East of the volcanoes another high backscatter feature, thought to be a 

fluidized sediment flow (SF in Fig. 3), appears to emanate from between the mud 

volcanoes and trends eastward down the slope out of the survey area.  Other high 

backscatter sediment flows appearing to originate from the western flank of the SMV  
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superimpose the shallow depression west of the volcanoes (SF in Fig. 3). Finally, large 

areas of high backscatter are present at the north end of the survey area most likely due 

to seep related changes to the sediment as well as the coalescing of faults in this area.   

     

3D MCS Amplitude Data 

The amplitude response of the SMV summit is largely neutral to negative in 

comparison with the area’s overall response (Figures 4 and 5).  Patches of positive 

amplitude anomalies (higher velocities) are evident on the southern edge of the summit 

in both the original and reprocessed 3D MCS images.  In contrast, on the northwestern 

edge, the reprocessed MCS data also displays a positive amplitude response. This 

discrepancy is possibly related to differences in the vertical resolution between the two 

data sets (see discussion).  Negative amplitude anomalies (lower velocities) are present 

on the eastern and western flanks, corresponding for the most part with areas of low 

backscatter in the sonar image. 

The amplitude response of the NMV’s summit appears more positive than that of 

the SMV.  On the southwest edge, a strong negative amplitude response 80 m in 

diameter, usually associated with gas charged sediment or venting, appears in both the 

original and reprocessed 3D MCS data sets.  Inconsistencies are apparent between the 

two data sets when viewing the amplitude response from the NMV’s flanks.  Both data 

sets return positive amplitude anomalies on the southern and western flanks, but the 

reprocessed data characterizes the northern and eastern flanks as more positive than the  

 



    22

 

Fi
gu

re
 4

.  
Ex

pl
or

at
io

n 
3D

 M
C

S 
se

af
lo

or
 a

m
pl

itu
de

 m
ap

 o
f t

he
 G

ar
de

n 
B

an
ks

 si
te

. B
at

hy
m

et
ric

 c
on

to
ur

s w
er

e 
ex

tra
ct

ed
 

fr
om

 e
xp

lo
ra

tio
n 

3D
 M

C
S 

da
ta

 se
t f

or
 th

is
 a

re
a.

  L
ab

el
s d

es
cr

ib
e 

se
ep

 re
la

te
d 

fe
at

ur
es

.  
W

ar
m

 c
ol

or
s d

en
ot

e 
po

si
tiv

e 
am

pl
itu

de
s, 

w
he

re
as

 c
oo

l c
ol

or
s s

ho
w

 n
eg

at
iv

e.
  A

m
pl

itu
de

 sc
al

e 
in

 a
rb

itr
ar

y 
un

its
. 

 

 



    23

Fi
gu

re
 5

.  
R

ep
ro

ce
ss

ed
 3

D
 M

C
S 

se
af

lo
or

 a
m

pl
itu

de
 m

ap
 o

f t
he

 G
ar

de
n 

B
an

ks
 si

te
.  

B
at

hy
m

et
ric

 
co

nt
ou

rs
 w

er
e 

ex
tra

ct
ed

 fr
om

 re
pr

oc
es

se
d 

3D
 M

C
S 

da
ta

 se
t f

or
 th

is
 a

re
a.

  L
ab

el
s d

es
cr

ib
e 

se
ep

 
re

la
te

d 
fe

at
ur

es
.  

C
ol

or
 sc

al
e 

sa
m

e 
as

 F
ig

ur
e 

4.
 



    24

original data, with the original MCS data even showing patches of negative amplitudes 

on the eastern flank.  

South of the central mud volcanoes, a linear fault-related negative amplitude 

anomaly is present, correlating with the linear high backscatter feature at –92.539° 

longitude in the side-scan sonar record (GS/FT in Fig. 3).  Other positive and negative 

amplitude anomalies located east of the mud volcanoes may also be related to this fault 

as it continues north through the area.   

The amplitude map suggests the presence of two sediment flows in the area.  The 

first is the eastward trending flow appearing to originate from the negative amplitude 

anomaly, most likely related to the main fault on the east side of the mud volcanoes (SF 

in Figs. 4 and 5).  The second is a broad flow that has collected in the topographic low to 

the west of the mud volcanoes, which appears to emanate from the west-southwest flank 

of the SMV (SF in Figs. 4 and 5).  Both correspond to the interpreted sediment flows in 

the side-scan sonar record.   

 

3D MCS Reflection Data 

The topography and structure of the Garden Banks site appears to be mainly 

influenced by the salt ridge it overlies (Figure 6).  Salt is shallowest at the north end of 

the survey where it peaks at 1.8 sec TWT.  The two mud volcanoes are located atop the 

north-south trending ridge that extends south from the northern salt ridge.  The salt drops 

off sharply to the east past the bottom of the data at 6.0 sec TWT and to the west 

forming a shallow depression that underlies the topographic depression on the west side  
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of the survey area.  Underneath the slope on the east side of the survey area, the salt dips 

sharply eastward past the vertical extent of the data set at 6.0 sec TWT.   

         Above the salt, the sub-surface can be characterized as chaotic.  Pervasive 

deformation, diffractions from fractured bedding planes and geophysical indicators of 

gas have affected the clarity of the sub-surface reflections. Strong reflectors, possibly 

caused by the existence of hard grounds and coarse debris on and around the mud 

volcanoes, have led to the presence of multiples at 1.6 sec TWT to 1.8 sec TWT masking 

low amplitude reflectors in the sub-surface (Figure 7).  The multiple is oriented north to 

south and has an east to west extent of about 2-4 km. 

 The regional dip of sub-surface reflectors is generally eastward with localized 

increases in dip occurring beneath the mud volcanoes (Figure 8).  Evidence of a 

widespread unconformity exists in the area with multiple reflectors terminating at this 

feature in both the original and reprocessed data sets.  The unconformity is disrupted by 

a large synthetic fault with an offset of 0.5 sec TWT originating from near the apex of 

the underlying salt ridge and trending north south.  This fault corresponds to the fault 

trace visible on the seafloor in the side-scan sonar and 3D MCS amplitude maps to the 

south and east of the mud volcanoes.  As the fault continues north, multiple discrete 

faults form at the southern extent of the SMV and accompany the main fault to the 

survey area’s northern boundary (Figure 9).  In response to the synthetic fault, counter 

regional faults have formed to the west of the mud volcanoes and extend to 1.7 sec TWT 

where they appear to truncate at the synthetic fault.  No major seep related faults have 

been detected to the east of the mud volcanoes except for multiple localized fractures  
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Figure 7.  Bathymetric map illustrating lateral extent of 1st order seafloor multiple in 
the original and reprocessed 3D MCS data in the Garden Banks site.   
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Figure 8.  Cross-section of reprocessed (top) and original (bottom) 3D MCS 
data across west to east profile line 2636 in the Garden Banks site.  Location 
in Figure 2.   
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and a westward dipping normal fault extending from the apex of the salt ridge between 

shot points 2900-2950 to 1.4 sec TWT in the sub-surface.   

           Geophysical indicators of possible hydrocarbon fluid and gas deposits including 

attenuated and chaotic reflectors as well as bright spots are present in the area.  The 

mapping of these indictors in cross-sections as well as time slices shows the probable 

hydrocarbons located within 0.75 sec TWT of the sediment-salt interface from the 

western and northwestern boundaries of the survey area to the north-south oriented salt 

ridge crest beneath the mud volcanoes (Figure 8).  Here the gas appears to travel 

vertically through the faulted sub-surface creating a zone of chaotic and attenuated 

reflectors that extends up to the summits of the mud volcanoes and is possibly related to 

gas migration or poor imaging due to presence of hard grounds.  Zones of chaotic 

reflectors and bright spots also occur in the eastern portion of the survey area around 1.5 

sec TWT at shot points 2900 - 2950 to a point west of the small fault extending from the 

salt ridge crest.  In the south, disrupted reflectors are present beneath the fault scarp of 

the main synthetic fault as well as beneath a small fluid or gas expulsion feature 500 m 

west of the fault scarp.   

 

Mississippi Canyon Lease Blocks 852 – 853 

Bathymetry (Figure 10) extracted from the original 3D MCS data volume reveals 

the seafloor as sloping from west to east at an average of 2°.  Breaking the slope in the 

center of the survey area is a 1.0 x 1.5 km mound at the 1000 m isobath exhibiting about 

40 m of relief.  The summit shows signs of variable relief with topographic highs  
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Figure 10.  Bathymetric map of the Mississippi Canyon lease blocks 852-853 study 
site.  Bathymetric data were extracted from exploration 3D MCS data set for this 
area.  Conventions as in Figure 2 
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appearing on the eastern edge and lows occurring around the center.  The mound is 

located about 1 km east of a broad southeast trending ridge bounded on the east by a  

20 m relief fault scarp.  The northern and eastern portions of the survey area are 

characterized as mostly horizontal seafloor incised with eastward trending channel-like 

features exhibiting one to ten meters of negative relief possibly caused by the down 

slope movement of sediments. 

 

3D MCS Amplitude Data 

Relative to the survey area’s average amplitude response the summit of the 

mound is characterized by positive amplitude anomalies on the northern and southern 

edges and negative anomalies at its center and eastern edge (Figures 11 and 12).  The 

positive anomalies generally correspond with the mounds topographic highs except for 

the small pinnacle on the eastern summit which returns neutral to negative amplitudes. 

The largest collection of negative anomalies corresponds with the topographic low at the 

center of the mound’s summit.  Both the original and reprocessed data sets display a 

negative amplitude band on the eastern flank of the mound, but the original data also 

displays negative anomalies on the southeastern and western flanks as well.   

The amplitude maps suggest the presence of two sediment flows in the area, a 

broad area of positive amplitude response directly east of the mound and another 

occupying a shallow depression to the west-northwest of the mounds flank (SF in Figs. 

11 and 12).  The fault scarp at the base of the ridge appears as a negative amplitude 

anomaly (GS/FT in Figs. 11 and 12).  The western portion of the survey area is  
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characterized by neutral amplitude responses except for patches of positive anomalies 

that appear to overlie two eastward oriented ridges, one 1.5 km southwest and the other 2 

km northwest of the central mound feature (DS in Figs. 11 and 12).  The rest of the 

survey area contains few amplitude anomalies except for two fault-related northwest-

southeast trending negative anomalies at the northeastern boundary (GS/FT in Figs. 11 

and 12) and small patches of negative amplitudes that may be fault-related to the north 

and northeast of the mound.  Throughout the area, the north-south oriented narrow bands 

of negative amplitude responses that appear are most likely artifacts of seafloor horizon 

interpretation.  

 

3D MCS Reflection Data 

 The underlying body of salt exhibits topographic highs in two locations within 

the Mississippi Canyon study area (Figure 13).  The first occurs 400 meters southeast of 

the central mound structure where the salt forms a north-south oriented ridge, which 

crests at 2.5 sec TWT.  The second occurs in the northeast corner of the survey area 

where the salt crests at 2.8 sec TWT.  East of the central ridge, the salt dips sharply east 

past the bottom of the 3D MCS data.  The remaining salt body underlying the study area 

maintains an average depth of 4 sec TWT except for two topographic lows, one a 1.8 km 

diameter shallow depression 2 km to the west of the mound and the other a NW-SE 

trending 1 km wide depression separating the central and northeastern salt crests.   

 As in the Garden Banks MCS, the seismic reflectors in the Mississippi Canyon 

site show evidence of pervasive deformation throughout with chaotic and hummocky  
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styles characterizing the reflectors in areas where geophysical indicators of hydrocarbon 

fluid and gas are present and beneath the hard grounds on the mound’s summit.  A low 

amplitude multiple is present at 2.9 sec TWT in both the original and reprocessed 3D 

MCS data.  The seafloor multiple was traced to the northern and southern extent of the 

reprocessed MCS survey data and appears to extend no wider than 2 km east to west 

(Figure 14).  Sub-surface horizons remain fairly horizontal in the upper 2 sec TWT but 

tend to mimic the salt topography as depth increases (Figure 15).  Reflectors below 2 sec 

TWT appear tilted as they approach the topographic highs and lows of the underlying 

salt, with the most steeply dipping reflectors occurring to the immediate east and west of 

the central salt ridge around 2.5 to 3.5 sec TWT. 

 A series of elliptical shaped normal faults encompass the central mound feature 

(Figure 16).  The largest, outermost of these faults appears to extend to the salt interface 

between 2.8 and 3.2 sec TWT, correlating with the fault scarp in the bathymetric and 3D 

MCS seafloor amplitude map.  Small antithetic faults have formed at the flanks and 

central portion of the mound truncating into the surrounding synthetic faults at a depth of 

around 2.0 sec TWT.  In the eastern portion of the survey area, large north-south 

trending synthetic and antithetic faults have formed over the steeply dipping salt in that 

area extending to 3.0 sec TWT (Figure 15).  In the west, shallow dipping faults (no 

deeper than 1.6 sec TWT) between shot points 4800 and 4850 may be responsible for the 

formation of the valley and ridge morphology that characterizes the western face of the 

SE trending ridge.  Additionally, 1 km to the east and 1.5 km to the west of the central 

mound, small normal faults are found to encompass fluid or gas expulsion features  
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Figure 14.  Bathymetric map illustrating lateral extent of 1st order seafloor 
multiple in the original and reprocessed 3D MCS data in the Mississippi Canyon 
site 
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Figure 15.  Cross-section of reprocessed (top) and original (bottom) 3D MCS 
data across west to east profile line 7660 in Mississippi Canyon site.  
Location in Figure 10.  Conventions as in Figure 8. 
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characterized by locally disrupted upward welling reflectors (Figure 15 top, between 

shot points 4650 and 4700).  No other visible large scale faulting appears to occur in the 

survey area except in the northeast corner, where two normal faults have formed in 

response to the upwelling salt. 

 Multiple geophysical indicators of hydrocarbon fluid and gas are present in the 

sub-surface, most notably in the northern and central portions of the survey area.  The 

mapping of these indicators, including zones of chaotic and attenuated reflectors, 

velocity pull-downs and bright spots in cross-sections and time slices shows the 

purported gas occupying horizons below 1.7 sec TWT in the north and pinching out 

about 1 to 2 kilometers south of the seep mound.  Approaching the central salt ridge 

crest the gas appears to migrate up the northern, western and eastern faces to a 

prominent reflector around 1.6 sec TWT a zone of chaotic and attenuated reflectors 1 km 

wide to 1.5 km long.  From here the hydrocarbon fluid and gas may follow pre-existing 

faults to expression at the seafloor. 
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CHAPTER IV 

 
DISCUSSION 

 
The focus of this study was to characterize seep activity and develop an 

understanding of the processes that led to seep formation in the Garden Banks and 

Mississippi Canyon study areas using geophysical remote sensing methods.  While side-

scan sonar and 3D MCS may have provided high density coverage and a detailed view 

of features within the sites, weaknesses are apparent in the geophysical data including: 

(1) the issue of resolution verses penetration with the acoustic acquisition frequency, (2) 

varying geophysical signature depending on acoustic frequency, and (3) lack of ground-

truth verification. 

With all geophysical acquisition systems there is generally a trade-off between 

the resolution and depth penetration of acoustic waves, depending on the frequency 

range used during acquisition.  With an acoustic frequency of 12 kHz, the side-scan 

sonar data were able to provide detailed decimeter scale resolution of surficial features in 

the Garden Banks site, but with penetration on the order of centimeters to meters (Liu, 

1997) the image is restricted to characteristics of the seafloor.  On the other hand, 3D 

MCS with acoustic acquisition frequencies an order of magnitude less than the side-scan 

sonar (6-128 Hz) were able to image kilometers into the sub-surface.  However, seismic 

array geometry and large source to receiver distances resulted in horizontal resolutions 

on the order of tens of meters and this resolution may prevent us from distinguishing 

surficial features such as small active vents and areas of narrow or isolated hard ground.   
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In hopes of increasing resolution capabilities, reprocessed 3D MCS data sets of 

the survey areas were utilized.  With an increased sampling rate, fewer stacked traces 

and higher frequencies (20 to 128 Hz) the reprocessed data were able to identify small 

sub-surface features, including salt-induced faults related to seep development and 

fluid/gas expulsion features, which were otherwise not apparent in the original 

exploration data.  The reprocessed data were not able to clearly and consistently image 

deep sub-surface reflectors such as the salt-sediment interface and horizons below the 

first order seafloor multiple.  This makes it necessary to use both data sets for 

interpretation.  Comparisons of seafloor amplitude data indicate that the reprocessed data 

were able to distinguish or enhance relatively thin or narrow features such as hard 

grounds, sediment flows and narrow gas bodies at a higher resolution than the original 

exploration data.  It is worth noting that the algorithm that determines amplitude depends 

on where the seafloor is picked relative to the seismic wavelet.  Therefore, it is possible 

that in areas of irregular seafloor or steep slopes, the algorithm may pick the incorrect 

segment of the wavelet possibly returning a false amplitude value.  This could result in a 

false amplitude anomaly in a data set that might otherwise be attributed to the resolution 

capabilities of the data.  For example, if a thin layer of gas were present at the seafloor, 

the reprocessed data, with high vertical resolution capabilities, may incorporate the gas 

into its seafloor response whereas the exploration data, with lower resolutions might not.  

The same situation could develop if a thin layer of hard ground were present at the 

seafloor.  The reprocessed data, with a smaller detection threshold may incorporate the 

hard ground into the seafloor amplitude response, displaying a positive amplitude 
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anomaly, whereas the original data might not, such as may be occurring on the 

southwestern flank of the SMV in the Garden Banks area.  This suggests that the high 

resolution data may provide a more realistic image amplitude map of the seafloor while 

the exploration data may provide a clearer picture of what is occurring in the near 

surface. 

A further consequence of differing acoustic frequencies is the variation in 

geophysical signatures of hydrocarbon fluid and gas deposits in the geophysical record.  

In the Garden Banks area, areas of sub-surface reflectors are visible in the reprocessed 

data but appear as zones of chaotic and attenuated reflectors in the original 3D MCS 

data.  Conversely, chaotic and attenuated reflectors in the Mississippi Canyon 

reprocessed MCS data appear quite clearly in the original as do bands of amplitude 

enhancement (bright spots).  This phenomenon may be the result of the amount of gas, 

fluid and seep debris in the sediment column as well as the density and distribution of 

these deposits interacting with the frequencies of the acoustic pulse (Anderson and 

Bryant, 1990; Sheriff and Geldart, 1995).  These differences may also be due to the 

properties of the sub-surface reflectors themselves (i.e., hard grounds, unconformities) 

affecting the down-going acoustic pulse, attenuating or reflecting the acoustic energy.  It 

is difficult to calculate area, but the reprocessed data appears to exhibit larger areas of 

attenuated reflectors, possibly as a result of the higher frequencies being attenuated or 

scattered by sub-surface features in areas where the lower frequencies may penetrate.  

Previous observations of gas and fluid seepage by submersible at our seep locations 

(Sager et al., 1999; Sassen et al., 1999b) do not preclude us from assuming that 
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hydrocarbon fluid and gas is responsible for the observed geophysical indicators, but 

indicators can also derive from other processes including fluidized movement of 

sediment which can wipe out internal structure (Roberts et al., 1999).  Variations are also 

apparent in the surficial images produced by the side-scan sonar (Garden Banks) and 3D 

MCS amplitude extraction.  Some features can be correlated, such as sediment flows and 

possible active vent sites; while others, most notably fault traces and areas that may 

contain hard grounds might not.  While this might be caused by errors in sonar cross-

track positioning, it is likely the result of differences in acoustic frequencies.  For 

instance, if a large gas or fluid deposit were disseminated below a thin surficial layer of 

coarse sediment or hard ground, sonar would likely register enhanced backscatter 

whereas the 3D MCS might display a zone of low amplitude.  Differences in sonar and 

amplitude response suggest this may be occurring on the summit of the SMV in the 

Garden Banks area as well as along the fault trace at the southern edge of the survey.   

Regardless of the resolution of the acquisition system, lack of direct observations 

or ground truth data makes definitive identification of many features difficult.  Possible 

active vent sites, even ones returning sharply defined negative amplitude anomalies and 

showing evidence of recent sediment flows, such as on the NE flank of the SMV can 

only be tentatively identified without direct verification by submersible or ROV.  

Additionally, 3D MCS and sonar data can be susceptible to false targets such as those 

caused by errors in navigation, processing or seafloor interpretation.   

Despite the inherent limitations of our geophysical data, they are nonetheless 

able to provide valuable insight into the geology of the seep features and the processes 
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that led to their formation.  Many similarities exist between the seep mounds in the 

Garden Banks and Mississippi Canyon areas.  Bathymetric and 3D MCS reflection data 

implies that the seep features are located atop complex fault systems within fault-

induced depressions (Figures 09 (GB) and 16 (MC)).  We believe that the faulting and 

subsequent depression formation is the result of upwelling salt as they are located 

directly above shallow underlying salt ridge crests. This conforms to observations from 

other seep investigations within the Gulf of Mexico in which the seeps were found to be 

oriented along fault traces and in the vicinity of shallow salt structures (Kaluza and 

Doyle, 1996; Reilly et al., 1996; Thrasher et al., 1996; Roberts and Carney, 1997).  At 

the Garden Banks site, hydrocarbons (concentrated in the west and NW of the survey 

area) appear to be migrating along bedding planes contained by a depression in the salt 

to the crest of the salt ridge.  Mapping of the unconformity suggests that vertical 

displacement on the order of hundreds of meters along the main fault may have resulted 

in the formation of a large linear fault system paralleling the salt ridge.  The occurrence 

of a large vertical zone of chaotic and attenuated reflectors beneath the mud volcanoes 

and seafloor amplitude anomalies suggests that fluidized mud and hydrocarbons are 

moving along this fault system, as well as along other, possibly undetected faults masked 

by the gas chimney, to the seafloor creating the two mud volcanoes on the eastern flank 

of the depression. 

The apparent formation sequence of the Mississippi Canyon seep mound is 

similar to that of the Garden Banks mud volcanoes.  It is also situated atop a ridge in the 

underlying salt; whose motion likely led to the formation of complex fault systems that 
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surround the mound.  Likewise it is located in an area characterized by geophysical 

indicators of hydrocarbon fluid and gas that appear to be migrating along fault systems 

creating a zone of chaotic and attenuated reflectors beneath the mound.  In contrast, the 

fault system in the Mississippi Canyon area is small and graben-like as apposed to large 

linear regional faults.  Additionally, the small size of the depression and the development 

of tensile faults may have allowed hydrocarbons and fluidized mud to breach the 

seafloor at the center of the depression creating the seep mound as opposed to the 

Garden Banks mud volcanoes which formed on the flank of the relative large depression.  

Other minor differences are also apparent, namely in the number of vent features and 

geographical location, but for the most part the processes of seep formation and their 

seepage styles appear similar between the two sites.   

The 3D MCS seafloor amplitude maps proved to be useful in characterizing the 

seepage rates of the three large seep vent mounds in this study.  In the Garden Banks 

area, the SMV appears to be an established high flux vent.  The summit and flanks 

contain negative amplitude anomalies and the presence of sediment flows implies that 

active venting may be occurring.  This is supported by the sharply defined negative 

amplitude responses that appear at the apparent origination points of the flows, 

specifically the negative responses on the northeastern and western flanks.  In addition, 

near bottom high frequency (28 kHz) sub-bottom profiler surveys indicate that the flanks 

are characterized by wipeout and ringing features commonly associated with gas charged 

sediment (Lee, 1995; Sager et al., 1999).  Submersible observations also indicate the 

presence of a brine pool on the southwestern summit from which a flow may have 
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recently occurred (Sager et al., 1999).  Coring evidence indicates that abundant gas, 

perhaps from dissociated gas hydrate may be present in the near-surface sediments of the 

SMV (Sager et al., 1999).  Gas hydrates tend to have an amplitude response that more 

closely resembles that of carbonate than free gas, making detection difficult in seismic 

records where both may coexist (Roberts et al., 2002).  Sea bottom pressure and 

temperature conditions are within the hydrate stability field and massive seafloor 

accumulations have been found at other mud mounds (MacDonald et al., 1994).  The 

size of the mound and the build-up of carbonate and other coarse debris on the flanks 

imply that the SMV, though young is likely an established high flux mud volcano. 

The NMV most likely represents an established low flux seep vent.  No seafloor 

observational data is available, but positive seafloor amplitude anomalies from its 

summit and flanks indicates that hard ground that may be due to carbonate or other 

coarse debris has built up.  Additionally, the lack of sediment flow evidence and the 

occurrence of a fewer negative amplitude anomalies on its summit and flanks imply that 

the NMV is the least active of the two mud volcanoes and possibly entering the third 

stage of the self-sealing process hypothesized by Hovland (2002).  At this stage 

carbonate build-up can severely limit hydrocarbon migration and venting.     

 In the Mississippi Canyon study area the seep mound appears to be a 

mature, but active seep vent owing to the build-up of bacterial mats and authigenic 

carbonate.  Additionally, evidence of fluidized sediment flows and active hydrocarbon 

oil and gas venting on the summit imply that the mound is quite active.  Confirmation of 

gas hydrates exists at this site in the form of intact samples taken during coring  
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operations on the summit of the seep mound (Milkov and Sassen, 2000).  As in the 

Garden Banks area, pressure and temperature conditions are conducive for the formation 

and stability of gas hydrate, but no large surficial deposits were located during 

submersible or coring operations and MCS amplitude data is unable to differentiate 

between carbonate and hydrate outcrops in our data sets.  Nevertheless, the size and 

complexity of the mound as well as the presence of multiple hard grounds, including 

carbonate outcrops, small gas hydrate nodules and bacterial mats implies that the mound 

is at a later stage of the self-sealing process.  Its position at the edge of a large 

hydrocarbon field though, ensures that this seep mound may continue to be active 

indefinitely, with a succession of individual seep vents forming and sealing, only to form 

again elsewhere on the mound.  
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CHAPTER V 

 
CONCLUSION 

 
Several geophysical data sets were used to characterize seep features in the 

Garden Banks and Mississippi Canyon study areas.  Side-scan sonar, where available, 

allowed for high resolution imaging of the seafloor and seep features, while 3D MCS 

provided insight into sub-surface features and structure.  Additionally, MCS seafloor 

amplitude data was effective at characterizing the surface activity of a seep by 

delineating areas of negative and positive amplitudes which appear to correlate to areas 

of gas charged sediment and hard ground, respectively.   

Differences in acoustic response give a better understanding of a two study area’s 

structure.  The 12 kHz side-scan sonar data were able to delineate individual seafloor 

fault traces in addition to areas of low and high backscatter associated with gas charged 

and disturbed sediment at decimeter scale resolution.  The exploration 3D MCS data, 

while unable to discern small features were necessary to resolve the salt interface and 

features below the 1st order seafloor multiple that were otherwise poorly imaged by the 

reprocessed data.  The reprocessed MCS data were invaluable because they were able to 

delineate near-surface seep related faults and fluid and gas expulsion features that where 

poorly shown by the low resolution exploration data.   

    The data implies that the SMV in the Garden Banks site is characterized as an 

established high flux seep vent due to signs of hard ground build up on its flanks and 

signs of active seepage in the form of negative amplitude anomalies on its summit and 
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flanks as well as the presence of fluidized mud flows appearing to emanate from its 

flanks.  The NMV, with substantially more positive amplitude returns from its summit 

and flanks and fewer negative amplitude anomalies appears to be the least active and 

more mature of the two mud volcanoes, representing an established low flux rate seep 

vent.  In the Mississippi Canyon the seep mound can be characterized as a mature high 

flux vent.  The data suggest that substantial build up of hard ground has occurred on the 

summit and flanks of the mound with patches of negative amplitude anomalies and 

possible sediment flows indicating that the active seepage may be occurring.  The 

complex relief and patchy amplitude anomalies suggest that sites of active seepage are 

ephemeral, either self sealing or switching to alternate locations on the mound.     

The environmental conditions and processes that led to seep formation in the 

Garden Banks and Mississippi Canyon sites appear quite similar.  The upward 

movement of salt to the shallow sub-surface may have led to the formation of fault-

induced depressions directly above the salt crests.  Geophysical indicators of 

hydrocarbon fluid and gas imply that hydrocarbons are migrating along bedding planes 

to the salt crests where they intersect the salt induced fault systems.  Here they appear to 

continue their migration to the seafloor creating the seafloor amplitude anomalies that 

characterize the seeps.   
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