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ABSTRACT 

 

Field Scale History Matching and Assisted History Matching Using Streamline Simulation. 

(August 2003)  

Arun Kharghoria, B.S., Indian School of Mines, Dhanbad, India; 

M.S., University of Tulsa 

Chair of Advisory Committee: Dr. Akhil Datta-Gupta 

 

 

In this study, we apply the streamline-based production data integration method to condition a 

multimillion cell geologic model to historical production response for a giant Saudi Arabian 

reservoir. The field has been under peripheral water injection with 16 injectors and 70 producers. 

There is also a strong aquifer influx into the field. A total of 30 years of production history with 

detailed rate, infill well and re-perforation schedule were incorporated via multiple pressure 

updates during streamline simulation.  Also, gravity and compressibility effects were included to 

account for water slumping and aquifer support. To our knowledge, this is the first and the largest 

such application of production data integration to geologic models accounting for realistic field 

conditions. We have developed novel techniques to analytically compute the sensitivities of the 

production response in the presence of gravity and changing field conditions. This makes our 

method computationally extremely efficient. The field application takes less than 6 hours to run 

on a PC.  

The geologic model derived after conditioning to production response was validated using 

field surveillance data. In particular, the flood front movement, the aquifer encroachment and 

bypassed oil locations obtained from the geologic model was found to be consistent with field 

observations. Finally, an examination of the permeability changes during production data 

integration revealed that most of these changes were aligned along the facies distribution, 

particularly the ‘good’ facies distribution with no resulting loss in geologic realism. 

We also propose a novel assisted history matching procedure for finite difference simulators 

using streamline derived sensitivity calculations. Unlike existing assisted history matching 

techniques where the user is required to manually adjust the parameters, this procedure combines 
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the rigor of finite difference models and efficiencies of streamline simulators to perform history 

matching. Finite difference simulator is used to solve for pressure, flux and saturations which, in 

turn, are used as input for the streamline simulator for estimating the parameter sensitivities 

analytically. The streamline derived sensitivities are then used to update the reservoir model. The 

updated model is then used in the finite difference simulator in an iterative mode until a 

significant satisfactory history match is obtained. 

 The assisted history matching procedure has been tested for both synthetic and field 

examples. The results show a significant speed-up in history matching using conventional finite 

difference simulators.  
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CHAPTER I 

INTRODUCTION  

1 

This chapter presents the motivation and objectives of the research work carried out for this 

dissertation. Dynamic data integration technologies are being increasingly used as a tool in 

petroleum industry for history matching with high resolution geological model. Use of 

streamline simulator as a forward model in data integration process makes it at least  an order of 

magnitude faster compared to the use of conventional finite difference simulator. However, till 

date, history matching using streamline simulation technique has been applied to synthetic and 

small scale field applications. Present study focuses on improvement of the existing techniques 

and their application to a large scale field example. A brief literature review has been presented 

followed by objective of the study. Finally, the organization of this dissertation is outlined. 

 
1.1 Motivation for the Study 

Incorporation of all available data for reservoir history matching is an important aspect for 

optimal reservoir management and reliable performance forecasting. Recent developments in 

reservoir characterization and in the management of uncertainty have led to the ability of the 

petroleum industry to routinely generate large multimillion-cell detailed geologic models. 

Reconciling such high-resolution models with dynamic reservoir behavior (transient pressure 

and tracer response, multiphase production history) is essential to develop a reliable reservoir 

model for performance forecasting. However, dynamic data integration still remains an 

outstanding challenge because of the high expenses in terms of time and also the subjectivity 

and non uniqueness associated with conventional history matching approach. Considering the 

above challenges during production data integration, the major motivations for   this study could 

be stated as below: 

1. Generalization of Streamline based history matching to account for realistic field 

conditions. 

2. Application of dynamic data integration techniques for a large scale field example 

accounting for rate change, infill drilling, recompletions and also reservoir 

mechanisms such as gravity and aquifer influx. 
                                                
  This dissertation follows the style and format of the SPE Journal. 
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3. Enhancement of conventional history matching using finite difference simulator 

with streamline derived sensitivities. This will retain the full-physics from the finite 

difference model and also result in a significant reduction in history matching cycle 

time. 

 

1.2 Introduction 

It is a well established fact that incorporation of dynamic data into geostatistical models is 

necessary for reliable reservoir descriptions. Dynamic data, time variant measurements such as 

transient pressure response, tracer or production history can be particularly effective in 

identifying preferential flow paths or barriers to flow that can adversely impact sweep 

efficiency. Reservoir models derived from static data such as geological descriptions, well logs, 

seismic attributes, or core data need to be further revised by integrating dynamic data to account 

for these flow characteristics of reservoirs. The past few years have seen significant 

developments in the area of dynamic data integration in the framework of inverse modeling, 

particularly for estimating reservoir parameters such as permeability or porosity.  

Use of fast streamline-based simulation techniques offers significant potential in terms of 

computational efficiency. Streamline models can be advantageous in two ways for inverse 

modeling. First, the streamline simulator can serve as an efficient forward model for the inverse 

problem. Streamline methods have been gaining popularity with the increase of demand for fast 

fine scale simulation. Its high computational speed (in general, 1 to 3 orders of magnitude faster 

than conventional finite difference type flow simulators) makes it well suited for describing 

flow characteristics for high resolution reservoir models. Second, and more importantly, 

sensitivities to reservoir parameters can be formulated along streamlines. This reduces the 

governing sensitivity equations to series of one-dimensional integrals. This is particularly 

advantageous because parameter sensitivities and transport equation can be solved along the 

same one-dimensional path. Sensitivities are obtained from the single streamline simulation, 

resulting in significant savings in computation time and making dynamic data integration into 

high resolution reservoir description possible. 

In this study, the above mentioned advantages of streamline simulator has been further 

explored in combination with finite difference simulator. The velocity field required for 

streamline simulator has been obtained from the finite difference simulator and both water 

saturation and water cut responses are estimated from the finite difference simulator. The results 
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are supplied to the streamline simulator and then sensitivity computation along the streamlines 

is carried out. The streamline-derived sensitivities are then used in the data integration process. 

This results in a robust technique for assisted history matching that retains the full physics of 

from the finite difference simulator and utilizes the analytic sensitivities from the streamline 

model. 

 

1.3 Literature Review 

The fundamentals of potential flow theory can be traced back to the nineteenth century. Muskat1 

proposed modeling of fluid flow and transport using streamlines and streamtubes back in 1937. 

Since then, several authors have extended the underlying concepts of streamline into petroleum 

reservoir modeling. Notable works among these are from Fay and Prats2, Higgins and 

Leighton3, Pitts and Crowford4, and Martin and Wagner5. Many of these applications used a 2-D 

streamtube based approach to model multiphase fluid displacement. The direct extension of the 

2-D streamtube based approach to 3-D flow is non-trivial because of the complexities 

associated with the tracking of tube geometries in 3-D space. 

The streamline method utilizes the concepts of particle tracking to define the pathlines in 

three-dimensional space. Unlike streamtube approach, streamline approach does not require 

tube geometries to be explicitly evaluated. This makes it suitable for modeling flow and 

transport in three dimensional space. 

The key underlying concept behind the computation of streamlines in three dimensions is 

the ‘time-of-flight’ coordinate which was proposed by Datta-Gupta and King6. The ‘time-of-

flight’ approach decouples the flow from transport and thus greatly facilitates analytical and 

numerical solutions along the streamlines. The advantage of this approach is the simplicity, 

computational efficiency and ready generalization. 

Streamline simulation has become a viable alternative to conventional finite difference type 

reservoir simulator due to its high speed performance.7,8 It has been gaining popularity in 

petroleum industry in recent years and has been successfully used as a forward model in 

dynamic data integration process. Datta-Gupta et al.,9 Vasco and Datta-Gupta, 10 Xue and Datta-

Gupta11 have employed streamline simulation to overcome computational burden in using 

conventional finite difference type simulator. First truly three dimensional streamline simulator 

applied to field level simulation was presented by Peddibholta12 et al. Another advantage 

associated with streamline method is that it is possible to analytically derive a relationship 
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between perturbations in reservoir properties, such as permeability, porosity, or residual 

saturation, and changes in observables such as water-cut and tracer response. Vasco et al.13 have 

presented streamline-based production data integration approach in which sensitivity of water-

cut with respect to reservoir parameters are computed semi-analytically along streamlines and 

demonstrated the inversion with more than 30,000 parameters. Yoon et al.14 applied this method 

for estimation of residual oil phase saturation by integrating interwell partitioning tracer tests. 

Further improvement on the streamline-based method was made by adapting hierarchical 

parameterization and scale-by-scale inversion in Yoon et al.15 

 
Most recently, streamline technique has been applied to production data integration under 

changing field conditions16 and for identification of reservoir compartmentalization and flow 

barriers using primary production17. 

 
1.4 Objectives of the Study 

Our goal is to develop a systematic procedure for reconciling high-resolution geologic models 

to production data such as water-cut and pressure data, which ultimately improves reliability in 

the reservoir performance forecasting. Specifically, we want to establish a methodology that is 

computationally efficient and also can account for well scheduling such as infill drilling and rate 

changes during the course of field production history.  We also want to incorporate all dominant 

reservoir mechanisms such as gravity and aquifer influx. 

We demonstrate the practical feasibility of the streamline based production data integration 

technique by application to a giant middle-eastern filed with 30 years of production history As a 

part of the study, it was necessary to formulate and modify the existing streamline simulator to 

the capacity to handle large scale full field model.  Also, an assisted history matching technique 

for finite difference simulator was proposed and tested for both synthetic and field examples.  

Followings are the basic objectives : 

• Enhance the capability of the present streamline simulator to handle large scale full 

field model with varying degree of heterogeneity. 

• Extend the data integration process to include the effect of gravity, rock compressibility 

and aquifer influx in streamline simulation for field application. 

• Implement horizontal well in well model. 

• Test the developed concepts with synthetic and real field examples. 
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• Use the streamline simulator for assisted history matching for finite difference 

simulation models. 

 
1.5 Dissertation Outline 

Chapter II explains the fundamentals of streamline simulation and dynamic data integration 

based on streamline technology. 

Chapter III presents the conditioning of a large scale geological model with production data 

using streamline based inversion technique. The application contains integration of 30 years of 

production history for history match purposes. 

Chapter IV deals with the development and application of a novel streamline based assisted 

history matching procedure for finite difference simulators. 

Chapter V summarizes the dissertation with conclusions and recommendations. 
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CHAPTER II 

THEORETICAL BACKGROUND OF PRODUCTION DATA 

INTEGRATION AND STREAMLINE SIMULATION 

2 

This chapter discusses the theoretical background of production data integration and the use of 

streamline simulation technique as the forward model. Production data integration is essentially 

an inverse modeling problem consisting of three major components. First, forward model which 

is a mathematical or numerical model of the physics of the system of interest. Second, objective 

function that provides the measure of deviation of the model performance from the actual 

system response. Finally, optimization process which is a numerical technique to minimize the 

objective function to improve the estimation of model parameters. 

 
2.1 Introduction 

It is well known that geological models derived from static data only, such as geological, well 

log, core and seismic data, often fail to reproduce the production history. Reconciling geologic 

models to the dynamic response of the reservoir is critical to building reliable reservoir models. 

In recent years there have been significant developments in the area of dynamic data integration 

through the use of inverse modeling. Streamline models have shown great promise in this 

regard. The key advantages of streamline-based production data integration are its 

computational efficiency as a “forward” model and analytic computations of sensitivities of the 

production response with respect to reservoir parameters using a single flow simulation. 

Sensitivities describe the change in production response due to a small perturbation in reservoir 

properties such as porosity and permeability and are a vital part of the dynamic data integration 

process. 

In recent years, researchers at Texas A&M have developed a streamline-based production 

data integration technique that is similar to seismic waveform inversion and utilizes a two-step 

procedure  

1. A travel time match that involves matching of the ‘first arrival’ or breakthrough 

times,  

2. An amplitude match involving matching of the actual production response.  
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The two-step approach has been shown to substantially speed-up the computation and also 

prevents the solutions from being trapped by secondary peaks in the production response. 

However, a majority of the production data misfit reduction occurs during the travel time 

inversion and most of the large-scale features of heterogeneity are resolved at this stage. 

There are several advantages associated with a travel time inversion of production data. 

First, it is robust and computationally efficient. Unlike conventional ‘amplitude’ matching 

which can be highly non-linear, it has been shown that the travel time inversion has quasilinear 

properties.  As a result, the minimization proceeds rapidly even if the initial model is not close 

to the solution. Second, the travel time sensitivities are typically more uniform between wells 

compared to ‘amplitude’ sensitivities that tend to be localized near the wells. This prevents 

over-correction in the near-well regions. Finally, during practical field applications, the 

production data are often characterized by multiple peaks (for example, tracer response). Under 

such conditions, the travel time inversion can prevent the solution from converging to secondary 

peaks in the production response. 

Recently, the concept of assisted history matching has been introduced to facilitate 

conventional history matching. This approach is a manual history matching aided by the use of 

streamlines simulation and consists of the following major steps:  

1. Assess the difference between model and field performance. 

2. Use streamlines to assign grid blocks to wells. This identifies the grid blocks that 

need to be changed during history matching. 

3. Manually change pre-specified properties (for example permeability multipliers). 

4. Iterate. 

This method utilizes unique information contained in the streamlines and helps history 

matching providing several advantages:  

1. It considerably simplifies history matching by targeting changes to match specific 

well response,  

2. it can be applied to finite-difference models.  

However, it still requires subjective judgment during history matching and can introduce 

‘artifacts’ by limiting changes along streamlines. Also it is hard to assess model through 

resolution and uncertainty analysis. 
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2.2 Production Data Integration – Theoretical Background 

Briefly, the approach for production data integration using streamline model consist of the 

following steps: 

• Analytic Computation of Sensitivity : We derive expressions for sensitivity of 

streamline time of flight to reservoir properties such as porosity and permeability. The 

time of flight sensitivities can then be easily translated to tracer concentration and 

water-cut sensitivities using chain rule of differentiation. The sensitivity computation 

simply involves evaluation of one-dimensional integrals along streamlines and requires 

a single simulation run. 

• Two-Step Inversion : This involves iterative linearization of the time of flight 

expression about a known initial model based on static data to match the arrival time 

first, followed by amplitude matching. Integration of production data involves a two-

step procedure: 

1.  matching of the ‘first arrival’ or travel times. 

2. matching of the ‘amplitudes’ of the production response. 

A brief discussion on computation of sensitivities followed by construction of inversion 

model and the LSQR optimization method is presented below.  
 
 

2.3 Sensitivity Computation 

By sensitivity, we mean the partial derivative of the production response with respect to model 

parameters such as permeability, porosity and saturation. Although several methods are 

available for computing sensitivities, for example, numerical perturbation method, direct 

method, or adjoint state method, these are limited by their computational costs and complex 

implementations. (For details on these methods, see reference 18.) Streamline-based analytic 

sensitivity computation approach is extremely efficient and requires only a single simulation 

run.  

 

2.3.1   Sensitivity of Tracer Concentration Response 

As described earlier, streamline method decouples flow and transport by a coordinate 

transformation from the physical space to one following flow directions viz. the tracer time of 

flight along streamlines. The time of flight can be defined as 
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                                   ∫=
ψ

τ drs )(x                                 (2-1) 

where the integral is along the streamline trajectory, ψ and )(xs is the ‘slowness’ defined as14 
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where Ko is the partitioning coefficient of tracer defined as the ratio of tracer concentration in 

oil phase to that in water phase. For an injected concentration history, )(0 tC  the corresponding 

tracer concentration response at the producer along a single streamline can be written as 

))((0)( drstCtC ∫−=
ψ

x                                      (2-3) 

Consider a small perturbation in reservoir properties about an initial reservoir model, let us 

say based on static data. The resulting changes in slowness and tracer concentrations can be 

written as 
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If it is assumed that streamlines do not shift as a result of small perturbations in medium 

properties, then the change in concentration response at the producing well can be derived based 

on a Taylor series expansion19 
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Because )(xs is a composite function involving reservoir properties, its variation will be given 
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where the partial derivatives are 
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Note that in the above expressions, we have ignored pressure changes resulting from small 

variations in permeability. Also, for unit partitioning coefficient, the tracer response will be 

insensitive to saturation changes as one might expect. Tracer travel time and concentration 

sensitivities with respect to permeability, porosity, and water saturation can be obtained by 

integrating Eq. 2-5 over all streamlines contributing to a producer. 

 

2.3.2  Sensitivity of Two-Phase Production Response 

Similarly, we can easily translate a perturbation in slowness to a corresponding perturbation in 

fractional flow. The perturbation in the fractional flow can be written as 

δτ
τ

δ
∂
∂

= wfwf              (2-8) 

where δτ is related to reservoir properties through the integral equation 

∫= ψ δδτ drxsx )()(  (2-9) 

In this case, the slowness is defined as13 
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The slowness variations with respect to the changes of reservoir parameters are 
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The water-cut sensitivities with respect to reservoir properties can now be obtained by 

integrating Eq. 2-11 over all streamlines reaching the producing well. 

Note that the above expressions for sensitivity of tracer concentration and water cut 

response only involve quantities that are readily available once we generate the velocity field 

and define the streamline trajectories in a streamline simulator. Thus, in a single forward run of 

a streamline simulator we may derive all the sensitivity coefficients required to solve the inverse 

problem. 

 

2.4 Travel Time Sensitivity 

For the case of travel time inversion, we need sensitivity of travel time with respect to reservoir 

parameters. In tracer data integration, we can simply integrate Eq. 2-7 over all streamlines 

contributing to a producer at particular time to get the sensitivity of travel time. However, 

simple integration of Eq. 2-11 over the streamlines is not sufficient in the water-cut data 

integration case. That is because the speed of saturation front is different from that of neutral 

tracer particle. To get the correct travel time of the saturation front and corresponding 

sensitivity, we need to divide the time of flight by the fractional flow slope at breakthrough, 

(∂fw/∂Sw)bt. 

 

2.5 Construction of  the Inversion Model 

Our approach to production data integration using streamlines consists of two distinct steps: 

1. an ‘arrival time’ or fluid breakthrough matching. 

2. an ‘amplitude’ or water-cut/pressure response matching.  

During inverse modeling or production data integration, we want to minimize the 

differences between observed production responses and our model predictions. Mathematically, 

this can be expressed as 

2][min mgd
m

−        (2-12) 

 

where d is the data vector with N observations, g is the forward model, m is the vector of M 

parameters. Because of the nonlinearity between data and model parameters, we resort to an 

iterative minimization procedure. For example, at the k–th iteration step we obtain the following 

using a first order Taylor series expansion of g[m] around mk,  
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mGmgmg δ+= ][][ k         (2-13) 

 

where δm is the parameter perturbation at k–th step and G is the sensitivity matrix with 

sensitivity coefficient entries as discussed above coefficient entries discussed above and defined 

by 

kmm
mgG

∂
∂= ][          (2-14) 

The residual (data misfit) vector ε at the k–th iteration step will be given by 

][ kmgdε −=          (2-15) 

We can for δm at each step by minimizing the linear least squares  
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and update our parameter vector with  

mmm δ+= k          (2-17) 

 

In field situations, very often we have a large number of unknown parameters and limited 

measurements. Thus, the inverse problem tends to be ill-posed.20,21 Solutions of such ill-posed 

problems suffer from non-uniqueness and instability. To circumvent the problem, we augment 

the linear system of Eq. 2-15 by incorporating additional penalty terms. This is called 

regularization.22 Two common approaches are to include a model norm constraint and a model 

roughness constraint. The norm constraint (2nd term in Eq. 2-18 below) ensures that our final 

model is not significantly different from our initial model. This makes physical sense because 

typically our initial model already incorporates sufficient geologic and other prior information. 

The roughness constraint (3rd  term in Eq. 2-18 below) accounts for the fact that production data 

is an integrated response and is best suited to resolve large-scale trends rather than small-scale 

fluctuations. 
 The penalized objective function is now given by 
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The minimization of Eq. 2-18 is equivalent to solving the following augmented linear 

system in a least square sense, 
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where γ’s are the weighting factors, I is an identity matrix and L is a spatial difference operator, 

for example the second spatial derivative of parameters measuring the model roughness. An 

efficient iterative linear system solver, LSQR23,24 is used for solving this augmented linear 

system of equations. 
 

2.6 Optimization with LSQR 

For large and sparse matrix systems, conjugate gradient type solvers have been popular for 

discrete inverse problems in the earth science literature.23-25 The mathematically equivalent 

algorithm LSQR is based on the Lanczos bidiagonalization process and is particularly well-

suited for highly ill-conditioned matrices.21 The method seeks for the minimum over a Krylov 

subspace spanned by a sequence of orthonormal basis vectors that are generated from the 

Lanczos bidiagonalization. 

The computational efficiency of the LSQR lies on the Lanczos process. In general, our 

linear system contains a large sparse and ill-conditioned matrix A. Thus, the first few large 

singular values of A play important roles in the solution of the linear system. The Lanczos 

process generates a sequence of bidiagonal matrices Bk with the property that the large singular 

values of Bk tend to be progressively better approximations to those of A. Thus, with fewer 

iterations than the rank(A), we obtain reasonable approximations to the large singular values, 

making the LSQR attractive for sparse matrix systems. 

 

2.7 Forward Model 

Given a parameter set, forward model predicts the system responses. Unlike inverse modeling, 

forward modeling can be stable one-to-one mapping due to the well-determined nature. In this 
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dissertation, an efficient three-dimensional streamline simulator is used for forward modeling. 

Fundamentals of streamline simulation are discussed in great detail later in this chapter. 

 

2.8 Illustrative Example of Production Data Integration 

In this section, we will illustrate the procedure for dynamic data integration for reservoir 

parameter estimation using synthetic examples that involve integration of tracer response as 

well as two-phase production history.  

Our synthetic model is a single layer, heterogeneous permeability field with a mesh size of 

21x21. The well locations before and after infill are shown in Fig. 2.1. The reference 

permeability field is shown in Fig. 2.2. The overall structure consists of a high permeability 

trend extending in a northeastern direction. The tracer responses from the eight producing wells 

in the 9-spot pattern are shown in Fig. 2.3. The tracer response exhibits multiple peaks 

indicating the complex nature of the heterogeneity pattern. Also, superimposed on Fig. 2.3 are 

the tracer responses corresponding to the initial model, a homogeneous permeability field 

conditioned at the wells.  

As discussed in the previous section, dynamic data integration involves two step process – 

namely travel time match and amplitude match. In matching the arrival time or breakthrough 

time, we ‘line-up’ the observed and computed production responses at all the wells by 

minimizing the misfit between the observed and calculated peak concentration time. This is 

illustrated in Fig. 2.4. We observe that the peak arrival times for all the wells are now in 

agreement, although the magnitudes of the concentration response differ substantially. This 

arrival time match constitutes by far the most critical aspect of the inversion. In fact most of the 

dominant features of the permeability field becomes apparent at this stage. Also, we accomplish 

the largest reduction in overall misfit. Another important benefit of the traveltime matching is 

that it prevents the solution from being trapped by secondary peaks in multi-peaked production 

responses that are commonly associated with field data. This is related to the quasi-linear 

characteristic of the traveltime inversion approach. The permeability field derived after travel 

time match is shown in Fig. 2.5. It is evident that most of the dominant features become 

apparent after matching the peak arrival times. The arrival time matching is followed by 

amplitude matching. In this stage, we minimize the misfit between the magnitudes of the 

observed and computed production response at all times. Fig. 2.6 shows the tracer response 

compared to the responses obtained from the reference permeability field. As we can see, the 
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peak tracer concentrations and locations are resolved at this stage. The amplitude matching 

further improves the permeability field by incorporating small-scale variations as shown in Fig. 

2.7. Fig. 2.7 also shows the comparison of the final (i.e. after amplitude match) permeability 

field with the reference permeability field. Fig. 2.8 shows the overall misfit reduction as a 

function of number of iterations. The first 10 iterations consist of arrival time matching. The 

importance of arrival time matching is evident from the fact that about 70% of the misfit 

reduction is accomplished at this stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 – Well Locations for the Synthetic Example. Well 5,6,7, and 8 are Infill Wells. Well 

9 is Injection Well. 
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Figure 2.2 – Reference Permeability Model for Synthetic Example. 
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Figure 2.3 – Tracer Response from Reference and Initial Model. 
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Figure 2.4 – Tracer Response after Arrival Time Match. 
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Figure 2.5 – Permeability Field after Arrival Time Match. 
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Figure 2.6 – Tracer Response after Amplitude Match. 
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                                                  (a) Reference 

                                                    
                                                    (b) Estimated 

Figure 2.7 – Comparison of  Permeability Fields after Amplitude Match. (a) Reference, (b) 

Estimated. 
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Figure 2.8 - Root Mean Squared Error of Tracer Concentration Misfit as a Function of Number 

of Iterations. 
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2.9 Streamline Simulation Fundamentals 

Due to the recent advances in geostatistics, fine scale reservoir description has become a current 

trend. However, fine scale conventional flow simulation is still limited because of high 

computational costs. Streamline simulation can be the viable alternative in this regard. Its high 

speed performance is well suited for integrated reservoir descriptions, specifically, production 

data (dynamic data) integration, ranking of multiple geostatistical reservoir models,26 or 

mitigation of upscaling problems like pseudo function usage or grid orientation problems.10 

Streamline simulator can be characterized by its high simulation speed (can be orders of 

magnitude faster than conventional finite difference type simulators) and numerical dispersion 

free results. Conceptually, streamline simulation is IMPES type simulation: Solving for pressure 

first and then saturation and occasional updating of pressure field. Its difference from a 

conventional numerical type simulation lies on the way fluid transport is modeled. Streamline 

method decouples the transport from the physical underlying grid on which pressure field is 

obtained. Saturation is moved along streamlines characterized by time of flight coordinate. Due 

to the decoupling and infrequent pressure updating, streamline method can have large time 

stepping for saturation computation without suffering from numerical instability or dispersion 

and consequently have a superior simulation speed. A recent study demonstrates how time steps 

could be selected for saturation calculations.27 

The governing equation for fluid flow in porous media is based on the fundamental laws of 

physics. Conventional reservoir simulators solve the governing differential equation that is 

based on the following three equations:  

1. Continuity Equation (Conservation of Mass),  

2. Darcy Equation: empirical solution of Equation of Motion (Conservation of 

Momentum), and  

3. Equation of State.  

Streamline simulators share the same basis. The basic steps for streamline simulation can be 

summarized as below: 

 

• Step 1: Solving for Pressure  

Given petrophysical properties and boundary conditions, pressure field is computed on 

physical grid like the way the finite difference simulator does. 
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• Step 2: Streamline Tracing and Time of Flight Computation 

Based on the pressure field, velocity field is generated and streamline is traced. Then 

particle traveltime along streamline is computed. 

• Step 3: Saturation Advancing Along Streamlines 

Using coordinate transformation, 3D spatial coordinate is transformed into 1D traveltime 

coordinate along streamline. Then fluid saturation is advanced along the streamlines by 

solving the 1D saturation equation analytically or numerically. Finally the saturation along 

streamlines are mapped onto the underlying grid. 

• Step 4: Pressure Updating 

Occasional pressure updating is necessary to take into account total mobility changes due to 

saturation changes over times or well condition changes such as rate changes and infill 

drilling. For this updated pressure field, the streamlines are retraced and saturation 

remapped onto the new streamlines. 

These steps are illustrated in Fig. 2.9 below. Notice the grouping of streamlines along the 

high permeability streak and the flow channeling as indicated by the time of flight and 

saturation contours. In particular, the time of flight formulation offers a natural and quantitative 

way of flow visualization that can provide a mechanism for dynamic reservoir characterization. 

Now, let us discuss each step in more detail. 
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Figure 2.9 – A Stepwise Illustration of Streamline Simulation. An Injector Well is Placed on the 

Left Side and a Producer on the Opposite Side. 
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2.9.1 Pressure Solving 

For incompressible flow, the continuity equation is given by 

0=⋅∇ tu  (2-20) 

where ut is the total phase velocity. Applying the Darcy’s equation and including gravitational 

effects and away from source or sink, we can rewrite the Eq. 2-20 in terms of pressure 

distribution as  

 

( ) 0=∇+∇⋅∇ DrtgPrt λλk  (2-21) 

where k is the permeability tensor, rorwrt λλλ +=  is the total relative mobility for the water-

oil system, and gorowrwrtg )( ρλρλλ += . Pressure field over the entire grids can be obtained 

by solving the above equation with finite difference scheme. Upon obtaining this pressure field, 

velocity field can be derived by applying Darcy’s law on every grid basis. 

 

2.9.2 Streamline Tracing and Time of Flight Computation 

By definition, streamlines are tangential to velocity field at a moment and can be represented by  

φ
τd

u
dx

u
dx

u
dx === 321  (2-22) 

where u is ith component of the Darcy velocity, φ is porosity, and τ is the time of flight, or actual 

transit time of particle. Assuming linear velocity variation within a grid block,6 a particle transit 

time within a grid block, ∆τ can be computed by direct integration of the above equation and 

multiplying porosity.  
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where ai is ith component linear velocity gradient across the grid block, ui1 is the inlet ith 

component velocity, and ui2 is outlet ith component velocity. Since the particle must exit through 



 

 

27

one of the faces, the actual transit time of the particle is given by the minimum time. Then the 

outlet (or exit) location of the streamline within the grid block can be given by 

]
0

)exp(
1

[1
iuTiaiu

iaix −∆=  (2-24) 

where ui0 is the ith component velocity at grid origin (or center of the grid block), and ∆T is the 

minimum time in the grid block. Thus streamline locus can be obtained by backtracking the 

particle movement from the point of interest to an injector. The time of flight τ can be obtained 

by integrating individual transit time ∆τ along a streamline ψ. 

 

2.9.3 Saturation Advancing Along Streamlines 

For 3D flow, the streamfunctions are related to velocity by 

χψ ∇×∇=u  (2-25) 

where ψ and χ are stream functions of three-dimensional flow. Now we are to consider 

saturation movement along the streamlines. This can be achieved by the coordinate 

transformation from actual grid coordinates (x, y, z) to streamline coordinates (τ,ψ,χ).  

From the elementary calculus, transformation of gradient operator to (τ,ψ,χ) coordinate can 

be given by 

χ
χ

ψ
ψ

τ
τ

∂
∂∇+

∂
∂∇+

∂
∂∇=∇  (2-26) 

where ∇  is evaluated in (x,y,z) coordinate system. Time of flight is defined as 

∫= ),,(
0),,( zyx dr

u
zyx φτ  (2-27) 

Eq. 2-29 can be written as follows 

φτ =∇.u      (2-28) 

Combining Eq. 2-26 and 2-28 and the orthogonality condition between gradient of stream 

function and velocity, we can simplify the coordinate transformation as  
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 (2-29) 

From the material balance, the flow of water phase away from source and sink can be 

expressed by 

0=∇⋅+
∂

∂
wfu

t
wSφ  (2-30) 

After the coordinate transformation, the above three-dimensional differential equation is 

reduced to series of one-dimensional ones along the streamlines in the time of flight coordinate.  

0=
∂
∂

+
∂

∂
τ
wf

t
wS  (2-31) 

This can be solved for saturation explicitly in time by either using single point upstream or 

TVD (Total Variation Diminishing) numerical scheme. The corresponding single point 

upstream solution is 
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 (2-32) 

where n is time index and i denotes streamline node. If uniform initial saturation assumption is 

applicable, Buckley-Leverett type analytical solution can be used to estimate water flood 

performance. The corresponding analytical solution is 

wS
wf

t ∂
∂

=τ  (2-33) 

The self-similarity of the solution along streamlines allows us to compute the solution only 

once and map it directly to the time of interest.  

Another important aspect of the coordinate transformation is that the coordinate 

transformation preserves pore volume.  

φτχψτ =∇⋅=
∂
∂ u

zyx ),,(
),,( , i.e. (2-34) 
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           dτ dψ dχ = φ dx dy dz. 
 

In order to include the gravity effect, the flow of water phase away from source can be 

expressed by, 

0)( =∇∆⋅∇−∇⋅+
∂

∂ Dg
rt

rorwwftu
t
wS ρ

λ
λλφ k                                                      (2-35) 

Using operator splitting, Eq. 2-35 can be split into two parts: a convective step and a gravity 

step. First, after the coordinate transformation from the physical space to the time of flight 

coordinates, the convective term of Eq 2-35 is reduced to series of one-dimensional ones along 

the streamlines in the time of flight coordinate.  

0=
∂
∂

+
∂

∂
τ
wf

t
wS                                                                                                       (2-36) 

Then fluid saturation is advanced along the streamlines by solving the 1D saturation 

equation analytically or numerically. After that, a gravity step is taken along gravity lines and 

saturation are updated using 
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∂
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rt
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zt
wS ρ

λ
λλφ                                                                           (2-37) 

2.9.4 Pressure Updating 

We can often encounter such cases that the stationary streamline assumption is violated. In the 

cases of changing well conditions or more drastically, infill drilling cases, regeneration of 

streamline trajectories by updating pressure field is necessary to account for new well 

conditions. Even if constant well conditions are assumed, occasional pressure updates might be 

necessary to take into account of the total mobility changes due to the saturation variation over 

the flooding period.  

After first pressure updating, the Buckley-Leverett analytical solution cannot be used to the 

one-dimensional hyperbolic equation of Eq. 2-31. That is because the uniform initial condition 

is no longer valid due to the saturation movement in earlier step. It should be noted that, 

however, Thiele28 showed the usage of analytical solutions could be tolerable, as long as 

constant well conditions are met.  

 



 

 

30

2.10    Incorporating Effect of Compressibility and Aquifer Influx 

The existing streamline simulator was modified to handle the total compressibility in terms of  

fluid and rock compressibilities, and associated change in porosity as a result of variation in 

magnitude of pressure. In the presence of compressibility, the generation of streamlines will still 

be a rigorous exercise which will involve the determination of number and trajectory of 

streamlines based on velocity field obtained after obtaining the pressure solution.29 

Additionally, the simulator is enhanced to incorporate the effect of influx from surrounding 

or bottom aquifer. The effect of aquifer plays a significant role in the history matching process 

for large water drive reservoirs. However, incorporating its effect in terms of additional grid 

blocks representing the aquifer is expensive in terms of computing time and efficiency. To 

replicate the effect of influx from the aquifer, the concept of pore volume multipliers has been 

implemented. This requires to modify the origin and termination criteria for streamlines so that 

streamlines can start and end in aquifer. This implementation also enables the field applications 

to be modeled in a more efficient and faster way. 

 

2.11   Implementing Horizontal Well 

An algorithm to handle the production from horizontal wells has been implemented. A 

horizontal well is treated as a rectangular pipe with interconnected blocks in either in x or y 

direction depending on the direction of the well. Also, special care has been taken to ensure that 

interconnected faces of the horizontal well are not active for launching streamlines. Productivity 

index for the horizontal well is calculated using the equivalent well block radius proposed by 

Peaceman, 30 (as given below). More detail of horizontal well is presented in Appendix B. 
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In y - direction: 
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2.12    Chapter Summary 

In this Chapter, we have reviewed the fundamentals of production data integration with 

emphasis on the details of the theoretical background of the forward model. The discussion 

showed that production data integration technique is essentially an ill-posed inverse problem 

involving minimization of a penalized objective function which uses streamline simulator as a 

fast forward model. We have also discussed additional enhancements of the existing streamline 

simulator for practical field application. 
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CHAPTER III 

PRODUCTION DATA INTEGRATION : A  LARGE SCALE  FIELD 

EXAMPLE 

3.1  Introduction 

Recent developments in reservoir characterization and in the management of uncertainty have 

lead to the ability of the petroleum industry to routinely generate large multimillion-cell detailed 

geologic models. Reconciling such high-resolution models to dynamic reservoir behavior 

(transient pressure and tracer response, multiphase production history) is essential to develop a 

reliable reservoir model for performance forecasting. However, dynamic data integration still 

remains an outstanding challenge because of the high man- power costs, subjectivity and non 

uniqueness associated with conventional history matching approach. Streamline methods have 

shown significant potential in this regard. Streamline methods can be advantageous in two 

specific ways. First, streamline models can be significantly faster than conventional finite-

difference simulators. Second, the sensitivities of the production response with respect to 

reservoir parameters can be computed very efficiently using a single simulation. Such 

sensitivities quantify changes in the production response because of small perturbation in 

reservoir properties such as porosity, permeability and relative permeability parameters. These 

sensitivities form a critical component of any dynamic data integration process  

The principle objective of this work has been to demonstrate the feasibility of streamline-

based dynamic data integration techniques under realistic field conditions relevant to middle 

eastern oil fields. Specifically, we want to develop a geologic model for a giant middle eastern 

field that is conditioned with respect to water-cut responses at the wells. The conditioning 

process is to account for all major well events such as rate changes, infill drilling, zone isolation 

and pattern conversions etc. in addition to dominant physical mechanisms such as gravity and 

aquifer influx. The work involved substantial enhancement of the existing streamline-based 

production data integration techniques. 

We successfully applied the streamline-based production data integration method to the 

giant middle eastern field. The geologic model studied to integrate production data included  48 

wells showing water-cut response out of a total of 70 producers. The production history 

included a period of 30 years. During streamline simulation, we used 34 pressure updates to 

consider the detailed rate schedule to account for infill drilling, reperforations and significant 
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rate changes. Gravity effects have also been included in the modeling and had a significant 

impact on the results, especially water-cut matches. Also streamline flow simulation 

incorporated fluid compressibility and aquifer influx to obtain pressure history consistent with 

the field observations. For aquifer influx, we used pore volume multiplier in aquifer regions to 

obtain reasonable overall field pressure and fluid flow rates.  

A two-step approach that utilizes an upscaled model for production data integration and 

then propagates changes to the fine scale model through downscaling was developed. The two-

step approach appears to be robust, computationally efficient (about 6 hrs in a PC) and results in 

significant improvement in the production history match. Almost all (about 90%) of the wells 

showed improvement in the breakthrough time matches. About 70% of the wells exhibited good 

to moderate matches in the overall production history. A comparison of the saturation 

distribution derived from streamline simulation with the field surveillance data appear to 

indicate that the model reproduces the gross fluid movement in the reservoir quite well. The 

waterfront movement and aquifer encroachment are consistent with field observations. The 

model indicates water coning and bypassed oil as observed in the field.  Also, the unswept areas 

in the model are consistent with field observations.  Finally, an examination of the permeability 

changes resulting from production data integration appears to indicate that most of the dominant 

trends are along the ‘good’ facies. These changes are considered geologically plausible and are 

consistent with prior observations. The integrated geological model derived after incorporating 

the water-cut history should significantly reduce the cycle time for full-physics history 

matching. This is confirmed by preliminary comparison of the streamline simulation results 

with those from a commercial numerical simulator (ECLIPSE).  

It is important to point out that the streamline-based production data integration is not a 

substitute for conventional finite-difference based simulation and history matching. In fact, it is 

complementary and should facilitate the history matching process by identifying potential 

inconsistencies between field production response and the geologic model.  

 
3.2   Objective  

Traditional geostatistical models are well-suited to integrate static data such as well log, core 

and seismic data. However, integration of dynamic data such as pressure and multiphase 

production response (for example, water-cut data) typically requires the solution of an inverse 

problem. Such inverse problems are computationally intensive and require many solutions of 

the flow and transport problem. In particular, for field scale application with high-resolution 
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geologic models consisting of multimillion cells, dynamic data integration using conventional 

numerical simulators can become computationally infeasible. 

Our goal is to develop a systematic procedure for reconciling high-resolution geologic 

models to production data such as water-cut and pressure data using streamline models. Such 

conditioning to dynamic data is expected to improve the reliability in the reservoir performance 

forecasting and also significantly reduce the cycle time associated with history matching using 

full-physics finite-difference simulators. Specifically, we want to establish a methodology that 

is computationally efficient and also can account for realistic field conditions such as gravity 

effects, compressibility and aquifer influx and changing well events, for examples, infill 

drilling, zone isolation and rate changes during the course of field production history.   

It is important to point out that the streamline-based production data integration is not a 

substitute for conventional finite-difference based simulation and history matching. In fact, it is 

complementary and should facilitate the history matching process by identifying potential 

inconsistencies between field production response and the geologic model. 

 
3.3 Geology and Geologic Model  

A limited literature survey was performed to gather as much as possible information and to 

understand previous studies on the giant middle eastern field. The giant middle eastern field is a 

large anticline measuring 25 km in length and 15 km in width. It contains extra light crude at an 

average subsea depth of 8000 ft. The oil accumulation is bounded by oil-water contact in the 

north and reservoir pinch-out in the south. It was first produced in September of 1970, with a 

peripheral water flood initiated in January of 1973. Injection wells were drilled close to the 

trailing edge of the OWC and completed open hole.  

The giant middle eastern field is a large heterogeneous carbonate reservoir. The geologic 

model included a series of lithofacies, porosity, and permeability models. In addition, the 

following engineering data for the field were delivered: 

• monthly well injection data and production data.  

• reservoir pressure data, fluid properties. 

• J curves and relative permeability curves. 

• well completion data and flow meter measurements. 

The geologic model provided were constructed using a 250m areal grid size in the 

horizontal direction. In general, the it consists of two major units:  
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1. a lower non-reservoir unit of organic rich laminated lime mud stone and low 

porosity skeletal wackstone and, 

2. an upper reservoir unit of grain rich carbonates including skeletal packstone, 

grainstone and boundstone.  

Permeability and porosity models were obtained by facies dependent sequential Gaussian 

simulation with collocated cokriging using well data and seismic data. The reservoir has 70 

producers and 16 injectors. Most injection wells are located peripherally with respect to 

production wells (Fig.  3.1). 

 
3.4   Approach for Data Integration 

We attempted two different methods to integrate water cut data into fine scale geologic model 

for the reservoir. The first method is a two-step approach that utilizes an upscaled model for 

production data integration and then propagates the changes in permeability to the fine scale 

model via downscaling. It is computationally efficient because the production data inversion is 

performed using the upscaled model and thus, requires relatively few unknown parameters. This 

method takes about 6 hours in a PC. The second method is a single-step approach that performs 

direct integration of production data into the fine scale model. This is more time consuming and 

takes about 20 hours in a PC. Although both the methods result in the same general trend in 

permeability changes, the two-step approach appears to be more stable and is our preferred 

method in this case. 

 
3.4.1 Two Step Approach 

This approach consists of the following major steps: 

Step I: 

• Upscaling to set up coarse scale model,  

• Inversion to generate coarse scale model conditioned to water cut response at wells, 

 

Step II: 

• Downscaling to update the fine scale model based on permeability changes in the 

upscaled model,  

• Fine scale simulation with the updated model.  
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Figure 3.1- Well Location Map of the Giant Middle Eastern Field. The Dotted Line Denotes the 

Simulation Area. 
 

 

 

 
 

 

 

 

 
 

 

 

                            (a) Porosity                                                      (b) Permeability 

Figure 3.2 - Cross Section Map of Porosity and Permeability Model Based on Full Geologic 

Model (128x160x128). (a) Porosity, (b) Permeability.  
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3.4.2   Setup of Coarse Scale Model 

In coarse scale model, we take into account the following elements: 

1. Vertical Upscaling 

For the preliminary simulation studies to investigate the flow characteristics in the reservoir 

(Fig. 3.1), we performed only vertical upscaling of geologic model (128x160x128: 49 zones) 

into 13 layer model. Upscaled model comprises 13 zones. The areal dimensions of the upscaled 

model for reservoir simulation were kept the same as the geologic model dimensions (250 

meters by 250 meters) to avoid relocation of wells. The vertically upscaled model combines 

several geologic layers into one simulation layer. Because the lower part of the reservoir 

consists of tight and non reservoir formation, a relatively large part of the formation was 

grouped into an upscaled block. Figs. 3.2 and 3.3 show the detailed geologic model and the 

corresponding upscaled model. 

While porosity is calculated using bulk-volume-weighted arithmetic averaging to preserve 

the pore volume of the original fine scale model, upscaled permeabilities are determined by the 

combination of arithmetic and harmonic averaging. To consider the effect of flow direction, 

arithmetic averaging is used for x-directional upscaled permeability, Kx and harmonic 

averaging for z-directional upscaled permeability, Kz. 

2. Removal of Aquifer Blocks 

In upscaled simulation model, we also eliminate the grid blocks in the aquifer region, which 

helps reducing the number of grid blocks and the computational cost significantly. Note that 

removal of some of the aquifer blocks resulted in a large reduction in the number of grid blocks 

from 2.6 million down to 1.0 million without upscaling in vertical direction. Therefore, though 

above two steps, the resulting simulation model becomes 72x100x13 (93600 cells). In Fig. 3.1, 

the dotted line indicates the simulation model region. 

3. Boundary Condition for Aquifer Flux 

To consider aquifer flux in the simulation, we tried two approaches: pressure-specified 

imaginary injection wells and PV multipliers. First, we put imaginary injection wells along the 

boundary to emulate the aquifer influx in the reservoir. This approach entails specifying 

pressure constraints at the imaginary injection wells. In practice it is very difficult to obtain 

proper pressure values at the boundary. On the other hand, to account for the unknown aquifer 

size, we can use pore volume multiplier in aquifer regions to obtain reasonable overall field  
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Figure 3.3 - Cross Section Map of Porosity and Permeability Model Based on Upscaled Model  

(128x160x13) from Geologic Model. On the Left is Porosity, On the Right is Permeability 

(md). 
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Figure 3.4 - Relative Permeability Curves.  Swi = 0.091, Sor = 0.12, Krwendpt = 0.85, no=4.5, 

nw = 3. 
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Figure 3.5 - Facies Based J-Curves for Initial Water Saturation Estimation.  
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                               (a)                                                     (b) 

 
 
Figure 3.6 - Fieldwide Facies Model and N-S Cross Section of the Facies Model. (a) 3-D View, 
(b) N-S Cross Section. 
 

 
 
 
 
 

Figure 3.7 - Initial Water Saturation Distribution of Geologic Model. On the Left is Fine Scale 

Model, On the Right is Upscaled Model. 
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(a)                                                            (b) 
 
Figure 3.8. - N-S Cross Section of Initial Water Saturation of the Geologic Model. (a) Upscale 

Model, (b) Fine Scale. 
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pressure and fluid flow rates. In this study, we used 20 PV multiplier at the edge grid blocks 

along three sides: North, East, and West. 

4. Initial Water Saturation 

To preserve the OOIP, water saturation for the upscaled model is calculated using a pore-

volume weighted arithmetic averaging of the initial water saturation (Eq. 3.1) in the fine scale 

geologic model as follows: 

 

iViiPVnb

i
iPV

nb

i
iPViSw

wS φ=

∑
=

∑
== ,

1

1       (3-1) 

 
To initialize water saturation of the fine scale geologic model, we used given relative 

permeability curves (Fig. 3.4), J curves (Fig. 3.5) and facies information (Fig. 3.6). The 

procedure for computing the Swi in Eq. 3.1 consists of the following two steps: 

• The J-function value was computed from the subsea depth, porosity, and permeability at 

each cell by the following equation. It was assumed that the capillary pressure at the 

WOC (8230 subsea depth in the model) was zero. 

 

φθσ
ρρ kowH

wSJ
cos144

)(2166.0)( −=       (3-2) 

where σ  cosθ  = 18.5 dynes/cm,  ρw = 61.582 lb/ft3, and ρo =  45.979 lb/ft3.  

• Based on the J vs. Sw curves at each facies, this J-value was then used to determine the 

initial water saturation at that cell location.  

Note that scale geologic model with 6 facies-specific J curves yields 7.93 MMSTBOOIP. 

Figs. 3.7 and 3.8 show the initial oil saturation of fine scale model and upscaled model and as 

expected, they look very similar. 

5. Gravity Effect and Compressibility of Fluid 

Commonly, streamline model is used for incompressible multiphase flow in porous model. 

But when the effect of compressibility of fluid is too significant to ignore, we should take into 

account it during pressure solving.  In this study, we have 16.1x10E-6 psi-1 oil compressibility 

and 3.3x10E-6 psi-1 water compressibility at reservoir condition. Also, in gravity dominated  
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waterflood displacement, it is important to account for multiphase gravity effects in the 

simulation. The gravity force caused by the density difference of oil and water (( ρw = 61.582 

lb/ft3, and ρo = 45.979 lb/ft3) may affects final saturation distribution and water-cut responses.  

Thus, in this study, we extend a streamline-based history matching technique to include gravity 

and compressibility of fluid.  

6. Pressure-Update Schedule 

Another important factor that affects the computational cost is the number of pressure 

updates that will be used in simulation process. Therefore, we need to time-average the well rate  

schedules in order to reduce the number of pressure updates in the simulation without 

compromising the accuracy of the simulation. Actual well production rates were averaged with 

the consideration of major events in well flow rate, schedule and completion data. To account 

for the changing production rates and different starting times of the injection and production 

wells, 34 pressure updates were defined during 1/1/73 to 4/1/2001. Fig. 3.9 shows the actual 

well rates and the averaged production rates for these 34 time periods. Also we performed a 

sensitivity study on the number of pressure updates. In terms of water cut matches and 

saturation distribution, a model with 45 pressure updates does not show significant changes.  

3.4.3  Results  

With coarse scale model, we performed two case studies to investigate the impact of gravity on 

flow characteristics in the reservoir. In Case 1, we did not consider gravity segregation 

phenomena during simulation. This case is computationally efficient because of not calculating 

saturation change due to gravity force. Case 2 involves the gravity effect to account for gravity 

segregation via operator splitting, which increases computation time requirements. 

 
Case 1: Without Gravity Effect 

Fig. 3.10 shows the pressure distribution at three different times. As expected, in the central 

region of the reservoir where most production wells are located, a significant pressure reduction  
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Figure 3.9 - Examples of Actual Flow Rates vs. Averaged Flow Rates Used for Streamline 

Simulation. 
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Figure 3.10 - Pressure Distribution at Three Different Times for Layer 1, 4 and 8 without 
Gravity. 

(a) at 60 Days 

(b) at 5350 Days 

(c) at 10290 Days 
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Figure 3.11 - Time of Flight Distribution at Three Different Times for Layer 1, 4 and 8 without 
Gravity. 

(a) at 60 Days 

(b) at 5350 Days 

(c) at 10290 Days 

TravelTime.   0.001                       50000                        100000 
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Figure 3.12 -  Water Saturation Distribution at Three Different Times for Layer 1, 4 and 8 
without Gravity. 

(a) at 60 Days 

(b) at 5350 Days 

(c) at 10290 Days 
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Figure 3.13 - Areal Map of Streamline Distribution at Three Different Times without Gravity. 

(a) Initial at 60 Days, (b) Middle at 5350 Days,  (c) End at 10290 Days. 
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Figure 3.14 - Examples of Water Cut Responses without Gravity Effect. 
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Figure 3.14  Continued. 
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is observed. Fig. 3.11 indicates the streamline Time of Flight (TOF) distribution which also 

reflect the gross fluid movement in the reservoir. In the southern part of reservoir, we have high 

TOF values compared to northern part because of low permeability values. As the well 

configuration changes, TOF distribution also varies. As the water flooding proceeds, the 

unswept area in the reservoir becomes smaller. The water saturation distribution at three 

different times are shown Fig. 3.12. As the water flooding proceeds, most area except of the 

southern part of the reservoir was swept. In the final stage of production, the flood front is 

apparently formed in the middle of the reservoir. The streamline distribution during three stages 

of production (Fig. 3.13) provides a convenient way to observe injector/producer contributions 

and make subsequent adjustments to the allocation factors. Also, in Fig. 3.13 (a), the 

compressibility effects are clearly apparent in the streamlines at 60 days for the single producer 

that has no aquifer or injection support. As mentioned above, once pressure is updated due to 

infill wells, well conversions, mobility change and production rates changes of the wells, a new 

set of streamlines is computed. Then the simulator maps the locations of the saturation fronts in 

old streamlines onto new streamlines. Fig. 3.14 shows the water-cut responses at 12 producers.  

 
Case 2: With Gravity Effect 

This case includes the impact of gravity in reservoir simulation and is thus more realistic 

representation of the reservoir flow. For this reservoir, we find that gravity over-ride is 

significant and the gravity impacts the water movement and saturation distribution. We use 

operator-splitting technique to perform streamline simulation with gravity, as described in 

Chapter II. 

The broad trends in pressure distribution (Fig. 3.15), Time of Flight distribution (Fig. 3.16) 

and the water saturation distribution at three different times (Fig. 3.17) and the streamline 

distributions (Fig. 3.18) are similar to the results of Case 1. However, the gravity causes water-

oil segregation and results in localized changes in saturation distribution which in turn affects 

the water-cut at the wells. In fact, inclusion of gravity effect in streamline simulation improves 

the water-cut matches, as can be seen in  Fig. 3.19 compared to Fig. 3.14.  

 
3.4.4   Conditioning Coarse Scale Model to Water Cut Responses 

We performed a streamline-based inversion to generate a coarse scale model conditioned to 

water cut responses. In the model, compressibility effects and aquifer support are included. The 

production data integration was carried out using water-cut data at 48 wells, which show  
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Figure 3.15  - Pressure Distribution at Three Different Times for Layer 1, 4 and 8 with Gravity. 

(a) at 60 Days 

(b) at 5350 Days 

(c) at 10290 Days 

Pr.   2500                       3500                        4500 
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Figure 3.16  - Time of Flight  Distribution at Three Different Times for Layer 1, 4 and 8 with 

Gravity. 

(a) at 60 Days 

(b) at 5350 Days 

(c) at 10290 Days 
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Figure 3.17 - Water Saturation  Distribution at Three Different Times for Layer 1, 4 and 8 with 

Gravity. 

(a) at 60 Days 

(b) at 5350 Days 

(c) at 10290 Days 
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Figure 3.18 - Areal Map of Streamline Distribution at Three Different Times with Gravity. (a) 

Initial at 60 Days, (b) Middle at 5350 Days,  (c) End at 10290 Days. 
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Figure 3.19 - Water Cut Responses with Gravity Effect. 
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Figure 3.19  Continued 
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significant water cut responses. During inversion, the range of permeability was chosen to be 

the same as that in the static model. As in the preliminary simulation study, we examine the 

impact of gravity using two case studies. 

 
Case 1: Without Gravity Effect 

As mentioned in Chapter II, our approach to integration of production data into reservoir 

models is analogous to seismic waveform inversion. Thus, we first ‘line-up’ the observed and 

computed production response at all the wells by minimizing the misfit between the observed 

and calculated ‘first arrival’ or breakthrough times. Fig. 3.20 illustrates the observed and 

calculated breakthrough times for all 48 producers at four different iterations. As the number of 

iteration increases, the scatteredness of the points significantly decreases which indicates the 

reduction of travel time misfit. We can see that at 6th iteration, the breakthrough times for all the 

wells are now in good agreement. Another important benefit of the travel time matching is that 

it prevents the solution from being trapped by secondary peaks in multi-peaked production 

responses that are commonly associated with field data. It is worth-mentioning here an 

important practical aspect of the travel time matching. Since the observation data usually 

contains measurement error, we do not have to make an effort to achieve the perfect match of 

breakthrough times. The water cut matches at individual wells are shown in Fig. 3.21. About 

70% of the wells exhibited good to moderate matches in the overall production history. Fig. 

3.22 indicates the pressure distribution changes at two different time steps with initial model 

and model after inversion.  In Fig. 3.23 water saturation distribution changes at two different 

time steps are shown. To demonstrate the permeability change after inversion, a "difference 

model" was constructed by subtracting the inversion generated model from the initial geologic 

permeability model (Fig. 3.24). The computation time for the travel time match was just 4.5 hrs 

on the Pentium IV. 

 
Case 2: With Gravity Effect 

It is very important to consider the impact of gravity on the displacement of oil by water 

drive if the gravitational forces are not negligible in production mechanism. Fig. 3.25 indicates 

breakthrough times match at four different iterations. At 6th iteration, the breakthrough times for 

48 producers are now in good agreement. As concluded in simulation study with upscaled 

model, the consideration of gravitational drainage effect in the simulation substantially  
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Figure 3.20 - Travel Time Match at Four Different Iterations without Gravity. 
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Figure 3.21 - Water Cut Matches for Upscale Model without Gravity Effect. 
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Figure 3.21  Continued. 
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Figure 3.22 - Changes in Pressure Distribution at Three Different Times without Gravity. (a) at 

60 Days from Initial Model, (b) at 10290 Days from Initial Model, (c) at 60 Days from Final 

Model, (d) at 10290 Days from Final Model. 
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Figure 3.22  Continued. 

  

  

(c)  at 60  Days for Layer 1, 4 and 8. 

(d) at 10290  Days for Layer 1, 4 and 8. 
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Figure 3.23 - Changes in Water Saturation Distribution at Three Different Times without 

Gravity. (a) at 60 Days from Initial Model, (b) at 10290 Days from Initial Model, (c) at 60 Days 

from Final Model, (d) at 10290 Days from Final Model. 
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Figure 3.23  Continued. 
 

 

 

 

 

  

   

(c) at 60  Days for Layer 1, 4 and 8. 

(d) at 10290  Days for Layer 1, 4 and 8. 
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Figure 3.24 -  Permeability Change (md) from the Initial Model for Layer 1, 4 and 8 without 

Gravity. 

 
 
  

 
 
Figure 3.25 – Travel Time Matches at Four Different Iterations with Gravity. 
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Figure 3.25  Continued. 

 
 
 
 
 

 
Figure 3.26 - Water Cut Matches for Upscale Model with Gravity Effect. 
 

After 6th Iteration

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000
Observed Breakthrough Time, Days

C
al

cu
la

te
d 

B
re

ak
th

ro
ug

h
Ti

m
e,

 D
ay

s

After 4th Iteration

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000
Observed Breakthrough Time, Days

C
al

cu
la

te
d 

B
re

ak
th

ro
ug

h 
Ti

m
e,

 
D

ay
s

Well # 74

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 2000 4000 6000 8000 10000 12000
Time, Days

W
at

er
-C

ut

Actual WC
Cal. WC - Initial
Cal. WC - 6th iter

Well # 48

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 2000 4000 6000 8000 10000 12000
Time, Days

W
at

er
-C

ut

Actual WC
Cal. WC - Initial
Cal. WC - 6th iter



 

 

68

 
Figure 3.26  Continued. 
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Figure 3.26  Continued. 
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Figure 3.27 - Changes in Pressure Distribution at Three Different Times with Gravity. (a) at 60 

Days from Initial Model, (b) at 10290 Days from Initial Model, (c) at 60 Days from Final 

Model, (d) at 10290 Days from Final Model. 
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(a) at 60  Days for Layer 1, 4 and 8. 
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71

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3.27  Continued. 

 
(c) at 60  Days for Layer 1, 4 and 8. 

(d) at 10290  Days for Layer 1, 4 and 8. 
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Figure 3.28 - Changes in Water Saturation at Three Different Times with Gravity. (a) at 60 

Days from Initial Model, (b) at 10290 Days from Initial Model, (c) at 60 Days from Final 

Model, (d) at 10290 Days from Final Model. 
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Figure 3.28  Continued. 

 

 

(c) at 60  Days for Layer 1, 4 and 8. 

(d) at 10290  Days for Layer 1, 4 and 8. 
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Figure 3.29 - Permeability Change (md) from the Initial Model for Layer 1, 4 and 8 with 

Gravity. (from Left to Right). 
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improves the water-cut matches (Fig. 3.26). In Fig. 3.27, Fig. 3.28 and Fig. 3.29, pressure, 

water saturation, and changes in permeability distribution are shown. For this example with 

gravity option, the computation time requirement was less than 6 hrs in a PC.  

 
3.4.5 Downscaling 

Permeability changes in the upscaled model that occurred during the inversion process were 

transferred to the fine-scale model via a downscaling. A simple procedure based on 

permeability multipliers computed from the ratio of the grid-block permeabilities of the 

conditioned and unconditioned upscaled models was used to adjust the permeabilities in the 

fine-scale model. Finally, the permeability changes were compared with the facies map to 

examine any underlying trends. Fig. 3.30 indicates permeability changes in fine scale model. 

Fig. 3.31 compares the permeability change from the initial model with facies distribution at 

different layers in fine scale model, mainly located in between the upper and the middle region 

of the reservoir. As shown in Fig. 3.31, the trends of permeability changes are seen to follow the 

same trends as the facies distribution. An examination of the permeability changes appears to 

indicate that most of the dominant trends are along the ‘good’ facies.  This is consistent with 

prior observations and has been found to be geologically realistic. 

 
3.4.6 Finescale Simulation with the Updated Model 

The permeabilities in the x- and y-directions were assumed to be same. Since previous reservoir 

simulation study 31 concluded that the ratio Kz/Kx=0.2, produced a reasonable pressure 

distribution and matched water breakthrough, we used the same ratio in fine scale streamline 

simulation model.  In the fine scale simulation model, we used 20,000 PV multipliers along 

three edges.  The pressure distribution are shown in Fig. 3.32. At different time steps, the 

distribution of streamline (Fig. 3.33), Time of Flight (Fig. 3.34) and Saturation (Fig. 3.35) are 

demonstrated.  In Fig. 3.36, water cut matches compared to the observed responses are shown. 

 
3.4.7 Direct Integration into the Finescale Model 

In oil field situations, very often we have a large number of unknown parameters and limited 

measurement with error. Thus, inverse problem tends to be ill-posed which solution does not 

satisfy three conditions: Existence, Uniqueness, Stability. Especially since inversion of 

multiphase production data in highly non-linear in nature, it is easy for the solution to be  
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Figure 3.30 - Permeability Change (md) from the Initial Model in Fine Scale Model. 
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Figure 3.31- Comparison of Permeability Change (md) from the Initial Model (Left) and Facies 

Distribution (Right) at Different Layers in Fine Scale Model. 
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Figure 3.31 Continued. 
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Figure 3.31 Continued. 
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Figure 3.31 Continued. 
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Figure 3.32 - Initial (at 60 Days) and  Final (at 10290 Days) Pressure Distributions for Layer 10, 

50 and 70 for Fine Scale Simulation. 
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Figure 3.33 - Areal View of Streamline Distributions for Updated Model for Fine Scale 

Simulation. 
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Figure 3.34 - Time of Flight Distributions at Initial and Final Time for Layer 10, 50 and 70 for 

Fine Scale Simulation. 
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Figure 3.35 - Saturation Distributions at Initial and Final Time for Layer 10,50 and 70 for Fine 

Scale Simulation.  
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Figure 3.36 - Water Cut Matches for Updated Fine Scale Model. 
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Figure 3.36  Continued. 
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entrapped into numerous local minima in the objective function. Thus proper parameterization 

based on data resolution greatly facilitates the inversion performance to circumvent the problem 

associated with the ill-posed nature of the inverse problem and the difficulties with the existence 

of local minima.   

In this section, we performed a direct fine scale inversion with initial fine scale geologic 

model. In that case, to speed up inversion, we did not take into account for gravity effect during 

streamline simulation. Fig. 3.37 indicates the progressive travel time misfits reduction at 

different iterations. The water cut matches at individual wells are shown in Fig. 3.38.  Fig. 3.39 

shows the changes of permeability form the initial model.  

The computation time for this example with 0.95 million grid cells and 34 pressure updates 

was about  20 hours  in a PC, even if we ignore the gravity effect in the forward model. Table 

3.1  summarizes overall CPU time consumption of the two approaches.  

 

3.5 Statistics after Inversion 

We examined the impact of inversion on the permeability distribution by comparing the 

statistics of the initial and the inverted permeability fields. As indicated in Fig. 3.40, the 

histograms of both the models are almost identical in terms of the median and the upper and the 

lower quantiles of permeability. In other words, the shape of the distribution has essentially 

remained unchanged. The mean permeability, however, is slightly higher. This is primarily 

because integration of production data has resulted in flow channels and preferential flow paths 

with high permeabilities. Note that our dynamic data integration approach is designed to 

preserve the prior geologic model.  Thus, some of the high permeabilities (of the order of 30000 

md) in the original geologic model are also present in the final model. 

 

3.6 Comparison with Eclipse 

Streamline models offer an efficient means for flow simulation and dynamic data integration to 

high-resolution geologic models. However, such models are not a substitute for full physics of 

reservoir. To maintain the reasonable balance between computational efficiency and the 

modeling of physical processes, in this study we used a streamline model including gravity, 

compressibility of fluids, and aquifer flux with PV multipliers. As a final step we compared our 
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streamline simulation results with a commercial numerical simulator (ECLIPSE). Figure 3.41 

shows water cut responses from the inverted permeability field using the streamline model and  

 
 

 
 
 

 
Figure 3.37  - Travel Time Match at Four Different Iterations for Direct Integration. 
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Figure 3.38 - Examples of Water Cut Matches from Direct Fine Scale Integration. 
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Figure 3.38  Continued. 
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Figure  3.39  - Change in Permeability (md) for Direct Fine Scale Integration for Layer 10, 50 
and 70. 
 

 

Table 3.1 – Comparison of CPU Time for Parameter Estimation. 
 
 

Model Case CPU Time (Hrs) 
With Gravity 6.00 Upscale 

Without Gravity 4.50 
Fine Scale Without Gravity 20.00 
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                                                                           (a) 
 
Figure 3.40 - Histogram of Two Models. (a) Initial Permeability Field and (b) Inverted 

Permeability Field. All Units of Permeability in md. 
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                                                                         (b) 

Figure 3.40  Continued. 
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Figure 3.41 - Examples of Comparison of Water Cut Match with ECLIPSE. 
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Figure 3.41  Continued. 
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Figure 3.42 - Comparison of Water Saturation Distributions (10290 days) Estimated by 

ECLIPSE and Streamline Simulation with Initial Permeability.   
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Figure 3.43 - Comparison of Water Saturation Distributions (10290 days) Estimated by 

ECLIPSE and Streamline Simulation with Inverted Permeability.   
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the ECLIPSE. For comparison purposes, we have also superimposed the field data on this plot. 

Overall, we see a reasonable agreement between the streamline results, ECLIPSE results and 

the field data. Note that for some of the wells there are differences between the streamline and 

ECLIPSE results.  In particular, the ECLIPSE time-step is limited by the CFL criterion and thus 

some of the results tend to show instability in water-cut for some of the wells.  Also, unlike the 

streamline simulator, the ECLIPSE results will also be impacted by numerical dispersion and 

this causes the water breakthrough to occur earlier in some cases compared to the streamline 

simulator.  Figs. 3.42 and 3.43 compare the water-saturation distribution for various layers in 

the initial and final permeability distribution from the streamline simulator and the ECLIPSE.  

Again, there seems to be a general agreement in the overall trend in the saturation distribution 

from both the models. 

 

3.7 Chapter Summary 

We have proposed a two-step approach to production data integration into high-resolution 

geologic models. The approach has been successfully applied to giant middle eastern reservoir.  

Our approach is very general and can account for gravity and changing field conditions such as 

rate changes, infill drilling and reperforations via pressure updating.  Also we have accounted 

for rock and fluid compressibilities as well as aquifer expansion during streamline simulation.  

To our knowledge, this is the first time streamline-based production data integration has been 

carried out under such general conditions. In this field application, almost 70% of the wells 

showed significant improvement in the water-cut matches. An examination of the saturation 

distribution in the reservoir from the simulation indicated that our results are consistent with the 

field surveillance data and appear to represent the gross fluid movement in the reservoir. 

Finally, a comparison of the streamline model with a commercial numerical simulator 

(ECLIPSE) showed that the water-cut matches are preserved during the full-physics numerical 

simulation. 

Some specific findings from this study can be summarized as follows: 

1. The proposed approach has accounted for the detailed rate schedule to account for infill 

drilling, reperforations and significant rate changes using 34 pressure updates. 

2. Gravity effects have been included in the modeling and appear to have a significant 

impact on the results. 
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3. Compressibility and aquifer influx were incorporated in order to obtain pressure history 

consistent with the field observations. 

4. The two-step approach (upscaling-downscaling) appears to be robust, computationally 

efficient (about 6 hrs in a PC) and result in significant improvement in the production 

history match. 

5. Almost all (about 90%) of the wells showed improvement in the breakthrough time 

matches. 

6. About 70% of the wells exhibited good to moderate matches in the overall production 

history. 

7. An examination of the permeability changes appears to indicate that most of the 

dominant trends are along the ‘good’ facies.  This is geologically consistent and appears 

to confirm prior observations. 

8. The permeability model derived from the production data integration should 

significantly reduce the cycle time for detailed full-physics history matching. 

9. The wells that did not show improvements in matching appear to be the ones with 

incomplete or inconsistent data. 

10. Further improvements in matching can also be obtained by adjusting the relative 

permeability curves (not attempted here). 
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CHAPTER IV 

ASSISTED HISTORY MATCHING  

 

4.1  Introduction 

This chapter discusses the development and implementation of a new assisted history matching 

technique which combines the efficient sensitivity computing procedure using streamline 

simulator with the generality of a finite difference simulator. Some of the previous assisted 

history matching procedures using conventional simulator as forward model makes use of 

manual adjustment of parameters to obtain history match. However, the present procedure 

makes use of an automated routine to combine the sensitivity calculations along a streamline 

with the pressure and saturation derived from a finite difference simulator. This approach makes  

the history matching procedure more robust, general and at the same time computationally 

efficient. 

 

4.2   Methodology 

This proposed method for assisted history matching makes use of the efficiencies of both 

streamline based sensitivity computation and the ability to include detailed physics in finite 

difference simulation techniques. The basic philosophy of the production data integration 

remains the same, as discussed in Chapter II.  

Streamline based flow simulation technique follows an IMPES (IMplicit Pressure Explicit 

Saturation) scheme. After obtaining the pressure solution, velocity for fluid phases in all 

coordinate directions are computed. Then the total phase velocity is used to trace the trajectory 

of a streamline. In the present method, instead of solving for pressure in the streamline 

simulator itself, we use a commercially available finite difference simulator to obtain the 

pressure and flux distribution at the start of each time step (which corresponds to every pressure 

update in the streamline simulator). This pressure field from the finite difference simulator is 

then used as input into the streamline simulator. In particular, fluid fluxes obtained from the 

finite difference simulator is converted to total phase velocity and is used to trace the trajectory 

of a streamline. Time of flight calculations along the streamline trajectory are carried out in the 

same manner based on the algorithm proposed by Datta-Gupta and King 8.  

A working flowchart of the process is presented in the Fig. 4.1 
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Figure 4.1 - Flowchart for Assisted History Matching. 
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There are two ways that the information from the finite difference simulator could be used 

for computation of the sensitivities. 

1. The water saturation from the finite difference simulator (obtained at the same time step 

as pressure and flux) can be mapped onto the streamlines. We calculate the saturation 

propagation along the streamline to obtain production response at the wells. This 

procedure uses the finite difference saturation field, but computes the saturation 

propagation and water cut sensitivities along the streamline with streamline 

formulations. 

2. We can use both water saturation and production response (water cut information) from 

the finite difference simulator. We can then use these information for water cut 

sensitivity calculations. 

In the above procedure, it should be noted that to obtain the pressure, saturation and flux 

information from finite difference simulator at the start of each time period (corresponding to 

each streamline pressure update) for entire simulation time requires only one finite difference 

simulation in each iteration. The information written out from the finite difference simulation 

could be done in a very systematic manner so that it can be easily read from the streamline 

simulator. 

Once the sensitivities are computed, the production data integration is carried out via 

inverse modeling as discussed in Chapter II. The iterative inversion algorithm generates 

permeability multipliers which are used to modify the initial geologic model. 

 

4.2.1 Comparison of Velocity Fields 

As a first step to use the information from finite difference simulator into the streamline 

technique, comparison of the velocity fields was derived from finite difference and the 

streamline simulator carried out.  

1. A 21 x 21  synthetic example for a 5 spot pattern was used to generate the velocity 

fields in x-direction from both streamline and finite difference simulators. Fig. 4.2 

shows the velocity fields for both simulation techniques. It could be observed that 

both velocity fields are very similar in magnitude. 

2. Velocity fields in x-direction were generated for the North Robertson Unit field 

example. NRU has 27 producers and 15 injectors and the details for the field can be  
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Figure 4.2  - Velocity Comparison for the Synthetic Example. On the Top is from Streamline 

Simulator, On the Bottom is from Eclipse. 
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Figure 4.3  - Velocity Comparison for NRU Field Example. On the Top is from Streamline 

Simulator, On the Bottom is from Eclipse. 
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                                                (a) before Infill 

                                                     (b) after Infill 

 

Figure 4.4 -  Well Pattern and Reference Permeability Field for the Synthetic Example. Well # 9 

is Injection Well. 
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found in the Pedibholta et al.12  Fig. 4.3 shows the velocity fields for both simulation 

techniques. It could be observed that both velocity fields are very similar in magnitude. 

Changing velocity conditions arising from rate changes or infill drilling are accounted for in 

the usual manner, i.e., via  pressure updating followed by regeneration of the streamlines and 

reinitialization of the saturations along the streamlines. 

 

4.3 Assisted History Matching : A Synthetic Example with Infill  Wells 

This example consists of a mesh size of 21x21x1 with a total of 441 grid cells. Four  infill wells 

introduced after initial 300 days of production. Fig. 4.4 shows that reference permeability field 

and well locations. We used uniform initial permeability field for the assisted history matching 

purpose. 

We carried out assisted history match for 600 days to reproduce the water cut response from 

the reference model. The assisted history match approach included the integration of water cut 

data obtained from ECLIPSE run. Water cut response match obtained from the initial model and 

final model are presented in Fig. 4.5. As one might expect, there is significant improvement in 

the match compared to the initial model. Initial and final permeability multipliers are presented 

in Fig. 4.6. It can be observed that there is maximum variation in permeability multipliers after 

first iteration. Fig. 4.7  shows reference and the final permeability field which clearly indicates 

that use of information from finite difference simulator contributes to significant improvement 

in the final match of the water cut responses. 

Fig. 4.8 shows the initial and final travel time match for the above case and Fig. 4.9 shows 

the reduction in errors vs. iterations. It can be observed that the reduction in error vs. iteration 

for assisted history matching is very rapid with most of the reduction taking place in the first 6 

iterations. 

 
4.4 Assisted History Matching : Field Applications 

4.4.1 Goldsmith Field Example 

We applied our approach to water flooding in a CO2 pilot project area in the Goldsmith San 

Andres Unit (GSAU), a dolomite formation located in west Texas. The pilot area consists of 

nine inverted 5-spot patterns covering around 320 acres with an average thickness of 100ft and 

has over 50 years of production history prior to CO2 project initiation in Dec. 1996. Fig. 4.10  
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                            (a) Initial Response                                         (b) Final Response 

 

Figure 4.5  - Water Cut Response from Initial and Final Model for Synthetic Example. 
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                                     (a) Initial                                                  (b) Final 

 

Figure 4.6 - Initial and Final Permeability Multipliers for the Synthetic Example. 

 

 

 

 

 

 

 

 

 

 

                                     (a) Initial                                                  (b) Final 

 

Figure 4.7 - Initial and Final Permeability Distribution for the Synthetic Example. 
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                           (a) Initial Match                                               (a) Final Match 

 

Figure 4.8 - Initial and Final Travel Time Match for the Synthetic Example. 

 

 

Figure 4.9 - Reduction in Travel Time RMS Error and Total RMS Error for Different Iterations 

for the Synthetic Example. 
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Figure 4.10 - Goldsmith Study Area. 
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shows the CO2 pilot project site in the GSAU. Detailed well rates and well schedules have been 

presented by He e. al.  16. We performed a history matching for 20 years of waterflood prior to 

the initiation of CO2 injection. Because of the practical difficulties in obtaining correct 

boundary conditions for the pilot area, extra wells located outside the pilot area were included in 

this study. The extended study area is included 11 water injectors and 31 producers. Among the 

producers within the study area, 9 wells showed significant water-cut response before the 

initiation of the CO2 injection and are used for data integration. To account for the changing 

production rates and different starting times of the injection and production wells, 11 pressure 

updates were used in the simulation. The study area is discretized into 58x53x10 mesh or a total 

of 30,740 grid cells. The initial permeability field is generated via a cloud transform based on 

the porosity-permeability relationship (Fig. 4.11(a)). The porosity field, shown in Fig. 4.14(b), 

is obtained by a Sequential Gaussian Simulation using the well log data and is not altered during 

the inversion.  

We carried out assisted history match integrating  20 years of production response for the 9 

producers for the period May 1968 to Dec. 1989. Fig. 4.12 shows the water cut response 

obtained from initial and final model. Overall, we see a significant improvement in the 

production history match. Fig. 4.13 shows initial and final perm multipliers. The final 

permeability field and the changes from the initial model are shown in Fig. 4.14. Notice that 

because of the ‘norm’ constraint in Eq.(2.18), the changes to the initial permeability model are 

kept to a minimum while matching the production history. This allows us to preserve the 

geologic realism during history matching. Fig. 4.15 shows travel time misfit. Fig. 4.16 shows 

the misfit versus the number of iterations during the inversion. For this field example with 31 

producers, 11 injectors and 11 pressure updates, the computation time requirement was less than 

2 hours in a PC. 

 

4.4.2 Giant Middle Eastern Field Example 

We successfully applied the assisted history matching technique to the large scale field case 

described in Chapter III. It should be noted that here we carried out two step inversion process 

where we first match the travel time and then match the production amplitude responses. Here 

we included gravity and compressibility along with influx from aquifer which is modeled by 

using pore volume multipliers along three sides of the reservoir. We considered the geological 

model shown in Figs. 3.2 to 3.8 in Chapter III. 
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                             (a) Permeability                                                       (b) Porosity 

 
Figure 4.11 - Reference Permeability and Porosity Distribution for Goldsmith Field Example. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  4.12 - Initial and Final Water Cut Matches for Goldsmith Field Example. 
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Figure  4.13 - Initial and Final  Permeability Multipliers for Goldsmith Field Example. 
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                      (a) Reference             (b) Estimated          

                                                                 

                                                   (c ) Change in Permeability (Log Difference) 

Figure  4.14 -  Reference, Final and Change in Permeability for Goldsmith Field Example. All 

in Log Scale. 
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                                  (a) Initial                                                         (b) Final 
 
Figure 4.15 - Initial and Final Travel Time Match for Goldsmith Field Example. 

 

Figure 4.16  - Reduction in Error for Goldsmith Field Example. 
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                                                             (a) Initial Match 
 

 
                                                            (b) Final Match 
 
 
Figure  4.17 - Initial and Final Travel Time Matches for Giant Middle Eastern Field Example. 
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Figure  4.18 - Reduction in Travel Time RMS Error and Total RMS Error for the Giant Middle 

Eastern Field  Example.  
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                            (a) Initial                                            (b) Final     
 
Figure 4.19 - Initial and Final Permeability Multipliers for the Giant Middle Eastern Field 

Example. 
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Figure 4.20 -  Permeability Difference (md) for the Giant Middle Eastern Field Example. 
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Figure 4.21 - Final Water Saturation Profile for the Giant Middle Eastern Field Example.  
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Figure 4.22 - Examples of Water Cut Match for the Giant Middle Eastern Field Example. 
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Figure 4.23 -  Comparison of Facies Trends with Change in Permeability (md) for Layer 58, 64 

and 67 Respectively from Top to Bottom. Left Hand Side Shows Change in Permeability. Right 

Hand Side Shows Facies Trend. 
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Fig. 4.17 shows the traveltime match for the initial and final model. Fig.4.18 shows the 

reduction in misfit for various iterations. Figs. 4.19 and 4.20 show the initial and final 

permeability multipliers and change in permeability respectively. 

Fig. 4.21 shows water saturation profile at the end of simulation. Corresponding water cut 

response matches are shown in Fig. 4.22 for a few  representative wells. Unlike Goldsmith 

example, the matches here are less satisfactory. However, we can see some improvements in 

history match. 

Fig. 4.23 compares the permeability change from the initial model with facies distribution 

at different layers in fine scale model, mainly located in between the upper and the middle 

region of the reservoir. As shown in Fig. 4.23, the trends of permeability changes are seen to 

follow the same trends as the facies distribution. An examination of the permeability changes 

appears to indicate that most of the dominant trends are along the ‘good’ facies.  This is 

consistent with prior observations and has been found to be geologically realistic. This also 

reflects the trend obtained in Fig. 3.31 in Chapter III. 

This history matching was carried out in a Pentium IV machine in 4.0 hours of CPU time. 

 

4.5 Sensitivity Studies for the History Match Process 

In streamline simulation, saturation is mapped onto the streamline trajectory from the 

underlying grid. Then saturation equations are solved along the streamlines. During this 

saturation advance calculations, a streamline is divided into several nodes based on time of 

flight information. Speed of saturation calculation depends on number of nodes present in the 

streamline. Increasing the number of nodes increases the calculation time but results in 

improved accuracy. On the other hand, decreasing the number of nodes speeds up the 

calculations, but may result in less accurate estimates of saturation. 

This section presents the results obtained by use of decreased number of nodes (nfactor = 1) 

in a streamline and results are compared with all the previously obtained results which use 

almost twice the number of nodes (nfactor = 2).  

 

4.5.1  Goldsmith Field Example 

Fig. 4.24 shows comparison of reduction in misfit for both cases. Fig. 4.25 shows the travel 

time match. Figs. 4.26 through 4.29 show the comparison for permeability multipliers, 

reference permeability and estimated permeability and permeability difference at the end of 
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                                                           (a) nfactor  = 2                                                                     

 

                                                                (b) nfactor = 1 
 

Figure 4.24 - Comparison of Misfit Reduction for Goldsmith Example. (a) nfactor=2, (b) 

nfactor = 1. 
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                             nfactor = 2                                                 nfactor = 1 

 

                                nfactor = 2                                                   nfactor = 1 

 

Figure 4.25 - Comparison of  Initial and Final Travel Time Matches  for the Goldsmith Field 

Example. 
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          (a) nfactor =2                                            (b) nfactor=1 

 

Figure 4.26 - Comparison of Initial Permeability Multipliers for the Goldsmith Field Example. 

(a) nfactor=2, (b) nfactor = 1. 
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                         (a) nfacor = 2                                                   (b) nfactor = 1 

 
Figure 4.27 - Comparison of Final Permeability Multipliers for the Goldsmith Field Example. 

(a) nfactor=2, (b) nfactor = 1. 
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  (a) Reference                     (b) Estimated (nfactor=2)          (c) Estimated (nfactor = 1) 

 

 
 
Figure 4.28 - Comparison of  Estimated Permeability with Reference Model for the Goldsmith 

Field Example. (a) Reference, (b)Estimated with nfactor=2, (c) Estimated with nfactor = 1. All 

in Log Scale. 
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                              (a) nfactor = 2                                       (b) nfactor = 1 

Figure 4.29 - Comparison of Permeability Change for the Goldsmith Field Example. (a) 

nfactor=2, (b) nfactor = 1.  (Not in Log Scale) 
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Figure 4.30 - Comparison of  Initial and Final Water Cut  Matches for the Goldsmith Field 

Example. Left Hand Side with nfactor=2, Right Hand Side with nfactor = 1. 
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history match process. Fig. 4.30 presents the comparison for water cut responses for both cases. 

It should be observed that results are almost identical in both cases, however, time required for 

the case nfactor=1 is 1.19 secs for 1 iteration while for nfactor=2 requires 2.58 secs for one 

iteration. Thus the computation time is reduced by more than 50%. 

 

4.5.2  Giant Middle Eastern Field Example 

Fig. 4.31 compares the reduction in misfit. Fig. 4.32 shows the comparison of travel time 

match for both cases. Figs. 4.33 through 4.35 show comparison for permeability multipliers and 

difference in permeability at the end of history match process. Figs. 4.36 and 4.37 present the 

comparison for final water saturation profiles and water cut responses for both cases. Again, the 

results do not appear to change much by reducing the number of nodes for this case. 

 

4.6 Time Comparison 

Time comparison for different scenarios for Goldsmith and the giant middle eastern field 

examples has been shown in Tables 4.1  and 4.2. It should be observed that significant CPU 

time reduction could be obtained with nfactor=1 for both the cases without much sacrifice of the 

accuracy of the results. 

 

4.7 Advantages of Assisted History Matching 

This is a novel approach and is associated with several advantages: 

• It speeds up the history match process considerably. This can potentially lead to a 

significant savings in time and man power. 

• It allows us to use full physics finite difference simulators while retaining the benefits 

of streamline-based analytic sensitivity computations. 

• Modeling of reservoirs with different shapes and sizes can be carried out easily (e.g. 

corner point geometry, fractured system) because we use a commercial finite difference 

simulator. 

 

4.8 Chapter Summary 

This chapter presents the details of the novel assisted history match approach developed based 

on streamline derived sensitivity computations with input from finite difference simulator. The 

synthetic and field examples show the efficiency of the methodology in terms of robustness, 
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computational time and improved accuracy. Major advantages of the method have been 

outlined. 
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(a)  nfactor  =  2 
 

 
                                                         (b) nfactor = 1 
 
Figure 4.31 - Comparison of  Reduction in Errors for Giant Middle Eastern Field Example. (a) 

nfactor=2, (b) nfactor = 1. 
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                                       (a) nfactor = 2                                                  (b) nfacor = 1 

Figure 4.32  - Comparison of  Initial and Final Travel Time Match for the Giant Middle Eastern 

Field Example. (a) nfactor=2, (b) nfactor = 1. 
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                       (a) nfactor = 2                                 (b) nfactor = 1 
 
Figure 4.33 - Comparison of  Initial Permeability Multipliers for the Giant Middle Eastern Field 

Example. (a ) nfactor=2, (b) nfactor = 1. 

 

                                     

                       (a) nfactor = 2                                    (b) nfactor = 1 
 

Figure 4.34 - Comparison of  Final Permeability Multipliers for the Giant Middle Eastern Field 

Example. (a) nfactor=2, (b) nfactor = 1. 
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                              (a) nfactor =2                                                              (b) nfactor =1 

 
Figure 4.35 - Comparison of Permeability Difference for the Giant Middle Eastern Field 
Example. (a) nfactor=2, (b) nfactor = 1. 
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                               (a)  nfacotr = 2                                    (b) nfactor = 1 
 
Figure 4.36 - Comparison of  Final Water Saturation Profiles for the Giant Middle Eastern Field 

Example. (a) nfactor=2, (b) nfactor = 1. 
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Figure 4.37 - Comparison of  Water Cut Response from Initial and Final Models for the Giant 

Middle Eastern Field Example. Left side  : nfactor=2, Right Side : nfactor = 1. 
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Table 4.1 : CPU Time Comparison for Goldsmith Field Case for Different Scenarios. (Pentium 
IV) 
 

Scenario CPU Time (mins) 

Streamline + Eclipse : nFactor=2 38.70 

Streamline + Eclipse : nFactor=1 17.85 

 

 

 

 

Table 4.2 : CPU Time Comparison for Giant Middle Eastern Field Case (Upscaled Model) 
for Different Scenarios.(Pentium IV) 
 

 

Scenario CPU Time (Hrs) 

Streamline + Eclipse : nFactor=2 4.03 

Streamline + Eclipse : nFactor=1 2.25 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

3 

5.1 Conclusions 

In this work, a streamline based inversion technique has been successfully demonstrated for a 

large scale field application. The streamline based flow simulator was used as a forward model. 

The inversion process involves analytical computations of the sensitivities along the streamlines 

which requires only a single forward run. A two-step approach that utilizes an upscaled model 

for production data integration and then propagates changes to the fine scale model through 

downscaling was developed. The two-step approach appears to be robust, computationally 

efficient (about 6 hrs in a PC) and result in significant improvement in the production history 

match. Almost all (about 90%) of the wells showed improvement in the breakthrough time 

matches. About 70% of the wells exhibited good to moderate matches in the overall production 

history.  

A comparison of the saturation distribution derived from streamline simulation with the 

field surveillance data appear to indicate that the model reproduces the gross fluid movement in 

the reservoir quite well. The waterfront movement and aquifer encroachment are consistent with 

field observations. The model indicates water coning and bypassed oil as observed in the field. 

Also, the unswept areas in the model are consistent with field observations. Finally, an 

examination of the permeability changes resulting from production data integration appears to 

indicate that most of the dominant trends are along the ‘good’ facies. These changes are 

considered geologically plausible and are consistent with prior observations.  

The integrated geological model derived after incorporating the water-cut history should 

significantly reduce the cycle time for full-physics history matching. This is confirmed by 

preliminary comparison of the streamline simulation results with those from a commercial 

numerical simulator (ECLIPSE). The results obtained have demonstrated the accuracy and 

robustness of the inversion methodology with the use of streamline simulator as a forward 

model. 

A novel methodology for assisted history match has been developed and tested for both 

synthetic and field examples. This methodology involves use of a finite difference simulator in 

IMPES mode for obtaining pressure, velocity and water saturation profiles and subsequently 
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using them as input for streamline based dynamic data integration procedure. This results in a 

faster algorithm that incorporates the accuracy of finite difference simulator and estimation of 

sensitivities analytically along the streamlines which in turn reduces the in CPU time 

requirement to complete the history matching process. 

 
The major conclusions of this work are summarized as follows. 

 
1. Use of  Streamline Simulator as Forward Model 

Streamline simulation serves as an efficient forward model for inversion process. It can be 

order of magnitude faster compared to conventional finite difference simulator because of 

decoupling of flow from transport by use of streamline time of flight formulation. 

Streamline simulation technique can also be efficiently applied to changing field conditions 

with rate changes or infill drilling. 

 

2. Analytic Sensitivity Computation Along Streamline  

Streamline simulation technique provides a unique way to estimate the parameter 

sensitivities during inverse calculations. The parameter sensitivities can be calculated 

analytically with single streamline simulation run. This in turn results in significant savings 

in history matching cycle time. We have demonstrated the applicability of the analytic 

sensitivity computation with gravity and changing field conditions. 

 

3. Two Step Inversion Procedure  

Streamline based production data integration follows the simple analogy from seismic ray 

tracing where arrival time is matched first followed by amplitude match. In streamline 

based dynamic data integration process, this involves iterative linearization of the time of 

flight expression about a known initial model based on static data to match the arrival time 

first followed by amplitude matching. The travel time inversion is very robust and is 

particularly well suited for field applications. 

 

4. Streamline Simulation and Large Scale Field Application  

Our results showed that streamline simulation can be very efficiently applied for history 

matching process for large scale field application. The giant middle eastern field example 

presented in Chapter III consisted of 34 pressure updates with infill drilling schedules, 
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gravity and rate changes with 30 years of production and injection history. This study 

utilizes a two-step approach consisting of the following major steps: 

• Upscaling to set up coarse scale model 

• Inversion to generate coarse scale model conditioned to water cut response at wells,  

• Downscaling to update the fine scale model based on permeability changes in the 

upscaled model, and  

• Fine scale simulation with the updated model.  

 

5. Enhancement to Streamline Simulator 

In order to carry out the large scale field application, several enhancement have been 

made to the existing streamline simulator. These include: 

• Boundary Condition for Aquifer Flux 

In order account for the unknown aquifer size, we use pore volume multiplier in 

aquifer regions to obtain reasonable overall field pressure and fluid flow rates. In this 

study, we used a PV multiplier of 20 at the edge grid blocks along three sides: North, 

East, and West. A sensitivity study was carried out to investigate the effect of pore 

volume multipliers on the matching of individual wells before selecting the optimal 

multiplier. 

• Gravity Effect and Compressibility of Fluids 

Commonly, streamline models assume incompressible multiphase flow in the 

reservoir. However, in this study, we accounted for rock and fluid compressibility and 

also aquifer expansion during solution of the pressure equation and also via pressure 

updating and streamline regeneration. The present formaulation accounts for slight 

compressibilities. We used an oil compressibility of 16.1x10E-6/psi and an water 

compressibility of 3.3x10E-6/psi at reservoir condition. We also accounted for gravity 

effects during the simulation via operator splitting. The gravity force caused by the 

density difference of oil and water ( ρw = 61.582 lb/ft3, and ρo = 45.979 lb/ft3) can 

impact the final saturation distribution and water-cut responses.  In this study we, for 

the first time, extend the streamline-based history matching technique to include gravity 

and compressibility of fluids.  
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6. Assisted History Matching Using Streamline Derived Sensitivity Calculation 

This study presents a novel approach for assisted history matching approach which uses the 

streamline simulator for assisted history matching using finite difference simulation models. 

In this approach, pressure and velocity distributions are obtained from finite difference 

simulator and supplied as input for the streamline simulator. Based on these information, 

streamline trajectories are calculated and also sensitivities along the streamline are 

calculated and finally mapped back to the underlying grids for inverse modeling purposes. 

The method has been demonstrated using synthetic and field examples.  

 

7. Reduction in CPU Time for Data Integration 

The Assisted History Matching approach presented in this study has been tested for both 

synthetic and field examples and results in significant savings in history matching cycle 

time. The results presented show that the new approach reduces the computational CPU 

time to almost half without loosing the accuracy of the calculations. 

 
5.2  Recommendations  

Following recommendations could be suggested for the present streamline simulator: 

1. The present streamline code could be modified to take into account the generation of 

streamlines from aquifer, thus taking into account the flow from aquifer. This will 

require small change in algorithm during Buckley-Leverett calculations. 

2. The present could be extended to trace back streamlines from the missing blocks. This 

will require small modifications in the streamline tracing routines, but would result in 

significant improvement in the mapping the water saturation back to the grid blocks at 

the end of simulation. 

3. The present streamline code is capable of handing multiple pressure updates, however it 

appears that during each pressure update, there occurs a slight change in the production 

responses even without any infill wells. The sensitivity or the effect of pressure updates 

on production responses should be studied in more detail. 

The methodology developed for assisted history match procedure is a very promising tool 

for wide variety of applications in reservoir engineering application. In this study, although we 

investigated the applicability of the methodology for synthetic and field examples, however, this 

could easily be extended to some major applications mentioned below: 
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1. Since the method utilizes the input from a finite difference simulator for streamline 

generation, it will be easier to implement different reservoir systems with minimum 

changes to the streamline simulator. This may include modeling complex systems like 

fractured system and system with corner point geometry. 

2. The methodology could be used to extend streamline technology to easily incorporate 

three phase system. At present, streamline simulation could handle two phase system 

very efficiently, however, if total velocity field for all the phases are obtained from 

finite difference module, it would be easier to handle three phase saturation 

calculations. 
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NOMENCLATURE 

4 

 A = large sparse unsymmetric matrix 

 B = bidiagonal matrix 

 C = covariance matrix 

 C = tracer concentration or covariance 

 c = velocity of propagating wave 

 d = data vector 

 D = dispersion coefficient 

 fw = water fractional flow 

 g = forward model or computed model response 

 G = sensitivity matrix 

 I = identity matrix 

 J = objective function 

 k = permeability 

 K = permeability tensor 

 L = spatial difference operator 

 M = number of parameters 

 m = parameter vector 

 N = number of dynamic data observations 

 P = pressure 

 q = source/sink or number of fine grids within a coarse grid 

 s = slowness 

 Sw = water saturation 

  Swi = initial water saturation 

 t = time 

 v = velocity vector 

 ε = residual vector 

 ρ = phase density 

 φ = porosity 
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 λ t = total relative mobility 

 τ = streamline time of flight or phase function 

 ψ, χ = bi-streamline functions 

 γ = weighting factor 
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APPENDIX A 

DYNAMIC MEMORY ALLOCATION 

5 

Modifications to the existing Streamline Simulation code was carried out to take into account 

the dynamic memory allocations thus making it capable of handling large scale simulation 

cases. The existing code was compiled under F77 environment, however to introduce dynamic 

memory allocation for the arrays, F90 is used for the  modified version. 

 

Followings are the major changes made to the existing code: 

 
1. All the arrays of the parameter file 'flocom' were defined separately in a module 

(called  module Dynamic in the file Module.f90) as dynamic arrays using F90 

syntax as below. 

 

integer, dimension(:),allocatable,save::iwp 

real*8, dimension(:,:,:),allocatable,save::tx 

 

2. The dynamically defined arrays are then allocated memory at run time using the 

F90 syntax as below: 

 
! comment - allocate the arrays 
if(.not. allocated(tx) .or. .not. allocated(ty) .or.& 
      .not. allocated(tz)) then 
 
       allocate (tx(ndxp,ndyp,ndzp),  STAT=ierr1) 
        allocate (ty(ndxp,ndyp,ndzp),  STAT=ierr2) 
       allocate (tz(ndxp,ndyp,ndzp),  STAT=ierr3) 
     
     if(ierr1.ne.0 .or. ierr2.ne.0 .or. ierr3.ne.0) then 
           write(*,*) 'Memory problem for trans arrays ...' 
           stop 
        endif 
  endif  
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It should be noted that the array dimensions for the above arrays are passed only during run 

time and once their role in the simulation run is over (for some arrays this happens before the 

end of complete simulation run), the arrays are destroyed as below: 

 
   if(allocated(tx))   deallocate(tx) 
   if(allocated(ty))   deallocate(ty) 
   if(allocated(tz))   deallocate(tz) 
 
 

Two notable differences of using F90 compared to F77 compiler can be observed in the 

above procedure 

• The comment line in F90 starts with an '!' sign rather than  'c'  or 'C' as in F77 

• The continuation of a code line is maintained by the use of an '&' sign at the end of 

the first line rather than using an integer value at the 6th column of the second line 

as in F77. 

 
Followings are the major points to be noted : 

 
1. A new subroutine called 'DynamicSubrouitnes.f90' has been added to the 

code where allocation and deallocation of the arrays are taken care of.  

2. Local arrays used in a particular subroutine are defined and destroyed in the 

particular subroutine in the same manner as above. 

3. The changes are documented at the end of the main routine where S3D 

development history can be found. 

 
Comparison of the Non-Dynamic Version with the Dynamic Version 

Since no theoretical changes have been made to the code, the results obtained from both non 

Dynamic and Dynamic version should be essentially similar. This has been demonstrated in the 

following section with examples. 
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Example 1 : Example with Infill Drilling 

A 49 x 49 X 10  homogeneous system was considered for this purpose. Infill drilling was started 

after  2000 days of initial production.  Figs. A.1 through A.7  are presented to show the 

similarities in results obtained from both non dynamic and dynamic version of the Streamline 

code. The plots presented show identical results for both versions of the code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure A.1 - Comparison of Streamlines. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.1a : non-Dynamic
(after infll) 

Figure A.1b : Dynamic 
(after infll) 
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Figure A.2 - Comparison of  Water Saturation Profiles. 
 
 
 
 
 
 
 
 

Figure A.2a 
Non- Dynamic 

Figure A.2b 
Dynamic 
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Figure A.3 - Comparison of  Time of Flight. 
 
 
 
 
 
 
 
 

Figure A.3a 
Non-Dynamic 

Figure A.3b 
Dynamic 
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Figure A.4 - Oil Rate and Water Cut Comparison for Well 5. 
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Figure A.5 - Recovery Comparison for nonDynamic and Dynamic Routines.. 
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Figure A.6 - Sweep Volume Comparison. 
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Example 2 : North Robertson Unit  
This example consists of  50 x 25 x 12 heterogeneous system with 27 producers and 15 

injectors. Results of the simulations runs obtained from  dynamic as well non dynamic versions 

are presented in Figs. A.7 through A.11. The plots presented show identical results for both 

versions of the code. 
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Figure A.7 - Streamlines from non-Dynamic  Routine (On the Top) Compared to Streamlines 
from Dynamic Routine (On the Bottom). 
 
 
 
 
 

 

 
Figure A.8 - Saturation Profile from non-Dynamic  Routine (On the Left) Compared to 
Saturation Profile from Dynamic Routine (On the Right). 
 
 
 

 
 
Figure A.9 - Time of Flight from non-Dynamic  Routine (On the Left) Compared to Time of 
Flight from Dynamic Routine (On the Right). 
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Figure A.10 - Oil Rate and Water Cut Comparison for Well 1. 
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Figure A.11 - Recovery Comparison. 
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APPENDIX B 

HORIZONTAL WELL 

6 

The existing Streamline has been modified to incorporate the dynamic memory allocation 

capability. This version is also capable of handling relative permeability tables and different 

rock types. A new subroutine called 'Horizontal.f90' has been added to this version of the code 

to make it capable of handling horizontal wells in both x and y directions. A horizontal well is 

treated as a rectangular pipe with interconnected blocks in either in x or y direction depending 

on the direction of the well. Also, special care has been taken to ensure that interconnected faces 

of the horizontal well are not active for launching streamlines. Productivity index for the 

horizontal well is calculated using the equivalent well block radius proposed by Peaceman, 30 

(as given below). 
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In order to accommodate the horizontal well data, datafiles 'data01' and 'data05' 

have been modified.  At this point, only horizontal producers are considered. The code will 

require modification if horizontal injectors are modeled. 
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Figs. B.1 & B.2 show the Streamlines for a horizontal well system and comparison of the 

performance of the horizontal well from the streamline module and ECLIPSE commercial 

reservoir simulator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.1 - Streamline Generated in a 2D System with Two Horizontal Wells. 
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Figure B.2 - Performance Comparison of Horizontal Wells with ECLIPSE. 
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APPENDIX C 

USER INTERFACES 

7 

In order to facilitate the ease of using streamline simulator in a more user-friendly manner, a 

graphical user interface has been developed. Similar interfaces are also designed for the inverse 

module and electrofacies modules. Following sections briefly describe the user manuals for 

these three interfaces. These interfaces have been developed using Borland C++ Builder version 

5. Some of the 3D visualization plots (e.g. permeability distribution, streamlines) use openGL 

based components. Fortran executables are linked from the interface for execution purposes. 

The interfaces could be easily installed (and uninstalled) in PC with windows operating system. 

 

C.1   Screenshots from Interface Version of  S3D  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1 – Screenshot of the Launch Panel from S3D. 
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Figure C.2 – Screenshot of the Input Data Panel from S3D. 

 

 

Figure C.3 – Screenshot of the Execution Panel from S3D. 
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Figure C.4 – Screenshot of the Plot (Oil-Water Rates, Recovery) Panel from S3D. 

 

 

Figure C.5 – Screenshot of the Plot (Sweep, Rate Allocation) Panel from S3D. 
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Figure C.6 – Screenshot of the Final Water Saturation Profile from S3D. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.7 – Screenshot of the Streamline from S3D. 
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C.2   Screenshots from Interface Version of  PHIS3D 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure C.8 – Screenshot of the Plot (Travel Time and Amplitude Match) Panel  
from PHIS3D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.9 – Screenshot of the Plot (Error vs. Iterations) Panel from PHIS3D 
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Figure C.10 – Screenshot of the Estimated Parameter from PHIS3D. 
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C.3  Screenshots from Interface Version of EFACIES 
 
 
 
 
 
 
 
 

Figure 6 : Plot of PC1 vs. PC2 
 
 
 
 
 
 
 

Figure 7 : MClust Result 
 
Figure C.11 – Screenshot of the Scree Plot from Efacies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C.12 – Screenshot of the Cluster Plot from Efacies. 
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Figure C.13 – Screenshot of Principle  Components Plot from Efacies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C.14 – Screenshot of  Prediction of Discriminant Analysis from Efacies. 
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