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ABSTRACT

Nonparametric Methods of Assessing Spatial Isotropy. (August 2003)

Yong Tao Guan, B.S., Peking University, P.R.China

Co-Chairs of Advisory Committee: Dr. Michael Sherman
Dr. James A. Calvin

A common requirement for spatial analysis is the modeling of the second-order struc-

ture. While the assumption of isotropy is often made for this structure, it is not always

appropriate. A conventional practice to check for isotropy is to informally assess plots

of direction-specific sample second-order properties, e.g., sample variogram or sample

second-order intensity function. While a useful diagnostic, these graphical techniques are

difficult to assess and open to interpretation. Formal alternatives to graphical diagnostics

are valuable, but have been applied to a limited class of models.

In this dissertation, we propose a formal approach testing for isotropy that is both

objective and appropriate for a wide class of models. This approach, which is based on the

asymptotic joint normality of the sample second-order properties, can be used to compare

these properties in multiple directions. AnL2 consistent subsampling estimator for the

asymptotic covariance matrix of the sample second-order properties is derived and used to

construct the test statistic with a limitingχ2 distribution under the null hypothesis.

Our testing approach is purely nonparametric and can be applied to both quantitative

spatial processes and spatial point processes. For quantitative processes, the results apply

to both regularly spaced and irregularly spaced data when the point locations are generated

by a homogeneous point process. In addition, the shape of the random field can be quite
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irregular. Examples and simulations demonstrate the efficacy of the approach.
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CHAPTER I

INTRODUCTION

Spatial statistics is concerned with data that are observed in a two or higher dimensional

space, where observations can be either quantitative measurements recorded at various lo-

cations or simply the spatial locations themselves. Based on this very fact, spatial processes

can be split into two major branches: quantitative spatial processes, which deal with quan-

titative spatial observations, and spatial point processes, where the locations of events are

the primary interest of study. A unifying characterization of a spatial process is through its

second-order characteristics, which are often expressed as functions of relative locations of

two observations. In this dissertation, we consider a second-order property, isotropy, for

both the quantitative spatial processes and spatial point processes.

1.1 Quantitative Spatial Processes

Quantitative spatial statistics is often originally associated with geostatistics, where Math-

eron (1963) developed tools to predict ore reserves in a region. Geostatistics emerged in

the early 1980s and has seen rapid growth over the past twenty years. Successful appli-

cations abound beyond geostatistics in, for example, rainfall data (Ord and Rees 1979),

groundwater research (Myers et al. 1982), ozone exposure study (Carroll et al. 1997), and

wind-speed prediction (Cressie and Huang 1999).

A distinct characteristic of spatial data, in contrast to independent and identical ob-

servations, is that spatially close observations are often correlated. A commonly made

The format and style follow that of theJournal of the American Statistical Association.
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assumption while modeling the correlation structure is that of second-order stationarity.

Consider a spatial process{Z(s) : s ∈ R2}, wheres denotes the locations whereZ(·) is

observed.Z(·) is said to be second-order stationary if

E[Z(s)] = µ ∀ s ∈ R2 and (1.1)

Cov[Z(s + t), Z(s)] = C(t) ∀ s, t ∈ R2. (1.2)

Thus a second-order stationary process has a constant mean structure and the covariance

between two observations depends only on their relative locations. The functionC(·) de-

fined by (1.2) is known as the covariance function.

A weaker condition than second-order stationarity is called intrinsic stationarity, which

specifies that (1.1) holds and that

Var[Z(s + t)− Z(s)] = γ(t) ∀ s, t ∈ R2, (1.3)

Spatial processes that are not second-order stationary, e.g., Brownian motions, can still

be intrinsically stationary. The functionγ(·) in (1.3) is called the variogram function.

The variogram function is often used in place of the usual covariance function due to its

greater generality and the fact that it can be estimated more accurately for a variety of

data structures (Cressie, 1991). Observe that if a process is second-order stationary, then

γ(t) = 2C(0)− 2C(t).

The variogram function (or the covariance function) plays an important role in many

spatial analyses, particularly in spatial prediction (e.g., kriging). In the wind-speed example

detailed in Chapter 2, wind speeds are measured at 289 different locations over a region in

the western tropical Pacific Ocean. The goal is to predict the wind speed at a new location

in the region, says0. Assume that wind speeds are generated by an intrinsically stationary

process. Then the optimal linear predictor is given in terms ofγ(·) as (see, e.g., Cressie
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1991)

Ẑ(s0) =
n∑

i=1

λiZ(si),

where

(λ1, · · · , λn, m)′ = Γ−1γ0,

γ0 ≡ (γ(s0 − s1), · · · , γ(s0 − sn), 1)′,

Γi,j =





γ(si − sj) if i, j = 1, · · · , n,

1 if i = n + 1, j = 1, · · · , n,

1 if j = n + 1, i = 1, · · · , n,

0 if i = n + 1, j = n + 1.

andm denote a Lagrange multiplier that ensures
∑n

i=1 λi = 1.

Typically the variogram function is unknown and must be estimated. A common prac-

tice is to estimate the variogram at a set of observed lags and fit a parametric model, which

ensures that the estimated variogram function satisfies a “conditionally negative-definite”

property (see Cressie 1991 for a detailed discussion of this property). For example, let

||t|| ≡ (t′t)1/2 wheret denotes an arbitrary lag, anExponentialvariogram model is speci-

fied as

γ(t; θ) = θ1{1− exp(−θ2||t||)}. (1.4)

In (1.4), γ(t; θ) is a function of the (Euclidean) length oft but not of its direction. This

direction invariant property is known as isotropy. A spatial process is said to be isotropic if

γ(t1) = γ(t2) for anyt1 andt2 such that||t1|| = ||t2||. Otherwise, it is called anisotropic.

In practice, isotropy is often assumed due to its simpler interpretation and ease of estima-

tion. Not assessing the validity of this assumption, however, may lead to inefficient spatial

inferences. In an example detailed in Chapter 2, it can be seen that misspecification of an

anisotropic model as isotropic can lead to noticeably less efficient spatial prediction.
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Chapter 2 and Chapter 4 of this dissertation are devoted to developing a formal ap-

proach to test for isotropy for quantitative spatial processes. Chapter 2 considers regularly

spaced data and irregularly spaced data whose locations can be modeled by a marked-

Poisson process. Chapter 4 extends the results to locations from a more general marked-

point process. Our approach is purely nonparametric and can be applied in a variety of

settings.

1.2 Spatial Point Processes

The origin of the use of spatial point processes can be traced back to the early development

of counting problems, which deal with the numbers of events in intervals or regions of

various types. A simple, but important example, among these is the Poisson process, which

was first given by Poisson (1837). Spatial point processes have been undergoing rapid

development in the last quarter century due to newly discovered applications in many fields

(e.g., astrophysics, biology, epidemiology, forestry and image processing). For additional

information, see Diggle (1983) who discusses many applications, and Daley and Vere-Jones

(2002) who provide a balance between theory and applications.

As with quantitative spatial processes, the analysis of spatial point processes often

assumes certain stationarity conditions on the underlying process, among which the most

frequently used, perhaps, is second-order stationarity. Consider a spatial point processN .

Let dx be an infinitesimal region which contains the pointx, |dx| denote the area ofdx,

andN(dx) be the random number of points indx. N is said to be second-order stationary

if

lim
|dx|→0

{
E[N(dx)]

|dx|
}

= ν ∀ x ∈ R2, (1.5)

lim
|dx1|,|dx2|→0

{
E[N(dx1)×N(dx2)]

|dx1| × |dx2|
}

= Ψ(x1 − x2) ∀ x1,x2 ∈ R2. (1.6)

The functions defined by (1.5) and (1.6) are known in point process literature as the first-
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and second-order intensity function, respectively. A spatial point process is further said to

be isotropic ifΨ(t) = Ψ0(||t||) for some functionΨ0(·), wheret denotes the lag between

two pointsx1 andx2, and||t|| denotes its Euclidean length. When a spatial point process

is isotropic, an alternative approach to characterizing its second-oder property is to use the

K function. As in Diggle (1983), we define theK function to be

K(t) = ν−1E(number of further events within distancet of an arbitrary event).

A primary interest in analyzing spatial point processes is to model the spatial distribution of

the event locations, which can often be achieved by fitting a parametric model (see, Diggle

1983 for more discussions). In the leukemia data detailed in Chapter 3, a cluster model

seems to be plausible to describe the locations of leukemia patients, where each residential

area can be viewed as a cluster and patients living in a particular area can be viewed as

members of the cluster to which that area corresponds. Letθ be a vector of parameters that

defines a class of such cluster models,K(t; θ) be the theoreticalK function andK̂(t) be a

sample estimate ofK(t; θ) (see, e.g., Diggle 1983). The estimate forθ is given as the value

that minimizes the following criterion

D(θ) =

∫ t0

0

{[K̂(t)]c − [K(t; θ)]c}dt,

wheret0 andc are two pre-selected “tuning constants” (Diggle 1983).

The above modeling procedure is built upon the assumption thatN is isotropic. When

a process is not isotropic, this approach is no longer applicable. Thus, assessing isotropy is

an important part of the model building process.

Chapter 3 of this dissertation develops a formal approach to test for isotropy in sta-

tionary spatial point processes. This approach, which is based on the asymptotic joint

normality of the sample second-order intensity function, can be used to compare intensities

in multiple directions. The testing approach requires minimal conditions on the underlying

process and can be applied in a variety of settings.
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1.3 Overview Structure

As previously stated, Chapter 2 and Chapter 4 develop tests for isotropy for quantitative

spatial processes, while Chapter 3 develops a test for isotropy for spatial point processes.

Applications to four real data examples, wind speed over a region in the western Pacific

Ocean, longleaf pine data from Cressie (1991), crime locations in an area of downtown

Houston, and leukemia patient locations in the Houston area, are used as illustrative exam-

ples for our testing methods. The first two examples are quantitative spatial processes while

the latter two are spatial point processes. Simulation results under a variety of settings are

presented in these chapters to demonstrate the efficacy of the proposed approaches. Chap-

ter 5 gives final conclusions and considers a future research topic of fitting anisotropic

variogram models. Lemmas and proofs of the theorems are detailed in the appendices.
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CHAPTER II

A TEST OF ISOTROPY FOR QUANTITATIVE SPATIAL PROCESSES

2.1 Introduction

Data that are spatially close are often correlated. For example, crop yields on adjacent plots

in an agricultural study tend to be similar (i.e., positively correlated) because of similar

soil types and watering conditions; wind speeds from nearby sites at the same point in

time are often alike due to atmospheric circulation and similar geographical conditions. A

correlation structure is called isotropic if the correlation between observations at any two

sites depends only on the distance between those sites and not on their relative orientation.

When a correlation structure is not isotropic, it is said to be anisotropic. The assumption of

isotropy is often made in practice due to simpler interpretation and ease of computation.

In many applications, however, isotropy may not be a reasonable assumption. For

example, wind plays an important role in transporting pollens for some crops and thus in

determining crop yields. Correlation of crop yields might be stronger in the major wind

direction than perpendicular to that direction. The correct specification of the correlation

structure has two primary benefits. The first is improved scientific interpretation of the

model. The second is improved accuracy of prediction. For example, suppose four obser-

vations have been made from a stationary random field satisfying the following anisotropic

covariance structure:

C(x, y) = exp{−x2 − 4y2},

where C(x, y) denotes the covariance between two observations separated by lag(x, y).

If the goal is to predict the value at an observation equally distant (=.65) from the four

observed values, then treating the process as isotropic will lead to assigning equal weights
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(=0.25 each) to each of the four observations. This choice of weights clearly fails to ac-

count for the fact that the correlation in thex direction is much stronger than that in the

y direction. If the correct correlation structure is used, then the two extreme points in the

x direction receive much greater weight (=0.4997) than the extreme points in they direc-

tion (=0.0003). As a consequence, the isotropic model prediction variance (=0.4938) is

appreciably larger than that of the anisotropic model (=.2814).

Many spatial models (e.g., Diggle 1981, Cressie 1991) utilize isotropy. However, it

is clear from the previous example that checking for isotropy before fitting a model is an

important part of model building. If the assumption of isotropy is rejected, modification

of the model may be necessary with the introduction of an anisotropic model, e.g., Cressie

(1991), Zimmerman (1993).

A conventional practice to check for isotropy is to informally assess plots of direction-

specific sample (semi)variograms. For example, Isaaks and Srivastava (1989) discuss the

use of a rose diagram in detecting anisotropy; Diggle (1981) draws contour plots of the

empirical correlation function for a binary mosaic and concludes isotropy. Graphical diag-

nostics are often difficult to assess and are open to interpretation. In response to this, more

formal testing procedures for investigating isotropy have been proposed by Baczkowski

and Mardia (1990) and Lu and Zimmerman (2001). Baczkowski and Mardia’s method is

designed for the specific “doubly geometric” covariance model, and is not appropriate for

other covariance models. Lu and Zimmerman’s approach is more general and performs

well for equally spaced Gaussian processes.

In this chapter, we propose a formal approach to test for isotropy which is both ob-

jective and appropriate for a wide class of models. This approach, like that of Lu and

Zimmerman, is based on the asymptotic joint normality of the sample variograms and can

be used to compare sample variograms in multiple directions. AnL2 consistent subsam-

pling estimator for the asymptotic covariance matrix of the sample variograms is derived
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and used to construct a test statistic with a limitingχ2 distribution under the null hypothesis.

Our testing approach is purely nonparametric in that it only requires some mild moment

conditions and a weak dependence assumption for the underlying process. In addition, the

shape containing the data locations can be quite irregular, and the results apply to both

regularly spaced and irregularly spaced data when the point locations are generated by a

homogeneous Poisson process.

The rest of the chapter is organized as follows. Section 2.2 demonstrates the asymp-

totic joint normality of the sample variograms. Section 2.3 illustrates how to use these

results to assess the assumption of isotropy. Section 2.4 presents a simulation study con-

ducted to evaluate the performance of our testing approach, while Section 2.5 presents

applications to two data sets.

2.2 Definitions and Asymptotic Results

2.2.1 Regularly Spaced Data Case

Consider a strictly stationary random field{Z(s) : s ∈ R2}. Let D be a finite set of lattice

points inZ2 at which observations are taken. Define the variogram function as

γ(t) ≡ Var{Z(s)− Z(s + t)},

wheret [≡ (tx, ty)] is an arbitrary lag inR2.

We consider the variogram function in place of the usual covariance function due to its

greater generality and the fact that it can be estimated more accurately for a variety of data

structures (Cressie, 1991). Note that if two lags have the same length, i.e., they have the

same Euclidean distance from the origin, the corresponding values ofγ(t) will be the same

under isotropy. This suggests a test for isotropy may be obtained by comparing variograms

at lags with the same length but in different directions. In practice, since the true variograms

are typically unknown, we form a test based on estimators of the variograms. The classical
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estimator of the variogram, i.e., the sample variogram, is given by

γ̂(t) ≡ 1

|D(t)| ×
∑{

Z(si)− Z(sj)
}2

,

where the sum is overD(t) ≡ {(i, j) : si, sj ∈ D, si − sj = t} and|D(t)| is the number

of distinct elements inD(t).

Let Λ be a set of lags for which we want to calculate and compare the sample vari-

ograms. DefineG ≡ {γ(t) : t ∈ Λ} to be the vector of variograms at lags inΛ. Consider

a sequence{Z(s) : s ∈ Dn} and letγ̂n(t) andĜn ≡ {γ̂n(t) : t ∈ Λ} be the estimators of

γ(t) andG obtained overDn, respectively.

To formally state the large sample properties ofĜn, we need to quantify the strength of

dependence in the random field. We do this using a model free mixing condition. Following

Rosenblatt (1956), we make use of a particular type of strong mixing coefficients defined

by

αp(k) ≡ sup{|P (A1∩A2)−P (A1)P (A2)| : Ai ∈ F(Ei), |Ei| ≤ p, i = 1, 2, d(E1, E2) ≥ k},

where|E| is the cardinality of the index setE, F(E) is theσ-algebra generated by the

random variables{Z(s) : s ∈ E} and d(E1, E2) is the minimal “city block” distance

betweenE1 andE2.

If the observations are independent, thenαp(k) = 0 for all k ≥ 1. Here we will need

αp(k) to approach 0 for largek, at some rate depending on the cardinalityp. Following

Sherman and Carlstein (1994), we assume the following mixing condition

sup
p

αp(k)

p
= O(k−ε) for someε > 2. (2.1)

Condition (2.1) says that at a fixed distancek, as the cardinality increases, we allow depen-

dence to increase at a rate controlled byp. As the distance increases, the dependence must

decrease at a polynomial rate ink. Examples of spatial processes satisfying this condition
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can be found in, e.g., Sherman and Carlstein (1994) and Sherman (1996). See also Bradley

(1993) for the importance of accounting for cardinalityp.

We need to account for the shape of the field from which we observe data. As in

Bolthausen (1982), we define the boundary of a setD to be the set∂D ≡ {s ∈ D :

there existss′ /∈ D with d(s, s′) = 1}, whered[(sx, sy), (s
′
x, s

′
y)] ≡ max(|sx − s′x|, |sy −

s′y|). Let |∂D| denote the number of points in∂D. Assume

|Dn| = O(n2) and|∂Dn| = O(n). (2.2)

Condition(2.2) is satisfied by many commonly encountered field sequences. For example,

let A ⊂ (0, 1]× (0, 1] be the interior of a simple closed curve which is of finite length. Now

multiply the setA by n, to obtain the setAn ⊂ (0, n] × (0, n]; that is,An is the shapeA

inflated by a factorn. DefineDn ≡ {s : s ∈ An ∩ Z2}. ThenDn satisfies condition (2.2).

This formulation allows for a wide variety of shapes on which the data can be observed,

including squares, rectangles, circles and starshapes.

Finally we require the following mild moment condition

sup
n

E

{∣∣∣
√
|Dn| × [γ̂n(t)− γ(t)]

∣∣∣
2+δ

}
≤ Cδ for someδ > 0, Cδ < ∞. (2.3)

Condition (2.3) is only slightly stronger than the existence of the (standardized) asymptotic

variance of̂γn(t). If the random field ism-dependent, it can be shown that the finiteness of

E(|Z(s)|4+2δ) will be sufficient for condition (2.3) to hold.

Theorem II.1.Let {Z(s) : s ∈ R2} be a strictly stationary random field which is

observed at lattice points inDn ⊂ Z2 satisfying condition (2.2). Assume

∑

s∈Z2

∣∣∣Cov
{

[Z(0)− Z(s1)]
2, [Z(s)− Z(s + s2)]

2
}∣∣∣ < ∞ for all finite s1, s2. (2.4)

ThenΣR ≡ limn→∞ |Dn| × Cov(Ĝn, Ĝn) exists, the(i, j)th element of which is

∑

s∈Z2

Cov
{

[Z(0)− Z(ti)]
2, [Z(s)− Z(s + tj)]

2
}

.
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If we further assume thatΣR is positive definite and that conditions (2.1) and (2.3) hold,

then the limiting distribution of
√
|Dn| × (Ĝn − G) is multivariate normal with mean0

and covariance matrixΣR.

Proof. See Appendix A.

Condition (2.4) is analogous to the condition
∑

s∈Z2 |Cov{Z(0), Z(s)}| < ∞, which

is often assumed in deriving the asymptotic normality of the univariate sample mean (e.g.,

Bolthausen, 1982). Any process that ism-dependent with finite fourth moment satisfies

this condition. For a Gaussian process, it can be shown that the absolute integrability of its

covariance function, i.e.,
∫
R2 |R(t)|dt < ∞, whereR(t) ≡ Cov(Z(0), Z(t)), is sufficient

for (2.4) to hold. Many covariance models, e.g., Exponential, Gaussian, Spherical models,

can be shown to satisfy the integrability condition and thus satisfy (2.4).

2.2.2 Irregularly Spaced Data Case

Consider a strictly stationary random field{Z(s) : s ∈ R2}. Let D ⊂ R2 be the domain

of interest in which observations are taken. We view the points at whichZ(·) is observed

as randomin number and location; specifically they are generated from a homogeneous

two-dimensional Poisson process with intensity parameterν. Karr (1986) makes a strong

case for the plausibility of the Poisson assumption for many practical situations, e.g., data

arising from meteorological studies and geological explorations.

In what follows, denote the random point process byN and the random number points

of N contained inB by N(B), whereB is any given Borel set. We further assumeN to be

independent ofZ(·). To construct a test statistic, an estimate of the variogram is needed.

Here we consider one based on kernel smoothing.

In an adaption of the notation in Section 2.2.1, let|D| denote the volume (not the

cardinality) ofD, ∂D to denote the boundary ofD and|∂D| to denote the length (not the
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number of points) of∂D. Leth be a positive constant andw(·) be a bounded, nonnegative,

isotropic density function which takes positive values only on a finite support,C. Here

and henceforth, we usedx to denote an infinitesimally small disc centered atx. Define

N (2)(dx1, dx2) ≡ N(dx1)N(dx2)I(x1 6= x2), whereI(x1 6= x2) = 1 if x1 6= x2 and 0

otherwise. The kernel variogram estimator is given by

γ̂(t) =
1

ν2

∫

x1∈D

∫

x2∈D

h−2w
(t− x1 + x2

h

)
× [Z(x1)− Z(x2)]

2

|D ∩ (D − x1 + x2)|N
(2)(dx1, dx2).

In practice,ν is usually replaced byN(D)/|D|, which is a consistent estimator ofν (Stoyan

and Stoyan, 1994). We adopt the definitions ofΛ, G, γ̂n(t) andĜn in Section 2.2.1, with

the understanding that the variogram estimator is now defined by the kernel estimator.

To account for dependence, we modify the mixing condition introduced in Section

2.2.1. Following Politis et al. (1998), we make use of a particular type of strong mixing

coefficients defined by

αp(k) ≡ sup{|P (A1 ∩ A2)− P (A1)P (A2)| : A1 ∈ F(E1), A2 ∈ F(E2),

E2 = E1 + s, λ(E1) = λ(E2) ≤ p, d(E1, E2) ≥ k},

where the supremum is taken over all compact and convex subsetsE1 ⊂ R2, and over all

s ∈ R2 such thatd(E1, E2) ≥ k; in the above,F(E) denotes theσ-algebra generated by

the random variables{Z(s) : s ∈ E}. We, again, assume the following mixing condition

sup
p

αp(k)

p
= O(k−ε) for someε > 2. (2.1′)

We also need to account for the shape of the random field and the choice of bandwidth.

Consider a sequence of random fields,Dn, and a sequence of bandwidths,hn. Assume

|Dn| = O(n2), |∂Dn| = O(n), andhn = O(n−β) for someβ ∈ (0, 1). (2.2′)

Let γ(4)(t) ≡ E{[Z(t)− Z(0)]4}. We require the following moment conditions:

γ(t), γ(4)(t) are bounded and continuous, and (2.3′.a)
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sup
n

E

{∣∣∣
√
|Dn|×hn×

[
γ̂n(t)−E(γ̂n(t))

]∣∣∣
2+δ

}
≤ Cδ for someδ > 0, Cδ < ∞. (2.3′.b)

The following theorem states thatγ̂n(t) is a consistent estimator forγ(t) andĜn is asymp-

totically jointly normal under some mild conditions.

Theorem II.2.Let {Z(s) : s ∈ R2} be a strictly stationary random field observed on

a general shaped fieldDn, where the points at whichZ(·) is observed are generated by a

homogeneous Poisson process. Assume condition(2.2′), (2.3′.a) and

∫

s∈R2

∣∣∣Cov
{

[Z(0)− Z(s1)]
2, [Z(s)− Z(s + s2)]

2
}∣∣∣ds < ∞ for all finite s1, s2, (2.4′)

then E[γ̂n(t)] → γ(t) and

lim
n→∞

|Dn| × h2
n × Cov(γ̂n(t), γ̂n(t′)) =

∫

C

w(s)2ds× γ(4)(t)× I(t = ±t′)/ν2,

whereI(t = ±t′) = 1 if t = ±t′ and 0 otherwise. If we further assumeγ(4)(t) > 0,

conditions(2.1′) and(2.3′.b) hold, then
√
|Dn| × hn × {Ĝn − E(Ĝn)} is asymptotically

normal with mean0 and covariance matrixΣIR the structure of which is given by the above

expression.

Proof. See Appendix A.

An interesting property from the above theorem is thatγ̂n(t) andγ̂n(t′), for t 6= ±t′,

are asymptotically uncorrelated. Observe that for largen and smallhn, very few data

points relative to the total number of points onDn will be used to calculate the sample

variogram at a given lag. Because of the randomness of the point process, the chance that

the same or even nearby data points are used to calculateγ̂n(t) andγ̂n(t′), wheret 6= ±t′,

becomes small asn becomes large. Thuŝγn(t) andγ̂n(t′) tend to be uncorrelated due to

the assumption of weak dependence on the process.
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2.3 Assessment of Isotropy

2.3.1 Choice ofΛ

To assess the hypothesis of isotropy, the lag set,Λ, needs to be specified. The choice

of Λ depends on a number of factors, including the configuration of a data set, the goal

of the study, and the underlying physical/biological phenomenon of interest. There is no

unique rule for choosingΛ. Generally speaking, smaller lags are preferable to larger ones.

This is due mainly to the following two facts: sample variograms at larger lags are based

on fewer observations than estimates at smaller lags and therefore are more variable; and

observations at smaller lags are usually more correlated and identification of the correlation

among these lags is more important for spatial prediction.

For regularly spaced observations, note that the two components of any lagt (i.e.,

tx and ty) should both be integers so thatγ̂(t) can be calculated. Thus only lags with

integer components can be included inΛ (e.g.,Λ = {(1, 0), (0, 1), (1, 1), (−1, 1)}). For

irregularly spaced observations, sample variograms at more lags can be calculated and thus

more options forΛ are available. The choice ofΛ should mainly rely on the knowledge

of the underlying physical/biological process generating the observations. For example,

wind might be a suspected source of anisotropy in an air pollution study. Thus a natural

choice forΛ is to include lags in the major wind direction and those perpendicular to that

direction. In the long-leaf pine data example which is discussed in Section 5, 584 unequally

spaced trees were observed in a200m × 200m square field. The dbh (diameter at breast

height) for each of them was measured. A24 × 24 grid may be laid over the field such

that approximately one point can be assigned to the nearest node of the grid. This gives

the distance between adjacent nodes approximately as eight meters, which is a reasonable

reflection of distances among neighboring trees. The test for isotropy can be performed by

comparing the sample variograms at lags whose lengths are eight meters. This may provide
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us with some insights into how environmental conditions affect the growth of trees and how

they compete with each other.

2.3.2 Estimating the Covariance Matrix

To formally compare the directional sample variograms, we must take the sampling varia-

tion as well as the correlation among them into consideration, i.e., we need the knowledge

of ΣR (for regularly spaced data) orΣIR (for irregularly spaced data). These covariance

matrices are usually unknown and thus need to be estimated. While the expression forΣIR

in Section 2.2.2 suggests a plug-in method might be available for irregularly spaced data, it

is ambitious to do so for regularly spaced data due to the large number of elements inΣR

and the complex structure for each of them (see Section 2.2.1).

2.3.2.1 Regularly spaced data case

To estimateΣR, we apply a subsampling technique. Subsampling has been widely used to

estimate the variance of a general spatial statistic (e.g., Hall 1988, Possolo 1991, Sherman

and Carlstein 1994). Heagerty and Lumley (2000) used a subsampling method to estimate

the covariance matrix of estimators derived from estimating functions. Here we apply

subsampling to estimate the covariance matrix ofĜn.

Toward this end, we divide the original fieldDn into overlapping subblocks. These

subblocks are obtained by moving a subsampling window acrossDn. If the window is fully

contained inDn, then a subblock is obtained. The subsampling window is chosen to be

congruent toDn both in configuration and orientation (so as to retain the same dependence

structure as the original data) but is much smaller thanDn. In practice, we set its cardinality

to be of orderl2n, wherel(n) = cnα for somec > 0 andα ∈ (0, 1). In what follows, we

denote the total number of subblocks bykn, the ith subblock byDi
l(n), and the vector of
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sample variograms calculated onDi
l(n) by Ĝi

l(n). An estimator ofΣR is given by

Σ̂R,n ≡ 1

kn

×
kn∑
i=1

{
|Di

l(n)|(Ĝi
l(n) −Gn)(Ĝi

l(n) −Gn)′
}

with Gn ≡
kn∑
i=1

Ĝi
l(n)/kn.

The following theorem states that under some mild conditions,Σ̂R,n is anL2 consistent

estimator forΣR, in the sense that every element ofΣ̂R,n is anL2 consistent estimator for

its counterpart inΣR.

Theorem II.3.Assume that condition (2.3) holds withδ > 2 and all the remaining

conditions in Theorem II.1 hold, then̂ΣR,n is anL2 consistent estimator forΣR.

Proof. See Appendix A.

In order to apply the subsampling method, one needs to decide on an appropriate, or

“optimal” subblock size, i.e., the value ofl(n) that best estimates the unknown covariance

matrix. In general, this choice depends on the dependence structure of the underlying

process and the definition of “optimal”. Sherman (1996) showed thatcn1/2 for somec > 0

is the “optimal” rate for estimating the variance of a statistic on a spatial lattice, where the

word optimal therein refers to minimizing the mean squared error. In practice, we suggest

choosing a reasonable value ofc and settingl(n) = cn1/2. We perform a sensitivity study

in Section 2.4 to assess how the choice of subblock size affects the testing results.

2.3.2.2 Irregularly spaced data case

Following the asymptotic properties given in Theorem II.2, a natural choice to estimate

ΣIR is to use a plug-in method, e.g., to set the off diagonal elements to zero and estimate

the diagonal elements by replacingν byN(D)/|D| andγ(4)(·) by a kernel estimator similar

to the one used in Section 2.2.2. This method, however, may be overly simplistic because it

completely ignores the off diagonal elements ofΣIR, which may be nonnegligible in finite

sample applications. For example, we used a five-dependent isotropic covariance model
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(see Section 2.4) to simulate20 × 20 marked-Poisson Gaussian random fields. Five thou-

sands realizations showed that Cov(γ̂((1, 0)), γ̂((0, 1))) is about one third of Var(γ̂((1, 0)))

using the uniform kernel with bandwidth 0.4. Further, to estimateγ(4)(·), one also needs to

decide what bandwidth to use, which is not an easy task.

To estimateΣIR, we again apply the subsampling technique. Politis and Sherman

(2001) justified the use of subsampling for scalar variables from a marked-point process.

Here we extend their results to the multivariate case.

Toward that end, letDl(n) be the subfield with the same shape asDn but rescaled,

wherel(n) is defined in Section 3.2.1. DefineDl(n) + y ≡ {s + y : s ∈ Dl(n)} be its

shifted copy, wherey ∈ D1−c
n andD1−c

n ≡ {y ∈ Dn : Dl(n) + y ⊂ Dn}. Let hl(n) be the

bandwidth used to get the sample variograms onDl(n) + y (denoted bŷG(Dl(n) + y)). An

estimator ofΣIR, Σ̂IR,n, is given by

1

|D1−c
n | ×

∫

D1−c
n

{
|Dl(n)|×h2

l(n)× (Ĝ(Dl(n) +y)−Gn)(Ĝ(Dl(n) +y)−Gn)′
}

dy, (2.5)

whereGn ≡
∫

D1−c
n

Ĝ(Dl(n) + y)dy/|D1−c
n |.

Theorem II.4.Assume that condition(2.3′.b) holds withδ > 2 and all the remaining

conditions in Theorem II.2 hold, then̂ΣIR,n is anL2 consistent estimator forΣIR.

Proof. See Appendix A.

In practice, to obtain̂ΣIR,n the integral in(2.5) has to be approximated by a finite sum.

Politis and Sherman (2001) suggested both a deterministic approximation and a Monte-

Carlo or stochastic approximation. In this article, we adopt the deterministic approach,

which is discussed further in Section 4.

2.3.3 The Test Statistic

Observe that the hypothesis of isotropy can be expressed asH0 : γ(t) = γ0(||t||) for some

function γ0(·), where||t|| =
√

t′t. It can be rewritten, in terms of variograms at lags
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belonging toΛ, as

H0 : γ(t1) = γ(t2), t1, t2 ∈ Λ, t1 6= t2, but ||t1|| = ||t2||.

Thus under the hypothesis of isotropy, there exists a full row rank matrixA such that

AG = 0 (Lu and Zimmerman, 2001). For example, ifΛ = {(1, 0), (0, 1), (1, 1), (−1, 1)},
i.e.,G = {γ((1, 0)), γ((0, 1)), γ((1, 1)), γ((−1, 1))}′, then

A =

[
1 −1 0 0

0 0 1 −1

]
.

Here and henceforth, we will used to denote the row rank ofA. For regularly spaced

observations, it follows from Theorem II.1 that ifH0 is true, then

|Dn| × (AĜn)′(AΣRA′)−1(AĜn)
D→ χ2

d asn →∞.

We estimateΣR by the subsampling estimator̂ΣR,n which is given in Section 2.3.2.1 and

propose the following test statistic:

TSR,n ≡ |Dn| × (AĜn)′(AΣ̂R,nA
′)−1(AĜn).

SinceΣ̂R,n
L2→ ΣR, TSR,n

D→ χ2
d asn → ∞ by the multivariate Slutsky’s theorem (Fer-

guson 1996). For irregularly spaced observations, E(AĜ) = 0 underH0 from the proof of

Theorem II.2. We then naturally extend the above test statistic as follows

TSIR,n ≡ |Dn| × h2
n × (AĜn)′(AΣ̂IR,nA

′)−1(AĜn),

whereΣ̂IR,n is the subsampling estimator given in Section 2.3.2.2. SimilarlyTSIR,n
D→ χ2

d

asn → ∞. Thus an approximate size-α test for isotropy is to rejectH0 if TSR,n (for

regularly spaced observations) orTSIR,n (for irregularly spaced observations) is bigger

thanχ2
d,α, i.e., the upperα percentage point of aχ2 distribution withd degrees of freedom.
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2.4 A Simulation Study

2.4.1 Simulation Design

We consider realizations from a zero-mean, second-order stationary Gaussian random field.

Each random field was either isotropic or geometrically anisotropic with the following

covariance structure

C(r; m) =





θ(1− 3r
2m

+ r3

2m3 ) if 0 ≤ r ≤ m

0 otherwise,

wherer =
√

t′Bt andB is a 2 × 2 positive definite matrix. The parameterθ is a scale

parameter which was set equal to 1.0 throughout the study. The parameterm defines the

range and strength of dependence. In the simulation study,m was set to be 2, 5, and 8,

denoting weak, moderate and relatively strong spatial dependence, respectively. This setup

was considered by Lu and Zimmerman (2001).

The following five matrices ofB were used:

B1 =

[
1 0

0 1

]
, B2 =

[
1 0

0 4

]
, B3 =

[
1 0

0 16

]
,

B4 =

[
2.5 −1.5

−1.5 2.5

]
, B5 =

[
8.5 −7.5

−7.5 8.5

]
.

Matrix B1 yields isotropic random fields whileB2, B3, B4 and B5 yield geometri-

cally anisotropic random fields. More specifically,B2 andB3 yield isocorrelation ellipses

whose main axes are aligned with the(x, y) axes;B4 andB5 yield isocorrelation ellipses

whose main axes are oriented at 45 and 135 degree angles with thex-axis. In addition, the

anisotropy ratio, defined as the ratio of the lengths of the main axes, is 2:1 forB2 andB4

but 4:1 forB3 andB5.
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For the regularly spaced case, ten thousand realizations for each choice ofB andm

were generated on a20 × 20 square grid and a20 × 20 parallelogram grid. For each

realization, the proposed test was conducted forΛ = [(1, 0), (0, 1), (1, 1), (−1, 1)]. For the

square field,c was set to be0.5, 1, 1.5, corresponding to subblocks of size2× 2, 4× 4 and

7× 7, respectively. For the parallelogram field,c was taken to be.75, 1, 1.5.

In the irregularly spaced case, the number of points for each realization was generated

according to a Poisson distribution with parameter 400; then point locations were deter-

mined by a uniform distribution on a20×20 square field and a20×20 parallelogram field.

Given these locations, the values of the observations were then generated from a Gaussian

process following the above covariance structure. One thousand realizations were simu-

lated for each choice ofB andm. The proposed test was performed forc = 1 andh = 0.4,

0.7, 1. The same lag setΛ was used as in the regularly spaced case.

2.4.2 Finite Sample Adjustments to the Subsampling Estimator

Although our subsampling estimator is consistent for a wide class of situations, we modify

it slightly for better finite sample performance. This modification corrects for edge effects

and reduces bias, but does not change our asymptotic results. For regularly spaced data,

the(j, k)th element ofΣR,n is estimated by:

1

k′n
×

kn∑
i=1

{√
|Di

l(n)(tj)| × |Di
l(n)(tk)| × (γ̂i

l(n)(tj)− γn(tj))× (γ̂i
l(n)(tk)− γn(tk))

}
,

whereγ̂i
l(n)(t), |Di

l(n)(t)| andγn(t) denote the estimate of the sample variogram at lagt on

Di
l(n), the number of distinct pairs inDi

l(n) used to calculatêγi
l(n)(t), and the average of the

sample variograms at lagt obtained from all the subfields, respectively.

In the above expression,k′n is set to be the right standardizing constant that produces

an unbiased variance estimator for the sample mean of i.i.d. observations. The choice of

k′n can be obtained via simulation. For example, one thousand realizations of i.i.d. random
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variables with varianceσ2 were simulated on a20 × 20 square grid in this study. The

target parameterσ2 was estimated by subsampling method during each realization. The

value ofk′n was chosen such that the average of these one thousand variance estimates was

approximately equal to the target parameter. We obtainedk′n = 357, 274, 162 for c = .5,

1, 1.5 respectively, corresponding tokn = 361, 289 and196. Since the sample variogram

estimator (defined in Section 2.1) is a mean of derived variables,k′n is a reasonable choice

for bias correction under weak dependence assumptions.

To calculate the subsampling estimator for the irregularly spaced case, we laid a

20 × 20 grid on the field during each simulation, with a square grid on the square field,

a parallelogram grid on the parallelogram field respectively. A4 × 4 (c = 1) subblock

window (either square or parallelogram) was moved across the field, with its bottom left

corner starting from one of the nodes on the grid each time. On each subfieldDi
l(n) and for

eacht ∈ Λ, the following quantity was calculated:

γ̃i
l(n)(t) ≡

∫∫
h−1

n w
(t− x1 + x2

hn

)
× [Z(x1)− Z(x2)]

2

√
|Di

l(n) ∩ (Di
l(n) − x1 + x2)|

N (2)(dx1, dx2),

where the integrals are over{x1 ∈ Di
l(n),x2 ∈ Di

l(n)}. The (j, k)th element ofΣIR,n is

then estimated by:

1

k′n
×

kn∑
i=1

(γ̃i
l(n)(tj)− γn(tj))× (γ̃i

l(n)(tk)− γn(tk)),

whereγn(t) denote the average of allγ̃i
l(n)(t), i = 1, · · · , kn andk′n is as being defined in

the regularly spaced case.

2.4.3 Results and Analysis

Table 1 reports the percentages of rejections at the5% nominal level for the regularly spaced

case. Notec = 1, regardless of the dependence strength, gives the best results in achieving

the nominal size for square grids. This is roughly true also for parallelogram grids. Thus
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Table 1. Simulation results for regularly spaced observations. Each table entry is the
percentage of rejections at the5% nominal level from ten thousand simulations

Shape of Grids m c B1 B2 B3 B4 B5
square 2 0.5 0.0268 0.9811 0.9796 0.1038 0.1029

1.0 0.0486 0.9754 0.9726 0.2190 0.2044
1.5 0.0659 0.9633 0.9610 0.2560 0.2437

5 0.5 0.1113 1.0000 1.0000 0.9972 1.0000
1.0 0.0812 0.9999 1.0000 0.9953 1.0000
1.5 0.0835 0.9986 0.9999 0.9853 1.0000

8 0.5 0.1500 1.0000 1.0000 0.9978 1.0000
1.0 0.0903 1.0000 1.0000 0.9942 1.0000
1.5 0.0938 0.9978 1.0000 0.9816 0.9999

parallelogram 2 0.75 0.0469 0.9711 0.9700 0.1564 0.1479
1.0 0.0576 0.9728 0.9685 0.1972 0.1919
1.5 0.0678 0.9621 0.9572 0.2349 0.2339

5 0.75 0.1080 0.9999 1.0000 0.9973 1.0000
1.0 0.0916 0.9998 1.0000 0.9960 1.0000
1.5 0.0919 0.9988 1.0000 0.9877 1.0000

8 0.75 0.1305 0.9999 1.0000 0.9980 1.0000
1.0 0.1017 0.9999 1.0000 0.9968 1.0000
1.5 0.0960 0.9989 1.0000 0.9864 0.9999

we recommend usingc = 1 in practice. It is generally true that the empirical sizes of the

test are higher than the nominal one, especially when correlations are high. This is because

the subsampling method tends to underestimate elements in the covariance matrix and thus

to inflate the test statistic. The problem will diminish for larger data grids. Our results are

comparable to those in Lu and Zimmerman (2001).

Table 2 reports the percentages of rejections at the5% nominal level for the irregularly

spaced case. An interesting phenomenon is that the empirical sizes of the tests are much

closer to the nominal5% compared to the regularly spaced case. This can be intuitively

explained as follows. Consider an × n square fieldDn. Let Di,j
n denote the(i, j)th cell

obtained by overlaying an× n grid. Define a new process{Xn(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤
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Table 2. Simulation results for irregularly spaced observations. Each entry is the
percentage of rejections at the5% nominal level from one thousand simulations

Shape of Fields m h B1 B2 B3 B4 B5
square 2 0.4 0.052 0.211 0.123 0.074 0.054

0.7 0.049 0.232 0.123 0.086 0.047
1.0 0.061 0.108 0.063 0.087 0.057

5 0.4 0.052 0.571 0.927 0.502 0.804
0.7 0.071 0.775 0.964 0.736 0.911
1.0 0.081 0.740 0.912 0.748 0.889

8 0.4 0.067 0.619 0.968 0.566 0.945
0.7 0.074 0.788 0.997 0.777 0.989
1.0 0.086 0.777 0.996 0.824 0.993

parallelogram 2 0.4 0.054 0.219 0.137 0.061 0.060
0.7 0.071 0.233 0.146 0.090 0.062
1.0 0.051 0.110 0.092 0.089 0.076

5 0.4 0.064 0.591 0.921 0.527 0.823
0.7 0.079 0.790 0.972 0.738 0.939
1.0 0.095 0.788 0.917 0.770 0.902

8 0.4 0.040 0.626 0.963 0.555 0.950
0.7 0.067 0.810 0.993 0.786 0.989
1.0 0.095 0.826 0.993 0.826 0.994

n} where

Xn(i, j) ≡
∫

x1∈Dn

∫

x2∈Di,j
n

h−1
n w

(t− x1 + x2

hn

)
×

[
Z(x1)− Z(x2)

]2

N (2)(dx1, dx2).

Let X̄n ≡
∑n

i=1

∑n
j=1 Xn(i, j)/n2. Observe that for smallhn, |Dn∩ (Dn−x1 +x2)| ≈ n2

and thus
√
|Dn|×hn×{γ̂n(t)−E(γ̂n(t))} ≈

√
|Dn|×{X̄n−E(X̄n)}. A simple analysis

shows the correlation betweenXn(i, j) andXn(i′, j′) is of orderh2
n if i 6= i′ or j 6= j′, i.e.,

Xn(i, j) andXn(i′, j′) tend to be less correlated than in the regularly spaced setting when

hn is small. The subsampling method in general gives reasonably good estimates when

correlations among observations are weak. This led to the better empirical sizes in our

setting. Note for fixedn, Xn(i, j) andXn(i′, j′) tend to be more correlated ashn increases.

This explains the increasing empirical sizes ash increases in Table 2. Comparing the results

in Table 1 and Table 2 shows that the test for the irregularly spaced case is less powerful
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than that for the regularly spaced case. This can be attributed to the necessary smoothing

in the irregularly spaced case.

2.5 Applications

2.5.1 The Wind-Speed Data

The wind-speed data consist of the east-west component of the wind speed (in meters per

second) over a region in the tropical western Pacific Ocean (145 deg E-175deg E, 14deg

S-16 deg N). The data are given on a regular spatio-temporal grid of17 × 17 sites with

grid spacing of about 210 km, and every 6 hours for the period November 1992 through

February 1993. This gives data at 289 locations and 480 time points. Cressie and Huang

(1999) examined the second-order stationary assumption and did not find evidence against

it. They further fitted a stationary spatio-temporal variogram to the data with the spatial

component being isotropic.

1 2 3 4 5 6 7 8 9 10 11
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Figure 1. Sample Variograms in Two Directions for the Wind-Speed Data.×: E-W
direction,◦: N-S direction.

We here assess the validity of the isotropy assumption. We first plot the empirical
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variograms at spatial lags from 1 to 11 in the E-W direction and N-S direction (see Figure

1). This is a natural choice of directions to study due to the directional feature of the

observations. The empirical variogram at a lag was calculated by averaging all the sample

variograms at each time for that lag (480 in total). Some interesting features of the plot

include a strong linear trend in the N-S direction, a sill around 13 in the E-W direction, and

seemingly close agreement at small lags of these two directions. This closeness is relative

to the results at larger lags. At lag distance one, for example, the sample variogram in the

north-south direction is21.24% higher than that in the east-west direction.

We applied our test usingΛ = {(1, 0), (0, 1)} and4 × 4 subblocks to estimateΣR

for each of the 480 time points.22.29% of the p-values are less than 0.01,37.29% less

than 0.05,47.71% less than 0.1. Thus the isotropic assumption does not appear to be very

reasonable for this data set.

2.5.2 The Long-leaf Pine Data

The long-leaf pine data consists of locations and dbh (diameter at breast height) of 584

long-leaf pine trees in a200m × 200m square field. The data set was given by Cressie

(1991). Although the locations of the trees exhibit apparent clustering, our test was applied

as if they come from a homogeneous Poisson process. We conjecture our asymptotic re-

sults will remain valid if the locations of trees are generated by an isotropic, second-order

stationary point process.Λ was set to be[(8, 0), (0, 8), (8/
√

2, 8/
√

2), (−8/
√

2, 8/
√

2)]′

due to the argument given in Section 2.3.1;A was as follows

A =




1 −1 0 0

0 0 1 −1

1 0 −1 0




.

A 24×24 grid was laid on the field corresponding to approximately one point at each node.

For the imposed grid,c = 1 gave an approximate subblock size of5× 5, which translated
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back to the original scale yielded40m × 40m subblocks. Two bandwidthsh, equal to

four and eight meters, were considered. The p-values for the tests are 0.6448 and 0.4610

respectively, indicating no strong evidence against the isotropy assumption.
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CHAPTER III

A TEST OF ISOTROPY FOR SPATIAL POINT PROCESSES

3.1 Introduction

Spatial events in the form of a set of points in space are often irregularly scattered in nature;

examples include the locations of trees in a forest, of leukemia patients in a state, or of

crime events in a city. A common approach is to model these observations by a stationary

spatial point process (e.g., Diggle 1983, Cressie 1991, Stoyan and Stoyan 1994). The

development of the second-order structure for a point process, e.g., second-order intensity

function, K-function, is critical for spatial modeling (e.g., Diggle 1983, Cressie 1991,

Stoyan and Stoyan 1994). A spatial point process is called isotropic if its second-order

characteristics are direction invariant. Otherwise the process is said to be anisotropic.

In many applications, it is of great interest to test if a spatial process is isotropic. Con-

sider the example of childhood leukemia study (Section 3.5.2) where it is suspected that

exposure to pollution may increase the risk of developing the disease. Since wind is an im-

portant media in transporting many of these pollutants, spatial locations of leukemia cases

may be more clustered in the major wind direction than perpendicular to that direction.

Testing for isotropy in this case can help justify our conception of certain risk factors being

influential or rule them out from future studies. In a study of violent crimes in a city (Sec-

tion 3.5.1), a rejection of isotropy will provide evidence for the existence of some important

directional factors, for example, major highways, and to what extent these factors influence

the distribution. This in turn can play an important role for future policy making and crime

prevention.

Many spatial models utilize isotropy (see, e.g., Cuzick and Edwards 1990, Diggle and

Chetwynd 1991) due to its simplicity. Often in practice, however, these models are fitted
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without further checking of this assumption. As a consequence, this can lead to inaccurate

inferences. For example, consider a Poisson cluster process with (expected) 100 parents

and 4 offspring per parent on the unit square. Suppose the positions of the offspring relative

to their parents follow the p.d.f.

f(x, y) =
1

πσ2
exp{−(x2 + 4y2)/2σ2}.

The above model yields an anisotropic process where the dependence in thex direction is

twice as strong as that in they direction. Figure 3 plots the estimated (isotropic)K function

as well as an upper and lower simulation envelopes obtained from the best fitting isotropic

model based on a realization from the above model withσ = 0.02. Without checking for

isotropy, we may wrongly conclude the fitted isotropic model is appropriate for the process

since the estimatedK function lies inside the envelopes. This example, together with the

discussions in the proceeding paragraph, demonstrate that testing isotropy is an important

part of model building.
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Figure 2. K Function Plot. The dotted line is the estimatedK function assuming
isotropy, the solid lines are the upper and lower envelopes from 100 simulations from the
best fitting isotropic model.
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A conventional practice to check for isotropy is to informally assess plots of direction-

specific sample second-order intensity function or theK function (e.g., Ohser and Stoyan

1981, Stoyan and Stoyan 1994). While useful, graphical diagnostics are often difficult to

assess and are open to interpretation. Progress has been made lately with formally inves-

tigating isotropy for quantitative lattice data (e.g., Baczkowski and Mardia 1990, Lu and

Zimmerman 2001). Such testing procedures, however, are yet to be developed under the

spatial point process set-up.

In this article, we propose a formal approach to test isotropy for a spatial point pro-

cess. Our approach is based on the asymptotic joint normality of the sample second-order

intensity functions and can be used to compare these values in multiple directions. We

derive anL2 consistent subsampling estimator for the asymptotic covariance matrix of the

sample second-order intensity function and use that to construct a test statistic with aχ2

limiting distribution. Our testing approach is purely nonparametric in that it only requires

mild moment conditions and a weak dependence assumption for the underlying process. In

addition, the shape containing the spatial locations can be quite irregular.

The rest of the article is organized as follows. In Section 3.2, we introduce the def-

inition of the sample second-order intensity function and study its asymptotic properties.

Based on these results, we form a test statistic in Section 3.3 and further derive its limiting

distribution. Some practical concerns are discussed in Section 3.4. Section 3.5 presents

some simulation results, while in Section 3.6 our method is applied to two data sets. Proofs

of the theorems are given in Appendix B.

3.2 Definitions and Asymptotic Results

3.2.1 Notations and Set-up

Consider a stationary spatial point processN . A process is said to bestationary if all

probability statements about the process in any regionD of the plane are invariant under
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arbitrary translation ofD. In what follows, letN(D) denote the random number of points

in D, |D| represent the area ofD, anddx be an infinitesimal region which contains the

pointx. Define the first and second-order intensity function as

λ(x) ≡ lim
|dx|→0

{
E[N(dx)]

|dx|
}

,

λ(2)(x,y) ≡ lim
|dx|,|dy|→0

{
E[N(dx)×N(dy)]

|dx| × |dy|
}

.

The value ofλ(x)|dx| gives the approximate probability that one point ofN falls in dx,

while λ(2)(x,y)|dx||dy| approximates the probability that there is one observed point in

both dx and dy. For a stationary process,λ(x) assumes a constant value, sayν and

λ(2)(x,y) ≡ Ψ(x− y) for some functionΨ(·).
Let t denote a lag between two points and let||t|| denote the Euclidean distance of

t from the origin. Note that if||t|| = ||t′||, thenΨ(t) = Ψ(t′) under isotropy. Thus we

may form a test for isotropy by comparing second-order intensity functions at lags with

the same length but in different directions. In practice, since the true function is typically

unknown, we form a test based on an estimator of it.

Let h be a positive constant andw(·) be a bounded, nonnegative, isotropic density

function which takes positive values only on a finite support,C. DefineN (2)(dx1, dx2) ≡
N(dx1)N(dx2)I(x1 6= x2), whereI(x1 6= x2) = 1 if x1 6= x2 and 0 otherwise. A kernel

estimator ofΨ(t) is given by

Ψ̂(t) =

∫

x1∈D

∫

x2∈D

w[(t− x1 + x2)/h]

|D ∩ (D − x1 + x2)| × h2
N (2)(dx1, dx2).

We base our test on sample second-order intensity functions at a finite number of lags

in multiple directions. LetΛ be a user chosen lag set of interest. DefineG ≡ {Ψ(t) : t ∈
Λ} to be the vector of second-order intensity functions at lags inΛ. Consider a sequence

of random fieldsDn and letΨ̂n(t) andĜn ≡ {Ψ̂n(t) : t ∈ Λ} be the estimators ofΨ(t)
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andG obtained overDn, respectively. In the remainder of this section, we investigate the

large sample properties of̂Ψn(t) andĜn.

3.2.2 Asymptotic Bias and Covariance of Sample Second-order Intensity Function

Define thekth-order cumulant function as

C
(k)
N (x2 − x1, · · · ,xk − x1) ≡ lim

|dx1|,··· ,|dxk|→0

{
Cum[N(dx1), · · · , N(dxk)]

|dx1| × · · · × |dxk|
}

,

where Cum(Y1, · · · , Yk) is given by the coefficient ofikt1 · · · tk in the Taylor series expan-

sion of log{E[exp(i
∑k

j=1 Yjtj)]} about the origin (see, Brillinger 1975). Roughly speak-

ing, the cumulant functions have an interpretation in terms of dependence and indepen-

dence. For example, ifN is Poisson, then allC(k)
N (x2 − x1, · · · ,xk − x1) will be equal to

zero if any ofxj − x1 6= 0, j = 2, · · · , k. Throughout this article, we will assume

C
(2)
N (·), C(3)

N (·, ·) are bounded,C(2)
N (·) is continuous and integrable, (3.1)

∫
R2 |C(3)

N (u1,u2)|du1 < ∞,
∫
R2 |C(3)

N (u1,u1 + u2)|du1 < ∞ for finite u2, and

∫
R2 |C(4)

N (u1,u2,u2 + u3)|du2 < ∞ for finite u1,u3. (3.2)

All the above conditions are clearly satisfied ifN is a homogeneous Poisson process with

finite intensity. If a point process ism-dependent withC(k)
N being finite,k = 1, 2, 3, 4,

then conditions (3.1) and (3.2) also hold. For a Poisson cluster process, these integrability

conditions can further be written in terms of the intensity for the parent process, moments of

the number of offspring per parent, and the distribution of an offspring’s position relative to

its parent (see Lemma B.4 in Appendix B). Then (3.1) and (3.2) are satisfied by commonly

used models such as the one discussed in Section 3.1, where the positions of the offspring

relative to their parents follow a radially symmetric normal distribution.
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We need to account for the shape of the field from which we observe data. Let∂D

denote the boundary ofDn and|∂D| denote the length of∂D. Assume

|Dn| = O(n2), |∂Dn| = O(n). (3.3)

Condition (3.3) allows for a variety of field sequences, e.g., squares, rectangles, circles

and starshapes, etc. Throughout the article, we also assume the following condition on the

bandwidth,h = hn:

hn = O(n−β) for someβ ∈ (0, 1). (3.4)

The following theorem gives conditions under which the sample second-order inten-

sity function is a consistent estimator for the target function.

Theorem III.1.Let N be a stationary point process observed on domainDn. Assume

conditions (3.1), (3.3) and (3.4), then

E[Ψ̂n(t)] =

∫

C

w(x)Ψ(t− hnx)dx → Ψ(t).

If we further assume condition (3.2), then

lim
n→∞

|Dn| × h2
n × Cov[Ψ̂n(t), Ψ̂n(t′)] =

∫

C

w2(x)dx×Ψ(t)× I(t = ±t′),

wheret, t′ ∈ Λ, I(t = ±t′) = 1 if t = ±t′ and 0 otherwise.

Proof. See Appendix B.

3.2.3 Asymptotic Normality of Sample Second-order Intensity Function

To formally state the asymptotic normality of̂Gn, we need to quantify the strength of

dependence in the random field. In the nonparametric spirit, we do so using a model free

mixing condition. Following Rosenblatt (1956), we make use of a particular type of strong

mixing coefficient defined as

αN(p; k) ≡ sup{|P (A1 ∩ A2)− P (A1)P (A2)| : A1 ∈ FN(E1), A2 ∈ FN(E2),
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E2 = E1 + s, |E1| = |E2| ≤ p, d(E1, E2) ≥ k},

where the supremum is taken over all compact and convex subsetsE1 ⊂ R2, and over all

s ∈ R2 such thatd(E1, E2) ≥ k; in the above,FN(E) is theσ-algebra generated by the

random points of the point processN that happen to fall in setE.

If N is Poisson, thenαN(p; k) = 0 for all k > 0. Here we requireαN(p; k) to approach

0 for largek, at some rate depending on the volumep. Following Sherman and Carlstein

(1994), we assume the following mixing condition

sup
p

αN(p; k)

p
= O(k−ε) for someε > 2. (3.5)

Condition (3.5) says that at a fixed distancek, as the volume increases, we allow depen-

dence to increase at a rate controlled byp. As the distance increases, the dependence must

decrease at a polynomial rate ink. Any m-dependent point process satisfies this condition.

Jensen (1993a, b) shows that the Strauss point process satisfiesαN(p; k) ≤ Ake−Bp for

some constantsA andB and thus satisfies condition (3.5); more discussion regarding this

condition can be found in Politis and Sherman (2001).

Finally we require the following mild moment condition

sup
n

E

{∣∣∣
√
|Dn| × hn × [Ψ̂n(t)−Ψ(t)]

∣∣∣
2+δ

}
≤ Cδ for someδ > 0, Cδ < ∞. (3.6)

Condition (3.6) is only slightly stronger than the existence of the (standardized) asymptotic

variance ofΨ̂n(t). For anm-dependent point process with bounded cumulant functions up

to order eight, it can be shown that (3.6) holds forδ = 2 (see Lemma B.3 in Appendix B).

Theorem III.2.Let N be a stationary point process observed on domainDn. Assume

conditions (3.1)-(3.6), then
√
|Dn| × hn × {Ĝn − E(Ĝn)} is asymptotically normal with

mean0 and covariance matrixΣ, the elements of which are given in Theorem III.1.

Proof. See Appendix B.
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3.3 Assessment of Isotropy

3.3.1 Estimating the Covariance Matrix

To formally compare the directional sample second-order intensity functions, we need

knowledge ofΣ. This covariance matrix is usually unknown and thus needs to be esti-

mated. From the asymptotic properties given in Section 3.2, the following plug-in method

seems to be a natural choice

σ̂i,j =





∫
C

w(x)2dx× Ψ̂(ti) if i = j

0 otherwise,

whereσ̂i,j denotes the(i, j)th element of the estimated covariance matrix.

The plug-in method, however, is often overly simplistic because the off diagonal el-

ements may be nonnegligible in finite samples. This is especially true in the presence of

clustering. For example, we simulated a Poisson cluster process on a20× 20 square field,

where the number of parents is assumed to be a random variable from Poisson(100); the

expected number of offspring is four and the position of each offspring relative to its parent

is determined by the p.d.f. given in Section 3.5 withB being a2× 2 identity matrix. One

thousand realizations showed that Cov[Ψ̂(1, 0), Ψ̂(0, 1)] is about35% of Var[Ψ̂(1, 0)] using

a uniform kernel with bandwidth 0.1. It is this potential problem of the plug-in estimator

that prompts us to search for an alternative method.

Here we apply a subsampling technique. Subsampling has been widely used to esti-

mate the variance of a general spatial statistic on a regularly spaced grid (e.g., Hall 1988,

Possolo 1991, Sherman and Carlstein 1994). Politis and Sherman (2001) consider subsam-

pling based variance estimation for statistics computed from marked-point processes. We

adapt their results to the point process case. In particular, to form a test statistic, we require

an estimator of the covariance matrix ofĜn.

Toward this end, letDl(n) be a subshape that is congruent toDn both in configuration
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and orientation but rescaled, wherel(n) = cnα for some positive constantc andα ∈ (0, 1).

Define its shifted copyDl(n) + x ≡ {s + x : s ∈ Dl(n)}, wherex ∈ D1−c
n andD1−c

n ≡
{x ∈ Dn : Dl(n) + x ⊂ Dn}. Let Ĝl(n)(x) be the sample second-order intensity function

on Dl(n) + x, hl(n) be the bandwidth used to obtain̂Gl(n)(x). The subsampling estimator

(denoted bŷΣn) is given as

1

|D1−c
n | ×

∫

D1−c
n

{
|Dl(n)| × h2

l(n) × (Ĝl(n)(x)−Gl(n))(Ĝl(n)(x)−Gl(n))
′
}

dx, (3.7)

whereGl(n) ≡
∫

D1−c
n

Ĝl(n)(x)dx/|D1−c
n |.

The following theorem states that under some mild conditions,Σ̂n is anL2 consis-

tent estimator forΣ, in the sense that every element of the subsampling estimator isL2

consistent for its counterpart in the target covariance matrix.

Theorem III.3.Assume that condition(3.6) holds withδ > 2 and all the remaining

conditions in Theorem III.1 and III.2 hold, then̂Σn is anL2 consistent estimator forΣ.

Proof. See Appendix B.

In practice, to obtain̂Σn the integral in(3.7) has to be approximated by a finite sum.

This approximation, as well as some finite sample adjustments, will be discussed in Section

3.5.

3.3.2 The Test Statistic

First recall the following result in Theorem III.1:

E[Ψ̂n(t)] =

∫

c

w(x)Ψ(t− hnx)dx → Ψ(t).

Consider two lagst, t′ ∈ Λ, where||t|| = ||t′||. Sincew(·) is an isotropic kernel function

and Ψ(t) = Ψ(t′) under isotropy, we conclude that E[Ψ̂n(t)] = E[Ψ̂n(t′)]. Thus the
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null hypothesis can be expressed, in terms of the expected sample second-order intensity

functions at lags belonging toΛ, as

H0 : E[Ψ̂n(t)] = E[Ψ̂n(t′)], t, t′ ∈ Λ, t 6= t′, but ||t|| = ||t′||.

Further we form a contrast based on the above equations inH0, i.e., find a full row rank ma-

trix A such thatAE(Ĝn) = 0. For example, ifΛ = {(1, 0), (0, 1), (
√

2
2

,
√

2
2

), (−
√

2
2

,
√

2
2

)},
then

A =




1 −1 0 0

1 0 −1 0

1 0 0 −1




.

Thus instead of assessing isotropy directly, we will test the hypothesisH0 : AE(Ĝn) = 0.

A similar technique has been applied by Lu and Zimmerman (2001) in testing for spatial

isotropy for a quantitative spatial process.

Here and henceforth, we will used to denote the row rank ofA. Define the following

test statistic

TSn ≡ |Dn|h2
n(AĜn)′(AΣ̂nA

′)−1(AĜn),

whereΣ̂n is the subsampling estimator ofΣ defined in Section 3.3.1.

SinceΣ̂n
L2→ Σ, TSn

D→ χ2
d asn → ∞ by the multivariate Slutsky’s theorem (Fergu-

son 1996). Thus an approximate size-α test for isotropy rejectsH0 if TSn is bigger than

χ2
d,α, i.e., the upperα percentage point of aχ2 distribution withd degrees of freedom.

3.3.3 Choice of Lag Set, Subblock Size, Bandwidth

The test statistic in Section 3.3.2 has the given asymptotic distribution for any choice ofΛ,

l(n), hn, assuming that conditions (3.1)-(3.6) are satisfied. Nevertheless, for any data set

the performance of the test depends on the choice of these parameters. In this section, we

will address these issues.
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The choice of the lag set,Λ, plays an important role, especially in determining the

power of the test. Generally speaking, there is no unique rule in determining this set.

However, we often have some idea/suspicion about what may cause anisotropy, e.g., major

highways for crime locations, wind for leukemia patients’ locations. Such knowledge may

help us in choosing directions to compare. The lengths of lags inΛ should be neither too

large nor too small. The second-order intensity function at large lags are often close to

a limiting constant, the square of the first-order intensity and thus the difference between

them is small. The functions at very small lags, on the other hand, also tend to be very

similar. Empirical results presented in Section 3.5 suggest a good choice is to set this length

to be between 1/3-1/2 of the dependence range. This range can be gauged by studying an

isotropic sample second-order intensity function plot. Specifically, we recommend to use

the starting value beyond which the function becomes flat for the range.

The choice of the subblock size depends on a number of issues, including the depen-

dence structure of the underlying point process and the definition of “optimal”. Sherman

(1996) showed thatcn1/2 for somec > 0 is the “optimal” rate for estimating the variance of

a statistic calculated from quantitative lattice data, where the word optimal therein refers to

minimizing the mean squared error. We conjecture a similar result will hold in the spatial

point process setting. Empirical methods, such as those proposed by Hall and Jing (1996),

Politis and Sherman (2001), can be applied in selecting this constant but require very large

samples. Simulation results suggest when the first-order intensity is approximately equal

to one,c = 1 is usually a reasonable choice. In light of this observation, we recommend to

choosec = 1 in practice.

To select the bandwidth, we further assume that the second-order intensity function is

twice continuously differentiable. A direct extension of Theorem III.1 yields

E[Ψ̂n(t)] = Ψ(t) +
{ ∫

C

(x′Ψ′′(t)x)w2(x)dx
}
× h2

n/2 + o(h2
n).
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Combining the above result and the variance expression ofΨ̂n(t) in Section 3.2.2, we

obtain the (asymptotic) optimal bandwidth choice in minimizing the mean squared error as

hn =


 2× ∫

C
w2(x)dx×Ψ(t)

|Dn| ×
{ ∫

C
(x′Ψ′′(t)x)w2(x)dx

}2




1/6

≡ c(t)×
[

1

|Dn|
]1/6

.

For a smaller but still relatively large field, sayDm, the optimal bandwidthhm is approxi-

matelyc(t) × |Dm|−1/6. This suggests if an estimate forhm, sayĥm, is available, then̂hn

can be simply calculated as{|Dm|/|Dn|}−1/6 × ĥm.

To estimatehm, we first estimateΨ(t) by Ψ̂n(t) using some pilot bandwidthh′n. Then

we splitDn into Nm subblocks of size|Dm|. Let Ψ̂i,j
m (t) denote the estimate of the second-

order intensity function calculated on subblockDi
m using a bandwidthhj

m, wherehj
m is

from a pre-chosen bandwidth set, sayH ≡ {hj
m : j = 1, · · · , k}. Define the mean squared

error associated withhj
m as

MSE(m,hj
m) ≡

Nm∑
i=1

{Ψ̂i,j
m (t)− Ψ̂n(t)}2/Nm.

Thenĥm is set to be the bandwidth inH that minimizes the above quantity. This procedure

can be iterated by settingh′n equal toĥm until certain convergence criterion is satisfied. If

the optimal bandwidth for estimating the second-order intensity function at a set of lags

(instead of one particular lag) is needed, which is the case for our testing purpose, we

simply setĥm to be the one that minimizes the sum of the mean squared errors for all the

lags.

3.4 A Simulation Study

3.4.1 Simulation Design

We consider realizations from a Poisson cluster process (see, e.g., Diggle 1983) on a20×20

square field. For each realization, parent locations are generated from a Poisson process
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with intensity .25 or 0.125, which correspond to 100 or 50 expected parents. Each parent

producesS offspring according to a Poisson distribution with parameter equal to 5 or 10,

respectively. Thus, both of these two set-ups lead to approximately 500 observations for

each realization. This enables us to evaluate the effect of offspring number per parent on

test performance. The position of an offspring relative to its parents follows a radially

symmetric normal distribution with p.d.f.

f(x, y) =
1

2πσ2 × |B|−1/2
exp{−(x, y)B(x, y)′/2σ2},

whereB is a 2 × 2 positive definite matrix and|B| here denotes its determinant. The

parameterσ in the above expression defines the spread of each cluster; for the isotropic

case,2σ2 is the mean squared distance of an offspring from its parent. In the simulation,

we setσ equal to 0.4 and 0.8 respectively. These are reasonable values in many real ap-

plications; see, for example, Cressie’s (1991) analysis of long-leaf pine data, and Diggle’s

(1983) study of redwood seedlings. TheB matrix takes the following three values

B1 =

[
1 0

0 1

]
, B2 =

[
1 0

0 2

]
, B3 =

[
1 0

0 4

]
.

Matrix B1 yields isotropic point processes whileB2 andB3 yield geometrically anisotropic

point processes. More specifically, the main anisotropic axes ofB2 andB3 are aligned

with the (x, y) axes; the anisotropy ratio, defined as the ratio of the lengths of the main

axes, is
√

2 : 1 for B2 and 2:1 forB3.

One thousand realizations for each choice ofB are simulated. For each realization,

sample second-order intensity functions at 0, 45, 90 and 135 degrees are calculated and

compared. Forσ = .4, the lengths of lags are set to be 0.4, 0.6, 0.8 and 1.0 while 0.8, 1.2,

1.6 and 2.0 are used forσ = .8. l(n) is calculated as20/N(D)1/4, which is in accordance

with the aforementioned raten1/2. h is selected by the data-driven method introduced in

Section 3.3.3.
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We approximate the integral (3.7) by a finite sum, as suggested by Politis and Sherman

(2001). Following the procedures given in Section 2.4.2, a20× 20 grid is laid on the field

during each simulation. A square subblock window with the defined size is then moved

across the field, with its bottom left corner starting from one of the nodes on the grid. On

each subfieldDi
l(n) and for eacht ∈ Λ, the following quantity is calculated:

Ψ̃i
l(n)(t) ≡

∫∫
w((t− x1 + x2)/hn)√

|Di
l(n) ∩ (Di

l(n) − x1 + x2)| × hn

N (2)(dx1, dx2),

where the integrals are over{(x1,x2) : x1,x2 ∈ Di
l(n)}. The(j, k)th element ofΣ is then

estimated by:

1

k′n
×

kn∑
i=1

[Ψ̃i
l(n)(tj)−Ψn(tj)]× [Ψ̃i

l(n)(tk)−Ψn(tk)].

In the above expression,Ψn(t) denotes the average of allΨ̃i
l(n)(t), i = 1, · · · , kn andk′n

is calculated askn(1 − l(n)2/n2). The first modification (using̃Ψ) better estimates the

dominant terms in the expression ofΣ while the second (usingk′n) reduces bias. Observe

that k′n is the right standardizing constant when nonoverlapping subsampling is applied,

for which kn is approximately equal ton2/l(n)2. These modifications do not change our

asymptotic results.

3.4.2 Results and Analysis

Table 3 reports the percentages of rejection from one thousand simulations at the5% nomi-

nal level. The empirical sizes of the test are all reasonably close to 5%, except for|t| = 2.0,

which is almost half of the side length of each subsquare. Thus our test approximately

achieves the nominal size for a variety of settings.

For relatively strong clustering (σ = .4), our testing method has excellent power in

detecting anisotropy for different values ofρ andµ when the anisotropy ratio is only 1:2. As

the degree of anisotropy increases, the power of the test increases. Asσ increases, however,
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the power drops significantly. This is because the strength of the clustering becomes weaker

as the cluster spread increases and the process becomes more similar to a Poisson process.

As a result, the true second-order intensity functions in different directions are closer to

a directional independent constant, the square of the first-order intensity. When the true

difference becomes smaller, the power of detecting such a difference becomes weaker as

well.

Table 3. Simulation results from one thousand realizations of Poisson clustering
processes. Each entry is the percentage of rejections at the5% nominal level.ρ is the

expected number of parents;µ is the expected number of offspring per parent.

(ρ, µ) σ |t| B1 B2 B3
(100, 5) 0.4 0.4 0.068 0.247 0.919

0.6 0.053 0.510 0.982
0.8 0.066 0.480 0.925
1.0 0.069 0.296 0.756

0.8 0.8 0.062 0.117 0.564
1.2 0.044 0.180 0.577
1.6 0.059 0.180 0.462
2.0 0.079 0.138 0.250

(50, 10) 0.4 0.4 0.072 0.420 0.977
0.6 0.062 0.676 0.992
0.8 0.067 0.611 0.972
1.0 0.074 0.442 0.848

0.8 0.8 0.047 0.180 0.818
1.2 0.066 0.289 0.800
1.6 0.089 0.240 0.623
2.0 0.103 0.191 0.402

The above paragraph indicates that the power of our testing method is closely related

to the strength of clustering (as given byσ). The stronger the clustering effect, the more

power the test has to detect anisotropy. The clustering effect also is strong if there are more

offspring per parent. This in turn leads to larger power. As shown in Table 1, better powers

are typically achieved forµ = 10 thanµ = 5.
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3.5 Applications

3.5.1 Crime Locations in Houston

Figure 3 plots locations of aggravated assault occurrences in the downtown Houston area

during the year 2000. These locations are within a rectangle region (95.31 deg W-95.41

deg W, 29.765 deg N-29.815 deg N), with length roughly equal to 10 km in the east-west

direction and width about 5 km in the north-south direction. The northern border of this

area is along Highway 610, while Highway 10 crosses the southern part of it in the east-

west direction. Two other major highways, Highway 59 and 45, run through this area both

at approximately90◦ direction, where0◦ is defined as the west-east direction.

−95.41 −95.4 −95.39 −95.38 −95.37 −95.36 −95.35 −95.34 −95.33 −95.32 −95.31
29.765

29.77

29.775

29.78

29.785

29.79

29.795

29.8

29.805

29.81

29.815

Figure 3. Locations of Aggravated Assault in an Area of Downtown Houston.

A potential source of anisotropy for this example is the direction of major roads since

major roads provide convenient transportation for many human activities. For example,

Nelson et al. (2001) find approximately 52% of violent crimes in the city centre of Cardiff,

Britain, occured along streets during the year 1993. Observe that roads in this area are

mostly in the east-west or the north-south direction, we chose to compare sample second-

order intensity functions in the0◦ and90◦ directions with the45◦ and135◦ directions. We
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apply the proposed testing method to the following two lag sets,

Λ ≡ {(1, 0), (0, 1), (
√

2/2,
√

2/2), (−
√

2/2,
√

2/2)} × 0.1 km,

Λ ≡ {(1, 0), (0, 1), (
√

2/2,
√

2/2), (−
√

2/2,
√

2/2)} × 0.2 km,

respectively. The matrixA is set as[1, 1,−1,−1]′.

The smoothing parameters are determined as 0.046 km for||t|| = 0.1 km and 0.092

km for ||t|| = 0.2 km by the algorithm in Section 3.3.3 withNm = 16. The subblock size

is 1.57 × 0.91 km, which gives about 33 nonoverlapping replicates. The two calculated

test statistics are 6.6313 and 0.5025, with respective p-values 0.01 and 0.4784. Thus strong

anisotropy is detected when||t|| = 0.1 km, while for a larger distance, 0.2 km, such a

pattern is not significant any more. We further examine the estimated second-order intensity

functions for||t|| = .1 km and find that the estimates in the0◦, 90◦ directions are indeed

much larger than those in the45◦ and135◦ directions. This confirms our conjecture that

crime locations are more correlated in the major road directions.

3.5.2 Childhood Leukemia Data

The leukemia data consists of locations of leukemia cases diagnosed in the state of Texas

between 1990 and 1998. For each case, a control matched on sex and date of birth is

randomly selected from all births in Texas during that period. In this article, we will study

observations within a rectangular area in the city of Houston. The western side of this

rectangle borders with Highway 6 while its its eastern, northern and southern sides are all

along Highway 8. The Houston Ship Channel, an area of major petroleum refining and

petrochemical industries, sits to the east of the region. 545 cases and 566 controls are

observed in this region, respectively. Figure 4 plots the transformed locations of leukemia

cases and controls in a (approximately)25×22 field. The actual locations are not given for

reasons of confidentiality.
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Figure 4. Locations of Leukemia Cases and Controls. The first graph plots locations
of the cases, while the second plots those of the controls.

It is suspected that exposure to pollution, e.g., to agricultural pesticides in a rural area,

to emissions of chemicals, say Benzene, from traffic and industry in an urban area, may

increase the risk of developing leukemia. For our study region, there are two main possible

sources of pollutions: local traffic and the ship channel to the east. Since roads in this area

are mostly in the east-west or the north-south direction, and in particular, the ship channel

is directly to the east of this region, we choseΛ to be

{(0.6, 0), (0, 0.6), (0.6/
√

2, 0.6/
√

2), (−0.6/
√

2, 0.6/
√

2)}.

The length 0.6 is selected for||t|| due to the clustering feature for cases (see Figure 5) and

our finding that 1/3-1/2 of the range (≈ 1.5 here, see Figure 5) is a good choice for cluster-

ing processes. To compare the spatial distribution of the cases with that of the controls, we

further test isotropy for the control group. The same directions are selected but a slightly

smaller lag length, 0.5, is used. This is due to the property that the control group seems

to have a shorter range than the case group. For both cases and controls, we thus set the

matrixA = [1, 1,−1,−1]′.

The bandwidths are chosen to be 0.26 for cases and 0.23 for controls determined by
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the algorithm in Section 3.3.3 withNm = 9. The subblock size is approximately5.2× 4.5,

which gives about 23 nonoverlapping replicates. The calculated test statistics are equal

to 1.7601 for the cases and 0.2279 for the controls, with respective p-values 0.1846 and

0.6331. Thus we do not reject spatial isotropy for either the cases or the controls.

We further compare the strengths of clustering between these two groups. Cuzick and

Edwards (1990) introduce a testing approach based on the so-calledk nearest neighbors

that utilizes the assumption of isotropy. In light of our testing results, their method can be

applied to the leukemia data. In particular, we perform the test using their nearest neighbor

approach, i.e.,k = 1. This yields a test statistic equal to -.5305 and a p value equal to

0.7021. Thus we conclude there is no evidence of spatial clustering. This may be due

to the fact that the field being studied here is fairly small and thus exposure to some risk

factors, e.g., pollution, is relatively homogeneous for the whole region.
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Figure 5. Isotropic Sample Second-order Intensity Function for Leukemia Data.×:
cases,◦: controls.
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CHAPTER IV

A TEST OF ISOTROPY FOR MARKED-POINT PROCESSES

4.1 Introduction

An important component of spatial analysis is to model the second-order structure of the

underlying spatial process. A commonly-made assumption while modeling such a structure

is that of intrinsic stationarity. Consider a spatial process{Z(s) : s ∈ R2}, wheres

denotes an arbitrary location where observation can take place. The process is said to be

intrinsically stationary if

E[Z(s)] = µ, ∀s ∈ R2,

Var[Z(s + t)− Z(s)] = γ(t) ∀s, t ∈ R2. (4.1)

Thus by definition an intrinsically stationary process has a constant mean structure and the

variance between the difference of two observations is a function of their relative locations.

The functionγ(·) defined by (4.1) is known as the variogram function, which plays an

important role in spatial statistics, e.g., spatial prediction (see e.g., Cressie 1991), under-

standing the underlying process (see, e.g., Diblasi and Bowman 2001). When observations

occur on a regularly spaced grid, sayD, the classical nonparametric, method-of-moments

estimator of the variogram, i.e., the sample variogram, is defined as

γ̂(t) ≡ 1

|D(t)| ×
∑ [

Z(si)− Z(sj)
]2

,

where the sum is overD(t) ≡ {(i, j) : si, sj ∈ D, si− sj = t} and|D(t)| is the number of

distinct elements inD(t).

Many spatial locations, however, are often irregularly scattered. Examples include

precipitation in towns, heights of trees in a forest, and the size of cancer cells in a tissue.
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When observations are irregularly scattered, the sample variogram is modified to

γ̂(t) ≡ ave
{

[Z(si)− Z(sj)]
2 : (i, j) ∈ D(s), s ∈ T (t)

}
,

where the regionT (t) is some specified “tolerance” region aroundt and ave{·} denotes a

possibly weighted averaged over the elements in{·} (see. e.g., Cressie 1991). Observe that

T (t) plays essentially the same role as that of the bandwidth in nonparametric regression.

The choice ofT (t) will directly affect how well a variogram function can be estimated.

Journel and Huijbregts (1978) recommend that the number of distinct pairs inT (t) be at

least 30. Data-driven methods to selectT (t) are yet to be developed.

Once the sample variogram has been calculated, a parametric model can then be fit

based on these estimates to ensure the “conditionally negative-definite” property of the

variogram (see Cressie 1991 for detailed discussion of this property). Typically a class

of isotropic models is used, mainly due to the simpler interpretation and ease of com-

putation that the assumption of isotropy provides. However, many spatial processes are

anisotropic (see, e.g., Cressie 1991, Hobert et al. 1997). Misspecification of an anisotropic

process as isotropic typically leads to less efficient spatial prediction (see the example in

Section 2.1). A conventional approach to check for isotropy is to informally assess plots

of direction-specific sample (semi)variogram (see, e.g., Diggle 1981, Isaaks and Srivastava

1989, Cressie 1991). These diagnostics are often difficult to assess and are open to inter-

pretation. This is especially true for irregularly spaced data since the variogram estimate

can be sensitive to the “tolerance” region specified (Myers et al. 1982). More formal test-

ing procedures for investigating isotropy have been proposed by Baczkowski and Mardia

(1990) and Lu and Zimmerman (2001). Their methods, however, are not appropriate for

irregularly spaced data.

In this chapter, we address the selection ofT (t) and a test for isotropy in developing

the variogram function for irregularly spaced data. Here and henceforth, we make the as-
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sumption that{Z(s) : s ∈ D} arises from a spatial marked-point process, i.e., the index

locations can be modeled by a spatial point process. We propose a cross-validation pro-

cedure to select the tolerance region. The optimal tolerance regionT (t) is defined as the

one that gives the smallest value for a sample version of mean squared error. To test for

isotropy, we first develop the asymptotic properties of the sample variogram. From these

results we construct a test statistic with a limitingχ2 distribution under the null hypothesis.

This limiting distribution is used to compare sample variogram in multiple directions. Our

testing approach is purely nonparametric in that no explicit knowledge (except for some

mild moment conditions) of the marginal distribution of the process is necessary.

The rest of the chapter is organized as follows. In Section 4.2 we investigate the

asymptotic properties of the sample variogram. Section 4.3 deals with bandwidth selection,

while Section 4.4 tests for isotropy. In Section 4.5, we apply the proposed procedures to

the long-leaf pine data given by Cressie (1991).

4.2 Preliminary Asymptotic Results

4.2.1 Notations and Set-up

Consider a marked-point process{Z(s) : s ∈ R2}, where the point locations at whichZ(·)
is observed are generated from a second-order stationary point processN . We make the

further assumption thatN is independent ofZ(·).
Let D be the domain of interest and∂D be the boundary ofD. In what follows,

we use|D| and|∂D| to denote the volume of the domain and the length of its boundary,

respectively. Leth be a positive constant andw(·) be a bounded, nonnegative, isotropic

density function which takes positive values on only a finite support, sayC (⊂ R2). Here

and henceforth, we usedx to denote an infinitesimally small disc centered atx andN(dx)

to denote the number of points indx. DefineN (2)(dx1, dx2) ≡ N(dx1)N(dx2)I(x1 6=
x2), whereI(x1 6= x2) = 1 if x1 6= x2 and 0 otherwise. The kernel variogram estimator is
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given by

γ̂(t) =
1

Ψ(t)

∫∫

D

h−2w
(t− x1 + x2

h

)
× [Z(x1)− Z(x2)]

2

|D ∩ (D − x1 + x2)|N
(2)(dx1, dx2), (4.2)

where

Ψ(t) ≡ lim
|dx|,|d(x+t)|→0

{
E[N(dx)×N(d(x + t))]

|dx| × |d(x + t)|
}

.

In practice,Ψ(t) is usually replaced by its estimate, see, e.g., Diggle (1983) for parametric

procedures and Stoyan and Stoyan (1994) for nonparametric procedures to estimateΨ(t).

In what follows, we assume thatΨ(t) is known. This extra assumption has minor effects on

our major results, especially in testing for isotropy when the point process itself is isotropic

(see Section 4.4.1).

4.2.2 Asymptotic Bias and Covariance

To establish the asymptotic consistency of the variogram estimator, we need to account for

the shape of the random field and the choice of bandwidth. Consider a sequence of random

fields,Dn, and a sequence of constants,hn, where

|Dn| = O(n2), |∂Dn| = O(n), and (4.3)

hn = O(n−β) for someβ ∈ (0, 1). (4.4)

Practically, condition(4.3) requiresDn to grow in all directions. This condition allows

for a variety of field sequences, e.g., squares, circles and starshapes. Condition (4.4) was

chosen to ensure sufficient averaging for eachγ̂(t).

Letγ(4)(t) ≡ E{[Z(t)−Z(0)]4}. As in Chapter 2, we require the following conditions

on the mark process,Z(·).

γ(t) andγ(4)(t) are bounded and continuous, (4.5)

∫

s∈R2

∣∣∣Cov
{

[Z(0)− Z(s1)]
2, [Z(s)− Z(s + s2)]

2
}∣∣∣ds < ∞ for all finite s1, s2, (4.6)
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Condition(4.6) is a weak dependence assumption. Any process that ism-dependent (i.e.,

observations separated by a distance larger thanm are independent) with finite fourth mo-

ment satisfies this condition. For a Gaussian process, it can be shown that the absolute in-

tegrability of its covariance function, i.e.,
∫
R2 |R(t)|dt < ∞ is sufficient for(4.6) to hold.

Many covariance models, e.g., Exponential, Gaussian, Spherical models, can be shown to

satisfy the integrability condition and thus satisfy(4.6).

In addition to the above assumptions, some conditions on the point processN are also

needed. Define thekth-order cumulant function as

C
(k)
N (x2 − x1, · · · ,xk − x1) ≡ lim

|dx1|,··· ,|dxk|→0

{
Cum[N(dx1), · · · , N(dxk)]

|dx1| × · · · × |dxk|
}

,

where Cum(Y1, · · · , Yk) is given by the coefficient ofikt1 · · · tk in the Taylor series ex-

pansion oflog{E[exp(i
∑k

j=1 Yjtj)]} about the origin (see, Brillinger 1975). As in Masry

(1983), we assume

C
(2)
N (·), C(3)

N (·, ·) are bounded,C(2)
N (·) is continuous and integrable, (4.7)

∫
R2 |C(3)

N (u1,u2)|du1 < ∞,
∫
R2 |C(3)

N (u1,u1 + u2)|du1 < ∞ for finite u2, and

∫
R2 |C(4)

N (u1,u2,u2 + u3)|du2 < ∞ for finite u1,u3. (4.8)

The integrability conditions specified by (4.7) and (4.8) require the point process to be

weakly dependent. These conditions are clearly satisfied for a homogeneous Poisson pro-

cess, in which caseC(k)
N (u1, · · · ,uk−1) = 0, k ≥ 2, if ui 6= 0 for any1 ≤ i ≤ k − 1. If

a point process ism-dependent andC(k)
N is finite up to order four, then (4.7) and (4.8) also

hold. It has been shown in Chapter 3 that these conditions are satisfied by commonly used

Poisson cluster models such as the one to be discussed in Section 4.4.

The following theorem states under the above conditions, the sample variogram is a

consistent estimator for the target variogram function.
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Theorem IV.1.Consider a stationary marked-point process{Z(s) : s ∈ N ∩ R2}.
Assume conditions (4.3)-(4.8), then

E[γ̂n(t)] =
1

Ψ(t)

∫

C

w(v)γ(t− hnv)Ψ(t− hnv)dv → γ(t) and

lim
n→∞

|Dn| × h2
n × Cov[γ̂n(t1), γ̂n(t2)] =

∫

C

w(v)2dv × I(t1 = ±t2)× γ(4)(t1)

Ψ(t1)
,

whereI(t1 = ±t2) = 1 if t1 = ±t2 and 0 otherwise.

Proof. See Appendix C.

4.2.3 Asymptotic Normality

Following Rosenblatt (1956), we can quantify the strength of dependence in the random

field through the following strong mixing coefficients

αZ(p; k) ≡ sup{|P (A1 ∩ A2)− P (A1)P (A2)| : A1 ∈ FZ(E1), A2 ∈ FZ(E2),

E2 = E1 + s, |E1| = |E2| ≤ p, d(E1, E2) ≥ k}, and

αN(p; k) ≡ sup{|P (A1 ∩ A2)− P (A1)P (A2)| : A1 ∈ FN(E1), A2 ∈ FN(E2),

E2 = E1 + s, |E1| = |E2| ≤ p, d(E1, E2) ≥ k},

where the suprema are taken over all compact and convex subsetsE1 ⊂ R2, and over all

s ∈ R2 such thatd(E1, E2) ≥ k. In the above,FZ(E) andFN(E) denote theσ-algebras

generated by the random variables{Z(s) : s ∈ E} and{s : s ∈ N ∩ E}, respectively.

Consider the following mixing conditions

sup
p

αZ(p; k)

p
= O(k−ε) for someε > 2, and (4.9)

sup
p

αN(p; k)

p
= O(k−ε) for someε > 2. (4.10)

Conditions (4.9) and (4.10) require that at a fixed distancek, as the volumep increases, we

allow the dependence to increase at a rate controlled byp. As the distance increases, the



53

dependence must decrease at a polynomial rate ink. Similar conditions have been used,

e.g., in Sherman (1996), Heagerty and Lumley (2000), Politis and Sherman (2001).

We also require the following mild moment condition:

sup
n

E

{∣∣∣
√
|Dn| × hn×

[
γ̂n(t)−E{γ̂n(t)}

]∣∣∣
2+δ

}
≤ Cδ for someδ > 0, Cδ < ∞. (4.11)

Condition(4.11) is only slightly stronger than the existence of the (standardized) asymp-

totic variance of̂γn(t). If the random field ism-dependent andN is Poisson, it can be

shown that a finite eighth moment ofZ(·) will be sufficient for condition(4.11) to hold.

Theorem IV.2.Consider a stationary marked-point process{Z(s) : s ∈ N ∩ R2}.
Assume conditions (4.3)-(4.11), then

√
|Dn| × hn × {γ̂n(t1)− E[γ̂n(t1)], · · · , γ̂n(tk)− E[γ̂n(tk)]}′ D→ N(0,Σ)

whereΣ is as given in Theorem IV.1.

Proof. See Appendix C.

4.3 A Cross-validation Approach for Bandwidth Selection

The two theorems in Section 4.2 hold for any bandwidthhn satisfying condition 4.4. Nev-

ertheless, in any application the user needs to make a specific choice. The basic idea of

cross-validation (see Stone 1974) is to build a model from one part of the data and as-

sess the model using the remaining data. For any given model, an average prediction error

over all the predicted data points can be computed and used as a criterion to evaluate the

goodness-of-fit of the model. It is a very useful tool in selecting the smoothing parameter

in the nonparametric regression setting, see, e.g. Hart (1997).

A common form of cross-validation is the so-called “leave-one-out” version. Suppose

(Xi, Yi), i = 1, · · · , l represent observations from

Yi = F (Xi) + εi, i = 1, · · · , l, (4.12)
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whereF (·) is an unknown function and theεi are independent errors. Let̂F (·; h) be a

nonparametric estimator, e.g., a kernel estimator, ofF (·) using smoothing parameterh;

F̂ (i)(·; h) be the new estimator of the same type asF̂ (·; h) excluding(Xi, Yi). Define the

cross-validation criterionCV (h) as follows

CV (h) =
1

l

l∑
i=1

[Yi − F̂ (i)(Xi; h)]2. (4.13)

The cross-validation choice of the smoothing parameter is the value ofh that minimizes

the above criterion.

In the case of estimating the variogram function,F (·) denotes the variogram function

γ(·), while (x1−x2, [Z(x1)−Z(x2)]
2) for x1,x2 ∈ D are the observations, i.e.,(Xi, Yi).

To choose a bandwidthh for lag t, we modify the cross-validation criterion in (4.13) as

follows

CV (h) = ave

{(
[Z(x1)− Z(x2)]

2 − γ̂(i)(x1 − x2; h)
)2

: x1 − x2 ∈ T ′(t)
}

, (4.14)

whereγ̂(i)(·; h) is the “leave-one-out” version of̂γ(·) andT ′(t) denotes a new “tolerance”

region that defines the pairs to be cross-validated. The bandwidth is then chosen as the

value ofh that minimizes (4.14).

The motivation for the method is as follows. Observe that

Cov{[Z(x1)− Z(x2)]
2, γ̂(i)(Xi; h)|N} ≈ 0

due to the assumed weak dependence of the process and stationarity of the point process.

Thus E{CV (h)|N} is approximately equal to the sum of

ave
{

Var
{
[Z(x1)− Z(x2)]

2
}

: x1 − x2 ∈ T ′(t)
}

, and

ave
{

E
{
[γ̂(i)(x1 − x2; h)− γ(x1 − x2)]

2|N}
: x1 − x2 ∈ T ′(t)

}
. (4.15)

When the total number of observations is large, (4.15) is approximately equal to

MASE(h) ≡ ave
{

E
{
[γ̂(x1 − x2; h)− γ(x1 − x2)]

2|N}
: x1 − x2 ∈ T ′(t)

}
.
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Thus the cross-validation bandwidth approximately minimizesMASE(h). By setting

T ′(t) to be a small neighborhood aroundt, the chosen bandwidth is expected to be a good

choice for estimating the variogram at any lag inT ′(t) which also includest. In practice,

the cross-validation procedure is typically not sensitive to the choice ofT ′(t) (see Section

4.5 for an application).

4.4 A Test for Isotropy

4.4.1 Test Statistic

In this section, we assume the point process is isotropic. This assumption can be tested by

applying the techniques presented in Chapter 3. Recall from Theorem IV.1 that

E[γ̂n(t)] =

∫

c

w(x)γ(t− hnx)Ψ(t− hnx)dx.

Consider two lags such thatt1 6= t2, but ||t1|| = ||t2||. Sincew(·) andΨ(·) are both

isotropic functions, E[γ̂n(t1)] = E[γ̂n(t2)] under isotropy. This suggests the testable null

hypothesis

H0 : E[γ̂n(t1)] = E[γ̂n(t2)], if ||t1|| = ||t2||.

Let {ti : i = 1, · · · , k} denote a set of user-chosen lags,Gn ≡ {E[γ̂n(ti)] : i = 1, · · · , k}′

andĜn ≡ {γ̂n(ti) : i = 1, · · · , k}′. We then form appropriate contrastsAGn = 0 and

test the hypothesisH0 : AGn = 0 based on the sample contrastsAĜn. The idea of testing

isotropy in this manner is given by Lu and Zimmerman (2001) who consider equally spaced

observations, and is also used in Chapter 2 where a simpler, smaller class of locations, i.e.,

Poisson process, is considered.

To formally compareAĜn with 0, we require knowledge of the covariance matrix

of Ĝn. This matrix is typically unknown and thus needs to be estimated. We apply a

subsampling technique to estimate it. Subsampling has been widely used to estimate the

variance of a general spatial statistic on a regularly spaced grid (e.g., Hall 1988, Possolo
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1991, Sherman and Carlstein 1994). Politis and Sherman (2001) extended the methodology

to estimate the variance of statistics computed from marked-point processes. Here we

consider a more general multivariate application of this method.

Let Dl(n) be a subfield with the same shape asDn, wherel(n) = cn1/2 for some

positive constantc defines the size of a subfield. Sherman (1996) showed thatn1/2 is the

“optimal” rate (in the sense of minimizing mean squared error) for estimating the variance

of a statistic calculated from spatial lattice data. We conjecture a similar result holds in our

setting.

In what follows, defineDl(n)(x) ≡ {s + x : s ∈ Dl(n)} as the shifted copy of the

Dl(n). Thenx ∈ D1−c
n andD1−c

n ≡ {x ∈ Dn : Dl(n)(x) ⊂ Dn}. Let Ĝl(n)(x) be the

sample variogram calculated onDl(n)(x) using a bandwidthhl(n). A subsampling estimator

of Σ ≡ |Dn|h2
nCov(Ĝn, Ĝn) is then given by

Σ̂n ≡ 1

|D1−c
n |

∫

D1−c
n

{
|Dl(n)|h2

l(n)(Ĝl(n)(x)−Gl(n))(Ĝl(n)(x)−Gl(n))
′
}

dx, (4.16)

whereGl(n) ≡
∫

D1−c
n

Ĝl(n)(x)dx/|D1−c
n |.

Theorem IV.3.Assume that condition(4.11) holds withδ > 2 and all the remaining

conditions in Theorems IV.1 and IV.2 hold, then̂Σn is anL2 consistent estimator forΣ, in

that every element of̂Σn is L2 consistent for its counterpart inΣ.

Proof. See Appendix C.

In light of Theorem IV.3, we propose the following test statistic

TSn ≡ |Dn|h2
n(AĜn)′(AΣ̂nA

′)−1(AĜn).

TSn
D→ χ2

d asn → ∞ by the multivariate Slutsky’s theorem (Ferguson 1996), whered

denotes the row rank ofA. Thus an approximate sizeα test for isotropy is to rejectH0

if TSn is bigger thanχ2
d,α, i.e., the upperα percentage point of aχ2 distribution withd

degrees of freedom.
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4.4.2 Simulation Experiment

We consider realizations from a zero mean, second-order stationary Gaussian process on

a 20 × 20 field. Note that the20 × 20 field used in our simulation could be viewed by

different users as, for example, a unit square or a200× 200 square. Our simulation results

will remain unchanged as long as all pertinent quantities (e.g., subblock size, bandwidth)

are transformed accordingly.

We first generated the observation locations by an isotropic Poisson cluster process.

Specifically, cluster centers are determined by a Poisson process with intensity 0.2, the

number of members per cluster is a Poisson random variable with parameter equal to 4, and

the position of each member relative to the cluster center follows the probability density

function

f(t) =
1

2πσ2
exp{−(t2x + t2y)/2σ

2}. (4.17)

The above design yields (expected) 400 points on the field in each realization. The param-

eterσ in (4.17) defines the spread of each cluster in that2σ2 is the mean squared distance

of an offspring from its parent. In the simulation we setσ equal to 0.4 and 0.8 respectively.

These values are similar to the estimates ofσ in Cressie’s (1991) analysis of long-leaf pine

data and Diggle’s (1983) study of redwood seedlings, respectively.

Give these simulated point locations, the values of the observations were then gener-

ated from a zero mean Gaussian process following the covariance structure

C(r; m) =





θ(1− 3r
2m

+ r3

2m3 ) if 0 ≤ r ≤ m

0 otherwise,

wherer =
√

t′Bt andB is a2 × 2 positive definite matrix. The parameterm defines the

range and strength of dependence. In the simulation study,m was set to be 2, 5, and 8,

which, relative to the size of the field, denote weak, moderate and strong spatial depen-
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dence, respectively. The following three matrices ofB are used:

B1 =

[
1 0

0 1

]
, B2 =

[
1 0

0 4

]
, B3 =

[
1 0

0 16

]
,

Matrix B1 yields isotropic random fields whileB2 andB3 yield geometrically anisotropic

random fields. More specifically, the anisotropy ratio, defined as the ratio of the lengths of

the main axes, is 2:1 forB2 but 4:1 forB3.

One thousand realizations were simulated for each choice ofB, m andσ. For each

realization, we compared sample variogram at lags with unit length in four directions (0◦,

45◦, 90◦ and135◦, respectively). Three different bandwidths, 0.4, 0.7 and 1, were used to

assess how sensitive the test is to different values ofh. The bandwidth selection procedure

introduced in Section 4.3 was not applied in the simulation for computational reasons. We

will demonstrate its application while analyzing the long-leaf pine data in Section 4.5.

The subsampling window is set to be a4 × 4 square window, with correspondingc

value approximately equal to 0.9. Chapter 2 performs a sensitivity analysis regarding the

subblock choice and findc = 0.9 performs reasonably well. The integral in(4.16) is then

approximated in the same manner therein.

Table 4 presents the percentages of rejections at the5% nominal level from one thou-

sand simulations, where the column starting withB1 gives the empirical sizes of the test.

Observe that regardless of the strength of dependence, clustering strength and choice of

bandwidth, the nominal size is approximately achieved. An interesting phenomenon is that

for bothm = 5 andm = 8 the empirical powers increase by 15%-75% when the value of

σ changes from 0.4 to 0.8. Such a pattern is not seen form = 2 due to the weak corre-

lation and the consequent small differences among the variograms being compared. This

observation indicates that strong clustering may result in less powerful testing results.
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Table 4. Simulation results from five thousand realizations of marked Poisson cluster
processes. Each entry is the percentage of rejections at the5% nominal level.σ is a

spread parameter for the radially symmetric normal distribution;m is a range parameter
that defines the correlation strength among marks.

σ m h B1 B2 B3
0.4 2 0.4 0.060 0.158 0.156

0.7 0.052 0.128 0.133
1.0 0.067 0.109 0.167

5 0.4 0.073 0.318 0.732
0.7 0.059 0.350 0.701
1.0 0.062 0.283 0.462

8 0.4 0.043 0.343 0.802
0.7 0.050 0.391 0.791
1.0 0.052 0.337 0.655

0.8 2 0.4 0.053 0.222 0.175
0.7 0.054 0.173 0.127
1.0 0.061 0.106 0.151

5 0.4 0.057 0.475 0.908
0.7 0.060 0.565 0.892
1.0 0.068 0.495 0.725

8 0.4 0.069 0.497 0.924
0.7 0.076 0.602 0.949
1.0 0.077 0.531 0.917

4.5 An Application

The long-leaf pine data consists of locations and diameter at breast height (dbh) of 584

long-leaf pine trees in a200m × 200m square field. The data set is given and analyzed

by Cressie (1991), who detects spatial clustering among locations of trees. Cressie (1991)

further fits an isotropic Neyman-Scott process, which is a stationary process, to these loca-

tions and obtains a reasonably good fit. Thus our test approach appears to be appropriate

for this data set.

As in Chapter 2, we choose the lags to be compared as(8, 0), (0, 8), (8/
√

2, 8/
√

2)
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and(−8/
√

2, 8/
√

2). A is thus as follows

A =




1 −1 0 0

1 0 −1 0

1 0 0 −1




.

Using the cross-validation procedure in Section 4.3, the bandwidth was chosen to be 1.99,

where the “tolerance region”T ′(t) is defined to be within a two-meter distance of the four

selected lags (see Figure 6). We have also usedT ′(t) to be within three and four-meter

distance of the selected lags and obtained the same choice of bandwidth. To select the

subblock size, we transform the original field to be a24× 24 square such that the intensity

is approximately equal to one. In light of the simulation result, we then set the subshape

to be a4.4 × 4.4 square window, where the value 4.4 is calculated from0.9 × √24 (i.e.,

c = .9, n = 24). This gives approximately thirty-one nonoverlapping subreplicates. The

calculated test statistic is 4.9954. By comparing this value to aχ2 distribution with three

degrees of freedom, we obtain the p-value as 0.1721. Thus there is no strong evidence

against the null hypothesis of spatial isotropy.
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Figure 6. Plot of Cross-validation Sample Mean Squared Errors for Different Band-
width Balues. The cross-validation procedure is introduced in Section 4.3.
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CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation, we have presented methodologies of testing for isotropy for both quan-

titative spatial processes and spatial point processes. The testing approach is based on the

extent to which a sample second-order property, i.e., the sample variogram for quantitative

spatial processes or the sample second-order intensity function for spatial point processes,

satisfies a linear contraint implied by the null hypothesis. As an intermediate step, we es-

tablished the asymptotic properties of the estimators of the second-order functions. AnL2

consistent subsampling estimator for the asymptotic covariance matrix of the estimators

was derived and used to construct the test statistic with a limitingχ2 distribution under the

null hypothesis.

Our testing approach requires only very mild moment and weak dependence condi-

tions on the underlying process and thus can be applied in a variety of settings. In addition,

the results are appropriate for both regularly spaced and irregularly spaced data when the

point locations are generated by a stationary point process. Four real data examples, wind

speed measured over a region in the western tropical Pacific Ocean, long-leaf pine data

from Cressie (1991), and crime data and leukemia patient locations, both in Houston, TX,

have been analyzed to illustrate the testing approach. We have also conducted simulation

studies for different settings that further demonstrate the efficacy of our approach.

If isotropy is rejected, fitting a parametric anisotropic model to the process is often

of interest. Zimmerman (1993) provides a number of anisotropic models. In the future,

we plan to focus on fitting geometrically anisotropic models, a class of anisotropic models

that often provides a useful representation in many applications. For examples of these

see Isaaks and Srivastava (1989) or Hobert et al. (1997). To obtain such a model, we
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parameterize the matrixB defined in Chapter 2 and Chapter 4 as follows

B =

[
1 θ1

θ1 θ2

]
with θ2 − θ2

1 ≥ 0.

The geometrically anisotropic exponential model without a nugget effect (i.e., continuous

at the origin) can be written as

γ(t) = ce{1− exp[−ae(t
′Bt)1/2]},

whereae > 0, ce ≥ 0 (Zimmerman 1993). In what follows, we will denote the variogram

at t by γ(t; θ), whereθ ≡ (ae, ce, θ1, θ2).

Cressie (1985) proposed a weighted least squares method to fit parametric variogram

models to regularly spaced spatial data. This method minimizesW1,R(θ) with respect toθ,

where

W1,R(θ) ≡
l∑

i=1

|D(ti)|
γ(ti; θ)2

[γ̂(ti)− γ(ti; θ)]
2 ,

andl denotes the number of sample variogram lags used to fit a model.

When observations are irregularly spaced, the above criterion needs to be modified. In

light of our asymptotic results, we propose to minimize

W1,I(θ) ≡
l∑

i=1

|D(ti)|h2
i Ψ(ti)

γ(4)(ti; θ)2
[γ̂(ti)− γ(ti; θ)]

2 , (5.1)

whereD(ti) ≡ D ∩ D − ti andhi is the bandwidth used to calculateγ̂(ti). The values

of γ(4)(ti; θ) in (5.1) can be estimated by a nonparametric procedure such as the one used

to estimateγ(·) in Chapter 4. For a Gaussian process, it can also be replaced by3γ(ti; θ)
2

sinceγ(4)(ti; θ) = 3γ(ti; θ)
2 in that case.

In order to apply the modified least squares approach given by (5.1), one needs to

decide on the set of lags to be used. In addition, the bandwidth used to calculate the sample

variogram also has to be chosen. A weighted least square criterion which avoids such
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choices can be defined as

W2(θ) ≡
n∑

i=1

∑
j>i

{[Z(si)− Z(sj)]
2 − γ(si − sj; θ)}2

Var{[Z(si)− Z(sj)]2} , (5.2)

wheren denotes the number of observations that have been made. If the process is Gaus-

sian, (5.2) can be rewritten as

WG
2 (θ) ≡

n∑
i=1

∑
j>i

{[Z(si)− Z(sj)]
2 − γ(si − sj; θ)}2

γ(si − sj; θ)2
.

The values of Var{[Z(si) − Z(sj)]
2} andγ(si − sj) can be estimated bŷγ(4)(si − sj) −

γ̂(si − sj)
2 andγ̂(si − sj), respectively. The weighted least squares estimate ofθ is theθ

that minimizes (5.2).

The idea of fitting variogram models using squared differences of individual pairs is

not entirely new; Curriero and Lele (1999) form a composite likelihood using such differ-

ences and obtain estimates of parameters for variogram models by maximizing the formed

likelihood. The approach we propose here lies between those of Curriero and Lele (1999)

and Cressie (1985), in that it utilizes information from all pairs but is still in the spirit of

least squares.

For regularly spaced Gaussian data, we demonstrate that this method is essentially

equivalent to Cressie’s (1985) weighted least squares approach. To see that, we first differ-

entiateWG
2 (θ) by treating the denominator as known since it would otherwise lead to an

inconsistent estimator as pointed out by Curriero and Lele (1999)

∂WG
2 (θ)

∂θ
= −2

∑
i=1

∑
j>i

[Z(si)− Z(sj)]
2 − γ(si − sj; θ)

γ(si − sj; θ)2

∂γ(si − sj; θ)

∂θ
.

If we focus on only the pairs that are separated by a lag in{ti : i = 1, · · · , l}, the above

quantity can be rewritten as

−2
l∑

i=1

|D(ti)| [γ̂(ti)− γ(ti; θ)]

γ(ti; θ)2

∂γ(ti; θ)

∂θ
,
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which is identical to∂W1,R(θ)

∂θ
. Thus these two methods will yield the same estimates. For ir-

regularly spaced data, the newly proposed approach is expected to better capture directional

differences, if there are any, due to the fact that no aggregation of variogram in different

directions is applied.
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APPENDIX A

LEMMAS AND PROOF OF THEOREMS IN CHAPTER II

A.1 Lemmas

Lemma A.1.For a Gaussian process, the integrability of its covariance function, i.e.,
∫
s∈R2 |R(s)|ds < ∞, is sufficient for (2.4) and(2.4′) to hold.

Proof. Note the following results for Gaussian processes (Cressie, 1991)

Var{[Z(x)− Z(y)]2} = 2× γ(x− y)2,

Corr
{

[Z(x2)−Z(x1)]
2, [Z(y2)−Z(y1)]

2
}

=
{

Corr[Z(x2)−Z(x1), Z(y2)−Z(y1)]
}2

.

Thus

Cov
{

[Z(x2)− Z(x1)]
2, [Z(y2)− Z(y1)]

2
}

=
{

Corr[Z(x2)− Z(x1), Z(y2)− Z(y1)]
}2

×
√

2× γ(x2 − x1)2 × 2× γ(y2 − y1)2

= 2× γ(x2 − x1)× γ(y2 − y1)×
{

Cov[Z(x2)− Z(x1), Z(y2)− Z(y1)]√
Var[Z(x2)− Z(x1)]× Var[Z(y2)− Z(y1)]

}2

= 2× γ(x2 − x1)× γ(y2 − y1)×
{

R(x2 − y2) + R(x1 − y1)−R(x2 − y1)−R(x1 − y2)√
γ(x2 − x1)× γ(y2 − y1)

}2

= 2× [R(x2 − y2) + R(x1 − y1)−R(x2 − y1)−R(x1 − y2)]
2.

Thus

∫

s∈R2

∣∣∣Cov
{

[Z(0)− Z(s1)]
2, [Z(s)− Z(s + s2)]

2
}∣∣∣ds

= 2

∫

s∈R2

[R(s) + R(s1 − s− s2)−R(s + s2)−R(s1 − s)]2 ds

≤ 8R(0)

∫

s∈R2

[|R(s)|+ |R(s1 − s− s2)|+ |R(s + s2)|+ |R(s1 − s)|] ds

< ∞ for all finite s1, s2,
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Thus condition(2.4′) holds. Replacing the integral with summation, we have that condition

(2.4) holds also.

Lemma A.2.Minkowski’s inequality: LetX andY be any two random variables, then

for 1 ≤ p < ∞, [E|X + Y |p]1/p ≤ [E|X|p]1/p+[E|Y |p]1/p, i.e., E|X +Y |p ≤ {[E|X|p]1/p+

[E|Y |p]1/p}p.

Lemma A.3.If Dn is an × n square field andZ(·) is m-dependent with finite eighth

moment, then condition(2.3′.b) holds forδ = 2.

Proof. Split the originaln × n squareDn into [n/m′]2 subsquares, wherem′ is a fixed

value which is bigger than the sum ofm and the length of lagt and [n/m′] denotes the

largest integer that is smaller than or equal ton/m′. We usel(n,m′) to denote the length

of each subsquare here and henceforth;l(n,m′) is finite and at least as big asm′. Group

these subsquares into disjoint “blocks” of four, each block being2l(n,m′) × 2l(n,m′);

label the four subsquares within a block (1,2,3,4), beginning with “1” in the lower left and

proceeding clockwise through the block. Letkj
n denote the number of subsquares with

label j (j = 1, 2, 3, 4), and denote byDi,j
l(n,m′), i = 1, 2, · · · , kj

n, the ith subsquare with

labelj (see Figure 7).

By definition, we have

γ̂n(t) =
1

n2
×

∫∫

Dn

[
Z(x)− Z(y)

]2 × wn(t− x + y)×N (2)(dx, dy)

=
1

n2
×

4∑
j=1

kj
n∑

i=1

∫

x∈Di,j

l(n,m′)

∫

y∈Dn

[
Z(x)− Z(y)

]2 × wn(t− x + y)×N (2)(dx, dy)

=
4∑

j=1

1

n2
×

kj
n∑

i=1

∫

x∈Di,j

l(n,m′)

∫

y∈Dn

[
Z(x)− Z(y)

]2 × wn(t− x + y)×N (2)(dx, dy)

︸ ︷︷ ︸
γ̂j

n(t)
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Figure 7. Partition of the Field for Lemma A.3
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and E(γ̂n(t)) =
∑4

j=1 E(γ̂j
n(t)). To show(2.3′.b) holds, we only need to show

sup
n

E

{∣∣∣n× hn ×
[
γ̂j

n(t)− E(γ̂j
n(t))

]∣∣∣
4
}

< ∞ for eachj. (A.1.1)

due to Minkowski’s inequality. Definêγi,j
n (t) ≡ 1

l(n,m′)2 ×
∫

x∈Di,j

l(n,m′)

∫
y∈Dn

[
Z(x) −

Z(y)
]2 × wn(t− x + y)×N (2)(dx, dy). Then

n× hn × γ̂j
n(t) = l(n,m′)2 × 1

n
×

kj
n∑

i=1

{γ̂i,j
n (t)× hn},

and

n× hn ×
[
γ̂j

n(t)− E(γ̂j
n(t))

]
= l(n,m′)2 × 1

n
×

kj
n∑

i=1

{[
γ̂i,j

n (t)− E(γ̂i,j
n (t))

]
× hn

}
.

Sincen2/kj
n → 4(m′)2 and(m′) andl(n, m′) are finite,(A.1.1) is equivalent to that

sup
n

E

{∣∣∣∣
√

1

kj
n

×
kj

n∑
i=1

{[
γ̂i,j

n (t)− E(γ̂i,j
n (t))

]
× hn

︸ ︷︷ ︸
Xi,j

n

}∣∣∣∣
4}

< ∞ for eachj. (A.1.2)

SinceZ(·) is m-dependent andl(n,m′) is bigger than the sum ofm and the length of lag

t, we conclude thatX i,j
n s are independent. Notice also E(X i,j

n )=0. Thus

E

{∣∣∣∣
√

1

kj
n

×
kj

n∑
i=1

{[
γ̂i,j

n (t)− E(γ̂i,j
n (t))

]
× hn

}∣∣∣∣
4}

= E

{∣∣∣∣
√

1

kj
n

×
kj

n∑
i=1

X i,j
n

∣∣∣∣
4}

=
( 1

kj
n

)2

×
{ kj

n∑
i=1

E
[
(X i,j

n )4
]

+
∑∑

i1 6=i2

E
[
(X i1,j

n )3 ×X i2,j
n

]
+

∑∑

i1 6=i2

E
[
(X i1,j

n )2 × (X i2,j
n )2

]

+
∑∑ ∑

i1 6=i2 6=i3

E
[
(X i1,j

n )2 ×X i2,j
n ×X i3,j

n

]
+

∑∑ ∑∑

i1 6=i2 6=i3 6=i4

E
[
X i1,j

n ×X i2,j
n ×X i3,j

n ×X i4,j
n

]}

=
( 1

kj
n

)2

×
{ kj

n∑
i=1

E
[
(X i,j

n )4
]

+
∑∑

i1 6=i2

E
[
(X i1,j

n )2
]
× E

[
(X i2,j

n )2
]}

=
( 1

kj
n

)2

×
kj

n∑
i=1

E
[
(X i,j

n )4
]

︸ ︷︷ ︸
(A)

+
( 1

kj
n

)2

×
∑∑

i1 6=i2

E
[
(X i1,j

n )2
]
× E

[
(X i2,j

n )2
]

︸ ︷︷ ︸
(B)

.
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Since E
[
(X i1,j

n )2
]

is finite, E
[
(X i1,j

n )2
]
× E

[
(X i2,j

n )2
]

is finite too. Notice there arekj
n ×

(kj
n − 1) terms in the summand(B), thus(B) is finite. To show(A) is finite, we only

need to show for eachi, E
[
(X i,j

n )4
]

=o(kj
n), i.e., E

[
(X i,j

n )4
]

=o(n2). Sincen2h2
n → ∞,

1
h2

n
=o(n2). Thus E

[
(X i,j

n )4
]

=O( 1
h2

n
) will suffice for E

[
(X i,j

n )4
]

=o(n2) to hold and thus

for (A) to be finite. By the definition ofX i,j
n and Minkowski’s inequality, we have

E
[
(X i,j

n )4
]

= E

[(
γ̂i,j

n (t)− E(γ̂i,j
n (t))

)4

× h4
n

]

≤ h4
n ×

{[
E
(
γ̂i,j

n (t)4
)]1/4

+ E(γ̂i,j
n (t))

}4

.

Thus we only need to showh4
n×E

(
γ̂i,j

n (t)4
)

andh4
n×

[
E(γ̂i,j

n (t))
]4

are of order not higher

than 1
h2

n
. By definition, we have

E
(
γ̂i,j

n (t)4
)

=
1

l(n,m′)8
×

∫∫∫∫

x1,x2,x3,x4∈Dl(n,m′)

∫∫∫∫

y1,y2,y3,y4∈Dn

E
{[

Z(x1)− Z(y1)
]2 × [

Z(x2)− Z(y2)
]2 × [

Z(x3)− Z(y3)
]2 × [

Z(x4)− Z(y4)
]2

}

×wn(t− x1 + y1)× wn(t− x2 + y2)× wn(t− x3 + y3)× wn(t− x4 + y4)

×E
[
N (2)(dx1, dy1)N

(2)(dx2, dy2)N
(2)(dx3, dy3)N

(2)(dx4, dy4)
]
.

Notice the E
[
N (2)(dx1, dy1)N

(2)(dx2, dy2)N
(2)(dx3, dy3)N

(2)(dx4, dy4)
]

term can be

split into a number of terms as follows

dx1dx2dx3dx4dy1dy2dy3dy4

+ dx1εx1(dx2)dx3dx4dy1dy2dy3dy4

+ · · ·

+ dx1εx1(dx2, dx3, dx4)dy1εy1(dy2, dy3)dy4

+ dx1εx1(dx2, dx3, dx4)dy1εy1(dy2, dy3, dy4)

+ dx1εx1(dy2, dx3, dx4)dy1εy1(dx2, dy3, dy4)
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+ · · ·

+ dx1εx1(dy2, dy3, dx4)dy1εy1(dx2, dx3, dy4)

+ · · ·

+ dx1εx1(dy2, dy3, dy4)dy1εy1(dx2, dx3, dx4).

The dominant terms ofh4
n×E

(
γ̂i,j

n (t)4
)

are the ones including and afterdx1εx1(dx2, dx3,

dx4)dy1εy1(dy2, dy3, dy4). Each of these terms is of order1
h2

n
and all the rest are of order

one or less. For example, the termdx1εx1(dx2, dx3, dx4)dy1εy1(dy2, dy3, dy4) gives

h4
n ×

∫

x1∈Di,j

l(n,m′)

∫

y1∈Dn

E
{[

Z(x1)− Z(y1)
]8

}
× [wn(t− x1 + y1)]

4dx1dy1

=
1

h4
n

×
∫

x1∈Di,j

l(n,m′)

∫

y1∈Dn

E
{[

Z(x1)− Z(y1)
]8

}
×

[
w

(t− x1 + y1

hn

)]4

dx1dy1.

Since|Di,j
l(n,m′)| is finite, the eighth moment ofZ(·) exists andhn → 0 (and thus1/hn →

∞), a simple change of variable gives that the above expression is of order1
h2

n
. Now

consider a different term,dx1εx1(dx2, dx3, dx4)dy1εy1(dy2, dy3)dy4,

h4
n ×

∫

x∈Di,j

l(n,m′)

∫

y1∈Dn

∫

y4∈Dn

E
{[

Z(x1)− Z(y1)
]6 × [

Z(x1)− Z(y4)
]2

}

×[wn(t− x1 + y1)]
3 × wn(t− x1 + y4)dx1dy1dy4

=
1

h4
n

×
∫

x∈Di,j

l(n,m′)

∫

y1∈Dn

∫

y4∈Dn

E
{[

Z(x1)− Z(y1)
]6 × [

Z(x1)− Z(y4)
]2

}

×
[
w

(t− x1 + y1

hn

)]3

× w
(t− x1 + y4

hn

)
dx1dy1dy4.

A simple change of variable shows the above expression is of order one. Thush4
n ×

E
(
γ̂i,j

n (t)4
)

is of order 1
h2

n
. Similarly we may show thath4

n ×
[
E(γ̂i,j

n (t))
]4

is of order

h4
n. Thus we conclude(A) is finite and(A.1.2) holds, i.e., condition(2.3′.b) holds.

Lemma A.4.Assume condition (2.2), we have|Dm(n)|/|Dn| → 1 asn → ∞, where

Dm(n) is as defined in the proof for Theorem II.1 and II.2 in Section A.2.
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Proof. Introduce the following notations,

Dn/l(n) : field in Dn but not inDl(n),

Dl(n)/m(n) : field in Dl(n) but not inDm(n),

k′(n) : minimal number of extral(n)× l(n) subsquares needed to cover the wholeDn,

Dn′ : union of all extral(n)× l(n) subsquares needed to cover the wholeDn.

Since

|Dl(n)| = kn|Di
l(n)| = knl

2
n = knn2α,

|Dm(n)| = kn|Di
m(n)| = knm2

n = kn{n2α + n2β − 2nα+β},

knn
2β = o(knn2α), knn

α+β = o(knn2α) due toβ < α,

we have|Dl(n)/m(n)| = |Dl(n)| − |Dm(n)|) is of order o(|Dl(n)|).
Now we want to show|Dn/l(n)) is of order no larger than O(nl(n)). NoticeDn/l(n) ⊂

Dn′, i.e.,|Dn/l(n)) < |Dn′), thus|Dn′) is of order no larger than O(nl(n)) will be sufficient

for |Dn/l(n)) to be of order no larger than O(nl(n)). Since|Dn′| = k′n × l2n, to show|Dn′)

is of order no larger than O(nl(n)) is equivalent to showk′n is of order no larger than

O(n/l(n)).

To show this, we split the boundary ofDn into lines whose lengths are alll(n). Here

we useLn,i to denote theith line andk′′n denote the number of all the lines available.k′′n is

of order O(n/l(n)) due to condition (2.2). For everyLn,i, we may form al(n)× l(n) square

(denoted bySQl(n),i) which fully containsLn,i; in addition to that, we form a3l(n)×3l(n)

square (denoted asSQ3l(n),i) which has the same center asSQl(n),i (see Figure 8).

Notice anyl(n)× l(n) square that intersects withLn,i (and thus withSQl(n),i) will be

fully contained inSQ3l(n),i. Since every square inDn′ intersects with the boundary and thus

with at least one of theseLn,is, it will be fully contained in one of theSQ3l(n),is. Notice
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Figure 8. Partition of the Field for Lemma A.4.× marks boundary subsquares.

thesel(n) × l(n) squares inDn′ do not intersect with each other except at the boundary.

The maximum number of such squares that intersect withLn,i can not be larger than 9.

Since size ofk′′n is of order O(n/l(n)), we concludek′n is of order no larger than O(n/l(n))

due tok′n < 9× k′′n. Thus|Dn/l(n)) is of order no larger than O(nl(n)). Then

|Dn| − |Dm(n)|

=
[|Dn| − |Dl(n)|] +

[|Dl(n)| − |Dm(n)|]

= |Dn/l(n)|+ |Dl(n)/m(n)|

= O(nl(n)) + o(|Dl(n)|)

= o(n2) + o(|Dn|) (sinceDl(n) ⊂ Dn)

= o(|Dn|) (since|Dn| = O(n2)).

Thus|Dm(n)|/|Dn| → 1 asn →∞.



78

Lemma A.5.Consider two compact and convex setsU , V in R2 such that|U | = |V | ≤
p andd(U, V ) ≥ k. Let X andY be measurable random variables with respect toF(U)

andF(V ) such that|X| < C1 and|Y | < C2. Then

Cov(X,Y ) ≤ 4C1C2αp(k).

Proof. The following proof is analogous to that of Theorem 17.2.1 in Ibragimov and Linnik

(1971 p. 306).

|E(XY )− E(X)E(Y )| = |E{E(XY |F(U))} − E(X)E(Y )|

= |E{X[E(Y |F(U))− E(Y )]}| ≤ C1E|E(Y |F(U))− E(Y )|

≡ C1E{u[E(Y |F(U))− E(Y )]},

whereu = sign{E(Y |F(U))−E(Y )}. Clearlyu is measurable with respect toF(U), and

therefore

|E(XY )− E(X)E(Y )| ≤ C1|E(uY )− E(u)E(Y )|.

Now we consider|E(uY ) − E(u)E(Y )|. Sinceu andY are measurable random variables

with respect toF(U) andF(V ), we may apply the above arguments to get

|E(uY )− E(u)E(Y )| ≤ C2|E(uv)− E(u)E(v)|,

wherev = sign{E(u|F(V ))− E(u)}. And thus

|E(XY )− E(X)E(Y )| ≤ C1C2|E(uv)− E(u)E(v)|.

Introducing the events:

A ≡ {u = 1} ∈ F(U), Ā ≡ {u = −1} ∈ F(U),

B ≡ {v = 1} ∈ F(V ), B̄ ≡ {v = −1} ∈ F(V ).
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The definition of the mixing coefficient gives

|E(uv)− E(u)E(v)| = |P (AB) + P (ĀB̄)− P (ĀB)− P (AB̄)

−P (A)P (B)− P (Ā)P (B̄) + P (Ā)P (B) + P (A)P (B̄)|

≤ |P (AB)− P (A)P (B)|+ |P (ĀB̄)− P (Ā)P (B̄)|

+|P (ĀB)− P (Ā)P (B)|+ |P (AB̄)− P (A)P (B̄)|

≤ 4αp(k).

And thus Cov(X,Y ) ≤ 4C1C2αp(k)

Note: if the variablesX, Y are complex, then separating the real and imaginary parts,

we again arrive at the same expression, with 4 replaced by 16.

Lemma A.6.Lyapounov’s Theorem: suppose{Xn,i} is a independent triangular array

satisfying E(Xn,i) = 0 and for someδ > 0,

lim
n→∞

rn∑

k=1

E(|Xn,i|2+δ)

σ2+δ
n

= 0,

wherern is number of elements in thenth row of the triangular array andσ2
n =

∑rn

k=1 var(Xn,i).

Then
∑rn

k=1 Xn,i/σn → N(0, 1).

A.2 Proof of Theorems

A.2.1 Proof of Theorem II.1

Proof. Consider the covariance term, Cov[γ̂n(ti), γ̂n(tj)], whereti, tj ∈ Λ.

1

|Dn(ti)| × |Dn(tj)|
∑

Dn(ti)

∑

Dn(tj)

Cov
{[

Z(s1)− Z(s1 + ti)
]2

,
[
Z(s2)− Z(s2 + tj)

]2}

=
1

|Dn(ti)| × |Dn(tj)|
∑

Dn(tj)−Dn(ti)

∑

Dn(ti)
T

(Dn(tj)−s)

Cov
{[

Z(0)− Z(ti)
]2

,
[
Z(s)− Z(s + tj)

]2}

=
∑

Dn(ti)−Dn(tj)

Cov
{[

Z(0)− Z(ti)
]2

,
[
Z(s)− Z(s + tj)

]2}
× |Dn(ti)

⋂
(Dn(tj)− s)|

|Dn(ti)| × |Dn(tj)|
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Applying conditions (2.2), (2.4) and the Kronecker’s lemma, we conclude

|Dn| × Cov[γ̂n(ti), γ̂n(tj)] →
∑

s∈Z2

Cov
{

[Z(0)− Z(ti)]
2, [Z(s)− Z(s + tj)]

2
}

.

Let σ2 ≡ ∑
s∈Z2 Cov{[Z(0)−Z(t)]2, [Z(s)−Z(s+ t)]2}, Sn ≡

√
|Dn| × [γ̂n(t)− γ(t)].

Now we proveSn
D→ N(0, σ2). To do so, we apply a blocking technique (e.g., Ibragimov

and Linnik, 1971) in conjunction with the mixing condition (2.1).
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Figure 9. Partition of the Field for Theorem II.1

Let l(n) = nα, m(n) = nα−nη for some4/(2 + ε) < η < α < 1. Divide the original

field Dn into nonoverlappingl(n) × l(n) subsquares,Di
l(n), i = 1, · · · , kn; within each

subsquare, further obtainDi
m(n) which shares the same center asDi

l(n) (see Figure 9). Thus

d(Di
m(n), D

j
m(n)) ≥ nη for i 6= j. Let γ̂i

m(n)(t) denote the sample variogram obtained from

Di
m(n). Let sn ≡

∑kn

i=1 si
n/
√

kn, s′n ≡
∑kn

i=1(s
i
n)′/

√
kn, wheresi

n ≡ m(n) × [
γ̂i

m(n)(t) −
γ(t)

]
and(si

n)′ have the same marginal distributions assi
n but are independent. Letφ′n(x)

andφn(x) be the characteristic functions ofs′n andsn respectively. The proof consists of
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the following three steps.

S1 Sn − sn
p→ 0;

S2 φ′n(x)− φn(x) → 0;

S3 s′n
D→ N(0, σ2).

Proof ofS1: Since E(Sn−sn) = 0, it suffices to show Var(Sn−sn) → 0. LetDm(n) denote

the union of allDi
m(n). Observe that

sn = k
− 1

2
n ×

kn∑
i=1

si
n

= k
− 1

2
n ×

kn∑
i=1

{
m(n)× [

γ̂i
m(n)(t)− γ(t)

]}

= k
− 1

2
n ×m(n)×

kn∑
i=1

1

|Di
m(n)|

×
∑

s∈Di
m(n)

{
[Z(s)− Z(s + t)]2 − γ(t)

}

=
m(n)√

kn × |Di
m(n)(t)|

×
kn∑
i=1

∑

s∈Di
m(n)

{
[Z(s)− Z(s + t)]2 − γ(t)

}

=
m(n)√

kn × |Di
m(n)(t)|

×
∑

s∈Dm(n)

{
[Z(s)− Z(s + t)]2 − γ(t)

}

=

√
kn ×mn√
|Dm(n)(t)| ×

∑

s∈Dm(n)

{
[Z(s)− Z(s + t)]2 − γ(t)

}

=
√

kn ×mn ×
{

γ̂Dm(n)(t)− γ(t)
}

=
√
|Dm(n)| ×

{
γ̂Dm(n)(t)− γ(t)

}
.

Thus Var(sn) → σ2 from the proof for the covariance term and Cov(Sn, sn) is equal to
√
|Dn| × |Dm(n)|

|Dn(t)| × |Dm(n)(t)| ×
∑

Dn(t)

∑

Dm(n)(t)

Cov
{[

Z(s1)−Z(s1 + t)
]2

,
[
Z(s2)−Z(s2 + t)

]2}
,

where the summation can be rewritten as

∑

Dm(n)(t)−Dn(t)

Cov
{[

Z(0)− Z(t)
]2

,
[
Z(s)− Z(s + t)

]2}
× |Dn(t)

⋂
(Dm(n)(t)− s)|.
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Further observe that
√
|Dn| × |Dm(n)| × |Dn(t)

⋂
(Dm(n)(t)− s)|

|Dn(t)| × |Dm(n)(t)| → 1

for any fixeds due to Lemma A.4. Thus Cov(Sn, sn) → σ2 and Var(Sn − sn) → 0.

Proof ofS2: In what follows, we useI (instead of the commonly used notationi) to denote

the imaginary number. By definition,

φn(x) = E{exp(Ixsn)} = E
{

exp
(
Ix

kn∑
i=1

si
n√
kn

)}
,

φ′n(x) = E{exp(Ixs′n)} = E
{

exp
(
Ix

kn∑
i=1

(si
n)′√
kn

)}
.

Since(si
n)′, i = 1, 2, · · · , kn, are independent and have the same marginal distribution as

si
n, i = 1, 2, · · · , kn, φ′n(x) can be rewritten as

∏kn

i=1 E
{

exp
(
Ix si

n√
kn

)}
. Define

Ui ≡ exp
(
Ix

si
n√
kn

)
,

Then

|φn(x)− φ′n(x)|

=
∣∣∣E

{ kn∏
i=1

Ui

}
−

kn∏
i=1

E{Ui}
∣∣∣

=
∣∣∣E

{ kn∏
i=1

Ui

}
− E

{ kn−1∏
i=1

Ui

}
× E{Ukn}+ E

{ kn−1∏
i=1

Ui

}
× E{Ukn} −

kn∏
i=1

E{Ui}
∣∣∣

≤
∣∣∣E

{ kn∏
i=1

Ui

}
− E

{ kn−1∏
i=1

Ui

}
× E{Ukn}

∣∣∣ +
∣∣∣E

{ kn−1∏
i=1

Ui

}
× E{Ukn} −

kn∏
i=1

E{Ui}
∣∣∣

≤
∣∣∣E

{ kn∏
i=1

Ui

}
− E

{ kn−1∏
i=1

Ui

}
× E{Ukn}

∣∣∣ +
∣∣∣E

{ kn−1∏
i=1

Ui

}
−

kn−1∏
i=1

E{Ui}
∣∣∣× |E{Ukn}|

≤
∣∣∣E

{ kn∏
i=1

Ui

}
− E

{ kn−1∏
i=1

Ui

}
× E{Ukn}

∣∣∣ +
∣∣∣E

{ kn−1∏
i=1

Ui

}
−

kn−1∏
i=1

E{Ui}
∣∣∣.

The last inequality in the above expression is due to|E{Ukn}| ≤ 1. By induction, we have

|φn(x)− φ′t,n(x)| ≤
kn−1∑
j=1

∣∣∣E
{ j+1∏

i=1

Ui

}
− E

{ j∏
i=1

Ui

}
× E{Uj+1}

∣∣∣ =
kn−1∑
j=1

∣∣∣Cov
{ j∏

i=1

Ui, Uj+1

}∣∣∣.
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Define

Xj =

j∏
i=1

Ui, Yj = Uj+1.

SinceXj is measurable with respect toF(
⋃j

i=1 Di
m(n)), Yj is measurable with respect to

F(Dj+1
m(n)), |Xj| ≤ 1, |Yj| ≤ 1 and|Dj+1

m(n)| ≤ |⋃j
i=1 Di

m(n)| = j ×m(n)2, we have

Cov(Xj, Yj) ≤ 16αj×m(n)2(n
η) ≤ 16j×m(n)2×n−ηε = 16j×{n2α+n2η−2nα+η}×n−ηε

by the mixing condition. Thus

|φt,n(λ)− φ′t,n(λ)| ≤
kn−1∑
j=1

{
16j × n2α × n−ηε

}
= O(n2α−ηε × k2

n) = O(n4−2α−ηε).

The last equality in the above expression is due to O(kn)=O(n2/l(n)2)=O(n2−2α). Since

4/(2+ ε) < η < α < 1, we have4−2α− ηε < 4−2η− ηε < 4− (2+ ε)×4/(2+ ε) = 0.

Thus|φ′n(x)− φn(x)| → 0 asn →∞.

Proof ofS3: Observe that E(|(si
n)′|2+δ) < Cδ for a constantCδ. Since(si

n)′ are i.i.d.,

Var

[
kn∑
i=1

(si
n)′

]
= kn × Var((si

n)′).

Defineσ2
n ≡ Var((si

n)′), we haveσ2
n → σ2 by the proof of S1. Thus

lim
n→∞

kn∑
i=1

E(|(si
n)′|2+δ)[√

Var(
∑kn

i=1(s
i
n)′)

]2+δ
≤ lim

n→∞
Cδ × kn

[knσ2
n](2+δ)/2

= 0.

Thus apply Lyapounov’s Theorem, we have

kn∑
i=1

(si
n)′ × 1√

kn

→ N(0, σ2).

To prove the joint normality, we apply the Cramer-Wold device. Consider the case where

Λ = {t1, t2}, the more general case follows in a similar way.

Let a, b be two arbitrary real numbers such that|a| ≤ 1, |b| ≤ 1 and at least one of

them is not zero. Define

Sn ≡ a
√
|Dn| × (γ̂n(t1)− γ(t1)) + b

√
|Dn| × (γ̂n(t2)− γ(t2)) ≡ Sn(t1) + Sn(t2),
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sn = asn(t1) + bsn(t2), s′n = asn(t1)
′ + bsn(t2)

′,

wheresn(ti) andsn(ti)
′, i = 1, 2 are as being defined in the univariate case. Letφn(x),

φ′n(x) be the characteristic functions ofsn ands′n, respectively. Define

σ2 = lim
n→∞

|Dn| × {a2Var(γ̂n(t1)) + 2abCov(γ̂n(t1), γ̂n(t2)) + b2Var(γ̂n(t2))}.

The proof of this theorem consists of the following three steps

S1 Sn − sn
p→ 0;

S2 φ′n(x)− φn(x) → 0;

S3 s′n
d→ N(0, σ2).

These three steps combined together suggestSn
d→ N(0, σ2). Since this is true for arbitrary

a, b, we conclude that(Sn(t1), Sn(t2)) is asymptotically jointly normal.

Proof of S1 is trivial because[Sn(t1)− sn(t1)] and[Sn(t2)− sn(t2)] converge to zero

in probability asn increases.

To prove S2, note that

φn(x) = E
{

exp(Ixsn)
}

= E
{

exp
(
Ix

kn∑
i=1

asi
n(t1) + bsi

n(t2)√
kn

)}
,

φ′n(x) = E
{

exp(Ixs′n(t))
}

= E
{

exp
(
Ix

kn∑
i=1

asi
n(t1)

′ + bsi
n(t2)

′
√

kn

)}
,

where (si
n(t1)

′, si
n(t2)

′) have the same distributions as (si
n(t1), s

i
n(t2)) but are independent.

Definesi
n ≡ asi

n(t1) + bsi
n(t2) and(si

n)′ ≡ asi
n(t1)

′ + bsi
n(t2)

′, i = 1, 2, · · · , kn. Then

(si
n)′ have the same marginal distributions assi

n but are independent. The proof will then

follow in a similar way as the univariate case.

To prove S3, first note that

E(|si
n|2+δ) ≤

{
a[E(|si

n(t1)|2+δ)]
1

2+δ + b[E(|si
n(t2)|2+δ)]

1
2+δ

}2+δ

< ∞.
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Defineσ2
n ≡ Var(asi

n(t1)+ bsi
n(t2)). Since(si

n)′ have the same marginal distribution assi
n

and are i.i.d., we have

lim
n→∞

kn∑
i=1

E(|(si
n)′|2+δ)(√

Var(
∑kn

i=1(s
i
n)′)

)2+δ
= lim

n→∞

kn∑
i=1

E(|(si
n)′|2+δ)

(knσ2
n)(2+δ)/2

= 0.

Applying Lyapounov’s Theorem again, we prove S3 and thus the joint normality.

A.2.2 Proof of Theorem II.2

Proof. Let wn(x) ≡ w(x/hn). For largen such thatC ∈ Dn −Dn,

E(γ̂n(t)) =

∫

Dn

∫

Dn

wn(t− x1 + x2)× γ(x2 − x1)

|Dn ∩ (Dn − x1 + x2)|dx1dx2

=

∫

Dn−Dn

wn(t + u)γ(u)du

=

∫

C

w(v)γ(t− hnv)dv

→ γ(t).

The derivation for the variance follows similarly as in Karr (1986). Specifically, consider

two lags,t andt′, wheret, t′ ∈ Λ. First

E[γ̂n(t)× γ̂n(t′)]

=
1

ν4
×

∫∫∫∫

Dn

wn(t− x1 + x2)× wn(t′ − y1 + y2)

|Dn ∩ (Dn − x1 + x2)| × |Dn ∩ (Dn − y1 + y2)|

× E
{

[Z(x2)− Z(x1)]
2[Z(y2)− Z(y1)]

2
}
× E[N (2)(dx1, dx2)N

(2)(dy1, dy2)].

Observe that

E[N (2)(dx1, dx2)N
(2)(dy1, dy2)]

= ν4dx1dx2dy1dy2 + ν3dx1dx2εx1(dy1)dy2 + ν3dx1dx2dy1εx1(dy2)

+ ν3dx1dx2εx2(dy1)dy2 + ν3dx1dx2dy1εx2(dy2)

+ ν2dx1dx2εx1(dy1)εx2(dy2) + ν2dx1dx2εx2(dy1)εx1(dy2),
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whereεx(·) denotes a point measure. Thus E(γ̂n(t)× γ̂n(t′)) can be decomposed into seven

terms, say(A1)− (A7), respectively. Ignoringν, (A1) is

∫∫∫∫

Dn

wn(t− x1 + x2)× wn(t′ − y1 + y2)

|Dn ∩ (Dn − x1 + x2)| × |Dn ∩ (Dn − y1 + y2)|
×Γ∗(x2 − x1,y1 − x1,y2 − x1)dx1dx2dy1dy2

=

∫∫∫

Dn−Dn

|Dn ∩ (Dn − u1) ∩ (Dn − u2) ∩ (Dn − u3)|
|Dn ∩ (Dn + u1)| × |Dn ∩ (Dn + u3 − u2)| × wn(t + u1)

×wn(t′ + u3 − u2)× Γ∗(u1,u2,u3)du1du2du3

≤
∫∫∫

Dn−Dn

wn(t + u1)× wn(t′ + u3 − u2)

|Dn ∩ (Dn + u3 − u2)| × |Γ∗(u1,u2,u3)|du1du2du3

≤
∫∫∫

R2

wn(t + u1)× wn(t′ + u4)

|Dn ∩ (Dn + u4)| × |Γ∗(u1,u2,u2 + u4)|du1du2du4

≤ C1 ×
∫∫

R2

wn(t + u1)× wn(t′ + u4)

|Dn ∩ (Dn + u4)| du1du4

= O
( 1

|Dn|
)
.

Now consider the second term(A2). Ignoringν, (A2) is

∫∫∫

Dn

wn(t− x1 + x2)× wn(t′ − x1 + y2)× Γ(x2 − x1,0,y2 − x1)

|Dn ∩ (Dn − x1 + x2)| × |Dn ∩ (Dn − x1 + y2)| dx1dx2dy2

≤ C1

∫∫

Dn−Dn

|Dn ∩ (Dn − u1) ∩ (Dn − u2)|
|Dn ∩ (Dn + u1)| × |Dn ∩ (Dn + u2)| × wn(t + u1)× wn(t′ + u2)du1du2

≤
∫∫∫

Dn−Dn

wn(t + u1)× wn(t′ + u3 − u2)

|Dn ∩ (Dn + u3 − u2)| × |Γ∗(u1,u2,u3)|du1du2du3

= O
( 1

|Dn|
)
.

(A3), (A4) and(A5) can be shown of order1|Dn| similarly. The sixth term can be written as

1

ν2
×

∫∫

Dn

wn(t− x1 + x2)× wn(t′ − x1 + x2)

|Dn ∩ (Dn − x1 + x2)|2 × γ(4)(x2 − x1)dx1dx2

=
1

ν2
×

∫

Dn−Dn

wn(t + u)× wn(t′ + u)

|Dn ∩ (Dn + u)| × γ(4)(u)du
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=
1

ν2
×

∫

C

w(v)× w(v + (t′ − t)/hn)

|Dn ∩ (Dn + hnv − t)| × h2
n

× γ(4)(hnv − t)dv

Similarly the seventh term can be written as

1

ν2
×

∫

C

w(v)× w(v − (t′ + t)/hn)

|Dn ∩ (Dn + hnv − t)| × h2
n

× γ(4)(hnv − t)dv.

Thus

|Dn| × h2
n × Cov(γ̂n(t), γ̂n(t′)) → 1

ν2
×

∫

C

w(v)2dv × γ(4)(t)× I(t = ±t′).

Let σ2 ≡ ∫
C

w(v)2dv× γ(4)(t)/ν2, Sn ≡
√
|Dn|×hn×{γ̂n(t)−E[γ̂n(t)]}. To show that

Sn
D→ N(0, σ2), we again apply the blocking technique. Chooseα such thatnαhn → ∞.

Then divideDn as in the proof of the previous theorem. We adopt the notations therein

with the understanding that nowsi
n ≡ m(n)× hn ×

[
γ̂i

m(n)(t)− E(γ̂i
m(n)(t))

]
. We need to

show

S1 Sn − sn
p→ 0;

S2 φ′n(x)− φn(x) → 0;

S3 s′n
d→ N(0, σ2).

Proof of S1 is analogous to that of the previous theorem. Observe thatsn can be written as
√
|Dm(n)| × hn × {γ̂Dm(n)(t)− E(γ̂Dm(n)(t))}. Similarly we can show

lim
n→∞

Var(Sn) = lim
n→∞

Var(sn) = lim
n→∞

Cov(Sn, sn) = σ2 ⇒ Var(Sn − sn) → 0.

To prove S2, define

EN(Xj) ≡ E(Xj|N), EN(Yj) ≡ E(Yj|N),

CovN(Xj, Yj) ≡ Cov(Xj, Yj|N),
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then

Cov(Xj, Yj) = E
{

CovN(Xj, Yj)
}

+ Cov
{

EN(Xj), EN(Yj)
}

.

SinceN is a homogeneous Poisson process andXj, Yj are random variables defined on

two disjoint random fields, we have

Cov
{

EN(Xj), EN(Yj)
}

= 0.

For givenN , Xj|N is measurable with respect toF(
⋃j

i=1 Di
m(n)) andYj|N is measurable

with respect toF(Dj+1
m(n)). Then we have

|φn(x)− φ′n(x)| = O(n4−2α−ηε) → 0.

Proof of S3 is completely analogous to the previous theorem.

A.2.3 Proof of Theorem II.3 and II.4

Proof. Let b ≡ {bt, t ∈ Λ} be a nonzero vector. Define

S(Dn,b) = b′ × (Ĝn −G).

By condition (2.3) and Minkowski’s inequality, we conclude

sup
n

E

{∣∣∣
√
|Dn| × [S(Dn,b)− E(S(Dn,b))]

∣∣∣
4+(δ−2)

}
≤ C2 for someδ > 2, C2 < ∞.

Define

θb ≡ lim
n→∞

|Dn| × Var(S(Dn,b)) = b′{ lim
n→∞

|Dn| Cov(Ĝn, Ĝn)}b = b′ΣRb.

The subsampling estimator forθb is

θ̂b,n =

∑kn

i=1 |Di
l(n)|{S(Di

l(n),b)− S̄n}2

kn

= b′Σ̂R,nb.

θ̂b,n
L2→ θb due to Sherman (1996). Thusb′Σ̂R,nb

L2→ b′ΣRb for all b 6= 0. The L2

consistency of̂ΣR,n then follows directly for Theorem II.3.

Theorem II.4 is a direct result from Theorem 2 in Politis and Sherman (2001) and the

above proof.
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APPENDIX B

LEMMAS AND PROOF OF THEOREMS IN CHAPTER III

B.1 Lemmas

Lemma B.1.Assume the intensity functions of the point process exist up to order four.

Then forx1 6= x2 andy1 6= y2,

E(N (2)(dx1, dx2)×N (2)(dy1, dy2))

= Ψ(4)(x2 − x1,y1 − x1,y2 − x1)dx1dx2dy1dy2

+ Ψ(3)(x2 − x1,y2 − x1)dx1dx2dy2εx1(dy1) + Ψ(3)(x2 − x1,y1 − x1)dx1dx2dy1εx1(dy2)

+ Ψ(3)(x2 − x1,y2 − x1)dx1dx2dy2εx2(dy1) + Ψ(3)(x2 − x1,y1 − x1)dx1dx2dy1εx2(dy2)

+ Ψ(x2 − x1)dx1dx2εx1(dy1)εx2(dy2) + Ψ(x2 − x1)dx1dx2εx1(dy2)εx2(dy1),

whereεx(·) is a point measure,Ψ(k) denotes thekth order intensity function,k = 3, 4.

Proof. Let IB(s) = 1 if s ∈ B and zero otherwise. Define the factorialkth moment

measureα(k) as

α(k)(B1, B2, · · · , Bk) = E
{ ∑∑ ∑∑

s1 6=s2 6=···6=sk,si∈N

IB1(s1)IB2(s2) · · · IBk
(sk)

}

Observe that

E(N(dx1)×N(dx2)×N(dy1)×N(dy2))

= E
{ ∑∑ ∑∑

s1,s2,s3,s4∈N

Idx1(s1)Idx2(s2)Idy1(s3)Idy2(s4)
}

and

{s1, s2, s3, s4 ∈ N}
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= {s1 6= s2 6= s3 6= s4} ∪ {s1 = s2 6= s3 6= s4} ∪ {s1 = s3 6= s2 6= s4} ∪ {s1 = s4 6= s2 6= s3}

∪ {s2 = s3 6= s1 6= s4} ∪ {s2 = s4 6= s1 6= s3} ∪ {s3 = s4 6= s1 6= s2} ∪ {s1 = s2 = s3 6= s4}

∪ {s1 = s2 = s4 6= s3} ∪ {s1 = s3 = s4 6= s2} ∪ {s2 = s3 = s4 6= s1} ∪ {s1 = s2 6= s3 = s4}

∪ {s1 = s3 6= s2 = s4} ∪ {s1 = s4 6= s2 = s3} ∪ {s1 = s2 = s3 = s4}.

Thus E(N(dx1) × N(dx2) × N(dy1) × N(dy2)) can be written as fifteen terms. By

definition, the first term

E
{ ∑∑ ∑∑

s1 6=s2 6=s3 6=s4

Idx1(s1)Idx2(s2)Idy1(s3)Idy2(s4)
}

= α(4)(dx1,dx2,dy1,dy2).

Consider the second term:

E
{ ∑∑ ∑∑

s1=s2 6=s3 6=s4

Idx1(s1)Idx2(s2)Idy1(s3)Idy2(s4)
}

= E
{ ∑∑ ∑

s1 6=s3 6=s4

Idx1∩dx2(s1)Idy1(s3)Idy2(s4)
}

= α(3)(dx1, dy1, dy2)εx1(dx2)

The second equality comes fromdx1∩dx2 is empty unlessx1 = x2 (i.e. two infinitesimally

small discs centered atx1 andx2 are disjoint ifx1 6= x2); and the definition ofα(3)(·, ·).
By working out the remaining terms in a similar fashion, we obtain

E(N(dx1)×N(dx2)×N(dy1)×N(dy2))

= α(4)(dx1, dx2, dy1, dy2) + α(3)(dx1, dy1, dy2)εx1(dx2) + α(3)(dx1, dx2, dy2)εx1(dy1)

+ α(3)(dx1, dx2, dy1)εx1(dy2) + α(3)(dx1, dx2, dy2)εx2(dy1) + α(3)(dx1, dx2, dy1)εx2(dy2)

+ α(3)(dx1, dx2, dy1)εy1(dy2) + α(2)(dx1, dy2)εx1(dx2, dy1) + α(2)(dx1, dy1)εx1(dx2, dy2)

+ α(2)(dx1, dx2)εx1(dy1, dy2) + α(2)(dx1, dx2)εx2(dy1, dy2) + α(2)(dx1, dy1)εx1(dx2)εy1(dy2)

+ α(2)(dx1, dx2)εx1(dy1)εx2(dy2) + α(2)(dx1, dx2)εx1(dy2)εx2(dy1) + νdx1εx1(dx2, dy1, dy2)

Further imposing the condition thatx1 6= x2 andy1 6= y2, we obtain

E(N (2)(dx1, dx2)×N (2)(dy1, dy2))
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= α(4)(dx1, dx2, dy1, dy2)

+ α(3)(dx1, dx2, dy2)εx1(dy1) + α(3)(dx1, dx2, dy1)εx1(dy2)

+ α(3)(dx1, dx2, dy2)εx2(dy1) + α(3)(dx1, dx2, dy1)εx2(dy2)

+ α(2)(dx1, dx2)εx1(dy1)εx2(dy2) + α(2)(dx1, dx2)εx1(dy2)εx2(dy1)

= Ψ(4)(x2 − x1,y1 − x1,y2 − x1)dx1dx2dy1dy2

+ Ψ(3)(x2 − x1,y2 − x1)dx1dx2dy2εx1(dy1) + Ψ(3)(x2 − x1,y1 − x1)dx1dx2dy1εx1(dy2)

+ Ψ(3)(x2 − x1,y2 − x1)dx1dx2dy2εx2(dy1) + Ψ(3)(x2 − x1,y1 − x1)dx1dx2dy1εx2(dy2)

+ Ψ(x2 − x1)dx1dx2εx1(dy1)εx2(dy2) + Ψ(x2 − x1)dx1dx2εx1(dy2)εx2(dy1).

Lemma B.2.Assume the intensity functions of the point process exist up to order four.

ThenΨ(x2 − x1) = C
(2)
N (x2 − x1) + ν2 and

Ψ(4)(x2 − x1,y1 − x1,y2 − x1)

= C
(4)
N (x2 − x1,y1 − x1,y2 − x1) + νC

(3)
N (x2 − x1,y1 − x1) + νC

(3)
N (x2 − x1,y2 − x1)

+ νC
(3)
N (y1 − x1,y2 − x1) + νC

(3)
N (y1 − x2,y2 − x2) + C

(2)
N (x2 − x1)C

(2)
N (y2 − y1)

+ C
(2)
N (y1 − x1)C

(2)
N (y2 − x2) + C

(2)
N (y2 − x1)C

(2)
N (y1 − x2) + ν2C

(2)
N (x2 − x1) + ν2C

(2)
N (y1 − x1)

+ ν2C
(2)
N (y2 − x1) + ν2C

(2)
N (y1 − x2) + ν2C

(2)
N (y2 − x2) + ν2C

(2)
N (y2 − y1) + ν4

Proof. We repeatedly use the relationship between moments and cumulants (e.g., McCul-

lagh 1987).

E(N(dx1)N(dx2)) = cum(N(dx1), N(dx2)) + cum(N(dx1))cum(N(dx2))

= C
(2)
N (x2 − x1)dx1dx2 + ν2dx1dx2

E(N(dx1)N(dx2)N(dy1)N(dy2))
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= cum(N(dx1), N(dx2), N(dy1), N(dy2))

+ cum(N(dx1), N(dx2), N(dy1))cum(N(dy2)) + cum(N(dx1), N(dx2), N(dy2))cum(N(dy1)) +

cum(N(dx1), N(dy1), N(dy2))cum(N(dx2)) + cum(N(dx2), N(dy1), N(dy2))cum(N(dx1))

+ cum(N(dx1), N(dx2))cum(N(dy1), N(dy2)) + cum(N(dx1), N(dy1))cum(N(dx2), N(dy2)) +

cum(N(dx1), N(dy2))cum(N(dx2), N(dy1))

+ cum(N(dx1), N(dx2))cum(N(dy1))cum(N(dy2)) +

cum(N(dx1), N(dy1))cum(N(dx2))cum(N(dy2)) +

cum(N(dx1), N(dy2))cum(N(dx2))cum(N(dy2)) +

cum(N(dx2), N(dy1))cum(N(dx1))cum(N(dy2)) +

cum(N(dx2), N(dy2))cum(N(dx1))cum(N(dy1)) +

cum(N(dy1), N(dy2))cum(N(dx1))cum(N(dx2))

+ cum(N(dx1))cum(N(dx2))cum(N(dy1))cum(N(dy2)).

The lemma is then proved by using the definition of cumulant functions.

Lemma B.3.If Dn is an×n square field andN ism-dependent with bounded cumulant

functions up to order eight, then (3.6) holds forδ = 2.

Proof. The proof here follows in the same way as Lemma A.3 in the marked-Poisson case,

except for replacing[Z(x) − Z(y)]2 therein with one and the variogram and sample vari-

ogram function with the second-order intensity and sample second-order intensity function,

respectively.

Lemma B.4.Consider a Poisson cluster processN . Let ρ denote the intensity for the

parent process,S represent the number of offspring per parent andf(x) be the p.d.f. of

an offspring’s position relative to its parent. Then the integrability conditions introduced in
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(3.1) and (3.2) can be rewritten as

ρE[S(S − 1)]
∫∫
R2

f(x)f(x− u)dxdu < ∞,

ρE[S(S − 1)(S − 2)]
∫∫
R2

f(x)f(x− u1)f(x− u2)dxdu1 < ∞,

ρE[S(S − 1)(S − 2)(S − 3)]
∫∫
R2

f(x)f(x− u1)f(x− u2)f(x− u2 − u3)dxdu2 < ∞.

Proof. Observe thatC(2)
N (u) = ρE[S(S−1)]

∫
f(x)f(x−u)dx from Diggle (1983), p.55.

Thus the integrability condition ofC(2)
N (u) can be written as the first expression presented

above.

Now we considerC(3)
N (u1,u2). For notation purpose, letNp andα

(k)
o (|x) denote the

parent process and thekth factorial measure of the offspring process with center atx. We

here consider all possible ways in which three distinct points from the superposition of

clusters could fall into the product setA × B × C, whereA, B andC are disjoint. There

are three possibilities: all three points come from the same parent, two of them come from

the same parent or none of them comes from the same parent. Incorporating all cases, we

obtain

E
[
N (3)(A×B × C|Np)

]
=

∫
α(3)

o (A×B × C|x)Np(dx)

+

∫∫
α(2)

o (A×B|x1)α
(1)
o (C|x2)N

(2)
p (dx1, dx2)|(3)

+

∫∫
α(1)

o (A|x1)α
(1)
o (B|x2)α

(1)
o (C|x3)N

(3)
p (dx1, dx2, dx3),

where|(3) represents three terms, each a rearrangement ofA, B andC. Thus

α(3)[A×B × C] = ρ

∫
α(3)

o (A×B × C|x)dx

+ ρ2

∫∫
α(2)

o (A×B|x1)α
(1)
o (C|x2)dx1dx2|(3)

+ ρ3

∫∫
α(1)

o (A|x1)α
(1)
o (B|x2)α

(1)
o (C|x3)dx1dx2dx3.
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Observe that

∫
α(2)

o [A×B|x]dx =

∫

A

∫

B

[∫
E[S(S − 1)]f(u− x)f(v − x)dx

]
dudv

=

∫

A

∫

B

[∫
E[S(S − 1)]f(x)f(x− u + v)dx

]
dudv

=

∫

A

∫

B

C
(2)
N (u− v)dudv = C

(2)
N [A×B],

∫
α(1)

o [A|x]dx =

∫

A

[∫
E(S)f(u− x)dx

]
du =

∫

A

[∫
E(S)f(x)dx

]
du = C

(1)
N [A].

Thus we obtain, due to the relationship between cumulants and moments, that

C
(3)
N [A×B × C]

= ρ

∫
α(3)

o (A×B × C|x)dx

=

∫

A

∫

B

∫

C

[∫
E[S(S − 1)(S − 2)]f(u− x)f(v − x)f(w − x)dx

]
dudvdw

=

∫

A

∫

B

∫

C

[∫
E[S(S − 1)(S − 2)]f(x)f(x + u− v)f(x + u−w)dx

]
dudvdw

ThereforeC(3)
N [u1,u2] =

∫
E[S(S − 1)(S − 2)]f(x)f(x− u1)f(x− u2)dx. Similarly

C
(4)
N [u1,u2,u3] =

∫
E[S(S − 1)(S − 2)(S − 3)]f(x)f(x− u1)f(x− u2)f(x− u3)dx.

Thus the lemma is proved.

B.2 Proof of Theorems

B.2.1 Proof of Theorem III.1

Proof. Let wn(x) ≡ h−2
n w(x/hn). For largen such thatC ∈ Dn −Dn,

E(γ̂n(t)) =

∫

Dn

∫

Dn

wn(t− x1 + x2)

|Dn ∩ (Dn − x1 + x2)| ×Ψ(x2 − x1)dx1dx2

=

∫

Dn−Dn

wn(t + u)Ψ(u)du
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=

∫

C

w(v)Ψ(t− hnv)dv

→ Ψ(t).

The derivation of the variance follows similarly as in Masry (1983). Specifically, consider

two lags,t andt′, wheret, t′ ∈ Λ. Cov(Ψ̂n(t), Ψn(t′)) can be written as

E(Ψ̂n(t)× Ψ̂n(t′))− E(Ψ̂n(t))× E(Ψ̂n(t′))

=

∫∫∫∫

Dn

wn(t− x1 + x2)× wn(t′ − y1 + y2)

|Dn ∩ (Dn − x1 + x2)| × |Dn ∩ (Dn − y1 + y2)| × E[N (2)(dx1, dx2)N
(2)(dy1, dy2)]

−
∫∫∫∫

Dn

wn(t− x1 + x2)× wn(t′ − y1 + y2)

|Dn ∩ (Dn − x1 + x2)| × |Dn ∩ (Dn − y1 + y2)| × E[N (2)(dx1, dx2)]E[N (2)(dy1, dy2)]

=

∫∫∫∫

Dn

wn(t− x1 + x2)× wn(t′ − y1 + y2)

|Dn ∩ (Dn − x1 + x2)| × |Dn ∩ (Dn − y1 + y2)| ×
{

E[N (2)(dx1, dx2)N
(2)(dy1, dy2)]

−E[N (2)(dx1, dx2)]E[N (2)(dy1, dy2)]
}

From the results of Lemma B.1, we obtain

E[N (2)(dx1, dx2)N
(2)(dy1, dy2)]− E[N (2)(dx1, dx2)]E[N (2)(dy1, dy2)]

= {Ψ(4)(x2 − x1,y1 − x1,y2 − x1)−Ψ(x2 − x1)Ψ(y2 − y1)}dx1dx2dy1dy2

+ Ψ(3)(x2 − x1,y2 − x1)dx1dx2dy2εx1(dy1) + Ψ(3)(x2 − x1,y1 − x1)dx1dx2dy1εx1(dy2)

+ Ψ(3)(x2 − x1,y2 − x1)dx1dx2dy2εx2(dy1) + Ψ(3)(x2 − x1,y1 − x1)dx1dx2dy1εx2(dy2)

+ Ψ(x2 − x1)dx1dx2εx1(dy1)εx2(dy2) + Ψ(x2 − x1)dx1dx2εx1(dy2)εx2(dy1).

Thus the covariance can be written in seven terms. In turn, we denote them as term 1-7,

which correspond to the above seven terms respectively. From the results of Lemma B.2,

we further have

Ψ(4)(x2 − x1,y1 − x1,y2 − x1)−Ψ(x2 − x1)Ψ(y2 − y1)

= C
(4)
N (x2 − x1,y1 − x1,y2 − x1) + νC

(3)
N (x2 − x1,y1 − x1)
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+ νC
(3)
N (x2 − x1,y2 − x1) + νC

(3)
N (y1 − x1,y2 − x1) + νC

(3)
N (y1 − x2,y2 − x2)

+ C
(2)
N (y1 − x1)C

(2)
N (y2 − x2) + C

(2)
N (y2 − x1)C

(2)
N (y1 − x2) + ν2C

(2)
N (y1 − x1)

+ ν2C
(2)
N (y2 − x1) + ν2C

(2)
N (y1 − x2) + ν2C

(2)
N (y2 − x2).

Similarly we denote terms in the covariance resulted from the above expression as terms

(1.1)-(1.11). We need to show that all eleven terms are of order1
|Dn| except the sixth or the

seventh term. Here and henceforth, we will simply assume thatν = 1. First consider (1.1).

∫∫∫∫

Dn

wn(t− x1 + x2)× wn(t′ − y1 + y2)

|Dn ∩ (Dn − x1 + x2)| × |Dn ∩ (Dn − y1 + y2)|

×C
(4)
N (x2 − x1,y1 − x1,y2 − x1)dx1dx2dy1dy2

=

∫∫∫

Dn−Dn

|Dn ∩ (Dn − u1) ∩ (Dn − u2) ∩ (Dn − u3)|
|Dn ∩ (Dn + u1)| × |Dn ∩ (Dn + u3 − u2)| × wn(t + u1)

×wn(t′ + u3 − u2)× C
(4)
N (u1,u2,u3)du1du2du3

≤
∫∫∫

Dn−Dn

wn(t + u1)× wn(t′ + u3 − u2)

|Dn ∩ (Dn + u3 − u2)| × |C(4)
N (u1,u2,u3)|du1du2du3

≤
∫∫∫

R2

wn(t + u1)× wn(t′ + u4)

|Dn ∩ (Dn + u4)| × |C(4)
N (u1,u2,u2 + u4)|du1du2du4

(by settingu4 = u3 − u2)

≤ C1 ×
∫∫

R2

wn(t + u1)× wn(t′ + u4)

|Dn ∩ (Dn + u4)| du1du4

= O
( 1

|Dn|
)
.

First we look at (1.2).

∫∫∫∫

Dn

wn(t− x1 + x2)× wn(t′ − y1 + y2)

|Dn ∩ (Dn − x1 + x2)| × |Dn ∩ (Dn − y1 + y2)|

×C
(3)
N (x2 − x1,y1 − x1)dx1dx2dy1dy2

=

∫∫∫

Dn−Dn

|Dn ∩ (Dn − u1) ∩ (Dn − u2) ∩ (Dn − u3)|
|Dn ∩ (Dn + u1)| × |Dn ∩ (Dn + u3 − u2)| × wn(t + u1)

×wn(t′ + u3 − u2)× C
(3)
N (u1,u2)du1du2du3
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≤
∫∫∫

Dn−Dn

wn(t + u1)× wn(t′ + u3 − u2)

|Dn ∩ (Dn + u3 − u2)| × |C(3)
N (u1,u2)|du1du2du3

≤ C2 ×
∫∫

R2

wn(t + u1)× wn(t′ + u4)

|Dn ∩ (Dn + u4)| du1du4

= O
( 1

|Dn|
)
.

Similarly we can prove that terms (1.3)-(1.5) are all of order1
|Dn| . Now let’s consider (1.6).

∫∫∫∫

Dn

wn(t− x1 + x2)× wn(t′ − y1 + y2)

|Dn ∩ (Dn − x1 + x2)| × |Dn ∩ (Dn − y1 + y2)|

×C
(2)
N (x2 − x1)× C

(2)
N (y2 − x2)dx1dx2dy1dy2

≤
∫∫∫

Dn−Dn

|Dn ∩ (Dn − u1) ∩ (Dn − u2) ∩ (Dn − u3)|
|Dn ∩ (Dn + u1)| × |Dn ∩ (Dn + u3 − u2)| × wn(t + u1)

×wn(t′ + u3 − u2)× |C(2)
N (u2)|du1du2du3

≤ C3 ×
∫∫

R2

wn(t + u1)× wn(t′ + u4)

|Dn ∩ (Dn + u4)| du1du4

= O
( 1

|Dn|
)
.

Similarly we can prove that terms (1.6)-(1.11) are all of order1
|Dn| . Terms 2-5 can be

shown all of order 1
|Dn| due to thatΨ(3)(·, ·) is finite. The proof follows similarly as that in

the marked-Poisson case. Now let’s consider the sixth term.

∫∫

Dn

wn(t− x1 + x2)× wn(t′ − x1 + x2)

|Dn ∩ (Dn − x1 + x2)|2 ×Ψ(x2 − x1)dx1dx2

=

∫

Dn−Dn

wn(t + u)× wn(t′ + u)

|Dn ∩ (Dn − u)| ×Ψ(u)du

=

∫

Dn−Dn

w(v)× w(v + (t′ − t)/hn)

|Dn ∩ (Dn + t− hnv)| × h2
n

×Ψ(hnv − t)dv.

Thuslimn→∞ |Dn| × h2
n × (6) =

∫
C

w(v)2dv ×Ψ(t)× I(t = t′). Similarly we can show

limn→∞ |Dn| × h2
n × (7) =

∫
C

w(v)2dv × Ψ(t) × I(t = −t′). Thus we prove Theorem

III.1.
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B.2.2 Proof of Theorem III.2

Proof. Let σ2 ≡ ∫
C

w(v)2dv × Ψ(t), Sn ≡
√
|Dn| × hn × {Ψ̂n(t) − E[Ψ̂n(t)]}. Now

we proveSn
D→ N(0, σ2). To do so, we apply a blocking technique (e.g., Ibragimov and

Linnik, 1971) in conjunction with the mixing condition (3.5).

Let m(n) = nα, m(n)′ = nα − nη for some4/(2 + ε) < η < α < 1. Divide the

original field Dn into nonoverlappingm(n) × m(n) subsquares,Di
m(n), i = 1, · · · , kn;

within each subsquare, further obtainDi
m(n)′ which shares the same center asDi

m(n). Thus

d(Di
m(n)′ , D

j
m(n)′) ≥ nη for i 6= j. Let Ψ̂i

m(n)′(t) denote the sample second-order intensity

function obtained fromDi
m(n)′. Let sn ≡ ∑kn

i=1 si
n/
√

kn, s′n ≡ ∑kn

i=1(s
i
n)′/

√
kn, where

si
n ≡ m(n)′× hn×

{
Ψ̂i

m(n)′(t)−E[Ψ̂i
m(n)′(t)]

}
and(si

n)′ have the same marginal distribu-

tions assi
n but are independent. Letφ′n(x) andφn(x) be the characteristic functions ofs′n

andsn respectively. The proof consists of the following three steps.

S1 Sn − sn
p→ 0;

S2 φ′n(x)− φn(x) → 0;

S3 s′n
D→ N(0, σ2).

Proof ofS1:

Since E(Sn−sn) = 0, it suffices to show Var(Sn−sn) → 0. Observe Var(Sn) → σ2 as

n →∞. LetDm(n)′ denote the union of allDi
m(n)′. Simple analysis showssn can be written

as
√
|Dm(n)′| × hn × {Ψ̂Dm(n)′ (t) − E[Ψ̂Dm(n)′ (t)]} (similar to the marked-Poisson case).

SinceDm(n)′ is the union of a set of disjoint squares whose sizes tend to infinity, it satisfies

condition (3.3). By this property and conditions (3.1) and (3.2), Var(sn) → σ2 asn → ∞
by Theorem III.1. Since Var(Sn− sn)= Var(Sn)+Var(sn)− 2× Cov(Sn, sn), we only need

to show Cov(Sn, sn) → σ2 in order to show Var(Sn − sn) → 0. NoticeDm(n)′ ⊂ Dn

and |Dm(n)′|/|Dn| → 1 (by Lemma A.4), therefore from the proof of Theorem III.1, we
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conclude

Cov(Sn, sn) → σ2 ⇒ Var(Sn − sn) → 0 ⇒ Sn − sn
p→ 0 asn →∞.

Proof ofS2:

|φn(x) − φ′n(x)| ≤ 16knαn2(nη) ≤ C1n
4−2α−εη → 0. The first inequality follows

from a natural extension of theorem 17.2.1 of Ibragimov and Linnik (1971) and from their

“telescoping” argument (p. 338). The second follows from the mixing condition (3.5).

Proof ofS3:

This follows directly by applying the Lyapounov central limit theorem.

Proof of the joint normality:

This follows directly by applying the Cramer-Wold device.

B.2.3 Proof of Theorem III.3

Proof. We first consider the univariate case, i.e.,G and Ĝn are both scalars,Ψ(t) and

Ψ̂n(t) respectively, say. Thus (3.7) becomes

σ̂2
n =

1

|D1−c
n | ×

∫

D1−c
n

{
|Dl(n)| × h2

l(n) × [Ψ̂l(n)(x)−Ψl(n)]
2
}

dx.

Defineσ2 ≡ limn→∞ |Dn| × h2
n × Var(Ψ̂n(t)). Our goal is to show that̂σ2

n
L2→ σ2. Denote

the sample second-order intensity function at lagt onDl(n) + x by Ψ̂l(n)(x). Define

Sn ≡ 1

|D1−c
n | ×

∫

D1−c
n

{
|Dl(n)| × h2

l(n) × [Ψ̂l(n)(x)− E(Ψ̂l(n)(x))]2
}

dx.

and

S ′n ≡
1

|D1−c
n | ×

∫

D1−c
n

{√
|Dl(n)| × hl(n) × [Ψ̂l(n)(x)− E(Ψ̂l(n)(x))]

}
dx.

Observe that̂σ2
n is equal toSn− (S ′n)2. ThusSn

L2→ σ2 and(S ′n)2 L2→ 0 will be sufficient for

σ̂2
n

L2→ σ2. For the first term, since E(Sn) → σ2, we only need to prove that Var(Sn) → 0.

Var(Sn) =
1

|D1−c
n |2 ×

∫∫

D1−c
n

Cov
{
|Dl(n)|×h2

l(n)×Ψ̂l(n)(x), |Dl(n)|×h2
l(n)×Ψ̂l(n)(y)

}
dxdy.
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We write the above expression in two terms, namely

An ≡ 1

|D1−c
n |2×

∫∫

D1−c
n ,d(x,y)≤l(n)

Cov
{
|Dl(n)|×h2

l(n)×Ψ̂l(n)(x), |Dl(n)|×h2
l(n)×Ψ̂l(n)(y)

}
dxdy,

Bn ≡ 1

|D1−c
n |2×

∫∫

D1−c
n ,d(x,y)>l(n)

Cov
{
|Dl(n)|×h2

l(n)×Ψ̂l(n)(x), |Dl(n)|×h2
l(n)×Ψ̂l(n)(y)

}
dxdy.

An → 0 follows directly form the proof of Theorem 1 in Politis and Sherman (2001). For

anyx andy in the integral definingBn, we have

Cov
{
|Dl(n)| × h2

l(n) × Ψ̂l(n)(x), |Dl(n)| × h2
l(n) × Ψ̂l(n)(y)

}
≤ Cδα

δ/(2+δ)(|Dl(n)|; l(n))

by a covariance inequality in Doukhan (1994) and condition (3.6). ThusBn → 0 due to

condition (3.3) and (3.5) and thus Var(Sn) → 0.

Applying a same technique, we can showS ′n
L2→ 0. (S ′n)2 L2→ 0 then follows directly

from Sherman (1996). Thuŝσ2
n

L2→ σ2.

The more general multivariate case can be proved by applying the above univariate

case result and the proof of Theorem 2 in Guan et al. (2002).
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APPENDIX C

PROOF OF THEOREMS IN CHAPTER IV

C.1 Proof of Theorem IV.1

Proof. Let wn(x) ≡ h−2
n w(x/hn). For largen such thatC ∈ Dn −Dn,

E(γ̂n(t)) =
1

Ψ(t)

∫

Dn

∫

Dn

wn(t− x1 + x2)

|Dn ∩ (Dn − x1 + x2)| × γ(x2 − x1)×Ψ(x2 − x1)dx1dx2

=
1

Ψ(t)

∫

Dn−Dn

wn(t + u)γ(u)Ψ(u)du

=
1

Ψ(t)

∫

C

w(v)γ(t− hnv)Ψ(t− hnv)dv

→ γ(t).

For the covariance term, first introduce the following notation:

Γ(x2 − x1,y1 − x1,y2 − x1) ≡ E
{[

Z(x2)− Z(x1)
]2[

Z(y2)− Z(y1)
]2}

Γ∗(x2 − x1,y1 − x1,y2 − x1) ≡ Cov
{[

Z(x2)− Z(x1)
]2

,
[
Z(y2)− Z(y1)

]2}

Consider two lags,t andt′, wheret, t′ ∈ Λ. The covariance of two lags (t, t′) times

[Ψ(t)Ψ(t′)] can be written as:

E[γ̂n(t)× γ̂n(t′)]− E[γ̂n(t)]× E[γ̂n(t′)]

=

∫∫∫∫

Dn

wn(t− x1 + x2)× wn(t′ − y1 + y2)× Γ(x2 − x1,y1 − x1,y2 − x1)

|Dn ∩ (Dn − x1 + x2)| × |Dn ∩ (Dn − y1 + y2)|

×E[N (2)(dx1, dx2)N
(2)(dy1, dy2)]

−
∫∫∫∫

Dn

wn(t− x1 + x2)× wn(t′ − y1 + y2)× γ(x2 − x1)× γ(y2 − y1)

|Dn ∩ (Dn − x1 + x2)| × |Dn ∩ (Dn − y1 + y2)|

×E[N (2)(dx1, dx2)]E[N (2)(dy1, dy2)]

Thus as in the point process case (see Appendix B), the above expression can be written

as seven terms, where the second to the seventh terms depend only on E[γ̂n(t) × γ̂n(t′)].
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Following the proof therein, the second to the fifth terms can be shown of order1/|Dn| due

to the fact thatΓ(x2 − x1,y1 − x1,y2 − x1) is finite. Define

F1(x2 − x1,y1 − x1,y2 − x1)

= Γ(x2 − x1,y1 − x1,y2 − x1)
{

C
(4)
N (x2 − x1,y1 − x1,y2 − x1)

+ νC
(3)
N (x2 − x1,y1 − x1) + νC

(3)
N (x2 − x1,y2 − x1)

+ νC
(3)
N (y1 − x1,y2 − x1) + νC

(3)
N (y1 − x2,y2 − x2)

+ C
(2)
N (y1 − x1)C

(2)
N (y2 − x2) + C

(2)
N (y2 − x1)C

(2)
N (y1 − x2)

+ ν2C
(2)
N (y1 − x1) + ν2C

(2)
N (y2 − x1) + ν2C

(2)
N (y1 − x2) + ν2C

(2)
N (y2 − x2)

}

and

F2(x2 − x1,y1 − x1,y2 − x1)

= Γ∗(x2 − x1,y1 − x1,y2 − x1)
{

ν2C
(2)
N (x2 − x1) + ν2C

(2)
N (y2 − y1)

+ C
(2)
N (x2 − x1)C

(2)
N (y2 − y1) + ν4

}
.

The first term can be written as the sum of the following two terms

∫∫∫∫

Dn

wn(t− x1 + x2)× wn(t′ − y1 + y2)× F1(x2 − x1,y1 − x1,y2 − x1)

|Dn ∩ (Dn − x1 + x2)| × |Dn ∩ (Dn − y1 + y2)| dx1dx2dy1, dy2,

∫∫∫∫

Dn

wn(t− x1 + x2)× wn(t′ − y1 + y2)× F1(x2 − x1,y1 − x1,y2 − x1)

|Dn ∩ (Dn − x1 + x2)| × |Dn ∩ (Dn − y1 + y2)| dx1dx2dy1, dy2.

The first quantity is of order1/|Dn| due to the proof for the point process case and that

Γ(x2 − x1,y1 − x1,y2 − x1) is finite. The second quantity is of order1/|Dn| due to the

proof for the marked-Poisson case (see Appendix A) and that the cumulant functions are

finite.

Consider the sixth term, which can be written as

∫∫

Dn

wn(t− x1 + x2)× wn(t′ − x1 + x2)

|Dn ∩ (Dn − x1 + x2)|2 × γ(x2 − x1)×Ψ(x2 − x1)dx1dx2
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=

∫

Dn−Dn

wn(t + u)× wn(t′ + u)

|Dn ∩ (Dn − u)| × γ(u)×Ψ(u)du

=

∫

Dn−Dn

w(v)× w(v + (t′ − t)/hn)

|Dn ∩ (Dn + t− hnv)| × h2
n

× γ(hnv − t)×Ψ(hnv − t)dv.

Thus

lim
n→∞

|Dn| × h2
n × the sixth term=

∫

C

w(v)2dv × γ(t)×Ψ(t)× I(t = t′)

Similarly we can show

lim
n→∞

|Dn| × h2
n × the seventh term=

∫

C

w(v)2dv × γ(t)×Ψ(t)× I(t = −t′).

Thus the theorem is proved.

C.2 Proof of Theorem IV.2

Proof. Let σ2 =
∫

C
w(v)2dv × γ(4)(t)/ν2, Sn ≡

√
|Dn| × hn × {γ̂n(t) − E[γ̂n(t)]}. To

show thatSn
D→ N(0, σ2), we again apply the blocking technique. Chooseα such that

nαhn → ∞. Then divideDn as in marked-Poisson case. We adopt the notations therein

with the understanding that we are studying a general marked-point process. We need to

show

S1 Sn − sn
p→ 0;

S2 φ′n(x)− φn(x) → 0;

S3 s′n
d→ N(0, σ2).

The second and the third step indicate thatsn
d→ N(0, σ2). SinceSn − sn

p→ 0, we can

conclude thatSn
d→ N(0, σ2) as well.

Proof ofS1: The proof is the same as that of the Poisson case.
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Proof ofS2: In what follows, we useI (instead of the commonly used notationi) to denote

the imaginary number. By definition,

φn(x) = E{exp(Ixsn)} = E
{

exp
(
Ix

kn∑
i=1

si
n√
kn

)}
,

φ′n(x) = E{exp(Ixs′n)} = E
{

exp
(
Ix

kn∑
i=1

(si
n)′√
kn

)}
.

Since(si
n)′, i = 1, 2, · · · , kn, are independent and have the same marginal distribution as

si
n, i = 1, 2, · · · , kn, φ′n(x) can be rewritten as

∏kn

i=1 E
{

exp
(
Ix si

n√
kn

)}
. Define

Ui ≡ exp
(
Ix

si
n√
kn

)
,

Then

φn(x) = E
{ kn∏

i=1

Ui

}
, φ′n(x) =

kn∏
i=1

E{Ui}.

From the proof of S2 in the Poisson case, we have

|φn(x)− φ′n(x)| ≤
kn−1∑
j=1

∣∣∣E
{ j+1∏

i=1

Ui

}
− E

{ j∏
i=1

Ui

}
× E{Uj+1}

∣∣∣
︸ ︷︷ ︸

(A)

.

Define

Xj =

j∏
i=1

Ui, Yj = Uj+1,

EN(Xj) ≡ E(Xj|N), EN(Yj) ≡ E(Yj|N),

CovN(Xj, Yj) ≡ Cov(Xj, Yj|N),

then

(A) = Cov(Xj, Yj) = E
{

CovN(Xj, Yj)
}

+ Cov
{

EN(Xj), EN(Yj)
}

.

For givenN , Xj|N is measurable with respect toF(
⋃j

i=1 Di
m(n)) andYj|N is measurable

with respect toF(Dj+1
m(n)). Since|Xj| ≤ 1, |Yj| ≤ 1 and |Dj+1

m(n)| ≤ |⋃j
i=1 Di

m(n)| =

j ×m(n)2, we have

CovN(Xj, Yj) ≤ 16j × {n2α + n2η − 2nα+η} × n−ηε
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due to the assumed mixing condition for the mark process and the proof for the marked-

Poisson case (see Appendix A). Note EN(Xj) is measurable with respect toFN(
⋃j

i=1 Di
m(n))

and EN(Yj) is measurable with respect toFN(Dj+1
m(n)); |EN(Xj)| ≤ 1, |EN(Yj)| ≤ 1, we

have

Cov
{

EN(Xj), EN(Yj)
}
≤ 16j × {n2α + n2η − 2nα+η} × n−ηε

due to the assumed mixing condition for the point process. Combining the above results,

we have

|φn(x)− φ′n(x)| ≤ O(n4−2α−ηε) → 0.

Proof ofS3: the proof is analogous to the marked-Poisson case.

C.3 Proof of Theorem IV.3

Proof. This is a direct result from Theorem 2 in Politis and Sherman (2001) and the proof

of Theorem II.3.



106

VITA

Yong Tao Guan was born in Pingdu, China. He received a Bachelor of Science degree

in Probability and Statistics in 1998 from the Peking University. That same year, he was

admitted to the Ph.D. program in the Department of Statistics at Texas A&M University.

He received his Ph.D. degree in August 2003. His permanent address is

Wang Xian Zhuang, Men Cun

Ping Du, Shan Dong 266708

People’s Republic of China


