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ABSTRACT

Generalized Finite Element Method for Multiscale Analysis. (August 2003)
Lin Zhang, B.S., Computational Mathematics, Fudan University;
M.S., Computational Mathematics, Fudan University
Chair of Advisory Committee: Dr. T. Strouboulis

This dissertation describes a new version of the Generalized Finite Element Method
(GFEM), which is well suited for problems set in domains with a large number of internal
features (e.g. voids, inclusions, etc.), which are practically impossible to solve using the
standard FEM. The main idea is to employ the mesh-based handbook functions which
are solutions of boundary value problems in domains extracted from vertex patches of the
employed mesh and are pasted into the global approximation by the Partition of Unity
Method (PUM). It is shown that the p-version of the Generalized FEM using mesh-based
handbook functions is capable of achieving very high accuracy.

It is also analyzed that the effect of the main factors affecting the accuracy of the
method namely: (a) The data and the buffer included in the handbook domains, and (b)
The accuracy of the numerical construction of the handbook functions. The robustness of
the method is illustrated by several model problems defined in domains with a large number
of closely spaced voids and/or inclusions with various shapes, including the heat conduction

problem defined on domains with porous media and/or a real composite material.
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CHAPTER 1
INTRODUCTION

1.1 Motivation and background

Many problems of practical importance are described in domains with complex geometries.
The typical examples include porous media, composite materials, etc. Figure 1.1 shows
an example of composite materials with 16275 fibers (see [1]). A numerical solution by
standard Finite Element Methods (FEM) for this kind of problems is practically impossible
even with modern supercomputers. The major difficulty of standard FEM is either the scale
of the computation, or the meshing of the domain, or both. Figure 1.2(b) shows a mesh
with 11432 quadrilateral elements (with 12753 nodes) generated by ANSYS for a small
square area (including 84 voids) cut from the domain shown in Figure 1.2(a). It would have
about 2.5 million degrees of freedom if the linear standard FEM is employed for the whole
problem. Especially, when the voids or inclusions are very close, it is impossible to mesh
the area between voids or inclusions. Therefore, a robust method for this type of problems

is of great importance for engineering analysis.

| 1800 m |

Figure 1.1. Cross section of a fiber reinforced composite with 16275 fibers

The above-mentioned problems have dominated research on the mechanics of materials
for many years, and led to the study of methods to overcome/avoid the above-mentioned
difficulties. A natural idea to develop robust methods could be to extract effective proper-
ties of materials for the macro-performance of material bodies without taking into account

all the features in the domain of interest, that is homogenization. Early works in this area,

This dissertation follows the style of Computer Methods in Applied Mechanics and Engineering.



Figure 1.2. (a). A domain with 16275 voids; (b). A quadrilateral FEM mesh (with 11432 elements
and 12753 nodes) generated by ANSYS for a small square area, which only includes 84 voids, cutting

from the domain shown in (a).



including those by Hill [2] and Hashin and Shtrikman [3], are based on the assumption
of existence of a Representative Volume Element (RVE). The mathematical aspects of as-
ymptotic homogenization, wherein the microstructure is assumed to be periodic, have been
studied in details and can be found in the works of Babuska et al. [4-11], Bensoussan et al.
[12], Jikov et al. [13], Sanchez-Palencia [14], Cioranescu et al. [15, 16], and Bakhvalov and
Panasenko [17].

The Multiscale Analysis is another straightforward idea for the above-mentioned prob-
lems. Since the macro-behavior of material bodies depends upon micromechanical proper-
ties, the macro-analysis for the problems must be more reliable if the information about the
local micromechanical properties can be utilized. For this purpose, various methods have
been proposed, such as Adaptive Hierarchical Modeling (developed by Oden et al. [18-25]),
X-FEM (extended FEM, developed by Belytschko et al. [26-35]), Multiscale Finite Element
Method (developed by Hou et al. [36-39]), VCFEM (Voronoi Cell Finite Element Method,
developed by Ghosh et al. [40-43]), and Generalized FEM (GFEM, developed by Babuska
and Strouboulis, et al. [44-54]).

Based on the work of a posteriori error estimation (see Babuska and Strouboulis [55],
and Oden el al. [56-62], and the references therein), the concept of Adaptive Hierarchical
Modeling was introduced by Oden el al. [18-25] as a methodology that provides a mul-
tilevel description of the physical phenomenon of interest. The hierarchical description of
the problem is set up ranging from the coarsest possible description to the most detailed
description. Instead of choosing one level of description from the hierarchy, they use a
posteriori error estimate of the modeling error associated with a particular description to
adaptively select a suitable characterization of the problem. The model at the coarsest level
in the hierarchy is characterized by homogenized material properties and this is referred to
as the homogenized problem. The adequacy of the solution to this homogenized problem,
compared to the fine-scale solution, is then estimated using a posteriori error estimate. In
regions where the modeling error exceeds a preset tolerance, a finer-scale model is used and
a correction to the homogenized solution is computed. The Adaptive Hierarchical Modeling
method enables us to know how accurate our solution is. However, they use the standard
FEM to solve for the solution at each level of the hierarchy. This restricts the method only
for the problems with not very complex geometries.

Belytschko et al. proposed an extension of the standard FEM, called X-FEM |26,
27,29-35]. Similar to the Generalized FEM, the X-FEM also employs the Partition of
Unity Method (PUM) to patch the special functions, level set functions, into the FEM
approximation. The key point of X-FEM is the selection of the level set functions which
reflect the local geometrical characters of features. But unlike the handbook functions

employed by the Generalized FEM, the level set functions is not expected to reflect the



local behavior of the exact solution. For example, the level set function for a circular void
is just the distance function which can not reflect the local properties of the global exact
solution. Further, it seems that X-FEM can not solve the above-mentioned problems with
a large number of features in the domain of interest.

The Multiscale Finite Element Method was developed by Hou et al. [36-39] for elliptic
problems in composite materials and porous media. The method is expected to efficiently
capture the large scale behavior of the solution by introducing special functions into the
finite element space which reflect the local behavior of the solution around the features. In
[37] the upscaling method is analyzed and various difficulties with the method are shown.
In [36] an oversampling method is suggested, which also used a cell solutions with buffers
similar to the handbook solutions employed by the Generalized FEM. However the method
in [36] leads to the use of a non-conforming approximation! [38] presents the mathematical
analysis of the oversampling method.

Ghosh et al. [40-43] introduced the Voronoi Cell Finite Element Method (VCFEM)
in which the finite element mesh evolves by Dirichlet Tessellation of a representative mi-
crostructure. Tessellation of a microstructural representative material element discretizes
the domain into a network of multi-sided convex ”Voronoi” polygons or cells, and each
Voronoi cell includes only one inclusion at most. They developed the formulations for di-
rectly treating multiple phase Voronoi polygons as elements in a finite element model, by
employing the hybrid finite element method. Let us note that VCFEM would result in a
large number of Voronoi polygons if it is employed for the above-mentioned problems or
any real heterogeneous problems.

The Generalized FEM was introduced by Strouboulis, Copps and Babuska [49-52] as a
combination of the Partition of Unity Method (PUM), which was first introduced in [11]
and developed in [44-46, 48,63, 64], and the classical Finite Element Method (FEM) (see
[65,66]). A main feature of the method is the capability of enriching the approximation by
handbook functions which are solutions of local boundary value problems, called handbook
problems, reflecting the local geometry and boundary conditions of the problem at hand.
The handbook functions are pasted into the FEM approximation by the Partition of Unity
Method (PUM), namely after they are multiplied by the vertex hat functions, namely
the finite element basis functions of degree one, on the employed computational mesh.
Another important feature of the Generalized FEM introduced in [49-52] is the capability
of constructing approximate solutions using computational meshes which may overlap part
of or the entire domain boundary. Hence Generalized FEM solutions can be computed using
very simple meshes e.g. meshes of squares constructed by refining uniformly a square which
includes the problem domain in its interior. This capability makes it possible to address

local geometries and boundary conditions for which special functions may not be available



or may be rather cumbersome to construct in analytical form, e.g. a square or a polygonal
void, a bifurcated crack, a corner with curved edges, etc., or generalized harmonic functions
(see [67,68]) for problems with non-constant coefficients in the interior or at the boundary
of the domain.

The Generalized FEM presented in [49-52] is well suited for the analysis of multi-site
or hidden damage (see [69]) where one needs to solve a problem for many (e.g. thousands
of) configurations of hidden or unknown damage, e.g. for a crack occuring at the most
unfavorable location and orientation for the durability of a structure. But a new version of
the Generalized FEM needs to be developed for the above-mentioned problems with large

number of features in the domain of interest.

1.2 Goals and main contributions

In the version of Generalized FEM presented in [49-52], the construction of the stiffness
coefficients involving the handbook functions requires the use of the inverse element trans-
formation in the handbook mesh at each integration point of the global GFEM mesh which
can be very CPU intensive. To address this difficulty, in this dissertation, a new version of
the Generalized FEM was developed by introducing mesh-based handbooks, which employs
handbook domains fitting exactly in the employed computational mesh, so that the transfer
of the handbook functions from the handbook domains to the global mesh is straightfor-
ward and the CPU cost of numerical integrations is drastically reduced. We call this new
version, Generalized FEM using mesh-based handbooks. In this dissertation we illustrate
this method using example problems for the Laplacian in domains with a large number of
closely spaced randomly distributed voids or inclusions, e.g. the problem shown in Fig-
ure 1.1; the method can be easily extended to the case that the voids are replaced by cracks
or inclusions of various shapes. The reason for choosing this type of examples is because
we want to show the robustness and high accuracy capability of the method for problems
which cannot be practically solved by the classical FEM and to underline, the high accuracy
of the Generalized FEM is due to the enrichment by handbook functions.

Let us give a preview of the example problem and the results to be presented below
which underline these points. We will employ as our example problem, the Neumann
problem (2.20) for the Laplacian in a square domain including 597 circular voids shown
in Figure 1.3)(a) (see details in next chapters). Let us compute a bi-p Generalized FEM
solution for this problem using p = 1,2 on the 16 x 16 mesh of squares shown in Figure 1.3(b)
with and without enrichment by vertex handbook functions, as described in [53] and in
Chapter III below. Figures 1.4(a)-(d) compare the accuracy of the computed Generalized
FEM solutions with and without enrichment by vertex handbook functions. Once more we

see that the enrichment by handbook functions is responsible for the high accuracy of the
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Figure 1.3. (a). The problem domain which includes 597 voids in its interior is shown here for
v =1.0. (b). The 16 x 16 mesh for the problem domain shown in (a).

Generalized FEM solution.

In this dissertation, we developed and analyzed the Generalized FEM using mesh-based
handbook functions. The main points of this dissertation are:

(1). Comparison of the p and p-handbook version of the Generalized FEM with the
h version of the Generalized FEM, which sets into perspective the high accuracy of the
Generalized FEM.

(2). Analysis of the effect of the errors in the numerical construction of the handbook
functions on the accuracy of the Generalized FEM solution.

(3). Analysis of the effect of the data and of the buffer included in the definition of the
handbook domains on the accuracy of the GFEM solution.

(4). Analysis of the CPU cost of the method.

(5). Analysis of the robustness of the Generalized FEM using mesh-based handbook
functions for the problems with various types of features.

(6). Analysis of the robustness of the Generalized FEM using mesh-based handbook
functions for the problems with large number of features.

The main conclusions are:

(1). The p-handbook version of the Generalized FEM is robust and can achieve much
higher accuracy than the standard FEM or the Generalized FEM without handbook func-
tions on comparable meshes.

(2). The p version of the Generalized FEM has similar robustness as the p-handbook
version provided that it is enriched by handbook functions of degree at least one.

(3). The high accuracy of the p-handbook version of the Generalized FEM may be

polluted by errors in the numerical construction of the handbook functions.
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Figure 1.4. Generalized FEM using mesh-based handbook functions as proposed in this dissertation.
Example problem of the Laplacian in a square domain including 597 closely spaced voids shown
in Figure 4.1(b). Comparison of the shades of the error of the bi-p Generalized FEM solutions
respectively without and with enrichment by vertex handbook functions, for (a) and (b) p =1, (c)
and (d) p = 2, computed on the 16 x 16 mesh obtained from uniform refinement of the square domain.
Once more we see that the enrichment by handbook functions results in significant improvement in
the accuracy.



(4). The accuracy of the Generalized FEM depends on the data and the buffer employed
in the handbooks.

(5). The main CPU cost in the Generalized FEM is due to the precomputation of
the handbook functions and the numerical integrations of the stiffness coefficients over the
elements of the employed computational mesh. Both of these computations have local
character, and hence may be implemented very efficiently on parallel computers.

(6). The Generalized FEM using mesh-based handbook functions is robust for the
problems with various types of features.

(7). The Generalized FEM using mesh-based handbook functions has the capability of

solving problems with large number of features, like the problem shown in Figure 1.1.

1.3 Outline of the dissertation

Following this Introduction, in Chapter II we briefly summarize the properties of the Gener-
alized FEM, and give the formulations for computation. The main attributes of the Gener-
alized FEM will also be discussed. In Chapter III, we introduce the concept of mesh-based
handbook functions, and the creation and the computation of the mesh-based handbook
functions will be described in details. Following that, in Chapter IV, the Generalized FEM
using mesh-based handbook functions is fully investigated for the case of a large number of
voids. The p-handbook version of the Generalized FEM is illustrated, and the cost of the
Generalized FEM is also analyzed.

Furthermore, in Chapter V, the Generalized FEM using mesh-based handbook functions
is extended to the cases of inclusions. The analytical special functions and the integration
algorithms for this situation are also discussed. Then in Chapter VI, the Generalized FEM
is extended to the cases of various features. Following that, in Chapter VII, we apply the
Generalized FEM using mesh-based handbook functions to the problem shown in Figure 1.1.
In Chapter VIII, we summarize the conclusions and give recommendations for the future

work.



CHAPTER II
GENERALIZED FEM USING HANDBOOK FUNCTIONS

2.1 Formulation of the Generalized FEM and its properties

The Generalized FEM is obtained as a combination of the classical FEM with the PUM.
The formulation and the basic properties of the PUM are summarized in the following
results (for complete details see [44-46, 48]).

Definition 2.1. Let d € N, © ¢ R? be an open set, {Qh}fv(lh, h > 0, be a family of

coverings of {2 satisfying an overlapping condition:

IMeN, Vh>0, VxecQ, card{ilzecQl} <M. (2.1)

Let {gf)h}N(h WLOO(Rd) be a family of partitions of unity subordinate to the coverings
{Q?}izl satisfying

N(h)
supp¢! C closure(Q); Z oh=1,0n Q, (2.2)
i=1
Ca
M) < Coos Vi | e — 2.3
93 Ml L () < Coo; IV} | L () _dlam(Qh) (2.3)

for some Cy,, Ca > 0 independent of h.
Let Vih’p C HY QN Q) be a two parameter family of functions spaces, and define VP

as

N(h)

Vh,p: ,U:Z¢h hp

=1

o e v HY(Q). (2.4)

Then we have:

Theorem 2.1. (from [45]) Let Q, {QF}, {¢}}, and {Vih’p} be given as above. Let u €
H*(Q), k < 1, and suppose that for fixed h, p, the function u can be approximated locally

by functions in Vih’p , i.e., for each i, there is vf’p € Vih’p such that

lu — Plenar < elis b p)llull e any, (2.5)

IV (w = 0/ P) 2 @nan < €20 ) ull ge@nan): (2.6)
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Then there is v € VP such that

Ju =" pxgy < Moo _mivs - ca(ishop) o, (2.7)
€1 thvp) .
IV (u— Uh’p)”ﬂ(ﬂ) < \/§Mmiax (CGW + Cocéa(i hvp)) ”UHH’C(Q) (2.8)

where Cy,, Cg are the constants in Definition 2.1.
Let Ap, be a finite element mesh with vertices X;, i = 1, ..., nyert. With each vertex X

we associate the vertex patch

Q?’ = wg%) déf U T, (29)
TEAL
X;€e0r

and we let ¢Zh be the elementwise mapped bilinear FE basis function associated with X;.
Then {QF}vet and @ N {ph}iver satisfy the assumptions in Definition 2.1.

We will also let {1/)](.2) };“:1 be a set of local handbook functions associated with the patch
Qh and we will let

Ua, = {8100 =1, e nert ) (2.10)

The PUM solution is sought in the form
dof TNvert ng . .
W ms, D oS 0) 211
i=1 j=1

where the coefficients agi) are determined such that

B(uk%, s, 0) = L(v), Vo=l =120, =12 e, (212)

in which the bilinear form B(UZE%Ah;‘I’Ah’U) and the linear form L(v) have the following

definitions for the pure Neumann problem (2.20) for the Laplacian:

BB, 4, o) = /Q VARUN, 4, Ved2, L) = /Q g, (213)

and the solution ui‘i%A WA is enforced to have zero mean value:
’ h’ h

/Q ug%%%h =0. (2.14)

Note that a special linear equation solver may be required for solving the linear algebra
problem resulting from (2.12) which can be badly conditioned; this problem was addressed
in detail in [49)].
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From the best approximation property of the Galerkin method, we have:

€1 (’La hvp)

PUM
[V (u— uAh§<I>Ah§‘I’Ah)||L2(Q) <VaM e (CGWHQ?)

+a¢mw@)mmm»

(2.15)

Hence by ensuring good local approximability over the vertex patches Qf’ = supp¢?, we
get good global approximability for the PUM solution. It follows that the accuracy of the
method can be greatly improved by judicious choice of the local spaces Wx, .

For the cases that the functions ¢](-i) are harmonic polynomials, Babuska and Melenk

[47,70] have proven the following results:

Theorem 2.2. Let €2 C C be a bounded Lipschitz domain, star shaped with respect to a
ball. Let the exterior angle of €2 be bounded from below at each boundary point by Ar with
0 < A <2 (ie., let Q satisfy an exterior cone condition with cone aperture Aw). Assume
that f € H*(Q), k > 1, is halomorphic on Q. Then there are polynomials P, of degree
p > k — 1 such that

' _/Inp A(k—j3) .
I = Pl < Cltiamn@) 7 (22) 7wy G =0l (210
where the constant C' > 0 depends only on the shape of € and k.

Theorem 2.3. Let 2 be a bounded domain with a corner of exterior angle Amw at the origin.
Let f = 2%In® 2z for some o > 0, 8 > 0. Then there are polynomials P, of degree p > 0
such that

Hf - PPHHJ(Q) < C(ﬁ, f)(dia‘mQ)1+a_j_€p_>\(1+a_j_6)7 j = 07 17 (217)

for any € > 0, where C(e, f) depends only on €, f, and the shape of €.
The GFEM solution is constructed as a superposition of the PUM and the classical
FEM solution using p degree FE basis on the mesh Ay, namely

Nvert n; 0 "FEM
G h ~
uAP}:;E(:I)I\ih§‘I’Ah?P = Z ¢ < ajZ wjz ) + Z b P (2.18)

Here ¢ denotes the piecewise mapped bi-p basis function for the kth FE degree of freedom,

n = Nppy (Ap,p) is the number of FE degrees of freedom for the mesh A and the

FEM
polynomial degree p, and

Nvert

n = Z i + N (2.19)
i

is the total number of GFEM degrees of freedom.
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2.2 Main attributes of the Generalized FEM

As it was indicated in the previous section, the Generalized FEM is a combination of
the Partition of Unity Method, with the classical Finite Element Method. The two main
attributes of the Generalized FEM, as developed in [49-54], are the capabilities of using:

1. Domain independent meshes. The GFEM approximation can be constructed on
meshes which are non-overlapping partitions of any domain ' which covers the problem
domain €, namely Q C @/, and when ' is chosen to have simple geometry, e.g. Q' is a
rectangle, they can be much simpler to construct. In contrast, the meshes used in the clas-
sical FEM are non-overlapping partitions of the problem domain €2 into simple subdomains,
and if € has complex geometry, may be difficult to generate. The complete information
about the problem domain 2 enters into the GFEM through special integration meshes
constructed to reflect the local geometry of the problem domain in each element of the
GFEM mesh by an automated adaptive numerical integration algorithm. This is much
easier than constructing a standard FEM mesh in ), because the integration meshes need
not be conforming at the element interfaces of the GFEM mesh. Let us also underline that
adaptive control of the numerical integration error is essential for preserving the accuracy
and optimal convergence of the GFEM (see [49)]).

2. Enrichment by handbook functions. The GFEM approximation can be enriched by
handbook functions which are solutions of local boundary-value problems reflecting the local
geometry of the problem domain {2 and the boundary conditions of the problem of interest,
e.g. corners, voids, inclusions, cracks, curved Neumann or Dirichlet boundaries, etc. The
handbook functions may be obtained prior to the solution of the problem of interest, either
through an analytical [49,50] or a numerical [51,52] construction. In [51,52] we showed
that the GFEM with judiciously selected handbook functions is capable in achieving high
accuracy for problems with rather complex geometry, while employing rather coarse meshes.

Let us illustrate the above points through some sample results. For an extensive set of
similar results see [51,52].

Let Q be the domain shown in Figure 2.1(a), let I' denote its outer boundary, and let

us consider the Neumann boundary value problem:

([ —Au = 0, in €,
ou def
o g = V(2x —y) -n, on the outer boundary T, (2.20)
n
ou .
— =0, on the boundary of the voids.
\  On

As we have seen in [51,52], we may compute GFEM solutions of the above problem

using a mesh of square elements constructed from a nested subdivision of a square domain
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Figure 2.1. Tllustration of the "meshless” character of the GFEM or more precisely its ability to
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construct the approximation on a mesh with geometry independent of the problem domain. (a).
The problem domain 2 which has several internal voids and cracks; (b). The employed GFEM mesh
obtained by subdividing uniformly a square domain{?’, which includes the problem domain €2 in its
interior,  C @, and by employing 4 nested refinements of the squares which overlap a reentrant
corner; (c). The integration mesh employed in the computation; (d). Detail of the integration mesh.

Y which overlaps the domain €, i.e. we have Q C €', as shown in Figure 2.1(b). The
information about the problem domain €2 and the applied boundary conditions is included
into the GFEM through local integration meshes, the adaptive construction of which can
be easily automated in each element. Figure 2.1(c) shows the integration mesh used in the
computation given below. Let us underline that the integration mesh is constructed element
by element by an automatic refinement algorithm and it does not need to be conforming at
the element interfaces.

In order to show the effect of the handbook functions on the accuracy, we computed
the GFEM solution of the model problem (2.20) on the mesh of Figure 2.1(b) using the:
1. biquadratic (p = 2) FEM basis; 2. biquadratic (p = 2) FEM basis with handbook

functions of degree one, phandbook = 1, (see [51, 52]) for the voids, corners and cracks added



14

Relative Error = 17.9%
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Figure 2.2. Illustration of the effect of handbook functions on the accuracy of the GFEM solution.
Relative modulus of the error in the gradient for: (a) Biquadratic (p = 2) finite elements without any
handbook functions (||learem ||u/||tov||u = 17.9%); and for: (b) Biquadratic (p = 2) finite elements
with void, corner and crack handbook functions of phandbook = 1 added at njayers = 0 around each

feature (|legreMm||y/|tovl|u = 6.56%).

at Njayers = 0 (see [51,52]) around each feature. We analyzed the results by employing as
exact solution an overkill GFEM solution obtained on the same mesh, using biquintic (p = 5)
FEM basis with handbook functions of degree two, phandbook = 2, added at njagers = 0
around each feature.

Figure 2.2 shows the relative modulus of the error in the gradient, |Vegrem|/ (ﬁ
Jo [Vugy|), for the GFEM solution without and with handbook functions included to the
approximation. It can be clearly seen that the addition of void, crack and corner handbook
functions into the GFEM approximation leads to very significant improvement in the overall

accuracy of the GFEM solution.
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In the above computations, the harmonic functions were used as handbook functions
in the exterior of an elliptical void or a crack obtained by conformal mapping from the
functions R[2" 4+ 27", and J[z" 4+ z7"], n = 1,2, ..., and harmonic corner functions of the
form r*(Acos(af) + Bsin(af)) where (r,0) are the polar coordinates associated with the
corner and A, B depend on the boundary conditions on the emanating edges from the tip of
the corner. This is an example where an analytical construction of the handbook functions
is available, however this is not possible in general, e.g. for a general elliptic differential
operator and/or features with more complex geometry. To address the general case, the
GFEM with numerically constructed handbook functions was introduced in [51, 52].

Let us give an illustration of the Generalized FEM using numerically constructed hand-
book functions as it was developed in [51, 52]. Let us consider the Neumann problem for the
Laplacian in a domain including several square voids in its interior shown in Figure 2.3(a),
and let us enrich FEM approximation using handbook functions for a square void, defined
as solutions of the canonical boundary value problems for a single square void shown in
Figure 2.3(c), and constructed numerically using the original version of GFEM (the FEM
enriched by harmonic corner functions introduced in [49, 50]) on the handbook mesh shown
in Figure 2.3(b). Figures 2.3(d)-(f) show the shades of the gradient of the pairs of handbook
functions of degree one and two. The square void handbook functions are pasted into the
GFEM approximation by the PUM after they are scaled and translated over the domain of
the problem as shown in Figure 2.4(b) and then multiplied by the vertex hat functions of
the employed GFEM mesh at the vertices of the elements intersecting the voids, as shown
in Figure 2.4(a). As we have seen in [51,52], the addition of handbook functions can lead
to significant improvement of the accuracy of the Generalized FEM solution.

Let us compare the accuracy of the Generalized FEM with and without handbook func-
tions for the example problem outlined above. We computed the Generalized FEM solution
on a uniform mesh of squares overlapping the domain, using a bi-p FE basis enriched by the
numerically constructed handbook functions for a square void as illustrated in Figures 2.3
and 2.4. Figures 2.5(a)-(f) compare the bi-p GFEM solutions enriched by the square void
handbook functions with the corresponding GFEM solutions computed using only the bi-p
FE basis on the same mesh, for p =1, 2, and 3. It can be clearly seen that the addition of
square void handbook functions significantly improves the accuracy of the GFEM solution,
e.g. the relative error of the GFEM solution for p = 3 enriched by the square void hand-
book functions is 3.51%, while the one without the square void handbook functions is only
12.68%! The improvement in the accuracy can also be seen by comparing the contours of

the modulus of the gradient for the computed solutions shown in Figure 2.5.
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Figure 2.3. Generalized FEM using numerically constructed handbook functions. (a) The problem
domain with the imposed derivative boundary conditions graphed on the boundary. (b)-(j) Numer-
ically constructed handbook functions for a square void. (b) Detail of the handbook mesh used in
the numerical construction of the handbook functions. (¢)-(f) Handbook domain for a square void
with the boundary conditions employed for the handbook functions of degree pn, = 1 ((c)-(d)) and
pb = 2 ((€)-(f)). (g)-(j) Shades of the relative modulus of the gradient for the handbook functions
of degree one ((g)-(h)) and two ((i)-(j))-
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Figure 2.4. Generalized FEM using numerically constructed handbook functions. (a) A uniform
mesh of squares used for the construction of Generalized FEM solutions for the model problem
shown in Figure 2.3(a). The triangle symbols indicate the vertices at which the square-void handbook
functions are used to enrich the GFEM solution around each square void. (b) The handbook meshes

for the square voids shown on top of the problem domain, as they are used in the construction of
the Generalized FEM solution.
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Figure 2.5. Generalized FEM using numerically constructed handbook functions. Shades of
the relative modulus of the computed gradient for the bi-p Generalized FEM solutions computed,
respectively, without and with enrichment by handbook functions for the square voids for (a), and
(b) p=1, (c), and (d) p =2, and (e), and (f) p = 3 using the uniform mesh of squares shown. Note

the significant effect of the handbook functions in improving the accuracy.
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CHAPTER III

GENERALIZED FEM USING MESH-BASED HANDBOOK FUNCTIONS*

The main idea in the Generalized FEM with numerically constructed handbook functions
illustrated above and in [51,52] is to identify the features occuring in the domain of the
problem, for which an analytical construction is not possible, e.g. a square void, a bifurcated
crack etc., and to construct handbook functions for these features by solving auxiliary
canonical boundary-value problems in handbook domains. The handbook functions, i.e.
the solutions of these canonical problems, can then be used in the GFEM by superimposing
the handbook meshes i.e. the meshes used in the numerical construction of the handbook
functions over the GFEM mesh after appropriate scaling, translation and rotation. We will
call this version of the method, GFEM with handbook functions constructed in canonical
domains. This approach is suitable in the cases where the features appear in relatively few
locations in the domain, like for example the bifurcated crack in the above example, and
also in the cases where one or two features occur in many configurations, like for example
when analyzing the effect of a hidden or battle damage (see [69]). The main difficulty
with this version of GFEM is related with the transfer of the handbook functions from the
handbook meshes to the global GFEM mesh. This transfer requires the use of the inverse
element map in the elements of the handbook meshes and results in expensive numerical
integrations of the stiffness coefficients over the global GFEM mesh. Nevertheless, when
there are relatively few features in the problem domain, for which a numerical construction
of handbook functions is needed, the cost of the numerical integrations is not prohibitive.
Moreover, this version of GFEM is ideally suited for the analysis of multi-site or battle
damage using the methods discussed in [69].

In this Chapter, we introduce a new version of the Generalized FEM which employs
a different construction of handbook functions which is better suited for problems set in
domains with a large number of closely spaced features, like, for example, in the domains

shown in Figure 3.1.

3.1 Construction of mesh-based handbook functions

Let us consider the Neumann problem for the Laplacian (2.20) in the domain with 597 voids

shown in Figure 3.1 with zero flux boundary conditions applied on the boundaries of the

*Reprinted with permission from ”Generalized finite element method using mesh-based handbooks:
Application to problem in domains with many voids” by T. Strouboulis, L. Zhang and I. Babugka, in Comp.
Meth. Appl. Mech. Engrg. Copyright 2003 by the Elsevier Science
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Figure 3.1. Examples of problem domains with a large number of closely spaced features.

voids.

We will construct a GFEM solution for this problem using a finite element mesh of
squares Ay as shown in Figure 3.2(a), and the standard bi-p FEM basis on this mesh, plus
vertex handbook functions constructed by solving local problems on subdomains surround-
ing each vertex

For a typical vertex X we will employ the subdomain wg) which is the union of the

elements connected to X and to the vertices of these elements, namely

= U = (3.1)

TEAY
orNaiY#0
We will then obtain the subdomain &g);d by eliminating the voids which do not intersect

a neighborhood of X controlled by a parameter d € [0,2], and the voids intersecting the

outer boundary of wg). Figure 3.2(c) (resp. Figure 3.2(d)) shows the subdomain @g);l/z
(resp. d)g);l). Further, we will denote by %X;d, the jth handbook functions associated with

the vertex X, j = 1,2, ... defined as the exact solution of the following Neumann problem



21

Oj

nooUO)OC o %)0909.589-000 %:%C °18c?
SO0 206340 cOSEOIRA O
PO o090 Jo b 1800005 560/030 O C)
O P 9390090 pa2d 0 000 £ 900 [0 O O () M
533997 (P, 169:%09° 3930928 0p 960
Ocokv)nonoo o n08 ra) LD ocn ) () N
03088oLa 3308 B a8aSdgioeon O O
92940 [ 20 £oBaleCa S0 109 5o ala D O O
3000, uoo%ojci oo 0000 O'
R . o P
o S48 800530 TG, 28800 O
0L40aE0Pa, 90326940 I0L0 O )O C O
PoYA TRy °8r9\30_9cncn°-\g°o A
90040° 635601048 nJ(no ) U
00(03000 gc ggo LoD o)gn O
0030 90308638509%% 9
060003092020 Oronuo 00a°% (b)
(a) do 6% 9%09 06 3°3° dob°PoPd o =
l/V
~ ~
L SN
K - ) ]/ LN )
~ \. - \
~ S\~ - o~ S/ -
N s ! Lo N ONMNn -~
1 R DENO, )
- o -
- O L - 00 L
~ =~ T~
7
~ D | V.20 ~ D OY
[\~ - ~ - - N~ ) LT
RN N ~ - :) O ~-
\/ /| ~ ~ / -~
~ NN , O v
AR S VA AR N VA
(©) L : (d) Yo :

Figure 3.2. Creation of handbook domains @S);d associated with a vertex X. (a) The domain

covered by the mesh Ay; (b) A typical interior vertex X with the domain wg?) (resp. w;)) with its
boundary shown by thick continuous (resp. thicker) line. The domains (c) @g(l)"l/ % and (d) Jjg(l);l,

obtained from wg) .

Ap¥t =0, i o{ (3.2)
7O = { S i G R 09
; pbs
o) = 0 on 0a - o), 3.9
where pp, = 1,2, ..., and for uniqueness we let
Pt = 0. (3.5)

~(1);d "7
Wx

Below we will call the GFEM with vertex handbook functions based on the subdomains
(Z&);lﬂ shown in Figure 3.2(c) (resp. L:};);l shown in Figure 3.2(d)) as GFEM with simple
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(resp. improved) handbook functions. Figure 3.3 shows an example of the simple versus
the improved handbook functions for a typical vertex patch.

Let us also address the definition of the handbook functions %X;d for X € I', namely
when the vertex X belongs to the Neumann boundary I'.

Let us first consider the case of a polygonal domain with straight edges, as shown in
Figure 3.4(a). Similarly as in the case of interior nodes we first construct the domain wg)
shown in Figure 3.4(b) and then the handbook domain &g);d as shown in Figure 3.4(c) and
(d) for a corner vertex and for a vertex in the interior of a straight edge. We then construct

the corresponding handbook functions wj-(;d as the exact solutions of the boundary value

problems:
Aw;{;d — 0, in a););d’ (3.6)
9 xu . for j=1, <1>
— (MY = } ) on Jwy’, 3.7
on (¢] ) gX + gggj)7 for ] = 27 37 ! X ( )
D =0 on ool 39
n

where g, is a boundary condition on 8w§) such that

QX\Fnawg(l) = g‘rmawg(l)’ (3.9)

and

a = 0. .1
/ s =0 (310)

For example, for the case of the Neumann problem (2.20) we let

9x =V(z=2y)-ny 0

(1)

where n, (1) is the exterior normal of dwy’. The functions gg) are corner functions in the

ng

wedge with vertex at X, given by
99 (rx,0x) = V(™ cos(2(j = 10x)) -ny 00, 5= 2.3, (3.11)

where (rx,0x) are the polar coordinates associated with the vertex X.

Let us also address the case of a vertex on a curvilinear boundary, as is, for example,
shown in Figure 3.5(a). Once more, we construct the vertex domain wg), and the handbook
domain wg);d, as shown, respectively, in Figure 3.5(c) and Figure 3.5(d). Then we construct
the handbook functions wj-(;d as the exact solutions of the boundary value problems (3.8),

with gg) given by

0 0, on 8w§) AL,
95 = 9w . W )
B +g5, on Owy’ — (dwy’ MNT).

(3.12)
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Figure 3.3. Comparison of the simple versus the improved handbook functions zlzj{;d for an interior
vertex X. Modulus of the gradient of handbook functions, %X;d, for the interior vertex X shown in
Figure 3.2. The left two (resp. right two) columns correspond to simple (resp. improved) handbook
functions obtained for d = 1/2 (resp. d = 1).
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and (d) &g);l, obtained from wg).

(1);d
X

Figure 3.4. Creation of handbook domains @ associated with a vertex X on boundary. (a
)

domain 2 covered by the mesh Ap; (b) A typical boundary vertex X with the domain w&?

Here u} are harmonic functions in wg), and g7 is determined from the condition (3.10) on

8w§). For example, for the boundary handbook shown in Figure 3.5(d), we employ the
corner functions

G- W
ui(rx,0x) =ry cos((j — I)B(HX —a)), Jj=2,3,.. (3.13)

where (rx, 0x) are the polar coordinates, and the meaning of the angles o and 3 is illustrated
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(1);d
X

Figure 3.5. Creation of handbook domains @ associated with a vertex X on curvilinear boundary.

(a) The domain €2 covered by the mesh Ap; (b) A typical boundary vertex X with the domain wg(l).

)51

(¢) The domain &JS . (d) Tlustration of the angles o and S used in the boundary conditions for

handbook problems.

by Figure 3.5(d), and

8u;fd
/8w(1)ﬂf on i
* = X 7 =2,3,.. (3.14)

g )
Ty - (@ N

3.2 Robustness of the Generalized FEM using mesh-based handbook functions

We will now illustrate the robustness of the GFEM using mesh-based handbooks for the
model problem of the Laplacian in domains including many closely spaced voids. We will
employ the domains shown in Figure 3.6, and in each one of these domains we will control

the size of the voids using a parameter v, 1 < v < 1.375, as shown in Figure 3.7. In each
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example we will study the relative error

uex — uSFEM (AL, p, pub; 7)llu
eggEM(AhvpaphMV) = HUEXHU

lollu = ,//Qywpdsz. (3.16)

We will see that in all the cases the relative error increases with =y, nevertheless by using

(3.15)

as a function of . Here we let

improved handbooks with py, > 1, we can obtain high accuracy for the entire range of ~.
We will also show that by using the phandbook- (Pnp-) version of the GFEM, i.e. the
p-version in terms of the handbook functions, we can obtain exponential convergence and
very high accuracy which is robust with respect to the closeness of the voids and practically
independent of the number of voids. A key point, which will become evident from our
results, is that in order to achieve exponential convergence it is necessary to control the

accuracy in the numerical construction of the handbook functions.

Let us outline the employed examples and their objectives.

1. GFEM using simple handbook functions in the interior of Domain I. In this example
we employ the GFEM with simple handbook functions to solve the Neumann model
problem in Domain I. The results show the robustness of the method with respect to
the closeness of the voids, and also indicate a dependence of the global accuracy on

the accuracy of the numerical construction of the handbook functions.

2. GFEM using simple and improved handbooks up to the boundary of Domain II. Here
we employ the GFEM with simple and improved handbooks to solve the Neumann
problem in Domain II using interior as well as boundary handbooks. This example
shows that by including more information about the problem into the handbooks, i.e.
by using improved instead of simple handbooks, we can get dramatic improvement in
the accuracy of the GFEM solution.

3. GFEM using hierarchical handbooks for Domain III. In this example we employ the
GFEM with a hierarchical multilevel construction of handbook functions to solve
the model problem in Domain IIT which includes 2500 voids. Once more we see the
robustness of the method with respect to the closeness of the voids, and also the
influence of the accuracy in the numerical construction of the handbook functions to

the global accuracy of the method.
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Figure 3.6. Domains

1.375.

-IV used in the examples are shown for ~

I

based handbooks for problems set in the curvilinear Domains 1V.

Here we illustrate the GFEM with mesh-based handbooks for the model problem

4. GFEM using mesh

A classical FEM mesh A

in Domain IV using two types of meshes Aj,.

g) for the

generated

)

(2
h

and a mesh of squares A

9

overlapping the voids

curvilinear domain €

by nested subdivision of a square domain €2’ overlapping the problem domain 2. We

show that the GFEM solution can be easily computed for curvilinear domains and

retains its accuracy and robustness characteristics.
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5. Phandbook-version of the GFEM. In this final example we illustrate the ppandbook-version
of the GFEM, its robustness and its potential of achieving very high accuracy through
exponential convergence. Here we underline the effect of the accuracy in the numerical
construction of the handbook functions in the global accuracy, and on the exponential

convergence characteristics of the method.

Let us now proceed with the description of the results.

3.2.1 GFEM using simple handbook functions in the interior of Domain I

We first considered the Neumann model problem (2.20) in Domain I, shown in Figure 3.6(a)
which is obtained from Domain II shown in Figure 3.6(b) by removing the voids near the
boundary. Figures 3.7(b)-3.7(d) show Domain I with the radii of the voids multiplied by
v=1.125, 1.25, and 1.375, respectively.

In [51], we focused in the h-version of the GFEM. Here we employ the p-version; we
fix the mesh to be the one shown in Figure 3.8, and we report the convergence of the
error egEEM(Ah, D, Phb;Y) as a function of the polynomial degree p. For the construction of
the GFEM solution we employed the standard bi-p FE basis enriched by simple handbook
functions %X;l/ 2, defined in the previous section. The handbook functions were constructed
numerically using the GFEM with a bi-p FE basis of degree p = 5 in each handbook
domain enriched by the analytical void functions for a circular void of degree pyoias = 1.
We also computed the results in the case that the analytical void functions are omitted, i.e.
Pvoids = 0, to analyze the importance of these functions for the accurate construction of the
handbook functions wj.(;l/ 2,

As exact solution ugx(y), we used the overkill GFEM solution computed using the
overkill mesh shown in Figure 3.9(a) by employing the GFEM described in [51,52] with
bi-quartic (p = 4) FE basis enriched by the analytical voids functions of degree pyoigs = 1
applied at the vertices of the zeroth layer njayers = 0 around each void. Figure 3.9(b)
shows the shades of the modulus of the gradient for the overkill solution for Problem I(d)
(v = 1.375).

Table 3.1 reports the values of energy norm of the approximate solutions ||uGFEM(

Ap,p,

Prb; Y)|lu and the overkill solution ||ugx()|ly, while Table 3.2 reports the relative errors

egEEM(Ah, D, Pub;7Y). From these results, it can be seen that GFEM is robust with respect

to 7, and we can have
eRbr " (An, 4,15 1.375) < 18%.

Table 3.3 reports the relative errors eggEM(Ah, D, Phb;7Y) in the case that the analytical
void functions are not used in the numerical construction of the handbook functions %X;l/ 2,

The difference in the results between Table 3.3 and Table 3.2 reflects the difference in
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Figure 3.7. Domains for Problems I(a)-I(d) with the parameter v increasing from 1.0 to 1.375.

the accuracy of the construction of the vertex handbook functions. Table 3.4 reports the
relative errors egEEM(Ah,p, 0;) in the case that py, = 0, i.e. no handbook functions are
constructed, and the GFEM solution is constructed by using only the bi-p basis.

Table 3.5 reports the values of the relative errors eggEM(Ah,p,phb;’y) for pp, = 2.
Comparing Table 3.5 and Table 3.2, we see that the GFEM solutions with phandbook = 2
have better accuracy than the GFEM solutions computed using phandbook = 1, but the
difference is rather small for the employed mesh Ay, which can also be observed from the
Figure 3.10. We will explore in detail the pp,-version of the GFEM, its convergence and

the factors affecting in Section 3.3 below.
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Figure 3.8. Meshes for Problems I(a) and I(d) with the parameter v equals to 1.0 and 1.375,

respectively.

Table 3.1. Energy norm of the approximate solutions ||up||y and the overkill solutions ||uoy||y-
X;1/2

Analytical void functions of order pvoida = 1 were employed for the simple handbook solutions ¢ .

y=1 v =1.125 v=125 v =1.375
p=1 | 535.923158 | 566.670149 | 606.656390 | 662.571213
p=2 | 544.115485 | 576.087492 | 617.866398 | 677.010972
p=3 | 546.490465 | 579.909144 | 623.943664 | 687.225725
p=4 | 547903773 | 582.117702 | 627.509143 | 693.721016
[luov||u | 550.711188 | 585.910927 | 633.136615 | 704.842281

Table 3.2. Relative errors eSEEM(Ay, p, pnp;y) for Problems I(a)-I(d). In these results we employed

the handbook functions w;(;l/ % constructed numerically in each patch using the GFEM with a bi-

quintic (p = 5) FE basis enriched by analytical void functions at nijayers = 0 around each void.

y=1 | vy=1125 | y=1.25 | v=1.375
23.02% 25.42% 28.62% 34.11%
15.43% | 18.23% 21.83% 27.82%
12.36% 14.28% 16.98% 22.22%
10.08% 11.36% 13.30% 17.69%
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Figure 3.9. Overkill solution for Problem I(d) (y = 1.375). (a) The employed overkill mesh A9¥. (b)
The contours of the relative modulus of the gradient. The overkill solution was obtained by using
the degree of element p = 4, with pyeias = 1 analytical void functions at njayers = 0. The energy
norm is ||uey ||y = 704.842281, the number of degree of freedom is Nqor = 78010, and the number of

elements iS Nelements = 4096.

Table 3.3. Relative errors eSEEM(Ap, p, pub;y) for Problem I(a)-I(d). The approximate solutions
were computed by employing the handbook functions wj(;l/ 2, but no analytical void functions were

used in the numerical construction of these functions.

vy=10 | ~v=1125 | y=1.25 | v=1.375
40.56% | 40.90% 44.29% 48.89%
36.02% | 39.04% 42.20% 46.50%
33.37% | 35.35% 37.18% 39.91%
27.64% | 27.90% 27.96% 29.09%

"BITIT|IR
I
=W N =

Table 3.4. Relative errors eSEEM(A) p,0;v) for Problems I(a)-I(d). Here the GFEM solution

employed only the bi-p FE basis on the mesh Ay,.

y=10 | ~v=1125 | y=1.25 | v=1.375
40.56% | 44.84% 50.65% 55.10%
39.24% | 43.01% 46.84% 51.77%
35.77% | 38.29% 40.63% 43.85%
30.04% | 30.91% 31.51% 33.00%

"BITIT|IR
I
=W N =
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Table 3.5. Relative errors eSEEM(Ay,, p, 2;7) for Problem I(a)-I(d). The GFEM solutions were com-
puted by employing the handbook functions w]X;l/ 2 of order Phandbook = 2, which were constructed
numerically by employing the GFEM with bi-quintic (p = 5) FE basis enriched by analytical void

functions with the order pyoias = 1 at the niayers = 0 around each void.

y=10 | ~v=1125 | y=1.25 | v=1.375
20.43% | 22.69% 25.70% 30.94%
13.91% | 16.36% 19.53% 25.09%
10.80% | 12.54% 15.03% 20.08%
8.85% 10.11% 12.00% 16.31%

"BITIT|IR
Il
=W =

1.000 [

O—-0y=1.0, p,,;,,=1 for handbooks, p, =1
O——0y=1.125, p, ;=1 for handbooks, p, =1
L—Ay=1.25, p,;,=1 for handbooks, p, =1
V—~Vy=1.375, p,;,,,=1 for handbooks, p, =1
O - -0Oy=10, p,,;,=0 for handbooks, p,, =1
O - -0y=1.125, p, =0 for handbooks, p, =1
I - Ay=1.25, p,,,=0 for handbooks, p,, =1

. \F - Vy=1.375, p,,,,=0 for handbooks, p,,=1

g ®—@ y=1.0, without void functions (p,,,,=0), p,,=0

% B— y=1.125, without void functions (p,4=0), p,,=0

2 0100 A—A y=1.25, without void functions (p,,,,=0), p,,=0

S ¥—¥ y=1.375, without void functions (p,,,,=0), p,,=0

o ® - -@ y=1.0, with void functions (p,,,,=1) for handbooks, p,,=2
= - 8 y=1.125, with void functions (p,;,=1) for handbooks, p,,=2
A — -A y=1.25, with void functions (p,,,=1) for handbooks, p,,=2
¥ - -V y=1.375, with void functions (p,;,=1) for handbooks, p,,=2
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Figure 3.10. The convergence of the GFEM solutions for Problems I(a)-I(d) with four choices of
handbook functions. (a) ppp = 1, usSing pyoias = 1; (b) pp = 1, using pyoiazs = 0; (¢) pup = 0; (d)
Phb = 2, using pyoids = 1.



33

defined in the domain Q. shown in Figure 3.11(a)-3.11(d),

)

respectively. We computed the GFEM solution using a bi-p FE basis

9

)

d

)-11(

a

(

enriched by handbook functions up to the boundary, and compared the accuracy of the

3.2.2 GFEM using simple and improved handbooks up to the boundary of
Domain II

Here, we consider the Neumann model problem (2.20) in Domain II shown in Figure 3.11.

We call the problem (2.20
solution using simple versus improved handbook functions.

Problem II
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Figure 3.11. Domains for Problems II(a)-1I(d) with the parameter + from 1.0 to 1.375, respectively.
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3.2.2.1 GFEM using simple handbooks

Once more, we employed as mesh Ay, the mesh obtained by uniformly dividing the square
domain four times. Figure 3.12 shows the mesh A overlapping the problem domain for
v = 1.0 and v = 1.125.
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Figure 3.12. Meshes for Problems II(a) and II(b) with the parameter v equals to 1.0 and 1.125,

respectively.

The overkill solution u,, was obtained as in previous example, i.e. by using the GFEM
of [51,52] with bi-quartic (p = 4) FE basis on the mesh A} enriched by analytical void
functions of degree pyoiqs = 1 applied at njayers = 0 around each void. Figure 3.13 shows
the contour of the relative modulus of the gradient of the overkill solution and the overkill

mesh for v = 1.0.

Table 3.6 reports the values of energy norm of the GFEM solutions ||uSFEM (A, p, pup;

7)|lu and the overkill solutions ||ugx (7)||lu of Problem II. The GFEM solutions u“FEM(A, p,

Phb;y) were computed by using p = 1,2,3 and 4, enriched by simple handbook functions

X;1/2
e
handbook functions 1#;(;1/ 2, we employed the bi-quintic (p = 5) FE basis enriched by the

analytical void functions at njayers = 0 around each void. Table 3.7 reports the relative

errors eggEM(Ah, D, Phb;7Y). From these results, it can be seen that some relative errors are

of order py, = 1 applied at each vertex X. For the numerical construction of the

not small, especially for the cases of v = 1.375.
Next, we show that the accuracy of the GFEM solution can be greatly improved by
using the improved handbook functions ’l,Z)jX;l which include more information about the

problem than the simple handbook functions.
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Figure 3.13. Overkill solution for Problem II(a). (a) The employed mesh for overkill solution. (b)
The contour of the relative modulus of the gradient. The overkill solution was obtained by using
the degree of element p = 4, with pyoias = 1 void functions at njagers = 0. The energy norm
is ||uov||u = 597.4304695, the number of degree of freedom is Ngor = 80286, and the number of

elements iS Nelements = 4096.

GFEM(Ah7

Table 3.6. Energy norms of the approximate solutions ||u D, Phb; Y)||u, and the overkill

solutions ||uey ||y for Problems I1(a)-II(d). Analytical void functions of order pyeiq = 1 were employed

for the simple handbook solutions w])»(;l/ 2,

v=1.0 v =1.125 v=1.25 v =1.375
p=1 | 576.899523 | 623.629644 | 687.604985 | 784.859648
p=2 | 583.622996 | 632.385964 | 699.765120 | 804.114661
p=3 | 587.720482 | 639.386588 | 711.812696 | 826.837669
p=4 | 590.810268 | 644.376843 | 720.184043 | 843.355790
[luov||u | 597.430470 | 653.098684 | 733.093724 | 870.723752
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Table 3.7. Relative errors eSEEM(Ay, p, pub;y) for Problems II(a)-1I(d). The GFEM solutions
were computed by employing the handbook functions wj-(;l/ 2 of order Phandbook = 1, which were
constructed numerically by employing the GFEM with bi-quintic (p = 5) FE basis enriched by

analytical void functions with the order pyoias = 1 at the njayers = 0 around each void.

y=10|vy=1125 | v=1.25 | v=1.375
p=112599% | 29.70% 34.68% 43.30%
p=2|21.37% | 24.98% 29.81% 38.36%
p=3 1| 17.96% 20.38% 23.92% 31.35%
p=4| 14.85% | 16.29% 18.68% 24.87%

1.000 ¢

0.100 |

Relative Error

0.010 - O—0Yy=1.0, p,,,=1 for handbooks (smple), p,,=1

I O—0y=1.125, p,,=1 for handbooks (smple), p,,=1
[ &—Ay=1.25, p,,=1 for handbooks (simple), p,,=1

| F—Vy=L375, p,,=1 for handbooks (smple), p,,=1

0.001 : :
100 1000 10000

Number of Degree of Freedom

Figure 3.14. Convergence of the GFEM solutions uS**™M (A}, p, ppp;7y) for Problems II(a)-11(d),

obtained by using simple handbook functions wj(;l/ 2
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3.2.2.2 GFEM using improved handbooks

Let us now show that, by enriching the bi-p GFEM approximation using the improved
handbook functions @ZJJX;I, we can obtain dramatic improvement in the accuracy of the
global GFEM solutions.

Let us start by analyzing the accuracy of the numerical construction of the improved
handbook functions ¢]X;1. Figure 3.15 shows examples of typical interior, boundary and
corner handbook domains. Let us first consider the interior handbooks corresponding to
the domain shown in Figure 3.16(a). As in the previous example, we constructed the
handbook functions ¢JX;1, numerically, by employing the GFEM with bi-p FE basis on the
mesh shown in Figure 3.16(b), enriched by the analytical void functions of degree one,
Pvoids = 1, at Niayers = 0 around each void. Figure 3.17 shows the contour plots of the
relative modulus of the gradient of ¢f(;1 and 1b§( ;1, computed using p = 5. Table 3.8 reports
the p convergence of the energy norm of the computed handbook solutions H¢JX;1HU @Dy
for p = 1,...,5. From these results, it can be seen that the energy norm of the handbook
solutions, obtained using p = 5, has converged to at least four digits.

Let us also report the corresponding results for the typical boundary handbook shown
in Figure 3.18(a), and the typical corner handbook shown in Figure 3.19(a). Once more we
computed the handbook functions 1/);(;1/ 2 using the bi-p basis enriched by void functions
of degree pyoids = 1 at Niayers = 0 around each void. Figure 3.18(b), and Figure 3.19(b),
show the contour plots of the relative modulus of the gradient of the boundary, and corner,
handbook functions, respectively, computed using p = 5. The p convergence of the energy

/

norm of the computed handbook solutions %X;l 2, for p = 1,...,5, is also reported in Ta-

ble 3.8. From these results, it can be seen that the energy norm of the handbook solutions
wj-(;l/ 2, obtained using p = 5, has converged to at least five digits for boundary handbook

functions, and six digits for corner handbook functions.
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Figure 3.15. Typical examples of improved handbooks for an interior, boundary and corner vertex.
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Table 3.8. p-convergence of the energy norm of the approximation of the handbook functions for the
typical handbook problems, for the handbook domains shown in Figure 3.16(a), Figure 3.18(a) and
Figure 3.19(a). The solutions 1/}?“1 were obtained by employing the variable bi-p finite element basis
on the meshes shown in Figures 3.16(b), 3.18(a) and 3.19(a), enriched by analytical void functions
of degree pyoias = 1 added at niayers = 0 around each void. E% is the percentage relative difference

in the energy norm of the last two solutions in the p-extension sequence for each problem.

Interior Handbook Boundary Handbook || Corner Handbook
p|l N R(2) I(z) N a N | r2%cos(20)
1] 267 | 55.323285 | 55.244399 || 151 39.151635 79 27.400615
2 || 475 | 55.467721 | 55.381219 || 259 39.201933 139 | 27.424249
3 || 811 | 55.469442 | 55.383318 || 431 39.202815 223 | 27.425277
4 || 1275 | 55.470216 | 55.383982 || 667 39.203158 343 | 27.425402
5 || 1867 | 55.470499 | 55.384369 || 967 39.203303 495 | 27.425431

E% 0.32% 0.37% E% 0.27% E% 0.15%
O OOQ D )OQ
00 O o18lle
o O IS
OO0 O D0 19
O C

(a) (b)

MODULUS OF THE FLUX

00% 25.0% 50.0% 75.0% 100.0% 150.0% 200.0% 400.0%

Figure 3.17. The relative modulus of the gradient for the typical interior handbook solutions zbj(;l
for p =5 for (a). R(2), (b). I(2).
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Siq

9 °
UOF . 88@0

MODULUSOF THE FLUX

00% 25.0% 50.0% 75.0% 100.0% 150.0% 200.0% 400.0%

Figure 3.18. (a). The mesh for the typical boundary handbook problem. (b). The relative modulus
of the gradient for the typical boundary handbook solution wf(;l for p = 5.

aYe O

U
(b)
MODULUSOF THE FLUX

00% 25.0% 50.0% 75.0% 100.0% 150.0% 200.0% 400.0%

(a)

Figure 3.19. (a). The mesh for the typical corner handbook problem. (b). The relative modulus of
the gradient for the typical corner handbook solution wf(;l for p = 5.

Figure 3.20 shows the graph of convergence of the energy norm of the relative error
eggEM (Ap, p, pub;7Y), while Table 3.9 reports the values for v = 1.0, 1.125, 1.25 and 1.375.
From these results, it can be seen that the relative error is less than 5% except for the
case of ¥ = 1.375 and p = 1. Hence the use of improved handbook functions %X;I leads to

significant improvements in the accuracy of the GFEM solution.

Table 3.9. Relative errors eSEEM(Ay,, p, pup; ) for Problems I(a)-(d). The GFEM solutions were
computed by employing the improved handbook functions wjx;l of order phandbook = 1, which were
constructed numerically by employing the GFEM with bi-quintic (p = 5) FE basis enriched by

analytical void functions with the order pyoigs = 1 at niayers = 0 around each void.

y=10 | ~v=1125 | y=1.25 | v=1.375
2.61% 3.48% 4.69% 7.25%
1.85% 2.44% 3.24% 4.99%
1.19% 1.63% 2.25% 3.72%
0.96% 1.31% 1.85% 3.15%

"TIRITT
Il
=W N =




40

1.000 ¢

0.100 |

Relative Error

0.010
L O—0y=L0, p,,;=1 for handbooks (improved), p,,=1
| O—0y=1125, p ;=1 for handbooks (improved), p, =1
| &—2\y=1.25, p,,,=1 for handbooks (improved), p,,=1
V— y=1.375, p,,;,=1 for handbooks (improved), p, =1
0.001 : : e : : e
100 1000 10000

Number of Degree of Freedom

Figure 3.20. Convergence of the GFEM solutions uSFEM (A, p, ppy;y) for Problems II(a)-1I(d),

obtained by using improved handbook functions 1/);(;1.

3.2.3 GFEM using hierarchical handbooks for Domain III

We will now give an example of hierarchical construction of the handbook functions which
can be used for solving more complex problems.

We employed the Neumann model problem (2.20) in the Domain IIT shown in Fig-
ure 3.21, for v = 1.0. Domain III has 2500 voids in its interior. As in the previous
examples, we considered this problem for v = 1.0, 1.125, 1.25 and 1.375, we call Problem
ITI(a)-(d), respectively.

The idea of hierarchical handbooks is illustrated in Figure 3.22. First, we create the
vertex handbooks corresponding to the global mesh Ay, then we employ the same procedure
for each handbook domain, using the employed handbook meshes, recursively.

As in the previous examples, we employed the uniform mesh A obtained from four
uniform refinements of the problem domain and computed the GFEM solution by using
p = 1,2,3 and 4, enriched by the improved handbook functions, which were constructed
numerically using a 2 level hierarchical approach.

Table 3.10 reports the values of the energy norms of the computed GFEM and overkill

solutions, while Table 3.11 reports the relative values of the energy norm of the error
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is almost as effective as the GFEM using the same functions constructed in the one-level

construction employed in the previous sections. Nevertheless, there may be a loss of accuracy

This error

due to error accumulation from the numerical constructions at the various levels.

accumulation can be seen in the loss of the convergence rate observed in the convergence

graphs in Figure 3.23 compared with the corresponding convergence graphs in the previous

examples.
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Mesh for the original problem. (b).
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level handbook. (c). Mesh for the first level handbook. (d) Second level handbook.

Figure 3.22. Illustration of hierarchic handbooks.
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Table 3.10. Energy norms of the GFEM solutions |[uSFEM (A, p, pub;¥)||u, and the corresponding
overkill solutions ||uey||y for Problems III(a)-(d). The GFEM solutions were computed by using

two levels of handbook functions.

v=1.0 v =1.125 v=125 v =1.375
p=1 | 1168.935284 | 1272.129223 | 1418.327297 | 1661.111930
p=2 | 1170.506695 | 1274.111992 | 1421.313153 | 1666.839818
p=3 | 1171.836636 | 1275.622005 | 1423.568787 | 1670.208030
p=4 | 1172.711382 | 1276.849101 | 1425.354149 | 1674.199828
[luov||u | 1174.251507 | 1279.176820 | 1429.304841 | 1683.180698

Table 3.11. Relative errors eSEEM(Ap, p, pub; v) for Problems I1I(a)-(d). The GFEM solutions were

computed by using two levels of handbook functions.

y=10|vy=1125 | v=1.25| v=1.375
p=1| 9.50% 10.48% 12.37% 16.14%
p=2| 7.98% 8.89% 10.56% 13.90%
p=3| 641% 7.45% 8.95% 12.39%
p=4| 512% 6.03% 7.43% 10.32%
1.000
S
m
2 0100 |
g
& O—O0y=1.0
O—Oy=1.125
A—Ay=1.25
V—/ y=1.375

1000 10000

Number of Degree of Freedom

100

Figure 3.23. Convergence graphs of the GFEM solutions for Problems ITI(a)-ITI(d) using two levels
of handbook functions.
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3.2.4 GFEM using mesh-based handbooks for the model problem in curvilin-

ear Domains IV

Here we illustrate the GFEM with mesh-based handbooks for the model Neumann problem
(2.20) defined in the curvilinear Domain IV shown in Figure 3.6(d), and also in Figure 3.24
for v = 1.0 and ~ = 1.375, respectively. We employed two types of meshes Ap: a mesh of

) shown in Figure 3.25(a) which is a classical FEM mesh for the

curvilinear quadrilaterals Ag
curvilinear domain without the voids; and a mesh of squares A;lz) shown in Figure 3.25(b)

which is generated by nested subdivision of a square overlapping the problem domain.

Figure 3.24. Domains for Problem IV(a) and IV(d) corresponding to v = 1.0 and v = 1.375,

respectively.

As exact solution ugx, we employed an overkill solution u, computed using the GFEM
of [51,52] on an overkill mesh of squares Ay" shown in Figure 3.26(a), which is obtained
by uniformly subdividing the square 7 times, and bi-quartic (p = 4) FE basis enriched by
the analytical void functions of order pyoiqs = 2 applied at the vertices with zeroth layer
(Nayers = 0) of each void, and the analytical singular functions of order pgingular = 1 at the
vertices with zeroth layer (njayes = 0) of each singular point. Figure 3.26(b) shows the
relative modulus of the gradient of the overkill solution for the case v = 1.0, whose energy
norm is ||uey ||y = 480.759460 with 16384 elements and Ngor = 129159. The energy norms

of the overkill solutions for other choices of v are reported in Table 3.12.
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Table 3.12. Energy norm and number of degree of freedom of the overkill solutions of Problem IV.

v=1.0 v =1.125 v=1.25 v =1.375
[luovl|u | 480.759460 | 521.600172 | 579.146978 | 674.268932
Naot 129159 130221 130797 130930
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Figure 3.25. The two types of meshes employed for Problem IV. (a) The mesh of curvilinear quadri-
laterals A;Ll), and (b) the mesh of squares Af), for v = 1.0.

(a)

MODULUS OF THE FLUX

0.0% 25.0% 50.0% 75.0% 100.0% 150.0% 200.0% 400.0%

Figure 3.26. Overkill solution of Problem IV. (a) Mesh used for the overkill solution, (b) relative

modulus of gradient of the overkill solution, for the case v = 1.0.
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3.2.4.1 GFEM using handbooks on a mesh of curvilinear quadrilaterals Ag)

First, let us investigate the accuracy of the handbook functions wj(;l when the mesh A;ll),
shown in Figure 3.25(a), is used. Figure 3.27 shows two typical handbook domains L:););l at
singular points. We will denote the handbook problems of degree pp, = 1 in these domains
by HB12, and HB15, respectively. We constructed numerically the handbook functions %X;l
in these domains by employing the GFEM on the meshes obtained by uniformly subdividing
the initial meshes shown in Figure 3.27, using the bi-p FE basis enriched by the analytical
void functions of degree pyigs = 1 added at njayers = 0 around each void. Table 3.13 reports
the p-convergence of the energy norms of the first handbook functions pr( 1 of the two typical
handbooks at singular points, HB12 and HB15. Note that the relative difference between
the last two solutions of each sequence of the solutions, is less than 0.3%. Figure 3.28 shows
the relative modulus of the gradient of the solutions ¢f(;1/ % for HB12, and HB15, computed
using p = 5.

o
(®)
o
(]
o
@) @)
[@)
>
(0] (2
o O
O
Q O
O 200 0Qo
@)
O
@)
15;0‘6 @) o) %
o 1O |
u%&co —

(@)

Figure 3.27. Creation of typical handbooks on the mesh Aﬁlll). (a) Mesh of curvilinear quadrilaterals
AS) employed for the GFEM solution. (b) and (¢) Handbook domains d);)"l for the vertices X2
and X5, respectively. The corresponding handbooks are denoted by HB12 and HB15, respectively.
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Table 3.13. p-convergence of the energy norms of the handbook functions ||1pf(;1||u(&<1);1) for the
X
typical handbooks HB12 and HB15.

N HB12 N HB15
525 | 93.963818 | 420 | 96.154243
1331 | 94.109622 || 1028 | 96.306452
2645 | 94.113450 || 2020 | 96.308683
4467 | 94.114138 || 3396 | 96.308971
6797 | 94.114361 || 5156 | 96.309148
E% 0.22% E% 0.19%

(S N GV I R

MODULUS OF THE FLUX MODULUSOF THE FLUX

00% 250% 50.0% 750% 100.0% 1500% 200.0% 400.0% 00% 250% 50.0% 75.0% 100.0% 150.0% 200.0% 400.0%

(a) (b)

Figure 3.28. Relative modulus of the gradient of the first handbook functions of (a). HB12 and (b).
HB15 for p = 5.

Let us now use the GFEM with bi-p FE basis on mesh Ag) enriched by vertex handbook

functions to solve the Neumann model problem IV. Table 3.14 reports the p-convergence of

GFEM(A, 1, pub: ¥)||u of the computed GFEM solution, and Figure 3.29

shows the convergence graphs for the relative error egEEM(Ah, P, Pub;7y) as functions of the

the energy norm ||u

polynomial degree p.



Table 3.14. p convergence of the energy norm ||u
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GFEM(AS),p,phb; Y)||u of the GFEM solution using

mesh-based handbook functions on the mesh AS) for Problem IV. The percentage numbers are the

corresponding relative errors of the GFEM solutions. The numbers in the brackets are the number

of the degree of freedom.

v=1.0 v =1.125 v=1.25 v =1.375
p=1 | 479.656465 | 519.961694 | 575.995036 | 667.587412
6.77% 7.92% 10.42% 14.04%
(1097) (1099) (1097) (1099)
p=2 | 480.285351 | 520.844755 | 577.937943 | 671.576264
4.44% 5.38% 6.46% 8.93%
(2073) (2075) (2073) (2075)
p=3 | 480.384261 | 520.926706 | 578.012347 | 672.195136
3.95% 5.08% 6.26% 7.84%
(3657) (3659) (3657) (3659)
p=4 | 480.540174 | 521.250698 | 578.445133 | 673.014927
3.02% 3.66% 4.92% 6.10%
(5849) (5851) (5849) (5851)
p=>5 | 480.569616 | 521.307407 | 578.485281 | 673.214251
2.81% 3.35% 4.78% 5.59%
(8649) (8651) (8649) (8651)
1.000 ¢
0.100
S
o
2
3
¥ O0—Ovy=1.0
& O—0Oy=1.125
0.010 - S—\y=1.25
V-V y=1.375
0.001 ! ! !
100 1000 10000 100000

Number of Degree of Freedom

GFEM

Figure 3.29. The convergence graphs of the relative error egpy

IV(d) solved on mesh Agl).

(An,p, pub;y) for Problems IV (a)-
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3.2.4.2 GFEM using handbooks on the mesh of squares Af)

Let us also report the GFEM solution of the model problem IV using the mesh AELQ) shown

in Figure 3.25(b).

Let us first investigate the accuracy of the handbook functions 1/);(;1 for the typical
handbook domains G)g);l for two vertices near the singular points X19 and X5,as shown in
Figure 3.30; below we will refer to these handbooks by HB12-G3 and HB15-G3. We will
investigate the accuracy of the numerical construction of the handbook functions wf(;l for

these two handbooks.
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Figure 3.30. Creation of typical handbooks on the mesh Af). (a) Mesh of squares Af) employed
for the GFEM solution. (b) and (c) Handbook domains cbg;):’l for the two vertices, respectively,
near the singular points X712 and X35. The corresponding handbooks are denoted by HB12-G3 and
HB15-G3, respectively.

As in the previous examples, the handbook functions wj(;l were constructed numerically
by employing the bi-p FE basis, enriched by the analytical void functions of degree pyoigs = 1
added at njagers = 0 around each void. Table 3.15 reports the p-convergence of the energy
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norms of the first handbook functions @bf( 1 of the two typical handbooks near singular
points, HB12-G3 and HB15-G3. Note that the relative difference between the last two
solutions of each sequence of the solutions, is less than 0.2%. Figure 3.31 shows the relative
modulus of the gradient of the solutions ¢f(;1 for HB12-G3, and HB15-G3, computed using
p=5.

Table 3.15. p-convergence of the energy norms of the handbook functions ”wf(;l”U(a;“)’l for the
X

)
typical handbooks HB12-G3 and HB15-G3.

Naot | HB12-G3 || Ny | HB15-G3
415 | 64.695365 || 404 | 62.434781
1041 | 65.163043 || 1006 | 62.703023
2057 | 65.172630 || 1984 | 62.711533
3463 | 65.173167 || 3338 | 62.712027
5259 | 65.173239 || 5068 | 62.712046
E% | 015% | E% | 0.08%
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Figure 3.31. Relative modulus of the gradient of the first handbook functions of (a). HB12-G3 and
(b). HB15-G3 for p=5

Using the GFEM with bi-p FE basis on mesh AELQ) enriched by vertex handbook func-

tions to solve the Neumann model problem IV, we obtain Table 3.14 which reports the p-

GFEM(A}“

convergence of the energy norm ||u P, Pub; Y)||u of the computed GFEM solution,

and Figure 3.32 shows the convergence graphs for the relative error egEEM(Ah, D, Phb;7Y) as

functions of the polynomial degree p.
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GFEM(A, p pup; )|y of the GFEM solutions using

Table 3.16. p-convergence of the energy norm ||u
mesh-based handbook functions on the mesh AS) for Problem IV. The percentage numbers are the

corresponding relative errors of the GFEM solutions. The numbers in the brackets are the number

of the degree of freedom.

v=1.0 v =1.125 v=1.25 v =1.375
p=1 | 480.159288 | 520.833245 | 578.072944 | 672.214423
5.00% 5.42% 6.09% 7.80%
(1495) (1511) (1527) (1547)
p=2 | 480.652936 | 521.441730 | 578.861839 | 673.617593
2.10% 2.46% 3.14% 4.39%
(3025) (3041) (3057) (3077)
p =3 | 480.716567 | 521.545126 | 579.056276 | 674.055155
1.34% 1.45% 1.77% 2.52%
(5521) (5537) (5553) (5573)
p=4 | 480.733221 | 521.572557 | 579.106961 | 674.175119
1.04% 1.03% 1.18% 1.67%
(8983) (8999) (9015) (9035)
p=0>5 | 480.742154 | 521.581610 | 579.124522 | 674.217921
0.85% 0.84% 0.88% 1.23%
(13411) (13427) (13443) (13463)
1.000
0.100 |
5
wm
2
I
T O—Oy=1.0
e O—0Oy=1.125
0.010 - S—\y=1.25
V—Vy=1.375
0.001 ! ! !
100 1000 10000 100000

Number of Degree of Freedom

GFEM

Figure 3.32. The convergence graphs of the relative error egpy

IV(d) solved on mesh Agz).

(An,p, pub;y) for Problems IV (a)-
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3.3  Phandbook-version of the Generalized FEM

In previous examples, we employed the GFEM with bi-p FE basis enriched only by the
handbook functions of degree one, pp, = 1, and explored the convergence of the GFEM
with p, the polynomial degree of the FE basis. In this section, we will investigate the
pup-version of the GFEM, namely the convergence of the method as pyy, the degree of the
handbook functions, is increased. We will also underline the importance of the accuracy of
the numerical construction of the handbook functions in achieving the optimal convergence
rate.

Let us consider, once more, the model Problem II. Table 3.17 gives the energy norm of
the overkill solution ||uey ||y, computed using the GFEM on the overkill 64 x 64 mesh shown
in Figure 3.33(d) with bi-quartic (p = 4) FE basis enriched by analytical void functions of

degree one, pyoiods = 1, applied at njayers = 0 around each void

Table 3.17. Energy norm and number of degree of freedom of the overkill solutions.

v=1.0 v=1.125 v=1.25 v =1.375
lluov|lu | 597.413841 | 653.089387 | 733.086793 | 870.712149
Nof 75498 76546 77351 77824

Let us solve the model Problem II again by using the three meshes shown in Fig-
ure 3.33(a), (b) and (c). On each of the three meshes, the GFEM solution was obtained
by using the bi-p FE basis (p = 1, 2, 3, 4, and 5) enriched by the mesh-based handbook
functions with order py, = 1, 2, 3, 4 and 5.

In order to investigate the influence of the accuracy of the numerical construction of
handbook functions ¢JX;1, we employed three choices of mesh size for the handbook prob-
lems. Figure 3.34 illustrate the handbook meshes by using a corner handbook extracted
from the global mesh, Mesh I, II, and III, respectively. For convenience, we call the hand-
book meshes with the three choices of mesh size, Type I, I1, and III, respectively. Note that
each type of the handbook mesh has the same mesh size, no matter how large or small the
handbook domain is. We also note that the Type II handbook mesh has the same mesh size
as the overkill mesh shown in Figure 3.33(d). The numerical construction of the handbook
functions 1#])-(;1 was done using bi-p FEM (p = 5) enriched by the analytical void functions
with pyoigs = 1 at the zeroth layer nj,yers = 0 around each void.

Let us proceed with the analysis of the results.

Tables 3.18-3.23 report the energy norm of the GFEM solution computed by using the
bi-p FE basis enriched by the numerically constructed vertex handbook functions of degree

Prp versus the number of degree of freedom for each solution, and the corresponding relative
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(c). Mesh IIT (16 x 16 elements) (d). Overkill Mesh (64 x 64 elements)

Figure 3.33. Meshes used for Model Problem II for v = 1.0.

error in the energy norm, i.e. \/||uov||%J — llugrem|y/|[tov||u, for v = 1.0 and v = 1.375.
The handbook functions, @ZJJX;I, are numerically constructed on handbook mesh Type I. As
a comparison, we also computed the GFEM solution with py, = 0, i.e. only bi-p FE basis
were employed in the GFEM solution. By comparing the first two columns in Tables 3.18-
3.23, we see that there is a big improvement by using handbook functions, rather than not
using any handbook function. From these tables we can see that, the GFEM solution does
not converge either by increasing the degree of the polynomials or by increasing the order
of the handbook functions. For each choice of v, comparing the corresponding three tables,
we also observe that the GFEM solution does not converge either by decreasing the global
mesh size, although we can achieve better accuracy by using less degree of freedom. This

can also be seen from the convergence graphs given in Figures 3.35 and 3.36.
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Figure 3.34. Examples of handbook meshes used for the numerical construction of the handbook

functions, for a corner handbook problem extracted from the: (a), (b) and (¢) Mesh I (4x4 elements);
(d), (e) and (f) Mesh IT (8 x 8 elements); (g), (h) and (i) Mesh III (16 x 16 elements), shown here

for v = 1.0.

Table 3.18. Energy norm of the GFEM solution using mesh-based handbooks for v = 1.0 on Mesh

I with 4 x 4 elements. The numbers in the brackets are the number of degree of freedom, and the

percentage numbers are the relative error in the energy norm.

Pub =0 Pub =1 Pub = 2 Pub = 3 Pub = 4 Pup = 5
p=11 526.047756 | 596.354559 | 596.480454 | 596.533200 | 596.544491 | 596.546671
(25) (75) (109) (143) (177) (211)
47.40% 5.95% 5.58% 5.42% 5.39% 5.38%
p=2 | 526.460025 | 596.508418 | 596.526307 | 596.540071 | 596.546791 | 596.549024
(81) (131) (165) (199) (233) (267)
47.27% 5.50% 5.44% 5.40% 5.38% 5.37%
p=3 | 527.076526 | 596.524964 | 596.537184 | 596.545325 | 596.551592 | 596.553526
(169) (219) (253) (287) (321) (355)
47.07% 5.45% 5.41% 5.39% 5.37% 5.36%
p=4 | 527.663025 | 596.530891 | 596.542672 | 596.549636 | 596.555978 | 596.558075
(289) (339) (373) (407) (441) (475)
46.89% 5.43% 5.39% 5.37% 5.36% 5.35%
p=>5 | 528.168569 | 596.532039 | 596.543858 | 596.550861 | 596.557549 | 596.559776
(441) (491) (525) (559) (593) (627)
46.73% 5.43% 5.39% 5.37% 5.35% 5.34%




95

Table 3.19. Energy norm of the GFEM solution using mesh-based handbooks for v = 1.0 on Mesh

IT with 8 x 8 elements. The numbers in the brackets are the number of degree of freedom, and the

percentage numbers are the relative error in the energy norm.

Pub = 0 pup =1 Prp = 2 prp =3 Py =4 Phb =5
p=1 1| 526.349745 | 596.374122 | 596.497764 | 596.546818 | 596.558071 | 596.561965
(81) (243) (373) (503) (633) (763)
47.30% 5.90% 5.53% 5.38% 5.35% 5.34%
p=2 | 527.500512 | 596.507229 | 596.522092 | 596.551603 | 596.559456 | 596.562965
(289) (451) (581) (711) (841) (971)
46.94% 5.51% 5.46% 5.37% 5.34% 5.33%
p=3 | 528.905577 | 596.543029 | 596.553681 | 596.559894 | 596.563319 | 596.565375
(625) (787) (917) (1047) (1177) (1307)
46.50% 5.39% 5.36% 5.34% 5.33% 5.33%
p=4 | 531.392559 | 596.549570 | 596.559981 | 596.565254 | 596.567341 | 596.568640
(1089) (1251) (1381) (1511) (1641) (1771)
45.69% 5.37% 5.34% 5.32% 5.32% 5.32%
p=>5 | 535.140625 | 596.553077 | 596.562254 | 596.567341 | 596.569557 | 596.570587
(1681) (1843) (1973) (2103) (2233) (2363)
44.45% 5.36% 5.33% 5.32% 5.31% 5.31%

Table 3.20. Energy norm of the GFEM solution using mesh-based handbooks for v = 1.0 on Mesh
IIT with 16 x 16 elements. The numbers in the brackets are the number of degree of freedom, and

the percentage numbers are the relative error in the energy norm.

pup =0 pup =1 Pnb = 2 Pnb =3 Pub = 4 Pup = 5

p=11 527.206120 | 596.367579 | 596.481838 | 596.541779 | 596.557674 | 596.566524
(289) (867) (1381) (1895) (2409) (2923)
47.03% 5.91% 5.58% 5.40% 5.35% 5.32%

p=2| 531.284898 | 596.478734 | 596.509660 | 596.549230 | 596.562569 | 596.570355
(1089) (1667) (2181) (2695) (3209) (3723)
45.73% 5.59% 5.50% 5.38% 5.34% 5.31%

p=3 | 541.855531 | 596.540586 | 596.556918 | 596.566336 | 596.573090 | 596.579247
(2401) (2979) (3493) (4007) (4521) (5035)
42.11% 5.40% 5.35% 5.32% 5.30% 5.28%

p=4 | 558.050844 | 596.556949 | 596.569200 | 596.577328 | 596.586096 | 596.596171
(4225) (4803) (5317) (5831) (6345) (6859)
35.70% 5.35% 5.31% 5.29% 5.26% 5.23%

p=>5 | 573.850349 | 596.565782 | 596.576615 | 596.586054 | 596.598127 | 596.615491
(6561) (7139) (7653) (8167) (3681) (9195)
27.81% 5.32% 5.29% 5.26% 5.22% 5.17%
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Table 3.21. Energy norm of the GFEM solution using mesh-based handbooks for v = 1.375 on Mesh

I with 4 x 4 elements. The numbers in the brackets are the number of degree of freedom, and the

percentage numbers are the relative error in the energy norm.

Pub =0 Pub =1 Phb = 2 Phb = 3 Pup = 4 Pub =5
p=1 1] 649.928012 | 866.207641 | 869.313172 | 869.825951 | 869.925680 | 869.951239
(25) (75) (109) (143) (177) (211)
66.55% 10.15% 5.66% 4.51% 4.25% 4.18%
p=2 | 653.693332 | 869.372547 | 869.599520 | 869.888974 | 869.939700 | 869.957359
(81) (131) (165) (199) (233) (267)
66.06% 5.54% 5.05% 4.34% 4.21% 4.16%
p=3 | 658.158124 | 869.531259 | 869.804683 | 869.922548 | 869.954411 | 869.968707
(169) (219) (253) (287) (321) (355)
65.47% 5.20% 4.56% 4.25% 4.17% 4.13%
p=4 | 662.758452 | 869.615335 | 869.848876 | 869.952899 | 869.974243 | 869.982158
(289) (339) (373) (407) (441) (475)
64.86% 5.01% 4.45% 4.17% 4.12% 4.09%
p=>5 | 665.710613 | 869.641052 | 869.861371 | 869.960081 | 869.980568 | 869.989448
(441) (491) (525) (559) (593) (627)
64.45% 4.95% 4.42% 4.15% 4.10% 4.07%

Table 3.22. Energy norm of the GFEM solution using mesh-based handbooks for v = 1.375 on Mesh

IT with 8 x 8 elements. The numbers in the brackets are the number of degree of freedom, and the

percentage numbers are the relative error in the energy norm.

pup =0 pup =1 Pnb = 2 Pnb =3 Pub = 4 Pup = 5
p=1 1] 652.676494 | 866.933323 | 869.226983 | 869.723921 | 869.826274 | 869.872362
(81) (243) (373) (503) (633) (763)
66.19% 9.30% 5.83% 4.76% 4.51% 4.39%
p=2 | 661.620399 | 869.168711 | 869.436589 | 869.762309 | 869.838250 | 869.877619
(289) (451) (581) (711) (841) (971)
65.01% 5.95% 5.41% 4.67% 4.48% 4.38%
p=3 | 669.885357 | 869.473457 | 869.719395 | 869.828961 | 869.866487 | 869.890491
(625) (787) (917) (1047) (1177) (1307)
63.88% 5.33% 4.77% 4.50% 4.41% 4.34%
p=4 | 683.265951 | 869.568282 | 869.780699 | 869.869939 | 869.895428 | 869.911655
(1089) (1251) (1381) (1511) (1641) (1771)
61.98% 5.12% 4.62% 4.39% 4.33% 4.29%
p=2>5 | 701.572246 | 869.638176 | 869.813417 | 869.889643 | 869.912153 | 869.924951
(1681) (1843) (1973) (2103) (2233) (2363)
59.22% 4.96% 4.54% 4.34% 4.28% 4.25%
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Table 3.23. Energy norm of the GFEM solution using mesh-based handbooks for v = 1.375 on Mesh
IIT with 16 x 16 elements. The numbers in the brackets are the number of degree of freedom, and

the percentage numbers are the relative error in the energy norm.

pup =0 pup =1 Dhb = 2 Phb = 3 Pup = 4 Pub =5
p=1 | 659.542408 | 867.705374 | 869.225227 | 869.781897 | 869.892030 | 869.931591
(289) (867) (1381) (1895) (2409) (2923)
65.29% 8.30% 5.84% 4.62% 4.34% 4.23%
p=2 | 681.999515 | 869.071590 | 869.497292 | 869.820117 | 869.905044 | 869.936415
(1089) (1667) (2181) (2695) (3209) (3723)
62.17% 6.13% 5.28% 4.52% 4.30% 4.22%
p=3 | 731.526290 | 869.577840 | 869.801825 | 869.899300 | 869.929196 | 869.945152
(2401) (2979) (3493) (4007) (4521) (5035)
54.23% 5.10% 4.57% 4.32% 4.24% 4.20%
p=4 | 789.461509 | 869.761067 | 869.881539 | 869.932995 | 869.949330 | 869.957898
(4225) (4803) (5317) (5831) (6345) (6859)
42.18% 4.67% 4.36% 4.23% 4.18% 4.16%
p=>5 | 831.372912 | 869.852335 | 869.919664 | 869.948578 | 869.962310 | 869.970887
(6561) (7139) (7653) (8167) (8681) (9195)
29.72% 4.44% 4.26% 4.18% 4.15% 4.12%
597 voids, y=1.0
1.000 T
O - -Op=1, 4x4 elements
0t - -0 p=2, 4x4 elements
/s — -A p=3, 4x4 elements
VF - -V p=4, 4x4 elements
& = <O p=b, 4x4 elements
O—-0O p=1, 8x8 elements
0100 [ o p=2, 8x8 elements 1
5 /~—\ p=3, 8x8 elements
utJ O——=> p=4, 8x8 elements
® O—=< p=5, 8x8 elements
-% @@ p=1, 16x16 elements
° B—H p=2, 16x16 elements
@ A—A p=3, 16x16 elements
0.010 -¥—Y p=4, 16x16 elements 1
4—@ p=5, 16x16 elements

0.001
1

10

100

Number of Degree of Freedom

1
1000

10000

Figure 3.35. Convergence of the GFEM solution of model Problem II with v = 1.0 on Mesh I, II

and III using mesh-based handbook functions obtained on the meshes shown in Figure 3.34.
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Figure 3.36. Convergence of the GFEM solution of model Problem II with v = 1.375 on Mesh I, II

and III using mesh-based handbook functions obtained on the meshes shown in Figure 3.34.

Let us solve the Model Problem II again, using finer meshes, handbook mesh Type
IT shown in Figure 3.34, for the numerical construction of the handbook functions wj(;l.
Note that these meshes are the same as the restrictions of the overkill mesh shown in
Figure 3.33(d) to the handbook domains. Tables 3.24-3.35 report the energy norm of the
GFEM solutions of Model Problem IT on Mesh I (with 4 x 4 elements), Mesh II (with 8 x 8
elements) and Mesh III (with 16 x 16 elements) using the mesh-based handbook functions
for v = 1.0, 1.125, 1.25 and 1.375, respectively. In the tables, we see that some of the
computed GFEM solutions are more accurate than the overkill solutions; for this reason
in each table we used the solution with p = 5 and pp, = 5 as the new overkill solution to
compute the relative error. We observe, once more, that we can achieve better accuracy
by using less degree of freedom. Figures 3.37-3.40 show the exponential convergence of the
GFEM solutions. From Tables 3.24-3.35 and Figures 3.37-3.40, we also observe that the
GFEM solution has much similar convergence behavior on the three meshes, Mesh I, II, and

III, and the decease of the global mesh size does not make the GFEM solution converge.
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Table 3.24. Energy norm of the solution of Model Problem II on Mesh I (with 4 x 4 elements)
for v = 1.0 using the mesh-based handbook functions obtained on handbook mesh Type II. The

numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative

error of the solution. Here the solution for p = 5 and pn, = 5 is used as overkill solution in the

computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 1 597.223463 | 597.352380 | 597.405799 | 597.417457 | 597.419870
(75) (109) (143) (177) (211)
2.66% 1.66% 0.98% 0.75% 0.69%
p=2 | 597.379945 | 597.398663 | 597.413286 | 597.420154 | 597.422822
(131) (165) (199) (233) (267)
1.35% 1.09% 0.84% 0.69% 0.62%
p=3 | 597.397113 | 597.410107 | 597.418923 | 597.425465 | 597.427684
(219) (253) (287) (321) (355)
1.11% 0.90% 0.72% 0.54% 0.47%
p=4 | 597.403085 | 597.415649 | 597.423456 | 597.429948 | 597.432449
(339) (373) (407) (441) (475)
1.02% 0.79% 0.60% 0.38% 0.24%
p=>5 | 597.404253 | 597.416764 | 597.424505 | 597.431349 | 597.434226
(491) (525) (559) (593) (627)
1.00% 0.76% 0.57% 0.31%
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Table 3.25. Energy norm of the solution of Model Problem IT on Mesh II (with 8 x 8 elements)
for v = 1.0 using the mesh-based handbook functions obtained on handbook mesh Type II. The

numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative

error of the solution. Here the solution for p = 5 and pn, = 5 is used as overkill solution in the

computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 1 597.223977 | 597.350383 | 597.400110 | 597.411934 | 597.415788
(243) (373) (503) (633) (763)
2.58% 1.56% 0.88% 0.62% 0.50%
p=2 | 597.359292 | 597.374917 | 597.404901 | 597.413183 | 597.416523
(451) (581) (711) (841) (971)
1.46% 1.27% 0.79% 0.58% 0.48%
p=3 | 597.395585 | 597.406892 | 597.413137 | 597.416783 | 597.418703
(787) (917) (1047) (1177) (1307)
0.96% 0.74% 0.58% 0.47% 0.39%
p=4 | 597.402057 | 597.412927 | 597.418541 | 597.420530 | 597.421461
(1251) (1381) (1511) (1641) (1771)
0.84% 0.59% 0.40% 0.31% 0.25%
p=>5 | 597.405660 | 597.415578 | 597.420707 | 597.422540 | 597.423341
(1843) (1973) (2103) (2233) (2363)
0.77% 0.51% 0.30% 0.16%
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Table 3.26. Energy norm of the solution of Model Problem II on Mesh III (with 16 x 16 elements)
for v = 1.0 using the mesh-based handbook functions obtained on handbook mesh Type II. The
numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative
error of the solution. Here the solution for p = 5 and pp, = 5 is used as overkill solution in the
computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 1| 597.217498 | 597.333781 | 597.395365 | 597.411471 | 597.418804
(867) (1381) (1895) (2409) (2923)
2.66% 1.78% 1.05% 0.75% 0.56%
p=2 | 597.330451 | 597.361503 | 597.401769 | 597.414104 | 597.420222
(1667) (2181) (2695) (3209) (3723)
1.81% 1.49% 0.94% 0.69% 0.52%
p=3 | 597.393083 | 597.408376 | 597.416892 | 597.420647 | 597.423184
(2979) (3493) (4007) (4521) (5035)
1.09% 0.82% 0.62% 0.50% 0.41%
p=4 | 597.409219 | 597.419165 | 597.424210 | 597.425781 | 597.426591
(4803) (5317) (5831) (6345) (6859)
0.80% 0.55% 0.37% 0.29% 0.24%
p=>5 | 597.417730 | 597.424005 | 597.426764 | 597.427723 | 597.428250
(7139) (7653) (8167) (8681) (9195)
0.59% 0.38% 0.22% 0.13%
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Table 3.27. Energy norm of the solution of Model Problem II on Mesh I (with 4 x 4 elements)
for v = 1.125 using the mesh-based handbook functions obtained on handbook mesh Type II. The

numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative

error of the solution. Here the solution for p = 5 and pp, = 5 is used as overkill solution in the

computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 1] 652.652451 | 652.976786 | 653.080604 | 653.100483 | 653.105028
(75) (109) (143) (177) (211)
3.79% 2.11% 1.13% 0.82% 0.73%
p =2 | 653.025819 | 653.061700 | 653.094900 | 653.104829 | 653.108827
(131) (165) (199) (233) (267)
1.72% 1.36% 0.92% 0.73% 0.64%
p=3 | 653.057134 | 653.086504 | 653.103318 | 653.110924 | 653.114566
(219) (253) (287) (321) (355)
1.41% 1.05% 0.76% 0.59% 0.48%
p=4 | 653.069924 | 653.097561 | 653.112773 | 653.117708 | 653.120216
(339) (373) (407) (441) (475)
1.27% 0.87% 0.54% 0.37% 0.25%
p=>5 | 653.072400 | 653.099400 | 653.114321 | 653.119398 | 653.122245
(491) (525) (559) (593) (627)
1.24% 0.84% 0.49% 0.30%
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Table 3.28. Energy norm of the solution of Model Problem IT on Mesh II (with 8 x 8 elements)
for v = 1.125 using the mesh-based handbook functions obtained on handbook mesh Type II. The

numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative

error of the solution. Here the solution for p = 5 and pp, = 5 is used as overkill solution in the

computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 1] 652.666608 | 652.956735 | 653.051213 | 653.072061 | 653.078476
(243) (373) (503) (633) (763)
3.61% 2.03% 1.11% 0.77% 0.63%
p=2 | 652.972363 | 653.000794 | 653.060017 | 653.074214 | 653.079750
(451) (581) (711) (841) (971)
1.91% 1.67% 0.98% 0.73% 0.60%
p=3 | 653.034684 | 653.060628 | 653.073948 | 653.080631 | 653.083764
(787) (917) (1047) (1177) (1307)
1.32% 0.97% 0.73% 0.58% 0.49%
p=4 | 653.046622 | 653.070915 | 653.082886 | 653.086570 | 653.088367
(1251) (1381) (1511) (1641) (1771)
1.17% 0.80% 0.52% 0.39% 0.31%
p=>5 | 653.054901 | 653.076218 | 653.086953 | 653.090224 | 653.091556
(1843) (1973) (2103) (2233) (2363)
1.06% 0.69% 0.38% 0.20%




64

Table 3.29. Energy norm of the solution of Model Problem II on Mesh III (with 16 x 16 elements)
for v = 1.125 using the mesh-based handbook functions obtained on handbook mesh Type II. The

numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative

error of the solution. Here the solution for p = 5 and pp, = 5 is used as overkill solution in the

computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 | 652.688806 | 652.928325 | 653.043198 | 653.071845 | 653.085890
(867) (1381) (1895) (2409) (2923)
3.54% 2.28% 1.29% 0.88% 0.59%
p=2 | 652.917880 | 652.980762 | 653.054591 | 653.076665 | 653.087706
(1667) (2181) (2695) (3209) (3723)
2.34% 1.89% 1.15% 0.80% 0.55%
p=3 | 653.030333 | 653.062333 | 653.079455 | 653.086525 | 653.091249
(2979) (3493) (4007) (4521) (5035)
1.43% 1.04% 0.74% 0.58% 0.43%
p=4 | 653.062043 | 653.081536 | 653.090870 | 653.093779 | 653.095432
(4803) (5317) (5831) (6345) (6859)
1.04% 0.70% 0.45% 0.33% 0.25%
p=>5 | 653.078788 | 653.089946 | 653.094669 | 653.096426 | 653.097420
(7139) (7653) (8167) (8681) (9195)
0.76% 0.48% 0.29% 0.17%
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Table 3.30. Energy norm of the solution of Model Problem II on Mesh I (with 4 x 4 elements)
for v = 1.25 using the mesh-based handbook functions obtained on handbook mesh Type II. The

numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative

error of the solution. Here the solution for p = 5 and pn, = 5 is used as overkill solution in the

computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 1 731.926327 | 732.811954 | 733.027643 | 733.072390 | 733.080795
(75) (109) (143) (177) (211)
5.65% 2.79% 1.39% 0.84% 0.69%
p=2 | 732.891882 | 732.963477 | 733.055477 | 733.077159 | 733.083498
(131) (165) (199) (233) (267)
2.37% 1.92% 1.08% 0.76% 0.64%
p=3 | 732.956631 | 733.030375 | 733.069654 | 733.083897 | 733.089161
(219) (253) (287) (321) (355)
1.97% 1.36% 0.88% 0.63% 0.50%
p=4 | 732.984454 | 733.049134 | 733.083833 | 733.091607 | 733.094840
(339) (373) (407) (441) (475)
1.76% 1.16% 0.63% 0.43% 0.31%
p=>5 | 732.991904 | 733.054318 | 733.087260 | 733.094818 | 733.098324
(491) (525) (559) (593) (627)
1.70% 1.10% 0.55% 0.31%
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Table 3.31. Energy norm of the solution of Model Problem IT on Mesh II (with 8 x 8 elements)
for v = 1.25 using the mesh-based handbook functions obtained on handbook mesh Type II. The
numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative
error of the solution. Here the solution for p = 5 and pn, = 5 is used as overkill solution in the
computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 | 732.074846 | 732.801790 | 732.999698 | 733.041437 | 733.057930
(243) (373) (503) (633) (763)
5.24% 2.76% 1.49% 1.04% 0.79%
p=2 | 732.809490 | 732.885720 | 733.016047 | 733.045390 | 733.059923
(451) (581) (711) (841) (971)
2.72% 2.31% 1.33% 0.98% 0.75%
p=3 | 732.939326 | 733.011213 | 733.044770 | 733.058362 | 733.066228
(787) (917) (1047) (1177) (1307)
1.96% 1.38% 0.99% 0.78% 0.63%
p=4 | 732.968200 | 733.033266 | 733.062554 | 733.070763 | 733.075755
(1251) (1381) (1511) (1641) (1771)
1.75% 1.14% 0.70% 0.52% 0.37%
p=>5 | 732.988270 | 733.043957 | 733.069576 | 733.076673 | 733.080726
(1843) (1973) (2103) (2233) (2363)
1.59% 1.00% 0.55% 0.33%




67

Table 3.32. Energy norm of the solution of Model Problem II on Mesh III (with 16 x 16 elements)
for v = 1.25 using the mesh-based handbook functions obtained on handbook mesh Type II. The

numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative

error of the solution. Here the solution for p = 5 and pp, = 5 is used as overkill solution in the

computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 1 732.264105 | 732.796958 | 733.008461 | 733.059271 | 733.079408
(867) (1381) (1895) (2409) (2923)
4.75% 2.84% 1.52% 0.96% 0.61%
p=2 | 732.748354 | 732.895954 | 733.027777 | 733.065829 | 733.081828
(1667) (2181) (2695) (3209) (3723)
3.07% 2.32% 1.34% 0.86% 0.56%
p=3 | 732.957686 | 733.033474 | 733.066764 | 733.078599 | 733.086138
(2979) (3493) (4007) (4521) (5035)
1.92% 1.28% 0.85% 0.63% 0.44%
p=4 | 733.022459 | 733.065285 | 733.082786 | 733.088169 | 733.090893
(4803) (5317) (5831) (6345) (6859)
1.39% 0.87% 0.53% 0.37% 0.25%
p=>5 | 733.056745 | 733.079666 | 733.088473 | 733.091674 | 733.093201
(7139) (7653) (8167) (8681) (9195)
1.00% 0.61% 0.36% 0.20%
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Table 3.33. Energy norm of the solution of Model Problem II on Mesh I (with 4 x 4 elements)
for v = 1.375 using the mesh-based handbook functions obtained on handbook mesh Type II. The

numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative

error of the solution. Here the solution for p = 5 and pp, = 5 is used as overkill solution in the

computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 1] 866.961277 | 870.087384 | 870.604358 | 870.702394 | 870.728011
(75) (109) (143) (177) (211)
9.33% 3.94% 1.91% 1.18% 0.89%
p =2 | 870.146407 | 870.374976 | 870.667769 | 870.716137 | 870.733701
(131) (165) (199) (233) (267)
3.76% 2.98% 1.48% 1.03% 0.82%
p=3 | 870.306237 | 870.581729 | 870.702083 | 870.730464 | 870.744585
(219) (253) (287) (321) (355)
3.24% 2.04% 1.18% 0.86% 0.65%
p=4 | 870.390943 | 870.626234 | 870.732334 | 870.748937 | 870.756711
(339) (373) (407) (441) (475)
2.92% 1.77% 0.84% 0.56% 0.37%
p=>5 | 870.417031 | 870.638864 | 870.739671 | 870.755134 | 870.762744
(491) (525) (559) (593) (627)
2.82% 1.69% 0.73% 0.42%
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Table 3.34. Energy norm of the solution of Model Problem IT on Mesh II (with 8 x 8 elements)
for v = 1.375 using the mesh-based handbook functions obtained on handbook mesh Type II. The

numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative

error of the solution. Here the solution for p = 5 and pp, = 5 is used as overkill solution in the

computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1| 867.688241 | 869.999631 | 870.500115 | 870.604599 | 870.650687
(243) (373) (503) (633) (763)
8.31% 4.01% 2.15% 1.49% 1.08%
p=2 | 869.938487 | 870.209379 | 870.538768 | 870.616479 | 870.655468
(451) (581) (711) (841) (971)
4.18% 3.36% 1.93% 1.40% 1.03%
p=3 | 870.245297 | 870.494899 | 870.604916 | 870.644146 | 870.667705
(787) (917) (1047) (1177) (1307)
3.24% 2.18% 1.49% 1.15% 0.88%
p=4 | 870.340969 | 870.556222 | 870.646109 | 870.673313 | 870.688765
(1251) (1381) (1511) (1641) (1771)
2.88% 1.83% 1.13% 0.80% 0.54%
p=>5 | 870.411196 | 870.589516 | 870.665962 | 870.689529 | 870.701238
(1843) (1973) (2103) (2233) (2363)
2.58% 1.60% 0.90% 0.52%
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Table 3.35. Energy norm of the solution of Model Problem II on Mesh III (with 16 x 16 elements)
for v = 1.375 using the mesh-based handbook functions obtained on handbook mesh Type II. The

numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative

error of the solution. Here the solution for p = 5 and pp, = 5 is used as overkill solution in the

computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 | 868.462359 | 869.994193 | 870.558307 | 870.669129 | 870.709291
(867) (1381) (1895) (2409) (2923)
7.21% 4.11% 1.98% 1.17% 0.67%
p=2 | 869.836827 | 870.267733 | 870.596143 | 870.680995 | 870.712746
(1667) (2181) (2695) (3209) (3723)
4.53% 3.25% 1.75% 1.05% 0.61%
p=3 | 870.347330 | 870.575043 | 870.675107 | 870.703477 | 870.718933
(2979) (3493) (4007) (4521) (5035)
2.96% 1.88% 1.11% 0.77% 0.48%
p=4 | 870.530751 | 870.652409 | 870.706031 | 870.719249 | 870.725460
(4803) (5317) (5831) (6345) (6859)
2.13% 1.33% 0.73% 0.47% 0.29%
p=>5 | 870.622212 | 870.688329 | 870.716977 | 870.725120 | 870.728997
(7139) (7653) (8167) (8681) (9195)
1.57% 0.97% 0.53% 0.30%
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Figure 3.37. Convergence of GFEM solution of Model Problem IT with v = 1.0 using mesh-based
handbook functions obtained on handbook mesh Type II.
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Figure 3.38. Convergence of GFEM solution of Model Problem II with « = 1.125 using mesh-based
handbook functions obtained on handbook mesh Type II.
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Figure 3.39. Convergence of GFEM solution of Model Problem II with v = 1.25 using mesh-based
handbook functions obtained on handbook mesh Type II.

597 voids, y=1.375
1.000 T

O - -Op=1, 4x4 elements
0O - O p=2, 4x4 elements
/x = -\ p=3, 4x4 elements
V —- -V p=4, 4x4 elements
<& = =<0 p=5, 4x4 elements
0100 I5 p=1, 8x8 elements
O0—-J p=2, 8x8 elements
/~—\ p=3, 8x8 elements
V—V p=4, 8x8 elements
O—=< p=5, 8x8 elements
®—@p=1, 16x16 elements
B—W p=2, 16x16 elements
0.010 | A—A p=3, 16x16 elements
V—V¥ p=4, 16x16 elements
¢— p=5, 16x16 elements

Relative Error (log scale)

0.001 . ! ;
1 10 100 1000 10000

Number of Degree of Freedom (log scale)

Figure 3.40. Convergence of GFEM solution of Model Problem II with « = 1.375 using mesh-based
handbook functions obtained on handbook mesh Type II.
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Now, let us solve the Model Problem II by using handbook mesh Type III shown in
Figure 3.34 for the numerical construction of the handbook functions %X;l. Note that these
meshes have smaller mesh size than the overkill mesh shown in Figure 3.33(d). Table 3.36
reports the energy norm of the GFEM solutions for v = 1.0 of Model Problem II on
Mesh III (with 16 x 16 elements) using the mesh-based handbook functions. Comparing
Tables 3.36 with Table 3.26, there is no difference in the relative error. This means that
further refinement of the handbook mesh does not bring any benefit in the GFEM solution.
The results for other choices of v and other choices of mesh, Mesh I and II, are omitted

here, because they give the same conclusion.

Table 3.36. Energy norm of the solution of Model Problem IT on Mesh IIT (with 16 x 16 elements)
for v = 1.0 using the mesh-based handbook functions solved on handbook mesh Type III shown
in Figure 3.34. The numbers in bracket are the number of degree of freedom, and the percentage
numbers are the relative error of the solution. Here the solution for p = 5 and py, = 5 is used as

overkill solution in the computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb =5
p=1 1 597.219242 | 597.335528 | 597.397113 | 597.412889 | 597.420545
(867) (1381) (1895) (2409) (2923)
2.66% 1.78% 1.05% 0.76% 0.56%
p=2 | 597.332200 | 597.363249 | 597.403513 | 597.415845 | 597.421964
(1667) (2181) (2695) (3200) (3723)
1.81% 1.50% 0.94% 0.69% 0.52%
p=3 | 597.394837 | 597.410137 | 597.418644 | 597.422395 | 597.424929
(2979) (3493) (4007) (4521) (5035)
1.09% 0.82% 0.62% 0.51% 0.41%
p=4 | 597.410972 | 597.420931 | 597.425966 | 597.427536 | 597.428345
(4803) (5317) (5831) (6345) (6859)
0.80% 0.55% 0.37% 0.29% 0.24%
p=>5 | 597.419499 | 597.425778 | 597.428536 | 597.429493 | 597.430022
(7139) (7653) (8167) (8681) (9195)
0.59% 0.38% 0.22% 0.13%

In above examples, we see that the accuracy of the handbook functions %X;l plays the
significant role in the global GFEM solution, and the exponential convergence of the global
GFEM solution can be achieved by using accurate handbook functions. Similar conclusions
can also be observed in bigger problem.

Let us solve Problem III again on three meshes shown in Figure 3.41, by using the
handbook functions which are numerically constructed on the handbook mesh Type II.
Tables 3.37-3.39 report the energy norm of the GFEM solutions of Model Problem III on
Mesh I (with 8 x 8 elements), Mesh II (with 16 x 16 elements) and Mesh III (with 32 x 32
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the

the mesh-based handbook functions for v = 1.0. In each table we used the
Like in Model

using

the numerical construction of the handbook

1m

(c). Mesh III (32 x 32 elements)
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Figure 3.41. Meshes used for Model Problem IIT for v = 1.0.

the handbook model and the error

elements)

solution with p = 5 and pp, = 5 as the overkill solution to compute the relative error. We

observe, once more, that we can achieve better accuracy by using less degree of freedom.

Figure 3.42 shows the exponential convergence of the GFEM solutions.

Problem II, from Tables 3.37-3.39 and Figure 3.42, we also observe that the GFEM solution

has much similar convergence behavior on the three meshes, Mesh I, I, and III, and the

decease of the global mesh size does not make the GFEM solution converge.

We have seen, in this paper, that the GFEM solution can be polluted by two errors

error in

functions. More results will be presented in the forthcoming paper.
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Table 3.37. Energy norm of the solution of Model Problem III on Mesh I (with 8 x 8 elements)
for v = 1.0 using the mesh-based handbook functions obtained on handbook mesh Type II. The

numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative

error of the solution. Here the solution for p = 5 and pn, = 5 is used as overkill solution in the

computation of the relative error.

pup =1 Pnb = 2 Pup = 3 Py = 4 Pub = 5
p=1 | 1198.149029 | 1198.452264 | 1198.561998 | 1198.579842 | 1198.582830
(243) (373) (503) (633) (763)
2.75% 1.59% 0.83% 0.63% 0.59%
p=2 | 1198.497620 | 1198.535042 | 1198.573962 | 1198.584115 | 1198.586820
(451) (581) (711) (841) (971)
1.33% 1.07% 0.71% 0.57% 0.53%
p=3 | 1198.554766 | 1198.570465 | 1198.582064 | 1198.591289 | 1198.593604
(787) (917) (1047) (1177) (1307)
0.90% 0.75% 0.60% 0.46% 0.41%
p=4 | 1198.562860 | 1198.578701 | 1198.590770 | 1198.597901 | 1198.600744
(1251) (1381) (1511) (1641) (1771)
0.83% 0.65% 0.47% 0.31% 0.22%
p=>5 | 1198.565004 | 1198.580865 | 1198.592811 | 1198.600732 | 1198.603758
(1843) (1973) (2103) (2233) (2363)
0.80% 0.62% 0.43% 0.22%
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Table 3.38. Energy norm of the solution of Model Problem III on Mesh II (with 16 x 16 elements)
for v = 1.0 using the mesh-based handbook functions obtained on handbook mesh Type II. The

numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative
error of the solution. Here the solution for p = 5 and pp, = 5 is used as overkill solution in the
computation of the relative error.

pup =1 Pnb = 2 Pup = 3 Py = 4 Pub = 5
p=1| 1198.238767 | 1198.453314 | 1198.557050 | 1198.576213 | 1198.583690
(867) (1381) (1895) (2409) (2923)
2.45% 1.56% 0.83% 0.61% 0.50%
p=2 | 1198.466525 | 1198.489158 | 1198.564479 | 1198.578430 | 1198.585106
(1667) (2181) (2695) (3209) (3723)
1.49% 1.35% 0.76% 0.58% 0.48%
p=3 | 1198.551529 | 1198.566935 | 1198.578946 | 1198.585328 | 1198.589097
(2979) (3493) (4007) (4521) (5035)
0.89% 0.73% 0.57% 0.47% 0.40%
p=4 | 1198.563851 | 1198.578242 | 1198.589808 | 1198.593110 | 1198.595082
(4803) (5317) (5831) (6345) (6859)
0.76% 0.58% 0.39% 0.31% 0.25%
p=>5 | 1198.570206 | 1198.583200 | 1198.593968 | 1198.597048 | 1198.598698
(7139) (7653) (8167) (8681) (9195)
0.69% 0.51% 0.28% 0.17%
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Table 3.39. Energy norm of the solution of Model Problem III on Mesh III (with 32 x 32 elements)
for v = 1.0 using the mesh-based handbook functions obtained on handbook mesh Type II. The
numbers in bracket are the number of degree of freedom, and the percentage numbers are the relative

error of the solution. Here the solution for p = 5 and pp, = 5 is used as overkill solution in the

computation of the relative error.

pup =1 Phb = 2 Pub = 3 pup =4 Pub = 5
p=1 ] 1198.213817 | 1198.417531 | 1198.540127 | 1198.571257 | 1198.585571
(3267) (5317) (7367) (9417) (11467)
2.55% 1.76% 1.03% 0.74% 0.55%
p=2| 1198.406894 | 1198.467037 | 1198.552107 | 1198.576567 | 1198.588333
(6403) (8453) (10503) (12553) (14603)
1.81% 1.51% 0.93% 0.67% 0.51%
p=3 | 1198.536782 | 1198.564533 | 1198.581400 | 1198.588820 | 1198.593930
(11587) (13637) (15687) (17737) (19787)
1.06% 0.81% 0.61% 0.50% 0.40%
p=4 | 1198.566874 | 1198.585075 | 1198.595595 | 1198.598758 | 1198.600426
(18819) (20869) (22919) (24969) (27019)
0.78% 0.56% 0.37% 0.29% 0.23%
p=>5 | 1198.582838 | 1198.594616 | 1198.600741 | 1198.602702 | 1198.603704
(28099) (30149) (32199) (34249) (36299)
0.59% 0.39% 0.22% 0.13%
2500 voids, y=1.0
0.100 T T
Q
o O - -Op=1, 8x8 elements \
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Figure 3.42. Convergence of the GFEM solution of Model Problem III with v = 1.0 using mesh-based

Number of Degree of Freedom (log scale)

handbook functions with finer meshes for handbook problems.
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CHAPTER IV

FURTHER STUDY OF THE p-HANDBOOK VERSION OF THE

GENERALIZED FEM

4.1 Introduction

In this section we briefly re-describe the Generalized FEM using mesh-based handbooks, in
order to introduce the new notions for the further study presented in the following sections.
We will describe the method by employing the Neumann problem for the Laplacian in

a domain with 597 internal voids as our model problem, namely:

([ Ay = 0, in Q.
ou
% =g, on Ioyter, (41)
ou

{ % = 0, on 6QW\Fouter.

Here 2, is the problem domain which includes 597 circular voids in its interior the size
of which is controlled by a parameter v, 1.0 < v < 1.375, as shown in Figure 4.1, Toyter
denotes the square outer boundary of the domain, 92, \I'guter is the boundary of the voids,
and ¢ = V(2x — y) - n, where n is the exterior unit normal, is the non-zero Neumann
boundary condition imposed only on I'guter. On the boundaries of the voids, 9, \Iouter,
we impose zero Neumann boundary condition.

We will illustrate the robustness of the method by varying the parameter v which con-
trols the closeness of the voids. Figure 4.1(a) (resp. Figure 4.1(b)) shows the domain €,
for v = 1.0 (resp. v = 1.375) in which the voids are relatively far apart and it is relatively
easy (resp. are almost touching and is more difficult) to approximate the solution of (4.1)
with good accuracy.

To construct a Generalized FEM approximation of the solution of (4.1) we will employ
a uniform mesh of squares Ay, as shown in Figure 4.2(a). We will often call A;, the GFEM
mesh to underline that A; may overlap part of the boundary of the domain and hence it
is not a classical FEM mesh; in particular here Ay overlaps all the voids. We will denote
the elements by 7, the vertices by X;, ¢ = 1,2, ..., Nyert, and the corresponding element-
wise bilinear basis functions (the standard hat-functions) by qb?, 1= 1,2,..., Nyert. With

each vertex X; we will associate the vertex patch wg?i), defined as the zeroth layer patch of
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elements,
0) def
QF =) Csupp(el) = |J 7 (4.2)
TEA
X;€e0r

Then {¢l'}¥s* is a Partition of Unity subordinate to the covering {QF} satisfying

TNvert

Pl >0, d ¢l=1, on Q (4.3)
=1

C
68 ooy < 1, IV | oo () < T (4.4)
and, in addition, the covering {Q2}¢* satisfies the overlap condition
card{ilz € QI'} < 4. (4.5)

Given the mesh Ay, and a positive integer ppp, and a parameter d € (0,2], we will
introduce the space of mesh-based handbook functions of degree py;, by
Tvert

VApI;Lb;d _ {Q} c Hl(Q)‘ v = Z ¢£Lvi7 v; € ‘/lphb;d(Q?)}’ (46)

oc
=1

where Vlzgi;b;d(Q?) is the local space of the handbook functions of degree pyy

Mhb
vty = {oe HY@N| v=> e}, (4.7)
j=1

(a) 00070 20 OoOOOOOOOOO (b)

Figure 4.1. The problem domain which includes 597 voids in its interior is shown here for (a) v = 1.0,
and (b) v = 1.375.
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where nyy, is the dimension of the handbook space Vlggb;d(Q?), and %Xi;d is the jth handbook
function associated with the vertex patch Q? and the parameter d, defined as the exact

solution of the following local Neumann problem:

Xisd (1)
Ay = 0, in @y, (4.8)
0 (¢X“d) _ v(%(zphb)) ‘n, it j=2py, —1, on aw(l) (49)
an V(S(eP)) - m, if j = 2pw, X

0 . ~(1):d 1

o (¢j(1’d) = 0, on 8w§(3 - 8w§(3. (4.10)
Here w%) is the one-layer patch of elements around X;, namely
w%) = U T. (4.11)
TEA
8Tﬂwg?i)7é0

(D}(fl is the handbook domain obtained from w%) (€2, by eliminating the voids which do

not intersect a neighborhood of X; controlled by the parameter d € (0,2]. Figure 4.2(c)
shows the domain @g);l, obtained for d = 1 which we will use throughout this and the next
section. In [53] we also employed handbook domains with d = 1/2.

Figures 4.3 and 4.4 show the shades of the gradient for %X;I’ the handbook functions
of degree one and two for v = 1.0 and 1.375, for the patch shown in Figure 4.2. We refer
the reader to [53] for more details of the definition of the handbook functions for boundary
patches and curvilinear domains.

The (p; (Pub, d)) Generalized FEM approximation of the solution of (4.1) is given by

NFEM Tvert

B (Prbsd) _ Z bethi + Z ¢h<za( )lbx“d) e St @ngb’ 7 (4.12)

where 1y, (resp. Sgh) are the standard bi-p finite element basis functions (resp. bi-p finite
element space) of degree p defined over the mesh Ay, and by, k = 1,...,npEM, ay), j =
1,....,nhp, ¢ = 1, ..., Nyert, are the Generalized FEM degrees of freedom which are determined

to be such that (4.12) satisfies the standard discrete variational problem:
/QVuzgiphb’d) Vv dQ) = 75 gv ds, Yo e Sy, ® VApl;Lb;d. (4.13)
outer

In [53] we analyzed the (p; (Pub, d)) convergence of the Generalized FEM approximation
on the uniform 4 x 4, 8 x 8, and 16 x 16 meshes of squares shown in Figure 4.5 for several
values of the parameter v, 1 <~ < 1.375. Tables 4.1, 4.2 and 4.3 give the p, and p-handbook

(pnb) convergence of the error

learmnlly  \/lumxI = lucrex

luex|lu B luex||u

)
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Figure 4.2. Creation of handbook domains J)gg)"’l associated with a vertex X. (a) The domain €,
covered by a uniform 16 x 16 mesh Ay, of square elements; (b) A typical vertex patch wg(l) with the

voids intersecting it; (¢) The handbook domain Jjg);l obtained from w;) (€ by eliminating all the

voids outside wg?) .

respectively for the 4 x 4, 8 x 8, and 16 x 16 meshes for v = 1.0. Each column gives the
p-convergence for fixed pyy, order, while each row gives the py,-convergence for fixed p. In
each case the handbook functions were constructed numerically with sufficient accuracy so
that the errors in their numerical construction do not affect significantly the accuracy of
the Generalized FEM solution. We will address the effect of the accuracy of the numerical
construction of the handbook functions on the accuracy of the Generalized FEM in the
next section. The first column of each table corresponds to py, = 0, i.e. to the case that
no handbook functions are used in the GFEM solution. Comparing the relative errors
for ppp = 0 (first column) and pp, = 1 (second column) we can see clearly that there is
very significant improvement in accuracy when we employ pn, = 1, i.e. the enrichment of
the approximation by handbook functions leads to significant improvement of its accuracy.
Further, from Figure 4.6, which gives the py;, (abbreviation for p-handbook)-convergence
when the 4 x 4 mesh is employed for v = 1.0 and v = 1.375, it appears that the error
decreases exponentially with p and pyy,, similarly as in the classical p-version of the FEM

for heat-conduction and elasticity problems in polygonal domains (see [71]) and that the
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Figure 4.3. Examples of the handbook functions zbj(;l ford =1, j = 1,...,4, for the handbook
domain &););1 shown in Figure 4.2(c). Shades of the gradient of the pairs of handbook functions of
degrees one and two for (¢) v = 1.0, with the boundary conditions for the handbook functions of

degree (a) pup, = 1 (V(R(2)) - n and V(S(2)) - n), and (b) ppp = 2 (V(R(2?)) - n and V(3(z?)) - n).
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Figure 4.4. Examples of the handbook functions zbj(;l ford =1, j = 1,...,4, for the handbook
domain &;g);l shown in Figure 4.2(c). Shades of the gradient of the pairs of handbook functions of
degrees one and two for (¢) v = 1.375, with the boundary conditions for the handbook functions of

degree (a) pup, = 1 (V(R(2)) - n and V($(2)) - n), and (b) ppp = 2 (V(R(2?)) - n and V(3(z?)) - n).
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(d). Mesh V (64 x 64 elements)

(c). Mesh III (16 x 16 elements)

Figure 4.5. Uniform meshes of squares used for the Generalized FEM solution of model problem

(4.1) shown here over the problem domain for v = 1.0.

Generalized FEM is robust with respect to the -, except for the case when py, = 0, i.e.

when no handbook functions are employed.

In order to compare the p-convergence with pyy, > 1, with the convergence of the h and

p-version of the Generalized FEM with py, = 0, when no handbook functions are added,

we computed the bi-p GFEM solutions on the 4 x 4, 8 x 8, 16 x 16, 32 x 32, 64 x 64,

and 128 x 128 meshes for v = 1.0, for p = 1,..

0. Table 4.4 reports the

.,9, using pnp

5

., L/128 (L denotes the length of the side of the outer square of ),

energy norms and the corresponding relative errors of the GFEM solution for p = 1,..

(phb = 0), h = L/4,..
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and Figure 4.7 compares its convergence versus the p-handbook convergence of the method
for ppp, = 1,...,5, p = 1,...,5, on the 4 x 4, 8 x 8 and 16 x 16 meshes.

significant improvement in the accuracy due to the employment of the handbook functions

Note the very

and that the p-handbook version of the method appears to converge exponentially. Let us
also remark that linear convergence is at best the convergence to be expected from the X-
FEM of Belytschko et al. (see [30,34]), because it does not include enrichment by handbook
functions. The level set functions employed to enrich the p = 1 FE basis in the X-FEM
have different character than our handbook functions and most likely do not contribute
significantly in the improvement of the accuracy of the X-FEM. Their main use is related
with the description of the problem domain in the elements overlapping a boundary.

Let us also examine the effect of enrichment by handbook functions in the pointwise
accuracy. Figure 4.8 compares the pointwise error of the GFEM solution computed using:
p = 1 and p,, = 1 on the mesh with 4 x 4 elements, with the GFEM solution computed
using p = 1 and p,, = 0 on the mesh with 128 x 128 elements. It is clear that the handbook
function are responsible for very significant improvement in the pointwise accuracy of the
GFEM solution.

Table 4.1. p and pp, convergence of the energy norm of the solution of the model problem on the
mesh with 4 x 4 elements for v = 1.0. The numbers in bracket are the number of degrees of freedom,
and the percentage numbers are the relative error of the solution. Here we used the solution for
p =5 and pyu, = 5 as overkill solution to compute the relative error for all the other entries in the
Table. The first column shows the p-convergence for the case pp, = 0 (no handbook functions), in

which the error is very high for the entire range of p.

Pub =0 Pub =1 Phb = 2 Phb = 3 Pup = 4 Pub =5
p=1 1 526.047756 | 597.223463 | 597.352380 | 597.405799 | 597.417457 | 597.419870
(25) (75) (109) (143) (177) (211)
47.40% 2.66% 1.66% 0.98% 0.75% 0.69%
p=2| 526.460025 | 597.379945 | 597.398663 | 597.413286 | 597.420154 | 597.422822
(81) (131) (165) (199) (233) (267)
47.27% 1.35% 1.09% 0.84% 0.69% 0.62%
p=3 | 527.076526 | 597.397113 | 597.410107 | 597.418923 | 597.425465 | 597.427684
(169) (219) (253) (287) (321) (355)
47.07% 1.11% 0.90% 0.72% 0.54% 0.47%
p=4 | 527.663025 | 597.403085 | 597.415649 | 597.423456 | 597.429948 | 597.432449
(289) (339) (373) (407) (441) (475)
46.89% 1.02% 0.79% 0.60% 0.38% 0.24%
p=>5 | 528.168569 | 597.404253 | 597.416764 | 597.424505 | 597.431349 | 597.434226
(441) (491) (525) (559) (593) (627)
46.73% 1.00% 0.76% 0.57% 0.31%
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Table 4.2. p and pp, convergence of the energy norm of the solution of the model problem on the
mesh with 8 x 8 elements for v = 1.0. The numbers in bracket are the number of degrees of freedom,
and the percentage numbers are the relative error of the solution. Here we used the solution for
p =5 and pup, = 5 as overkill solution to compute the relative error for all the other entries in the
Table. The first column shows the p-convergence for the case pp, = 0 (no handbook functions), in

which the error is very high for the entire range of p.

pup =0 pup =1 Pnb = 2 Pnp =3 Pub = 4 Pub = 5
p=11 526.349745 | 597.223977 | 597.350383 | 597.400110 | 597.411934 | 597.415788
(81) (243) (373) (503) (633) (763)
47.30% 2.58% 1.56% 0.88% 0.62% 0.50%
p=2| 527.500512 | 597.359292 | 597.374917 | 597.404901 | 597.413183 | 597.416523
(289) (451) (581) (711) (841) (971)
46.94% 1.46% 1.27% 0.79% 0.58% 0.48%
p=3 | 528.905577 | 597.395585 | 597.406892 | 597.413137 | 597.416783 | 597.418703
(625) (787) (917) (1047) (1177) (1307)
46.50% 0.96% 0.74% 0.58% 0.47% 0.39%
p=4 | 531.392559 | 597.402057 | 597.412927 | 597.418541 | 597.420530 | 597.421461
(1089) (1251) (1381) (1511) (1641) (1771)
45.69% 0.84% 0.59% 0.40% 0.31% 0.25%
p=>5 | 535.140625 | 597.405660 | 597.415578 | 597.420707 | 597.422540 | 597.423341
(1681) (1843) (1973) (2103) (2233) (2363)
44.45% 0.77% 0.51% 0.30% 0.16%
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Table 4.3. p and pyp convergence of the energy norm of the solution of the model problem on

the mesh with 16 x 16 elements for v = 1.0. The numbers in bracket are the number of degrees

of freedom, and the percentage numbers are the relative error of the solution. Here we used the

solution for p = 5 and py, = 5 as overkill solution to compute the relative error for all the other

entries in the Table. The first column shows the p-convergence for the case pp, = 0 (no handbook

functions), in which the error is very high for the entire range of p.

pup =0 pup =1 Pnb = 2 Pnp =3 Pub = 4 Pup = 5
p=1 1 527.206120 | 597.217498 | 597.333781 | 597.395365 | 597.411471 | 597.418804
(289) (867) (1381) (1895) (2409) (2923)
47.03% 2.66% 1.78% 1.05% 0.75% 0.56%
p=2| 531.284898 | 597.330451 | 597.361503 | 597.401769 | 597.414104 | 597.420222
(1089) (1667) (2181) (2695) (3209) (3723)
45.73% 1.81% 1.49% 0.94% 0.69% 0.52%
p=3 | 541.855531 | 597.393083 | 597.408376 | 597.416892 | 597.420647 | 597.423184
(2401) (2979) (3493) (4007) (4521) (5035)
42.11% 1.09% 0.82% 0.62% 0.50% 0.41%
p=4 | 558.050844 | 597.409219 | 597.419165 | 597.424210 | 597.425781 | 597.426591
(4225) (4803) (5317) (5831) (6345) (6859)
35.70% 0.80% 0.55% 0.37% 0.29% 0.24%
p=>5 | 573.850349 | 597.417730 | 597.424005 | 597.426764 | 597.427723 | 597.428250
(6561) (7139) (7653) (8167) (3681) (9195)
27.81% 0.59% 0.38% 0.22% 0.13%
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597 voids, 4x4 elements
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5 O—=< p=5, y=1.0
5 ®—®p=1,y=1.375
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Number of Degree of Freedom (log scale)

Figure 4.6. ppp-convergence of the GFEM solution for v = 1.0 and v = 1.375 on the 4 x 4 mesh.
Note that the character of the convergence does not depend on 7.
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Table 4.4. h and p convergence of the bi-p GFEM solution when no handbook functions are used

(pnb = 0). The numbers in brackets are the corresponding numbers of degrees of freedom, and the

percentage numbers are the relative error of the FEM solutions, for the case v = 1.0. Here, we used

the p =5 and ppp, = 5 GFEM solution on the 4 x 4 mesh to compute the relative errors.

p=1 p=2 p=3 p=4 p=>5
4x4 526.047757 | 526.460025 | 527.076526 | 527.663025 | 528.168570
mesh (25) (81) (169) (289) (441)
47.40% 47.27% 47.08% 46.90% 46.74%
8x8 526.349746 | 527.500513 | 528.905577 | 531.392559 | 535.140624
mesh (81) (289) (625) (1089) (1681)
47.31% 46.95% 46.50% 45.70% 44.46%
16 x 16 | 527.206120 | 531.284899 | 541.855520 | 558.050857 | 573.850334
mesh (289) (1089) (2401) (4225) (6561)
47.04% 45.74% 42.12% 35.71% 27.82%
32 x 32 | 530.863334 | 561.402890 | 585.185212 | 593.588735 | 596.252541
mesh (1089) (4225) (9409) (16641) (25921)
45.87% 34.20% 20.15% 11.33% 6.29%
64 x 64 | 563.133352 | 593.801073 | 597.101554 | 597.269237 | 597.427011
mesh (4225) (16616) (37149) (65824) (102641)
33.40% 11.01% 3.34% 2.35% 0.49%
128 x 128 | 591.321915 | 597.232113 | 597.424852 | 597.430807
mesh (16558) (63468) (140136) (246562)
14.27% 2.60% 0.56% 0.34%
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597 voids, y=1.0
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Figure 4.7. Comparison of the h-convergence of the FEM solutions and the pnp- convergence of the
GFEM solutions. Note the very different character of the method when pyh, = 0 (no enrichment)

and pyp > 1! The * symbol indicates the solutions which are compared in Figure 4.8.

4.2 Effect of the error in the numerical construction of the handbook functions

In the computational implementation of the Generalized FEM the handbook functions

Ap; (pvoid sNayers ) wX,d

X; . .
wj 4 are replaced by numerical constructions T, am

obtained by employing
the GFEM on mesh discretization T}, jon (wg()) of the handbook subdomains wg);d using bi-p
FE basis of degree p, and special functions of degree pynq which are applied at njayers of
vertices around each void (see [49-52]). Here T}, jon (wgf)) is the mesh obtained by refining n-
times the restriction of the mesh Ay in the handbook domain w( ) We will call T jon (wg())

the employed handbook mesh.

Using the numerically constructed handbook functions Alr}p;pn Xd , where pgp, is used as

an abbreviation of (Pyoid, Nlayers), We obtain the computed GFEM solution

NFEM Nvert Nhb

’ ? s Xi;d ;
A:hb Z bmﬁk + Z ¢Z (Z a( IC)F:/; q][)j ) c Sg Vﬁth’ (4.14)

where VAp “‘)X is the global space of numerically constructed handbook functions which is
hs

defined as in (4.6) and (4.7) by replacing the handbook functions zZ)jX;d by their numerical

w)-(;d, and the degrees of freedom b, and &gi)

p; (pVOId 7n1ayerb)
A~
J

constructions are determined to

Ty h/2n
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WITH HANDBOOK FUNCTIONS WITHOUT HANDBOOK FUNCTIONS

88 0°060°00%06 o (b)
4x4mesh,p=1,p, =1 128 x 128 mesh, p=1,p,, =0
|eSFEM|| = 2.66%, N, = 75 [eCFEM || = 14.27%, N, . = 16558

OVERKILL ERROR IN MODULUS OF GRADIENT

0.0% 05% 1.0% 25% 50% 10.0% 25.0% 50.0%

o

Figure 4.8. Relative modulus of the error of gradient for: (a). the p = 1, pp, = 1 GFEM solution
on the 4 x 4 mesh using only 75 degrees of freedom; and (b) the p =1, py, = 0 GFEM solution on
the 128 x 128 mesh using 16558 degrees of freedom.

satisfy the discrete variational problem

/ﬂvuigxd) Vv d) = ji gv ds, VONS Sgh ® Vﬁ:i’jg\, (4.15)

We call ui(p i‘Ab\’d) the computed GFEM solution to underline the fact that it is different from
h3
d)

the GFEM solution ugip hbs

In [53], we have seen that large errors, wj.(;d —

defined in terms of the exact handbook functions ¢j.(;d.

; id,"1 X:d . .
Pi(Pvoid; ayer5)¢- ™, in the numerical

T, jon J
constructions of the handbook function can degrade the accuracy of the computed GFEM
solution u”® hb’d), in comparison with the accuracy of ugip hb’d), the GFEM solution based

B3
on the exact handbook functions w])-(;d. To underline this point, let us, once more, consider

the model example in the domain with 597 voids, and let us determine the computed GFEM

solution ui(pj‘&’d) using p, pnp, = 1, ..., 5 on the 16 x 16 mesh Ay, using the computed handbook

h»

. 5:(1,0

functions AT’( -0)
h/2

FEM approximation enriched by analytical void functions of degree pyoiq = 1 at njagers = 0
on the handbook mesh 7j, /5 (wg)) (resp. T4 (wgp)), which are shown in Figure 4.9(b) (resp.

Figure 4.9(c))

1[)]).(;1 (resp. A%S/I;O)zbj.(;l) which are constructed numerically using the bi-p
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Figure 4.9. (a) The problem domain which includes 597 voids covered by the 16 x 16 mesh Ay. (b)

The meshes T}, /g(wg;)), and (c) T}, /4(w§)), for a typical handbook domain JJ;)J already shown in

(1))

Figure 4.2 above. The mesh shown with thick lines is Th(wy’), the restriction of the mesh Ay in

oD,

Table 4.5 (resp. Table 4.6) gives the relative errors of the computed GFEM solution

WP P D) Ghtained using the A5;(1’0)wX;1 (res A5;(1’0)wX;1) handbook functions, and Fig-
Ay A & Thyo Vi P Ay, Y ’ &
ure 4.10 compares the py;, convergence in the two cases. Note that when the A%)(/léo)wj(;l
handbook functions are employed only up to 5% accuracy can be achieved, while by using

the A?}Ej;o)wj(;l handbook functions better than 0.5% accuracy can be attained!

Let us now see in more detail the accuracy of the numerical construction of the hand-
book functions. The above example employs 289 handbooks (225 interior handbooks and
64 boundary handbooks). Let us solve the handbook problems for the handbook functions

’l]Z)jX;l, j = 1,...,10, using the meshes Th/z(wg)), Th/4(w§)) and Th/g(wg)), (shown in Fig-

ure 4.11 for a typical handbook domain Jjg);l, obtained respectively from one, two and three

uniform subdivisions of the restriction of the GFEM mesh Ay in wg). Using these meshes

we constructed the handbook functions ¢]X;1, employing bi-quintic (p = 5) basis with void

functions of degree one (pyoids = 1) at Njayers = 0, namely A?,i}f/l;?l)wj(;l for j = 1,...,10,

n = 1,2,3. Using Aii’,i}f/léo)@bf;l as the reference solution we computed the relative errors
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Table 4.5. p and pnp, convergence of the energy norm of the computed GFEM solution
uGE,);E(ﬁVY[O) (Ap,p,p,,) using the numerically constructed handbook functions A?:j;o)z/}f 1 for ~v=1.0

Th 2
on the mesh with 16 x 16 elements. The numbers in the brackets are the number of degree of

freedom, and the percentage numbers are the relative error in the energy norm. Note that due to
the large errors in the numerical construction of the handbook functions, the GFEM converges very
slowly and only 5% accuracy can be achieved. Here we used the p = 5 and pnp = 5 solution from

the next Table to compute all the relative errors.

(0)

m wX

shows the maximum relative error of the ten handbook functions ATh/2

X;1
¥;

5;(1,0)

Py =0 Py =1 Phb = 2 Php = 3 prp = 4 Dhb =5
p=11 527.206120 | 596.367579 | 596.481838 | 596.541779 | 596.557674 | 596.566524
(289) (867) (1381) (1895) (2409) (2923)
47.03% 5.91% 5.58% 5.40% 5.35% 5.32%
p=2| 531.284898 | 596.478734 | 596.509660 | 596.549230 | 596.562569 | 596.570355
(1089) (1667) (2181) (2695) (3209) (3723)
45.73% 5.59% 5.50% 5.38% 5.34% 5.31%
p=3 | 541.855531 | 596.540586 | 596.556918 | 596.566336 | 596.573090 | 596.579247
(2401) (2979) (3493) (4007) (4521) (5035)
42.11% 5.40% 5.35% 5.32% 5.30% 5.28%
p=4 | 558.050844 | 596.556949 | 596.569200 | 596.577328 | 596.586096 | 596.596171
(4225) (4803) (5317) (5831) (6345) (6859)
35.70% 5.35% 5.31% 5.29% 5.26% 5.23%
p=>5 | 573.850349 | 596.565782 | 596.576615 | 596.586054 | 596.598127 | 596.615491
(6561) (7139) (7653) (8167) (3681) (9195)
27.81% 5.32% 5.29% 5.26% 5.22% 5.17%
5:(1,0) , X:1 5:(1,0) , X:1
e o AR AREOE o
eREL(wX = 5;(1,0) , X;1 J= L, 710
1AL, 05l o)
5:(1,0) , X1 5:(1,0) , X:1
v o AR ARCOE o
eppL(wy’) = 50) X j=1,..,10
1AL, 05 )

ﬂdjg);l where the handbook functions are used in the approximation. Figure 4.12
X;1

Yy (resp. A

), j =1,...,10, for the 289 handbook problems shown with bars (resp. shown with solid

black bars). We note that the average error is around 10% (resp. 1%), the error distribution
is more or less uniform over the handbooks, and the biggest errors occur in the boundary
handbooks. As we have seen from Figures 4.10 and 4.12 and Tables 4.5 and 4.6 when using
the numerically constructed handbook functions with about 10% (resp. 1%) error we can

achieve only 5% (resp. better than 1%) accuracy in the GFEM solution.
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p and pp, convergence of the energy norm of the computed GFEM solution
Ap,p,p,,) using the numerically constructed handbook functions A%f/l;o)z/};( 1 for ~v=1.0

on the mesh with 16 x 16 elements. Here we used the solution for p = 5 and pyp, = 5 as overkill

solution to compute the relative error for all the other entries in the Table. In this case there is no

pollution of the accuracy of the GFEM solution due to the numerical construction of the handbook

functions.
Pub = 0 pup =1 Prp = 2 pup =3 Py =4 Phb =5
p=11 527.206120 | 597.217498 | 597.333781 | 597.395365 | 597.411471 | 597.418804
(289) (867) (1381) (1895) (2409) (2923)
47.03% 2.66% 1.78% 1.05% 0.75% 0.56%
p=2| 531.284898 | 597.330451 | 597.361503 | 597.401769 | 597.414104 | 597.420222
(1089) (1667) (2181) (2695) (3209) (3723)
45.73% 1.81% 1.49% 0.94% 0.69% 0.52%
p=23 | 541.855531 | 597.393083 | 597.408376 | 597.416892 | 597.420647 | 597.423184
(2401) (2979) (3493) (4007) (4521) (5035)
42.11% 1.09% 0.82% 0.62% 0.50% 0.41%
p=4 | 558.050844 | 597.409219 | 597.419165 | 597.424210 | 597.425781 | 597.426591
(4225) (4803) (5317) (5831) (6345) (6859)
35.70% 0.80% 0.55% 0.37% 0.29% 0.24%
p=>5 | 573.850349 | 597.417730 | 597.424005 | 597.426764 | 597.427723 | 597.428250
(6561) (7139) (7653) (8167) (3681) (9195)
27.81% 0.59% 0.38% 0.22% 0.13%
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597 voids, 16x16 elements, y=1.0

O—-0 p=1, handbook mesh size h/2
O— p=2, handbook mesh size h/2
/N—\ p=3, handbook mesh size h/2
VV—V p=4, handbook mesh size h/2
O——= p=5, handbook mesh size h/2
®—@ p=1, handbook mesh size h/4
B—® p=2, handbook mesh size h/4
A—A p=3, handbook mesh size h/4
¥—YV¥ p=4, handbook mesh size h/4
&— p=5, handbook mesh size h/4
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(a)

597 voids, 16x16 elements, y=1.375

O—-0 p=1, handbook mesh size h/2
O0— p=2, handbook mesh size h/2
/N—\ p=3, handbook mesh size h/2
VV—V p=4, handbook mesh size h/2
O——= p=5, handbook mesh size h/2
®—@ p=1, handbook mesh size h/4
B—® p=2, handbook mesh size h/4
A—A p=3, handbook mesh size h/4
¥—YV¥ p=4, handbook mesh size h/4
&— p=5, handbook mesh size h/4

10

100 1000 10000

Number of Degree of Freedom

(b)

P;(Pnb,d) by em-

w7,

ploying the numerical constructions A‘;’:ZO)w;(;l and A%S/I;O)w])-(;l of the handbook functions 7,/};(;1
for (a) v = 1.0; (b) v = 1.375. Note that, unless the handbook functions are constructed with

sufficient accuracy the exponential convergence characteristics of the method are lost.
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Figure 4.11. Meshes used for the handbook problem shown for a typical interior handbook, (a) T}, /2

with 8 x 8 elements, (b) T},/4 with 16 x 16 elements, (c) T},/s with 32 x 32 elements. Squares with
thicker lines are the elements of the global mesh Ay,.

597 voids, 16x16 elements, handbook meshes T, , and T, ,, y=1.0
0.4 !

0.2 -

| ‘
22

0
1

maximum relative error of the funcitions

289

Figure 4.12. Maximum relative error in the numerical construction of the ten handbook functions

?;5/1270) %E/l;o)w;(;l shown with black

bars.

5
name of handbook

%)_(;17 j=1,..,10, compared with the corresponding error in A
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Let us look into the details of the error in the GFEM solution, ug\FEM(Ah, D, Dy, ), Where

the subscript A underlines the dependence of the GFEM solution u'%\FEM(Ah,p,phb) on
the precise numerical construction of the handbook functions Ag(f 2}‘;’ )¢]X;1. We solved for
the global GFEM solution, ug\FEM(Ah,p,phb), of the example problem using the numeri-

cal constructions: (1). A%® 0)1/)X L(@). AS;(I;O)%XJ; of the handbook functions ¢JX;1, and

Th/ Th/
obtained the GFEM solutions uiﬂ%ll\{lo) (Ap,p,p,,) and ui\FsE(%\/IO) (Ap,p,p,,), respectively. Fig-
Th/2 Th/a
ure 4.13 shows the relative modulus of the error of the gradient of ug\FsE(%\/IO) (Ap,p=5,p,, =
Th/2
1) and ui\ﬂ%%)(Ah,p = 5,p,, = 1), which for the solution uGFS‘%%)(Ah,p = 5,p, = 1),
Th /4 Th /2

was computed by using the overkill solution u., obtained by using p = 4 and pyeigs = 1,
Nayers = 0, on the uniform overkill mesh with 64 x 64 elements (the energy norm is ||uqy||u
= 597.413841 with the number of degree of freedom Nyo¢ = 75498), while the relative error

of uigf%) (Ap,p =5,p,, = 1) was computed by using the GFEM solution uiﬂﬁ%) (Ap,p =

5,D., 1/45) as the overkill solution (Huiﬂﬁ%)(Ah,p =5,p, =5)lu = 597.1/248250 with

the number of degree of freedom Nyof = 9%45). From Figure 4.13, it can be seen that the

pointwise relative error in uGFSI?(ll\{[O) (Ap,p =5,p,, = 1) is much reduced compared with the
T

one in uGF;;j(%)(Ah,p = 5,p,, h:/41), and hence the error in the numerical construction of

Th/2

the handbook functions can play a very important role in the global GFEM solution. The
above results indicate that errors in the microscale can significantly pollute the accuracy of
macroscale computations in multiscale analysis (see e.g. [72]) especially when many scales

are involved.

4.3 Effect of the local data and the buffer included in the handbooks

T

D, D, ) constructed as a bi-p FE solution enriched by the numerically constructed handbook

Above we described the convergence of the computed Generalized FEM solution u

functions Aw])-(;d pasted into the approximation by the Partition of Unity Method. We em-

ployed numerical constructions Al}h(f bk d)wX ! of the handbook functions w =1,...,nhp,

defined as the exact solutions of the Neumann problems (4.8)-(4.10) in the handbook domain

@g);l which is enclosed by &ug) and includes only the voids intersecting the neighborhood
(0)

wy of X, as shown in Figure 4.9 above. The voids included in L:););l are the local data
included in the handbook, while the region w ;)\w % is the buffer of the handbook domain.

- (1):1/2

In [53] we also considered the handbooks @ which we called simple handbooks. Here

we will generalize further the definition of the handbooks and we will study its effect in the

accuracy of the GFEM solution u'%\FEM(Ah, DDy )-
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Figure 4.13. Relative modulus of the error of gradient of two GFEM solutions employing the
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Let us denote by (;)g?);d, the region enclosed by the outer boundary of the k-layered mesh

patch around X, which includes only the voids intersecting the patch w&?il). We will employ

cbgég);d as the handbook domain associated with the vertex X, and we will write @bj(@g?);d) to

underline the dependence of the handbook functions 1); on the employed handbook domain

oﬁgf);d. For the handbook functions wj-(;l employed in the previous sections, we have

U = @),

GFEM(A}“

Below we will study the accuracy of the GFEM solution A p,p,,) for the fol-

lowing choices of handbook domains which are illustrated in Figure 4.14;

);1 (0)

a). d)g? : Handbook domain enclosed by dwy’ including all the voids in the interior of

wg?). This handbook domain has no buffer.

b). @g);l: Handbook domain enclosed by 8w§) including all the voids intersecting wgg).

c). JJ%);Q: Handbook domain enclosed by &ug) including all voids in its interior.

d). (:Jg?)g: Handbook domain enclosed by 8w§?) with all the voids intersecting wg).

We will write ug\FEM(Ah,p,phb;aDg?);d) to underline the dependence of the GFEM so-
lution on the choice of the handbook domains. Further in all the computations below we
will employ the computed handbook functions A%E/I;O)qﬁj(@%‘);d) for which, as we have seen
in previous sections, the effect of the numerical construction in the accuracy of the GFEM

. ~(k);d
solution ug\FEM(Ah, D, i wﬁg) )

for p, pnp, = 1,...,5, is negligible and hence we can omit
the dependence on A.

Tables 4.7-4.9 report the energy norm of the GFEM solution employing the &g?);l hand-
book functions for y = 1.375, on three meshes Ay, Mesh I (4 x4 mesh), Mesh II (8 x 8 mesh)
and Mesh III (16 x 16 mesh), respectively. Figures 4.15 and 4.16 show the py, convergence
of the GFEM solution uGFEM(Ah,p,phb;JJ(O);l) for v = 1.0, 1.125, 1.25 and 1.375, respec-
tively. We see that the error is increasing with increasing v as the voids get closer together.
However the character of the convergence is independent of v. Comparing these Tables and

Figures with the ones given above and in [53] for &J;);l, we see that the accuracy of the

(0);1

method is rather poor when wy """ is employed as the handbook domain, and we always

have

Jux = u ™M (A0, p,py i@l < usx — ™ (Anp,py 0% .
Another point is that for the GFEM solution which uses wg?);l handbooks the error is
increasing as the mesh is refined! This is because as the mesh is refined the number of voids
included in the handbooks @g?);l is drastically reduced since we omit any voids intersecting
the boundary of wg?). Also, in contrast with the GFEM solution which employs L:););l
handbooks for which as we have seen above we get exponential convergence, we do not get

exponential convergence when using the (I)g?);l handbooks!
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Figure 4.14. Four choices for the handbook domains associated with a vertex X. (a) The problem
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, " and wy
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X
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intersecting them; (e)-(h) The handbook domains @}

. The shaded area

is the ”"useful” region of the handbooks, i.e. the region where the handbook functions are used in

the computation of the GFEM solution.
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Table 4.7. p and py;, convergence of the energy norm of the solution of the model problem on the
4 x 4 mesh for v = 1.375 using the @g?);l mesh-based handbook functions. Here we used the GFEM

solution on 64 x 64 mesh with p = 4 and pyeigs = 1 as the overkill solution for computing the relative

error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb =5
p=1 | 869.445297 | 869.731126 | 869.856635 | 870.007459 | 870.069299
(75) (109) (143) (177) (211)
5.39% 4.75% 4.43% 4.02% 3.84%
p=2 | 869.719094 | 869.833737 | 869.937975 | 870.047746 | 870.110426
(131) (165) (199) (233) (267)
4.77% 4.49% 4.22% 3.91% 3.72%
p=3 | 869.914637 | 870.000204 | 870.079070 | 870.138277 | 870.176895
(219) (253) (287) (321) (355)
4.28% 4.04% 3.81% 3.63% 3.51%
p=4 | 870.006606 | 870.085126 | 870.149946 | 870.200931 | 870.240250
(339) (373) (407) (441) (475)
4.02% 3.79% 3.59% 3.43% 3.29%
p=>5 | 870.098715 | 870.181332 | 870.239347 | 870.285171 | 870.314502
(491) (525) (559) (593) (627)
3.75% 3.49% 3.30% 3.13% 3.02%

Table 4.8. p and py, convergence of the energy norm of the solution of the model problem on the
8 x 8 mesh for v = 1.375 using the @g?);l mesh-based handbook functions. Here we used the GFEM
solution on 64 x 64 mesh with p = 4 and pyoiqs = 1 as the overkill solution for computing the relative

error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb =5
p=1| 864.640258 | 866.231728 | 867.087801 | 867.556158 | 867.920672
(243) (373) (503) (633) (763)
11.79% 10.13% 9.11% 8.51% 8.00%
p=2 | 865.963175 | 866.897018 | 867.538498 | 867.912262 | 868.219004
(451) (581) (711) (841) (971)
10.43% 9.35% 8.53% 8.01% 7.56%
p=3 | 867.049725 | 867.816599 | 868.229485 | 868.489999 | 868.803327
(787) (917) (1047) (1177) (1307)
9.16% 8.15% 7.55% 7.14% 6.62%
p=4 | 867.645157 | 868.331152 | 868.704469 | 868.920751 | 869.183193
(1251) (1381) (1511) (1641) (1771)
8.39% 7.39% 6.79% 6.41% 5.92%
p=>5 | 868.322918 | 868.922825 | 869.220537 | 869.381863 | 869.561721
(1843) (1973) (2103) (2233) (2363)
7.40% 6.41% 5.85% 5.53% 5.14%
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Table 4.9. p and pp, convergence of the energy norm of the solution of the model problem on the
16 x 16 mesh for v = 1.375 using the (Z)g?);l mesh-based handbook functions. Here we used the
GFEM solution on 64 x 64 mesh with p = 4 and pyoigs = 1 as the overkill solution for computing
the relative error.

Py =1 Phb = 2 Pub = 3 Pup = 4 Phb = 5

p=1 | 847.677749 | 853.815010 | 858.642683 | 860.996417 | 862.569177
(863) (1375) (1887) (2399) (2911)
22.85% 19.61% 16.59% 14.90% 13.64%

p=2 | 854.346453 | 858.028061 | 861.690961 | 863.413011 | 864.720878
(1663) (2175) (2687) (3199) (3711)
19.30% 17.01% 14.36% 12.92% 11.71%

p=3 | 861.260374 | 863.452970 | 864.930626 | 866.113364 | 867.171386
(2975) (3487) (3999) (4511) (5023)
14.69% 12.89% 11.50% 10.26% 9.01%

p=4 | 864.921996 | 866.339432 | 867.340953 | 868.076988 | 868.665387
(4799) (5311) (5823) (6335) (6847)
11.51% 10.01% 8.79% 7.77% 6.85%

p=>5 | 867.325832 | 868.163567 | 868.711882 | 869.157084 | 869.531566
(7135) (7647) (8159) (8671) (9183)
8.81% 7.65% 6.77% 5.97% 5.21%

Let us now employ the @g)a handbooks. These handbooks are obtained from the d&);l
handbooks by including all the voids in the buffer which do not intersect the handbook
GFEM(Ahapaphb;

) and its relative error, together with the number of degree of freedom, for v = 1.375,

boundary. Table 4.10 reports the energy norm of the GFEM solution u
a}g)ﬂ
on Mesh III (the 16 x 16 mesh). Figures 4.17 and 4.18 give the convergence graphs of
the GFEM solution uSFEM(A, p, p, :&'P?) for v = 1.0, 1.125, 1.25 and 1.375. We see
that higher accuracy is obtained, in comparison with the GFEM solution which uses the

handbooks &g);l , namely

2
4 CFEM );

~(1
(An, 0, Dy @)l < JJuex — uSFEM(A

5PN

HUEX - hy PPy, Wx

and that the character of the convergence does not depend on ~.

GFEM(Ahapaphb; (Z}A()?)’Q) on Mesh

Further, Table 4.11 reports the results for the error in u
IIT (the 16 x 16 mesh), for v = 1.375, while Figures 4.19 and 4.20 give the convergence
graphs for v = 1.0, 1.125, 1.25, and 1.375. Once more, we see that the accuracy of global
GFEM solution is increased by including more data in the handbook and by adding a buffer,

namely

~(2);2 ~(1);2
lupx — uSFPM(A, p, Py 8Dl < [lumx — uCFEM (A, p, py i 88 |lu-
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Figure 4.15. Convergence of the GFEM solution of the model problem using the zero layer handbooks
without buffer &g?);l for: (a) v = 1.0, and (b) v = 1.125. Note the slow convergence of the GFEM
solution for this choice of handbooks, and that the character of the error convergence is independent

of ~.
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Figure 4.16. Convergence of the GFEM solution of the model problem using the zero layer handbooks
without buffer J)E?);l for: (a) v =1.25, and (b) v = 1.375. Note the slow convergence of the GFEM
solution for this choice of handbooks, and that the character of the error convergence is independent

of ~.
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Table 4.10. p and pyp, convergence of the energy norm of the solution of the model problem on
the 16 x 16 mesh for v = 1.375 using the @gp;z mesh-based handbook functions. The numbers in
bracket are the number of degree of freedom, and the percentage numbers are the relative error of
the solution. Here the solution for p = 5 and pyp, = 5 is used as overkill solution in the computation

of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb =5
p=1 | 868.666825 | 870.026857 | 870.558593 | 870.669621 | 870.709427
(867) (1381) (1895) (2409) (2923)
6.88% 4.01% 1.98% 1.17% 0.67%
p =2 | 869.890855 | 870.287721 | 870.596562 | 870.681445 | 870.712907
(1667) (2181) (2695) (3200) (3723)
4.39% 3.18% 1.74% 1.04% 0.61%
p=3 | 870.373079 | 870.579818 | 870.675105 | 870.703684 | 870.719011
(2979) (3493) (4007) (4521) (5035)
2.86% 1.85% 1.11% 0.76% 0.48%
p=4 | 870.542634 | 870.654283 | 870.705965 | 870.719285 | 870.725505
(4803) (5317) (5831) (6345) (6859)
2.07% 1.31% 0.73% 0.47% 0.28%
p=>5 | 870.628589 | 870.689089 | 870.716831 | 870.725057 | 870.728930
(7139) (7653) (8167) (8681) (9195)
1.52% 0.96% 0.53% 0.30%
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Table 4.11. p and pyp, convergence of the energy norm of the solution of the model problem on
the 16 x 16 mesh for v = 1.375 using the @g(zxz mesh-based handbook functions. The numbers in
bracket are the number of degree of freedom, and the percentage numbers are the relative error
of the solution. Here we used the p = 5 and pn, = 5 GFEM solution as overkill solution in the

computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb =5
p=1 | 870.424322 | 870.581830 | 870.651943 | 870.672775 | 870.681094
(867) (1381) (1895) (2409) (2923)
2.45% 1.55% 0.89% 0.56% 0.35%
p =2 | 870.565006 | 870.615097 | 870.660615 | 870.676397 | 870.681686
(1667) (2181) (2695) (3200) (3723)
1.67% 1.28% 0.77% 0.48% 0.33%
p=3 | 870.624776 | 870.654973 | 870.669148 | 870.678378 | 870.682243
(2979) (3493) (4007) (4521) (5035)
1.19% 0.85% 0.63% 0.43% 0.31%
p=4 | 870.650375 | 870.668034 | 870.677999 | 870.682243 | 870.684507
(4803) (5317) (5831) (6345) (6859)
0.91% 0.65% 0.44% 0.31% 0.21%
p=>5 | 870.664481 | 870.674198 | 870.679805 | 870.684124 | 870.686427
(7139) (7653) (8167) (8681) (9195)
0.71% 0.53% 0.39% 0.23%
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Figures 4.21 and 4.22 compare the convergence of the GFEM solution uSFEM (A, p, Dy
&%);d) for the four choices of the handbook domains: L:)g?);l, oﬁg);l, &J;m, and (DE?);Q, for
the case v = 1.0. We see that the method achieves high accuracy through exponential

GFEM(Ah’ (0);1 (0);1

convergence except for the GFEM solution u Ps Dy, @y ) which employs the @

handbooks, namely the zero layer handbooks which has no buffer. In general we should

~ (k);dy .
GFEM(Ah, D, phb;wg()’ ) increases as k and

expect that the accuracy of the GFEM solution u
d are increased.
Let us also illustrate the influence of the choice of handbook on the pointwise accuracy.

Figures 4.23 and 4.24 show the pointwise modulus of the error gradient of the GFEM
(k);d

solution uGFEM(Ah, PPy Wy ) for p=>5and p,, = 1 with the four choices of handbooks:
&g?);l, JJ;);I, d;;m and (DE?);Q. We note that the pointwise accuracy of the GFEM solution

uCSFEM(A p, Do cbg?);d) is also increased as the handbook domain (I)g?);d includes more data

and also includes a buffer zone.
Let us explain the above results. Recall the Theorem 2.1 from [53], we have the following
estimate

~(k):d Cger
HV(uEX—uGFEM(Ah,PyPhb;Wg() ))HLQ(Q) < V2M mZaX <m + 00052) ||UHH’“(Q)v

where €; and e are the local approximation error in L? and H' norm, respectively, i.e.

. i id s~ (k)d
i = min fugx — 3 o v @
o'

J 0,

where H; = LQ(wg?)), and Hy = H 1(wg?)). As we increase the number of layers k and
the data included in the handbooks (I)g?);d by increasing d, the magnitudes of €; and €9
decrease because of the better approximability of ugx by the set of employed handbook
functions %(@g?);d) in the vertex patch wx (0) and hence the accuracy of the GFEM solution

UGFEM(AhaPaPhb; oﬁgf);d) also improves.
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Figure 4.17. Convergence of the GFEM solution of the model problem using the two-layer handbooks
without buffer &;);2 for: (a) v = 1.0, and (b) v = 1.125. Note the dramatic improvement in the
convergence in comparison with Figure 4.15, and that the character of the error convergence is

independent of ~.
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Figure 4.18. Convergence of the GFEM solution of the model problem using the two-layer handbooks
without buffer &;);2 for: (a) v = 1.25, and (b) v = 1.375. Note the dramatic improvement in the
convergence in comparison with Figure 4.16, and that the character of the error convergence is

independent of ~.
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597 voids, 16x16 elements, y=1.0
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Figure 4.19. Convergence of the GFEM solution of the model problem using the two-layer handbooks
with buffer d;g?m for: (a) v = 1.0, and (b) v = 1.125, and that the character of the error convergence
is independent of ~.
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597 voids, 16x16 elements, y=1.25
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Figure 4.20. Convergence of the GFEM solution of the model problem using the two-layer handbooks
with buffer (ng for: (a) v = 1.25, and (b) v = 1.375, and that the character of the error convergence
is independent of ~.
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Figure 4.21. Comparison of the convergence of the GFEM solution of the model problem elements
using the handbooks: (a) @g?);l, and (b) &;);1, for v = 1.0. Note that, except for the case of
the @g?);l, we get exponential convergence, and the accuracy improves as the amount of local data

Relative Error (log scale)

included in the handbooks is increased.
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597 voids, 16x16 elements, y=1.0
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Figure 4.22. Comparison of the convergence of the GFEM solution of the model problem elements
using the handbooks: (a) (Dg(l);g, and (b) &g?);z, for v = 1.0. Note that, except for the case of
the J)g?)"’l, we get exponential convergence, and the accuracy improves as the amount of local data
included in the handbooks is increased.
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Figure 4.23. Relative modulus of the error of gradient of GFEM solutions for p =5 and p,, =1 on
the mesh with 16 x 16 elements. v = 1.375, for (a) Handbook &*"; (b) Handbook &)
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Figure 4.24. Relative modulus of the error of gradient of GFEM solutions for p =5 and p,, =1 on
the mesh with 16 x 16 elements. v = 1.375, for (a) Handbook &;);2; (b) Handbook &g?);z.



116

4.4 Analysis of the cost of Generalized FEM

In this section, we will investigate the cost of the GFEM employing mesh-based handbooks
for the example problem of the Neumann problem for the Laplacian in a domain with 597
voids. Here we will measure the cost of the GFEM in terms of the CPU time. All the
computation were performed on a PC, Dell Precision 450. We will use the results of these
computations to estimate the cost in parallel implementations of the method.

The major part of the CPU time can be divided into two parts: (1) The time used for
solving the handbook problems; and (2) The processing time starting from the computation
of the elemental stiffness matrices to the end of the computation of the GFEM solution.

Let us first consider the case of the 16 x 16 mesh for v = 1.0. Figure 4.25 shows
the distribution of the CPU time in all the 289 handbooks, ranging from a few seconds
to about one minute. The average CPU time used for the handbooks is 40.68 seconds.
Table 4.12 reports the processing part of the CPU time for the GFEM solution. Here
the major contribution of this part of CPU time comes from the adaptive integration of
the entries of the elemental stiffness matrices, in particular for the entries involving of
the handbook functions. Note that the increase of the handbook order py;, causes a more
substantial increase in the CPU time than the increase of the polynomial degree does.
Similar conclusions can be obtained by analyzing the case of the 8 x 8 mesh, for which the
results are given in Figure 4.26 and Table 4.13. Let us note that although the CPU time
spent for integrating the GFEM stiffness coefficients is the major cost in the global phase of
the method, it is still much smaller than the cost of numerical construction of the handbook
functions!

Figure 4.27 shows the accuracy versus the cost of the GFEM solution for v = 1.0 on the
16 x 16 and 8 x 8 meshes. We observe that the CPU time on 8 x 8 mesh is less than that of
16 x 16 mesh, while the accuracy of the GFEM solution on 8 x 8 mesh is higher than the
one on 16 x 16 mesh.

As a comparison, let us also look into the CPU time for the case of v = 1.375. Figure 4.28
and Figure 4.29 show the distribution of the CPU time in all the handbooks for the 16 x 16
and 8 x 8 meshes, respectively. The average CPU time used for the handbooks on the 16 x 16
mesh is 47.83 seconds, and 158.54 seconds for the case on the 8 x 8 mesh. Table 4.14 and
Table 4.15 report the processing part of the CPU time for the GFEM solution on the 16 x 16
and 8 x 8 meshes, respectively. We observe that the CPU time increases as v increases.

Figure 4.30 shows the accuracy versus the cost of the GFEM solution for v = 1.375 on
the 16 x 16 and 8 x 8 meshes. Similar to the case of v = 1.0, we observe that the CPU
time on 8 x 8 mesh is less than that of 16 x 16 mesh. But, unlike the case of v = 1.0, the
accuracy of the GFEM solution on 8 x 8 mesh is a little bit worse than the one on 16 x 16

mesh.
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597 voids, 16x16 elements, y=1.0
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Figure 4.25. CPU time used for the handbook problems on the 16 x 16 mesh for v = 1.0. These
CPU costs is the main cost of the method.

Table 4.12. CPU time for the model problem (4.1) on the 16 x 16 mesh for v = 1.0. Here one
unit represents one second of CPU. The time shown here only includes processing time in the global
phase of the method, starting from the computation of the elemental stiffness matrices to the end
of the computation of the global GFEM solution. The number in the bracket is the corresponding
number of degree of freedom, and the pairing numbers in the square bracket is the ratio of the CPU
time of the computation of the stiffness matrix to the rest of the CPU time. Note that the main
cost in the global phase is due to the numerical integrations, however the main cost of the method

is due to the numerical construction of the handbook functions.

p Pnp =1 Php = 2 Pnb = 3 php = 4 Php =5
1 283.8594 320.0469 419.0625 435.1406 504.4844
[282.9844:0.8750] | [317.7031:2.3438] | [414.5781:4.4844] | [427.2031:7.9375] | [492.0156:12.4688]
(867) (1381) (1895) (2409) (2923)
2 255.9531 287.7031 382.0781 393.9219 456.9844
[253.7813:2.1718] [282.9219:4.7812] [374.0313:8.0468] [381.5781:12.3438] [438.2656:18.7188]
(1667) (2181) (2695) (3209) (3723)
3 239.5469 268.7969 352.4688 361.6719 416.6875
[235.3906:4.1563] [261.2969:7.5000] [341.4688:11.0000] [344.8125:16.8594] [392.9219:23.7656]
(2979) (3493) (4007) (4521) (5035)
4 285.9531 321.2656 396.3125 417.2500 474.6094
[279.0313:6.9218] | [310.9063:10.3593] | [379.9531:16.3594] | [393.4688:23.7812] | [441.5938:33.0156]
(4803) (5317) (5831) (6345) (6859)
5 418.2031 467.5313 533.3594 578.1094 642.5469
[406.9375:11.2656] [451.2188:16.3125] [510.5000:22.8594] [546.0938:32.0156] [597.6250:44.9219]
(7139) (7653) (8167) (8681) (9195)
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597 voids, 8x8 elements, y=1.0
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Figure 4.26. CPU time used for the handbook problems on the 8 x 8 mesh for v = 1.0. These CPU

costs is the main cost of the method.

Table 4.13. CPU time for the model problem (4.1) on the 8 x 8 mesh for v = 1.0. Here one unit
represents one second of CPU. The time shown here only includes processing time in the global
phase of the method, starting from the computation of the elemental stiffness matrices to the end
of the computation of the global GFEM solution. The number in the bracket is the corresponding
number of degree of freedom, and the pairing numbers in the square bracket is the ratio of the CPU
time of the computation of the stiffness matrix to the rest of the CPU time. Note that the main
cost in the global phase is due to the numerical integrations, however the main cost of the method

is due to the numerical construction of the handbook functions.

p pup =1 Php = 2 Pnb = 3 php =4 Pub =5
1 614.5313 632.1094 722.0938 700.9531 767.1563
[614.3750:0.1563] [631.6719:0.4375] [721.2656:0.8282] (699.7031:1.2500] [765.2344:1.9219]
(243) (373) (503) (633) (763)
2 563.8750 577.8594 665.2344 641.9219 703.7344
[563.5156:0.3594] | [577.1406:0.7188] | [664.0000:1.2344] | [640.1406:1.7813] | [701.2031:2.5313]
(451) (581) (711) (841) (971)
3 535.8594 550.9688 636.7344 613.0938 672.5469
[535.1406:0.7188] | [549.8438:1.1250] | [634.9688:1.7656] | [610.6719:2.4219] | [669.2969:3.2500]
(787) (917) (1047) (1177) (1307)
4 521.8594 537.8281 618.5781 595.6094 651.5938
[520.6250:1.2344] [535.9844:1.8437] [616.1250:2.4531] [592.0000:3.6094] [647.1563:4.4375]
(1251) (1381) (1511) (1641) (1771)
5 574.2656 593.2344 666.0625 653.7031 704.6563
[572.2188:2.0468] | [590.4688:2.7656] | [662.4531:3.6094] | [648.8125:4.8006] | [698.2188:6.4375]
(1843) (1973) (2103) (2233) (2363)
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Figure 4.27. CPU time used for the GFEM solutions on the 16 x 16 and 8 x 8 meshes for v = 1.0.
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597 voids, 16x16 elements, y=1.375
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Figure 4.28. CPU time used for the handbook problems on the 16 x 16 mesh for v = 1.375. These
CPU costs is the main cost of the method.

Table 4.14. CPU time for the model problem (4.1) on the 16 x 16 mesh for v = 1.375. Here one
unit represents one second of CPU. The time shown here only includes processing time in the global
phase of the method, starting from the computation of the elemental stiffness matrices to the end
of the computation of the global GFEM solution. The number in the bracket is the corresponding
number of degree of freedom, and the pairing numbers in the square bracket is the ratio of the CPU
time of the computation of the stiffness matrix to the rest of the CPU time. Note that the main

cost in the global phase is due to the numerical integrations, however the main cost of the method

is due to the numerical construction of the handbook functions.

P Py =1 Phb = 2 Pnb = 3 b = 4 Pnb =5
1 432.5313 476.1719 585.4063 596.6406 696.5938
[431.6563:0.8750] [473.7344:2.4375] [580.9219:4.4844] [588.7813:7.8593] (683.8750:12.7188]
(867) (1381) (1895) (2409) (2923)
2 388.6250 425.6094 526.1875 532.0313 622.4531
[386.4844:2.1406] | [420.8125:4.7969] | [518.3906:7.7969] | [519.7344:12.2969] | [603.4219:19.0312]
(1667) (2181) (2695) (3200) (3723)
3 368.2031 397.0313 488.2031 496.4063 572.4375
[364.3281:3.8750] | [389.9063:7.1250] | [476.8594:11.3437) | [479.2813:17.1250] | [548.3594:24.0781]
(2979) (3493) (4007) (4521) (5035)
4 418.8750 456.7969 541.9688 571.8125 647.5000
[412.4375:6.4375] [446.3906:10.4063] [525.7813:16.1875] [549.2031:22.6094] [614.5781:32.9219]
(4803) (5317) (5831) (6345) (6859)
5 565.1094 623.5156 704.8750 766.4219 850.2031
[553.4375:11.6719] | [607.2500:16.2656] | [681.9219:22.9531] | [734.5000:31.9219] | [805.1563:45.0468]
(7139) (7653) (8167) (8681) (9195)
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Figure 4.29. (a) CPU time used for the handbook problems on the mesh with 8 x 8 elements shown
in (b) for v = 1.375. These CPU costs is the main cost of the method.

Table 4.15. CPU time for the model problem (4.1) on the 8 x 8 mesh for v = 1.375. Here one
unit represents one second of CPU. The time shown here only includes processing time in the global
phase of the method, starting from the computation of the elemental stiffness matrices to the end
of the computation of the global GFEM solution. The number in the bracket is the corresponding
number of degree of freedom, and the pairing numbers in the square bracket is the ratio of the CPU
time of the computation of the stiffness matrix to the rest of the CPU time. Note that the main
cost in the global phase is due to the numerical integrations, however the main cost of the method

is due to the numerical construction of the handbook functions.

D php = 1 Pnp = 2 Phb = 3 Php = 4 Pnp = 5
1 902.3750 934.3750 1061.9219 939.7344 1065.1875
[902.2344:0.1406] | [933.9531:0.4219] | [1061.1406:0.7813] | [938.4219:1.3125] | [1063.2813:1.9062]
(243) (373) (503) (633) (763)
2 846.6406 873.0781 999.1250 873.5156 992.4219
[846.2656:0.3750] | [872.3750:0.7031] | [997.9219:1.2031] | [871.6563:1.8593] | [989.8594:2.5625]
(451) (581) (711) (841) (971)
3 781.6406 805.4219 922.6719 808.1406 915.7500
[780.9063:0.7343] [804.2813:1.1406] [920.8906:1.7813] [805.4688:2.6718] [912.4688:3.2812]
(787) (917) (1047) (1177) (1307)
4 770.5000 791.9219 908.9688 806.8750 901.6719
[769.1406:1.3594] | [790.1094:1.8125] | [006.5469:2.4219] | [803.2188:3.6562] | [897.3750:4.2969]
(1251) (1381) (1511) (1641) (1771)
5 843.0000 867.6094 974.3281 907.7813 993.0625
[840.9844:2.0156] | [864.8281:2.7813] | [970.6875:3.6406] | [902.5469:5.2344] | [986.5313:6.5312]
(1843) (1973) (2103) (2233) (2363)
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Figure 4.30. CPU time used for the GFEM solutions on the meshes with 16 x 16 and 8 x 8 elements
for v = 1.375.

Finally, let us give a rough analysis on how much the CPU time would be if we use
a parallel computer. Assume we are using a parallel computer with 64 processors, each
of which is a Dell Precision 450, and are solving for the GFEM solution with p = 2 and
pub = 1 on the 16 x 16 mesh for v = 1.0. Since the average time for solving one handbook
is 40.68 seconds (see Figure 4.25), to solve the 289 handbooks by 64 processors will cost
about 203 seconds. Further let us spread the computation of the element stiffness matrices
of the global problem to the 64 processors also. Since the total number of the elements is
256, and the time for computing all the 256 element stiffness matrices by one processor is
253.7813 seconds (see Table 4.12) which means about 0.99 seconds for one element stiffness
matrix. Hence, to compute all the 256 element stiffness matrices by 64 processors costs
about 4 seconds. It needs another 2.1718 seconds to solve the linear equations, which gives
the total CPU time of about 210 seconds (about 3.5 minutes) to get the GFEM solution by
using 64 processors. Figure 4.31 shows the accuracy versus the CPU time for the GFEM
solution on 16 x 16 mesh for v = 1.0, when 64 processors are used in the computation.
In real parallel computing, other work, such as message communicating, would cost some
extra CPU time. We refer the readers to [73-75] for the precise analysis of the cost of the

parallel computation of the h, p, and hp version of the finite element method.
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Figure 4.31. (a) CPU time used for the GFEM solutions on the meshes with 16 x 16 elements for
~ = 1.0, when 64 processors are employed in the computation; (b) same as (a) but in logarithmic

scale.
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CHAPTER V
EXTENSION OF THE GENERALIZED FEM TO PROBLEMS WITH
INCLUSIONS

We have seen that the Generalized FEM using mesh-based handbook functions is robust for
the problems with circular voids in the problem domains. High accuracies can be achieved
by using the p-handbook version of GFEM. Obviously, similar results can be expected for
the problems with circular inclusions.

In this Chapter, we will show the robustness of the Generalized FEM using mesh-based
handbook functions for the problems with circular inclusions in the problem domains. As

our model problem, let us consider the following heat conduction model:

~V(KVu) =0, in €,

0 5.1
Ka—u =g & V(2z —y) -n, on the outer boundary T, 51)
n

where (2 is the domain shown in Figure 5.1 with the circles filled with a second material,

i.e. the coefficient of heat conductivity K has the following form:

K { K1, in the matrix, (5.2)

K5, in the fibers

5.1 Mesh-based handbook functions

The mesh-based handbook functions for the model problem (5.1) are created in the same
way as the one in previous examples. In this Section, we will focus on the difference in

computing the handbook functions.

5.1.1 Analytical special functions for inclusions

Using special functions, which reflects the local behavior of the solution, together with the
PUM in the GFEM space is one of the reasons to guarantee to obtain a solution with high
accuracy. In [49-52], the analytical special functions were obtained for circular or elliptical
voids, cracks, and singular points. These analytical special functions were also used in our

previous examples. For the problems with inclusions, the solution crossing the interfaces is
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Figure 5.1. Domain for Problem V with the parameter v = 1.0 and v = 1.375, respectively.

characterized by the following analytical special functions.

K+ K K - K

= %’:%((%)”) + 1TQ%((%)_”), outside the inclusion, (5.3)
K %((E)”), inside the inclusion,
K+ K K - K
Bt RogZymy - B B2g2y-ny utside the inclusion,

Py = 2, R 2 R (5.4)
K, %((E)n), inside the inclusion,

where z = z + yy/—1, R(:) and J(-) are the real and imaginary part of complex functions,
R is the radius of the circular inclusion and n is the order of the special functions. The
coefficients of heat conductivity K; and K» are defined in (5.2).

5.1.2 Adaptive integration over elements with inclusions

As it is demonstrated in [49-52], the accuracy of integration is essential for achieving good
accuracy of solution. In our previous examples, we followed the same method as it was
employed in [49-52], i.e. generating an adaptive integration mesh over each element, and
employing Fast Remeshing Quadrature (which will discuss later) to do the adaptive integra-
tion. Here we can also employ the Fast Remeshing Quadrature to adaptively integrate over
elements intersecting inclusions, but with a different way of generating integration mesh.
For our case, the boundary integration cell also has boundary subcells inside the intersecting
inclusion. Figure 5.2 shows one example of integration mesh over an element intersecting

three inclusions.
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T T~ <]

(b)
boundary subcell
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boundary subcell
(a) outside the inclusion

(c)

Figure 5.2. (a). Integration mesh over one element which intersects three inclusions. (b) and (c).

The details of the integration mesh

5.1.2.1 Fast remeshing quadrature

Fast Remeshing Quadrature was first introduced by Strouboulis, Copps and Babuska [49—
51] for the domains with voids or complex boundaries. It could also be used for the domains

with inclusions with a little modification.
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Algorithm 5.1 (Fast Remeshing Quadrature). To compute the integral
1jf] = / £ (5.5)

Begin: Let neops = 1, wI’Ce” =T

Initial Cell Division: Continue to divide all cells crossing inclusions and/or a domain
boundary until either each cell is completely inside an inclusion, or outside inclusions
but still inside the domain, or the geometry of the domain boundary contained within

each cell satisfies one case in the set of cell stopping criteria (see [51]).

Assign Subcells: For each cell crossing the domain boundary and/or inclusions, create a
mesh of subcells whose topology is specific to the corresponding resulting geometry of
the case of stopping criteria. Figure 5.2(a) shows one example of these subcell mesh

topologies.

Initial Estimate: For all cells intersecting inclusions and /or domain boundaries wj "' N Q
use the Tth degree embedded rule, or other suitable degree rule, in each master subcell
and sum them to estimate the value of the integral Iw;,cell and the error Ew;,cell over
the region.

For all other w;’ce” in the element,

use the 7th degree embedded rule in each master cell and extrapolation to get Iw;,ceu
and the error Ew;;,cell.

Compute the estimate of the total integral I =) Iw;,cell.

Compute the estimate of the error E =} F rceu.
k

FE
Control: do while W > Erel
2

Find the maximum error in all cells,

Emax = m?X(sz,cell).

Process Cells: For each cell that attains Fay,
if the cell has subcells, delete the subcells, divide the cell into four new cells
and assign a new subcell mesh topologies in those cells crossing the domain
boundary and /or inclusions; if the cell is completely inside an inclusion, or
outside any inclusion but completely inside the domain, divide the cell into

four cells.
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Update: Recompute value of global integral I and the error E.
end do

The difference between the above Fast Remeshing Quadrature and the one proposed in
[51] is that the subcell in above algorithm is allowed to be in both sides of the interface if
the cell intersects any inclusion. The Fast Remeshing Approach is suitable for arbitrarily

complex polygonal boundaries.

5.1.3 Mesh-based handbook functions

The creation of the handbook domains follows the same procedure as in the previous exam-
ples. Figure 5.3 illustrates the creation of the typical &g);l handbook domains. The other
types of handbook domains are created similar to the corresponding ones for the cases of
voids shown in Figure 4.14.

In previous Chapter, we investigated the effect of the accuracy of the numerical con-
struction of the handbook functions on the global GFEM solution. In this Chapter, we will
not repeat it for the model examples with inclusions, and not surprisingly, mesh 7, ;4 will
guarantee the handbook functions with sufficient accuracy for achieving global convergence.
Hence here the handbook functions are obtained on the meshes T}, /4 shown in Figure 5.4, by
employing the bi-p (p = 5) finite element basis, together with the inclusion functions (5.3)
and (5.4) of degree pinclusions = 1 added at Nlayers = 0 around each inclusion. Figures 5.5-
5.10 show the relative modulus of the gradient for the handbook solutions for v = 1.0 and
for various ratio of material. We will see the exponential convergence of the global GFEM

solution in next Section.

=

= ®

Figure 5.3. Typical examples of handbooks &g(l);l with inclusions.
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Figure 5.4. Meshes T}/, for the three typical handbooks with inclusions. (a). Interior handbook.
(b). Boundary handbook. (c). Corner handbook.

MODULUSOF THE FLUX MODULUSOF THE FLUX
Min = 0.161E+01 ; Max = 0.223E+02 Min = 0.171E+01; Max = 0.237E+02
0.0% 25.0% 50.0% 75.0% 100.0% 150.0% 200.0% 400.0% 0.0% 25.0% 50.0% 75.0% 100.0% 150.0% 200.0% 400.0%
Avg. Modulus of the flux = 0.102E+02 Avg. Modulus of the flux = 0.102E+02
— [ —
R(z), p=5 3(2),p=5

Figure 5.5. The relative modulus of the gradient for the solutions of typical interior handbook
problems for p =5, K1 = 10 and K5 =1 for (a). R(z) and (b). J(z).
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MODULUSOF THE FLUX MODULUSOF THE FLUX
Min = 0.174E+00 ; Max = 0.221E+01 Min = 0.176E+00 ; Max = 0.200E+01
0.0% 25.0% 50.0% 75.0% 100.0% 150.0% 200.0% 400.0% 0.0% 25.0% 50.0% 75.0% 100.0% 150.0% 200.0% 400.0%
Avg. Modulus of the flux = 0.101E+01 Avg. Modulus of the flux = 0.102E+01
— [ —
R(z), p=5 3(2), p=5

Figure 5.6. The relative modulus of the gradient for the solutions of typical interior handbook
problems for p =5, K1 =1 and K3 = 10 for (a). R(z) and (b). I(z).

MODULUSOF THE FLUX MODULUSOF THE FLUX
Min = 0.337E+01 ; Max = 0.509E+02 Min = 0.160E+01 ; Max = 0.217E+02
0.0% 25.0% 50.0% 75.0% 100.0% 150.0% 200.0% 400.0% 0.0% 25.0% 50.0% 75.0% 100.0% 150.0% 200.0% 400.0%
‘Avg. Modulus of the flux = 0.227E+02 ‘Avg. Modulus of the flux = 0.102E+02
First function, p =5 Second function, p =5

Figure 5.7. The relative modulus of the gradient for the solutions of typical boundary handbook
problems for p =5, K1 = 10 and K5 = 1.



131

MODULUSOF THE FLUX MODULUSOF THE FLUX

Min = 0411E+00; Max = 0.462E+01 Min = 0.169E+00; Max = 0.204E+01
Avg. Modulus of the flux = 0.227E+01 Avg. Modulus of the flux = 0.101E+01
First function, p=>5 Second function, p =5

Figure 5.8. The relative modulus of the gradient for the solutions of typical boundary handbook
problems for p =5, K; =1 and Ky = 10.

101 = 0062 Min=02455.01 M = 008103

First function, p =5 Second function, p =5

Figure 5.9. The relative modulus of the gradient for the solutions of typical corner handbook
problems for p =5, K1 = 10 and K5 = 1.

MODULUS OF THE FLUX MODULUS OF THE FLUX
Min= 04646400 Max=041EHTL Min=0300E.2 M =0354+2

First function, p =5 Second function, p =5

Figure 5.10. The relative modulus of the gradient for the solutions of typical corner handbook
problems for p =5, K1 =1 and Ko = 10.
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5.2 p-handbook convergence of GFEM

Let us proceed with the results for the model problem (5.1) defined on the domains shown
in Figure 5.1. We employ the 16 x 16 mesh and the @g);l
for the GFEM solution.

Tables 5.1 and 5.2 report the energy norm of the GFEM solution using the d&);l hand-

handbooks, shown in Figure 5.3,

book functions on 16 x 16 mesh for v = 1.0, and for the material properties K1 = 1 and
Ks =10, and K; = 10 and Ky = 1, respectively. Figure 5.11 shows the p-handbook con-
vergence of the GFEM solution. From Tables 5.1 and 5.2, and Figure 5.11, we see that the
character of p-handbook convergence, i.e. the exponential convergence, is independent of
the material properties.

Let us also compare Figure 5.11 and Figure 3.37, we observe that, as we expect, the
convergence character is the same for the case of circular voids and the cases of circular

inclusions.

Table 5.1. p and pyp convergence of the energy norm of the solution of the model problem (5.1) on
the 16 x 16 mesh for v = 1.0, K7 = 1 and Ky = 10, using the J);)"’l

Here we used the solution with p = 5 and pyp, = 5 as the overkill solution for computing the relative

mesh-based handbook functions.

error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 | 354.623890 | 354.685770 | 354.713706 | 354.722698 | 354.726130
(867) (1381) (1895) (2409) (2923)
2.43% 1.56% 0.93% 0.60% 0.41%
p=2 | 354.678130 | 354.696525 | 354.716379 | 354.723549 | 354.726423
(1667) (2181) (2695) (3209) (3723)
1.69% 1.35% 0.85% 0.56% 0.39%
p=3 | 354.697251 | 354.710508 | 354.721202 | 354.725002 | 354.727049
(2979) (3493) (4007) (4521) (5035)
1.34% 1.02% 0.67% 0.48% 0.34%
p=4 | 354.707213 | 354.717387 | 354.724494 | 354.726945 | 354.728075
(4803) (5317) (5831) (6345) (6859)
1.11% 0.81% 0.51% 0.35% 0.24%
p=>5 | 354.715276 | 354.722328 | 354.726905 | 354.728307 | 354.729068
(7139) (7653) (8167) (8681) (9195)
0.88% 0.62% 0.35% 0.21%
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Table 5.2. p and pyp, convergence of the energy norm of the solution of the model problem (5.1) on
the 16 x 16 mesh for v = 1.0, K; = 10 and K5 = 1, using the LD;)"’I mesh-based handbook functions.

Here we used the solution with p = 5 and pyp, = 5 as the overkill solution for computing the relative

error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1| 178.554770 | 178.571775 | 178.581965 | 178.584789 | 178.586018
(867) (1381) (1895) (2409) (2923)
1.92% 1.34% 0.81% 0.58% 0.45%
p=2 | 178.571814 | 178.576467 | 178.583076 | 178.585265 | 178.586249
(1667) (2181) (2695) (3209) (3723)
1.34% 1.13% 0.73% 0.53% 0.42%
p=3 | 178.582700 | 178.584622 | 178.585797 | 178.586433 | 178.586834
(2979) (3493) (4007) (4521) (5035)
0.76% 0.60% 0.48% 0.39% 0.33%
p=4 | 178.585197 | 178.586468 | 178.587156 | 178.587364 | 178.587483
(4803) (5317) (5831) (6345) (6859)
0.54% 0.39% 0.27% 0.23% 0.19%
p=>5 | 178.586363 | 178.587191 | 178.587589 | 178.587739 | 178.587819
(7139) (7653) (8167) (8681) (9195)
0.40% 0.27% 0.16% 0.09%
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597 circular inclusions, K,=10, K,=1, y=1.0
1.0000 T T T

O—0 16x16 elements, p=1, p,=1,2,3,4,5
[—1116x16 elements, p=2, p,,=1,2,3,4,5
N—~ 16x16 elements, p=3, p,,=1,2,3,4,5
V—V 16x16 elements, p=4, p,,=1,2,3,4,5
0.1000 |- &— 16x16 elements, p=5, p,,=1,2,3,4 i

0.0100

Relative Error (log scale)

0.0010 - 51

0.0001 ! ! !
1 10 100 1000 10000

Number of Degree of Freedom (log scale)

(b)
Figure 5.11. Convergence of the GFEM solution on the 16 x 16 mesh of the model problem (5.1)
using the @g);l handbooks for v = 1.0, and for: (a). K3 = 1 and Ky = 10; (b). K; = 10 and
Ko =1.
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As a comparison, let us also consider the case of v = 1.375 for which the problem
is more difficult. As for the case of v = 1.0, we also employ the 16 x 16 mesh and the
&g);l handbooks for the GFEM solution. Tables 5.3 and 5.4 report the energy norm of
the GFEM solution for the material properties K7 = 1 and K9 = 10, and K; = 10 and
Ky = 1, respectively, while Figure 5.12 shows the p-handbook convergence of the GFEM
solution. From Tables 5.1 and 5.2 and Figure 5.11, we see that, once more, the character of
p-handbook convergence is independent of the material properties. Note that the character
of p-handbook convergence is also independent of v, as we have already observed for the

cases of the voids in Chapter III and IV.

Table 5.3. p and pp, convergence of the energy norm of the solution of the model problem (5.1)
on the 16 x 16 mesh for v = 1.375, K1 = 1 and K5 = 10, using the @S);l mesh-based handbook

functions. Here we used the solution with p = 5 and py, = 5 as the overkill solution for computing

the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 1| 275.261012 | 275.452143 | 275.522911 | 275.544733 | 275.551654
(867) (1381) (1895) (2409) (2923)
4.62% 2.73% 1.52% 0.85% 0.47%
p=2 | 275.410892 | 275.478889 | 275.527679 | 275.545952 | 275.552010
(1667) (2181) (2695) (3209) (3723)
3.23% 2.34% 1.40% 0.79% 0.44%
p=3 | 275.468251 | 275.515289 | 275.539277 | 275.549106 | 275.552979
(2979) (3493) (4007) (4521) (5035)
2.50% 1.69% 1.06% 0.63% 0.35%
p=4 | 275.489701 | 275.526765 | 275.544892 | 275.551754 | 275.554030
(4803) (5317) (5831) (6345) (6859)
2.17% 1.42% 0.84% 0.46% 0.21%
p=>5 | 275.502806 | 275.533104 | 275.547679 | 275.553074 | 275.554636
(7139) (7653) (8167) (8681) (9195)
1.94% 1.25% 0.71% 0.34%
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Table 5.4. p and pp, convergence of the energy norm of the solution of the model problem (5.1)
on the 16 x 16 mesh for v = 1.375, K1 = 10 and K3 = 1, using the @g);l mesh-based handbook

functions. Here we used the solution with p = 5 and py, = 5 as the overkill solution for computing

the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 | 231.428657 | 231.554325 | 231.609278 | 231.621429 | 231.625982
(867) (1381) (1895) (2409) (2923)
4.16% 2.54% 1.32% 0.83% 0.54%
p=2 | 231.547722 | 231.579937 | 231.613266 | 231.622694 | 231.626441
(1667) (2181) (2695) (3209) (3723)
2.65% 2.07% 1.18% 0.76% 0.50%
p=3 | 231.600732 | 231.615145 | 231.622745 | 231.625593 | 231.627442
(2979) (3493) (4007) (4521) (5035)
1.57% 1.11% 0.75% 0.57% 0.41%
p=4 | 231.614082 | 231.622388 | 231.626813 | 231.628114 | 231.628771
(4803) (5317) (5831) (6345) (6859)
1.15% 0.77% 0.47% 0.33% 0.22%
p=>5 | 231.620034 | 231.625201 | 231.628053 | 231.628924 | 231.629342
(7139) (7653) (8167) (8681) (9195)
0.90% 0.60% 0.33% 0.19%
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Figure 5.12. Convergence of the GFEM solution on the 16 x 16 mesh of the model problem (5.1)

using the J);)"’l handbooks for v = 1.375, and for: (a). K3 = 1 and Ko = 10; (b). K; = 10 and
Ky =1.
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CHAPTER VI
EXTENSION OF THE GENERALIZED FEM TO PROBLEMS WITH
OTHER FEATURES

In this Chapter, we will extend the Generalized FEM using mesh-based handbook functions
to the problems with other types of features. As our model problems, we will consider two
kinds of features: elliptical inclusions and square voids. We will show the similarities and

differences between these two cases and the previous examples.

6.1 Generalized FEM for problems with elliptical inclusions

6.1.1 Model problem with elliptical inclusions

Let us consider the heat conduction problem (5.1) defined on domain 2 shown in Figure 6.1
which includes 597 elliptical inclusions with random locations and random rotation angles.
Similar to the cases of circular voids and/or inclusions presented in previous Chapters, the
parameter ~y is used to control the closeness of the inclusions in the following way: if (a,b)
is the pair of long semi-radius and short semi-radius of an ellipse for v = 1.0, then (va,yb)
is the one for v = 1.375, i.e. the ellipses are uniformly enlarged by the factor ~.

The coefficients of heat conductivity for the matrix and the fibers are denoted by K;
and Ko, as they were used before. The values of Ky and K> in the following computation
are also chosen as the following two settings: (1). K3 = 1 and Ky = 10 (the fibers are more

conductive); (2). K; = 10 and Ky = 1 (the matrix is more conductive).

6.1.2 Mesh-based handbooks with elliptical inclusions

The creation of the handbook domain for this model problem is the same as the one for
previous examples. Figure 6.2 shows the creation of the handbook domain J)g);l for a
typical interior vertex X. For the boundary vertices, the handbook domains are similarly
created as it was described in Chapter III.

The handbook functions are obtained on the handbook meshes Tj, 4 as it was suggested
in previous Chapters for the cases of circular voids and/or inclusions. Figure 6.3 shows
the T},/4 handbook meshes for the typical handbook shown in Figure 6.2 for v = 1.0 and
v = 1.375, respectively. The T}, /, handbook mesh is employed for the handbook functions

for the Model Problem VI (6.1).
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(a). y=1.0 (b) v=1.375

Figure 6.1. Domain for Problem VI with 597 elliptical inclusions for the parameter v = 1.0 and
v = 1.375, respectively.

As we have seen in the previous Chapters, the global GFEM solution could be polluted
by the error in the numerical construction of the handbook functions. Hence we have to have
accurate handbook functions. The key point in the construction of the handbook functions
is the enrichment of the approximation space by the analytical special functions. For the
case of elliptical inclusions, we can obtain the analytical special functions from equations
(5.3) and (5.4) by mapping the ellipses to circles. As in the previous Chapter, we denote
the order of the analytical special functions for the elliptical inclusions by pinclusions, and for
each order, we have two special functions.

Similar to that was described in previous Chapters, the handbook functions for this
model problem are also obtained by GFEM, i.e. the bi-p (p = 5) FE basis together with
the analytical special functions for the elliptical inclusions of order one (pinclusions = 1)
applied at the zeroth layer (mayers = 0) around each inclusion. Figures 6.4 and 6.5 show the
examples of the shades of the handbook functions of order one (py, = 1) for v = 1.0 and
v = 1.375, respectively. Later we will see, once more, in Section 6.1.3 that the enrichment of
the global GFEM space by these mesh-based handbook functions makes the global GFEM
solution converges exponentially, just as it was concluded in previous Chapters for the cases

of circular voids and/or inclusions.
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Figure 6.2. Creation of the handbook domain LD;);I for a typical interior vertex X. (a). 16 x 16

mesh. (b). Vertex patch wg(l) with all the intersecting inclusions. (c). Handbook domain &Jg(l);l for
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Figure 6.3. Handbook mesh T}, 4 for the typical interior handbooks @g(l);l for: (a). v = 1.0; and (b).
v = 1.375.
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Figure 6.4. Examples of the handbook functions 7,[);( ! for the handbook domain &g);l shown in
Figure 6.2. Shades of the gradient of handbook functions of degree one (pn, = 1) for v = 1.0, and
for: (a). K1 =1 and Ky = 10; (b). K1 = 10 and K3 = 1, with the boundary conditions (V(R(z)) -n
and V(S(z)) - n) for the handbook functions.
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Figure 6.5. Examples of the handbook functions w;( ! for the handbook domain &g);l shown in
Figure 6.2. Shades of the gradient of handbook functions of degree one (pn, = 1) for v = 1.375, and
for: (a). K1 =1 and Ky = 10; (b). K; =10 and K3 = 1, with the boundary conditions (V(R(z))-n
and V(3(z)) - n) for the handbook functions.
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6.1.3 p-handbook convergence of GFEM

Let us look into the results for the model problem VI, the equation (5.1), defined on the
domains shown in Figure 6.1. For the Generalized FEM solution, we employ the d&);l
handbook functions created on the 16 x 16 mesh, shown in Figure 6.2.

Tables 6.1 and 6.2 report the energy norm of the Generalized FEM solution using the
@g);l handbook functions on 16 x 16 mesh for v = 1.0, and for the material properties
Ki =1 and Ky = 10, and K; = 10 and Ky = 1, respectively. Figure 6.6 shows the
p-handbook convergence of the Generalized FEM solution. From Tables 6.1 and 6.2, and
Figure 6.6, we see, once more, that the character of exponential p-handbook convergence
is independent of the material properties, as we already observed for the cases of circular
inclusions in the previous Chapter.

Note that, by comparing Figure 6.6 with Figure 5.11 and Figure 3.37, we see that the

convergence character is the same for these three cases, as we expected.

Table 6.1. p and pyp convergence of the energy norm of the solution of the model problem VI with
597 elliptical inclusions and K3 = 1 and Ko = 10 on the 16 x 16 mesh for v = 1.0 using the @g(l);l
mesh-based handbook functions. The numbers in bracket are the number of degree of freedom, and
the percentage numbers are the relative error of the solution. Here the solution for p = 5 and pp, = 5

is used as overkill solution in the computation of the relative error.

Py =1 Phb = 2 Pub = 3 Pub = 4 Phb = 5
p=1 | 365.924673 | 365.981575 | 366.004733 | 366.012621 | 366.015928
(867) (1381) (1895) (2409) (2923)
2.28% 1.45% 0.92% 0.64% 0.48%
p=2 | 365.974181 | 365.991080 | 366.007001 | 366.013382 | 366.016190
(1667) (2181) (2695) (3209) (3723)
1.58% 1.26% 0.85% 0.61% 0.46%
p=3 | 365.990695 | 366.004111 | 366.011528 | 366.015108 | 366.017166
(2979) (3493) (4007) (4521) (5035)
1.27% 0.93% 0.68% 0.52% 0.40%
p=4 | 365.999504 | 366.009740 | 366.015117 | 366.017365 | 366.018789
(4803) (5317) (5831) (6345) (6859)
1.06% 0.75% 0.52% 0.39% 0.27%
p=>5 ] 366.005895 | 366.014012 | 366.017115 | 366.018956 | 366.020109
(7139) (7653) (8167) (8681) (9195)
0.88% 0.58% 0.40% 0.25%
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Table 6.2. p and pyp, convergence of the energy norm of the solution of the model problem VI with

597 elliptical inclusions and K7 = 10 and K5 = 1 on the 16 x 16 mesh for v = 1.0 using the Jjg

)51

mesh-based handbook functions. The numbers in bracket are the number of degree of freedom, and

the percentage numbers are the relative error of the solution. Here the solution for p = 5 and py, = 5

is used as overkill solution in the computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1| 174.461819 | 174.478567 | 174.486940 | 174.489759 | 174.491580
(867) (1381) (1895) (2409) (2923)
1.91% 1.32% 0.89% 0.68% 0.50%
p=2 | 174.477634 | 174.482224 | 174.487954 | 174.490547 | 174.491692
(1667) (2181) (2695) (3200) (3723)
1.36% 1.15% 0.82% 0.61% 0.49%
p=3 | 174.487725 | 174.489639 | 174.490443 | 174.491612 | 174.492397
(2979) (3493) (4007) (4521) (5035)
0.83% 0.69% 0.62% 0.50% 0.40%
p=4 | 174.490098 | 174.491819 | 174.492388 | 174.493059 | 174.493521
(4803) (5317) (5831) (6345) (6859)
0.65% 0.48% 0.40% 0.29% 0.18%
p=>5 | 174.491230 | 174.492211 | 174.493157 | 174.493636 | 174.493793
(7139) (7653) (8167) (8681) (9195)
0.54% 0.43% 0.27% 0.13%
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Figure 6.6. Convergence of the GFEM solution on the 16 x 16 mesh of the model problem VI using
the J);)"’l handbooks for v = 1.0, and for: (a). K1 =1 and K5 = 10; (b). K; = 10 and K = 1.
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Let us also look into the results for the case of v = 1.375 for which the problem is
more difficult. We also employ the 16 x 16 mesh and the L:););l handbooks for the GFEM
solution, as for the case of v = 1.0. Tables 6.3 and 6.4 report the energy norm of the
Generalized FEM solution for the material properties K1 = 1 and K9 = 10, and K7 = 10 and
Ky =1, respectively, while Figure 6.7 shows the p-handbook convergence of the Generalized
FEM solution. From Tables 6.3 and 6.4 and Figure 6.7, we observe that, once more, the
character of p-handbook convergence is independent of the material properties. Note that
the character of p-handbook convergence is also independent of ~, as we have already
observed for the cases of the voids in Chapter III and IV, and of the circular inclusions in
Chapter V.

Table 6.3. p and py;, convergence of the energy norm of the solution of the model problem VI with
597 elliptical inclusions and K7 =1 and K9 = 10 on the 16 x 16 mesh for v = 1.375 using the &;);1
mesh-based handbook functions. The numbers in bracket are the number of degree of freedom, and
the percentage numbers are the relative error of the solution. Here the solution for p = 5 and pyp, = 5

is used as overkill solution in the computation of the relative error.

Py =1 Phb = 2 Pub = 3 Pub = 4 Phb = 5
p=1 1 297.756396 | 297.932525 | 298.002374 | 298.021383 | 298.027425
(867) (1381) (1895) (2409) (2923)
4.29% 2.56% 1.37% 0.77% 0.43%
p=2 1| 297.901021 | 297.959334 | 298.006957 | 298.022536 | 298.027828
(1667) (2181) (2695) (3209) (3723)
2.94% 2.18% 1.25% 0.72% 0.40%
p=3 | 297.951572 | 297.993445 | 298.016904 | 298.025221 | 298.028712
(2979) (3493) (4007) (4521) (5035)
2.30% 1.57% 0.94% 0.58% 0.32%
p=4 | 297.971584 | 298.004652 | 298.022076 | 298.028067 | 298.029408
(4803) (5317) (5831) (6345) (6859)
1.98% 1.31% 0.74% 0.38% 0.23%
p=>5 | 297.984386 | 298.011343 | 298.024846 | 298.028320 | 298.030196
(7139) (7653) (8167) (8681) (9195)
1.75% 1.12% 0.60% 0.35%
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Table 6.4. p and py;, convergence of the energy norm of the solution of the model problem VI with
597 elliptical inclusions and K; = 10 and K5 = 1 on the 16 x 16 mesh for v = 1.375 using the &g);l

mesh-based handbook functions. The numbers in bracket are the number of degree of freedom, and

the percentage numbers are the relative error of the solution. Here the solution for p = 5 and py, = 5

is used as overkill solution in the computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 ] 218.153041 | 218.244324 | 218.286940 | 218.298605 | 218.302242
(867) (1381) (1895) (2409) (2923)
3.75% 2.38% 1.33% 0.84% 0.61%
p=2 | 218.237840 | 218.263572 | 218.290589 | 218.299837 | 218.302702
(1667) (2181) (2695) (3200) (3723)
2.50% 1.98% 1.20% 0.77% 0.57%
p=3 | 218.280062 | 218.292207 | 218.299230 | 218.302685 | 218.303807
(2979) (3493) (4007) (4521) (5035)
1.55% 1.13% 0.80% 0.57% 0.47%
p=4 | 218.290869 | 218.298300 | 218.303027 | 218.305010 | 218.305357
(4803) (5317) (5831) (6345) (6859)
1.19% 0.85% 0.54% 0.34% 0.28%
p=>5 | 218.296242 | 218.301120 | 218.304459 | 218.305924 | 218.306239
(7139) (7653) (8167) (8681) (9195)
0.96% 0.68% 0.40% 0.17%
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Figure 6.7. Convergence of the GFEM solution on the 16 x 16 mesh of the model problem VI using
the J);)"’l handbooks for v = 1.375, and for: (a). K1 =1 and K3 = 10; (b). K3 = 10 and K3 = 1.



149

6.2 Generalized FEM for problems with square voids

6.2.1 Model problem with square voids

As our model problem VII, let us consider the heat conduction problem (2.20) defined on
domain 2 shown in Figure 6.8 which includes 597 square voids with random locations and
random rotation angles. Note that this domain has 2388 closely spaced singularities in its
interior areal

Figure 6.8 also shows the 16 x 16 mesh which will be used in the following analysis for
this model problem.

Let us remark that the singularities in the domain makes the problem practically im-
possible to solve by the standard FEM. In fact, a local refined FEM mesh is necessary to

take into account the singularities, but it would result in a huge system.
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Figure 6.8. Domain and mesh for Problem VII with 597 square voids.

6.2.2 Mesh-based handbooks with square voids

For this model problem, i.e. the problem with 597 square voids in the domain, we will

(1)1

consider both the wy”" and djgm handbooks. The creation of the handbook domain is

the same as the one described in previous Chapters. Figure 6.9 shows the creation of the

@g?)ﬂ for a typical interior vertex X.
(1)1

Let us first look into the details of the w5

Th/4a Th/S and Th/16 for the a)g)

handbook domains LD;);I and
handbook. Figure 6.10 shows three meshes
" handbook domain shown in Figure 6.9. These meshes give
different error in the numerical construction of the handbook functions. In next Subsection,

we will see the influence of this error on the global GFEM solution.
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Figure 6.9. Creation of the typical handbook domains associated with a vertex X. (a) The problem
domain  including 597 square voids covered by the 16 x 16 mesh Ay; (b) The neighborhood w&?)

with voids intersecting them; (¢) and (d) The handbook domains J);)"’l and @g);zl

In order to have sufficiently accurate handbook functions, it is necessary to add special

functions, i.e. the re-entrant corner functions r*7smg cos(\,. 6) (because the boundary

Psing
conditions on the corner edges are Neumann boundary conditions), psing = 1,2, ..., in which
(r,0) is the polar coordinates and psing is the order of the re-entrant corner function, into the
approximation space to reflect the singular behavior of the exact solution at the singularities

(see [49-52]). Here, we will employ the re-entrant corner functions with the order pgine = 1
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at Nyayers = 0 around each singularity.

Table 6.5 and Figure 6.11 report and show the p-convergence of the first handbook
function of the typical a&);l handbook problem. We see that the p-convergence does not
show up for the solutions on the mesh 7}, 4. Hence, in the following analysis, we will not
use Tj,/4 for the numerical construction of the handbook functions. Figure 6.12 shows the
shades of the gradient of the handbook functions with the boundary conditions of degree
Py = 1 and pyp = 2, respectively.

Figure 6.9 also shows the creation of the typical @g?);z handbook associated with an
interior vertex X. For this handbook, we also consider three meshes T}, 4, T}/ and T} /16
shown in Figure 6.13. The handbook functions were solved by using bi-p (p = 5) FE basis
together with the re-entrant corner functions with degree pgng = 1 applied at njayers = 0
around each singularity. Table 6.6 and Figure 6.14 report and show the p-convergence of
the first handbook function of the typical @g);Q handbook problem. Similar to the djg);l
handbook, we see that the p-convergence does not show up for the solutions on the mesh
Th/4- In next subsection, we will use the handbook mesh T} /3 to compare the influence
of @g);l and @g?);z handbook functions on the global GFEM solution. Figures 6.15 and
6.16 show the shade of the gradient of the @g?);z handbook functions with the boundary

conditions of degree py, = 1 and pyp, = 2, respectively.

=]

M
L1
=

T4 Thys Th 16
Figure 6.10. Handbook meshes T}, /4, T}, /s and T}, /16 for the typical handbook domain &g);l shown

in Figure 6.9



Table 6.5. Energy norm of the first handbook function of the typical ©
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)1 handbook problem. The

singular functions with order nging = 1 were employed in the handbook function around the singular

point at Njayers = 0.

h/A h/3 h/16
52.416552 | 53.507801 | 53.615474
p=1| (317) (1272) (4385)
21.60% 8.09% 5.04%
53.240923 | 53.673955 | 53.682218
p=2| (1117) (4389) (16504)
12.82% 1.90% 0.73%
53.458531 | 53.682241 | 53.683553
p=3| (2429 (9524) (36553)
9.15% 0.73% 0.20%
53.544150 | 53.682980 | 53.683653
p=4 | (4253) (16677) | (64532)
7.20% 0.50% 0.05%
53.591337 | 53.683449 | 53.683661
p=5| (6589) (25848) | (100441)
5.86% 0.28%

Typical handbook for 597 square voids

1.0000 ‘ ‘
0.1000 | .
@
[+
[S]
(2]
[o2]
o
S 0.0100 - 1
i
[
=
5 O—Oh/4, p=1,2,3,4,5
o O—0Oh/8, p=1,2,3,4,5
00010 | AAN16,p=1234 |
0.0001 ! !
100 1000 10000

Number of Degree of Freedom (log scale)

100000

Figure 6.11. Convergence of the energy norm of the first handbook function of the typical @;);1

handbook problem. The singular functions with order ngn, = 1 were employed in the handbook

function around the singular point at niayers = 0.
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Figure 6.12. Examples of the handbook functions 1[1;(;1, j=1,...,4, for the handbook domain &g)ﬂ
shown in Figure 6.9, obtained on the handbook mesh T}, /g shown in Figure 6.10. Shades of the
gradient of the pairs of handbook functions with the boundary conditions of degree (a) pn, = 1
(V(R(2)) -n and V(3(2)) - n), and (b) pup = 2 (V(R(2?)) - n and V(J(22)) - n).
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Figure 6.13. Handbook meshes T}, /4, T}, /g and T}, /16 for the typical handbook domain @g?);z shown

in Figure 6.9
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Table 6.6. Energy norm of the first handbook function of the typical G)g?m handbook problem. The

singular functions with order ngi,g = 1 were employed in the handbook function around the singular

point at Njayers = 0.

h/A h/8 h/16

80.918763 | 83.688917 | 83.944516
p=1]| (693) (3069) (9984)
27.31% 10.07% 6.40%

82.918321 | 84.097501 | 84.113141
p=21 (2469) (10016) | (36736)

16.82% 2.14% 0.92%
83.480608 | 84.114217 | 84.116417
p=3| (5397) (21469) | (80962)
12.19% 0.77% 0.26%
83.712410 | 84.115728 | 84.116659
p=4 | (9477) (37428) | (142662)
9.79% 0.48% 0.10%

83.822095 | 84.116297 | 84.116698
p=5 | (14709) (57893) | (221836)
8.36% 0.31%

Typical handbook for 597 square voids
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0.1000 \@ i
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0.0001 * ! *

100 1000 10000 100000 1000000

Number of Degree of Freedom (log scale)

Figure 6.14. Convergence of the energy norm of the first handbook function of the typical @g(zxz

handbook problem. The singular functions with order ngn, = 1 were employed in the handbook

function around the singular point at niayers = 0.
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Figure 6.15. Examples of the handbook functions 7,[);( L j = 1,2, for the handbook domain @g?w
shown in Figure 6.9, obtained on the handbook mesh Tj,/g shown in Figure 6.13. Shades of the
gradient of the pairs of handbook functions with the boundary conditions of degree pp, = 1: (a).

V(R(2)) - n, and (b). V(3(2)) - n.
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Figure 6.16. Examples of the handbook functions w;-m, j = 3,4, for the handbook domain @
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(2);2
X

shown in Figure 6.9, obtained on the handbook mesh T}, /s shown in Figure 6.13. Shades of the

gradient of the pairs of handbook functions with the boundary conditions of degree ph, = 2: (a).

V(R(2?)) - n, and (b). V($(2?)) - n.
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6.2.3 p-handbook convergence of GFEM

We first computed the bi-p GFEM solutions on the 4 x 4, 8 X 8, 16 x 16, 32 x 32, 64 x 64,
128 x 128, and 256 x 256 meshes for p = 1,...,5, using pp, = 0, in order to compare the
convergence of the h and p-version of the Generalized FEM with py;, = 0, when no handbook
functions are added, with the p-convergence with py, > 1. Table 6.7 reports the energy
norms and the corresponding relative errors of the GFEM solution for p = 1,....,5 (pn, = 0),
h=1L/4,L/8,...,L/256 where L denotes the length of the side of the outer square of 2. In
Table 6.7, the GFEM solution for p = 5 and pyp, = 5 on 16 x 16 mesh (see Table 6.8) is used
as overkill solution in the computation of the relative error. Figure 6.17 shows the h and p

convergence of the Generalized FEM with py, = 0.

Table 6.7. h convergence of the energy norm of the solution of the model problem with 597 square
voids . The numbers in bracket are the number of degree of freedom, and the percentage numbers
are the relative error of the solution. Here the GFEM solution for p = 5 and py, = 5 on 16 x 16

mesh (see Table 6.8) is used as overkill solution in the computation of the relative error.

p=1 p=2 p=3 p=4 p=>5
4 x4 492.756049 | 492.881664 | 493.089885 | 493.278299 | 493.468727
mesh (25) (81) (169) (289) (441)
42.55% 42.50% 42.42% 42.35% 42.27%
8 x8 492.849018 | 493.228495 | 493.759852 | 494.717824 | 496.191904
mesh (81) (289) (625) (1089) (1681)
42.52% 42.37% 42.16% 41.78% 41.18%
16 x 16 493.132024 | 494.709957 | 498.877783 | 505.960505 | 513.984623
mesh (289) (1089) (2401) (4225) (6561)
42.41% 41.78% 40.08% 36.96% 33.02%
32 x 32 494.465421 | 507.162909 | 520.302200 | 528.237288 | 532.575130
mesh (1089) (4225) (9409) (16641) (25921)
41.88% 36.40% 29.49% 24.27% 20.83%
64 x 64 508.018432 | 529.227046 | 536.019025 | 538.661683 | 540.099278
mesh (4225) (16641) (37249) (66049) (103041)
36.00% 23.53% 17.60% 14.63% 12.71%
128 x 128 | 528.845009 | 538.853212 | 541.193629 | 542.217437 | 542.783006
mesh (16639) (65424) (145895) (258052) (401895)
23.82% 14.39% 11.03% 9.18% 7.97%
256 x 256 | 538.183904 | 542.276699 | 543.212359 | 543.604163 | 543.831533
mesh (63930) (247812) (551050) (973644) (1515594)
15.21% 9.06% 6.92% 5.79% 5.01%
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Table 6.8 reports the energy norms and the corresponding relative errors of the GFEM
solution for p = 1,...,5, and pyp, = 1,...,5, on the 16 X 16 mesh shown in Figure 6.8. Figure 6.17
compares its convergence versus the h and p convergence of the Generalized FEM with
pnb = 0. Let us remark once more that the very significant improvement in the accuracy
of the Generalized FEM is due to the employment of the handbook functions and that
the p-handbook version of the method appears to converge exponentially. Let us recall the
conclusion shown in Figure 4.7 for the case of 597 circular voids, we see that the improvement
in the accuracy of the GFEM solution for the case of 597 square voids is bigger than the one
for the case of 597 circular voids. The reason is that it is more difficult to have convergence
without using any handbook functions for the case of 597 square voids, because of so many

singularities in the domain.

597 square voids
1.000 \ \ — \

0.100 r

O—Op=1, p,;=0, h=L/4,L/8, ..., L1256
C—{Jp=2, p,,=0, h=L/4,L/8, ..., LI256
0.010 /—/\p=3, p,=0, h=L/4,L/8, ..., LI256 |
1 V/—\/p=4, p,,=0, h=L/4.L/8, ..., L/256 1
I O—Op=5, p,,=0, h=L/4,L/8, ..., L/256 1
| ®—®p=1,p,=12,345, h=L/16 |
I m—Wp=2,p,=12345, h=L/16 1
I A—Ap=3,p,=12345, h=L/16 1

VY—Vp=4,p,=1,2,3,4,5, h=L/16
¢—@p=5,p,=1,2,3,4, h=L/16

Relative Error (log scale)

| L | L | L |
10° 10" 10° 10
Number of Degree of Freedom (log scale)

0.001 L
10 10

6

10

Figure 6.17. Comparison of the h-convergence of the FEM solution and the pn,- convergence of

the GFEM solution for the model problem with 597 square voids. Here the GFEM solutions were

obtained by using @;);1 mesh-based handbook functions on handbook mesh Tj, /5.
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Table 6.8. p and pyp convergence of the energy norm of the solution of the model problem with 597
square voids on the 16 x 16 mesh using the J)gg);l mesh-based handbook functions. The handbook
functions were obtained on mesh 7}, /5. The numbers in bracket are the number of degree of freedom,
and the percentage numbers are the relative error of the solution. Here the solution for p = 5 and

pub = 5 is used as overkill solution in the computation of the relative error.

Py =1 Phb = 2 Pub = 3 Pub = 4 Phb = 5
p=1 | 544.425699 | 544.472388 | 544.499497 | 544.509458 | 544.513392
(867) (1381) (1895) (2409) (2923)
1.83% 1.27% 0.79% 0.51% 0.34%
p=2 | 544.466649 | 544.482562 | 544.504679 | 544.511962 | 544.514405
(1667) (2181) (2695) (3209) (3723)
1.35% 1.12% 0.66% 0.41% 0.28%
p=3 | 544.489854 | 544.502425 | 544.509458 | 544.513204 | 544.514837
(2979) (3493) (4007) (4521) (5035)
0.99% 0.72% 0.51% 0.35% 0.25%
p=4 | 544.497783 | 544.506408 | 544.511505 | 544.513574 | 544.515420
(4803) (5317) (5831) (6345) (6859)
0.83% 0.61% 0.43% 0.33% 0.20%
p=>5 | 544.501842 | 544.508600 | 544.513574 | 544.515556 | 544.516539
(7139) (7653) (8167) (8681) (9195)
0.73% 0.54% 0.33% 0.19%

In order to investigate the influence of the error in the numerical construction of the
handbook functions on the GFEM solution, let us also consider the handbook mesh 7}, /16
shown in Figure 6.10. Table 6.9 reports the energy norm of the GFEM solution for the
model problem with 597 square voids, by using the (I)g);l mesh-based handbook functions
obtained on handbook mesh Tj,/;6. Compare Table 6.9 and Table 6.8, we see that the
difference is small, and we even can not see this difference from the convergence graph
shown in Figure 6.18.

Let us also look into the influence of the data included in the handbook domain. Consider
the djg?m handbooks shown in Figure 6.9(d). Table 6.10 reports the energy norm of the
GFEM solution for the model problem with 597 square voids, by using JJE?);Q handbook
functions obtained on handbook mesh T}, /3. Compare Table 6.10 and Table 6.8, we see that

the relative error of the GFEM solution using @g)a handbook functions is smaller than the

one of using d&);l handbook functions. Figure 6.19 shows that the convergence curve for

the GFEM solution of using (DE?);Q handbook functions is shifted down, compared to the

one for the GFEM solution of using (:&” handbook functions. But the characteristics of

p-handbook convergence are achieved for using both (I)g);l and cbg?m handbook functions.
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Table 6.9. p and pyp convergence of the energy norm of the solution of the model problem with 597

square voids on the 16 x 16 mesh using the J);)"’l mesh-based handbook functions. The handbook

functions were obtained on mesh T}, /16. The numbers in bracket are the number of degree of freedom,

and the percentage numbers are the relative error of the solution. Here the solution for p = 5 and

prb = b is used as overkill solution in the computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 | 544.435508 | 544.480725 | 544.505690 | 544.512009 | 544.514534
(867) (1381) (1895) (2409) (2923)
1.73% 1.15% 0.64% 0.42% 0.29%
p =2 | 544.476765 | 544.490974 | 544.508449 | 544.513847 | 544.515318
(1667) (2181) (2695) (3200) (3723)
1.21% 0.97% 0.55% 0.33% 0.23%
p =3 | 544.494759 | 544.506681 | 544.511778 | 544.514649 | 544.515723
(2979) (3493) (4007) (4521) (5035)
0.90% 0.61% 0.43% 0.28% 0.20%
p=4 | 544.500248 | 544.509164 | 544.513665 | 544.515372 | 544.515930
(4803) (5317) (5831) (6345) (6859)
0.78% 0.53% 0.34% 0.23% 0.18%
p=>5 | 544.506346 | 544.511299 | 544.514678 | 544.516025 | 544.516812
(7139) (7653) (8167) (8681) (9195)
0.62% 0.45% 0.28% 0.17%
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597 square voids, small handbooks, T,
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Figure 6.18. Convergence of the GFEM solution of the model problem with 597 square voids using

&;);1 mesh-based handbook functions which were obtained on handbook mesh: (a). Tj/s; (b).

Th/16-
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Table 6.10. p and pyp convergence of the energy norm of the solution of the model problem with 597

square voids on the 16 x 16 mesh using the (I)gm mesh-based handbook functions. The handbook

functions were obtained on mesh 7}, /3. The numbers in bracket are the number of degree of freedom,

and the percentage numbers are the relative error of the solution. Here the solution for p = 5 and

Prb = b is used as overkill solution in the computation of the relative error.

pup =1 Pnb = 2 Pup = 3 pup = 4 Pnb = 5
p=1 | 544.510786 | 544.518785 | 544.521608 | 544.522392 | 544.522654
(867) (1381) (1895) (2409) (2923)
0.67% 0.39% 0.22% 0.14% 0.10%
p=2 | 544.517834 | 544.520554 | 544.522063 | 544.522597 | 544.522752
(1667) (2181) (2695) (3200) (3723)
0.43% 0.30% 0.18% 0.11% 0.08%
p =3 | 544.519374 | 544.521215 | 544.522229 | 544.522638 | 544.522793
(2979) (3493) (4007) (4521) (5035)
0.36% 0.25% 0.16% 0.10% 0.07%
p=4 | 544.519779 | 544.521486 | 544.522392 | 544.522706 | 544.522828
(4803) (5317) (5831) (6345) (6859)
0.34% 0.23% 0.14% 0.09% 0.06%
p=>5 | 544.520138 | 544.521837 | 544.522466 | 544.522825 | 544.522926
(7139) (7653) (8167) (8681) (9195)
0.32% 0.20% 0.13% 0.06%
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597 square voids, small handbooks, T,
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Figure 6.19. Convergence of the GFEM solution of the model problem with 597 square voids using;:
(a). @g);l; (b). J)gm mesh-based handbook functions, on handbook mesh T} 5.
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CHAPTER VII

APPLICATION OF THE GENERALIZED FEM TO PROBLEMS WITH

COMPOSITE MATERIALS

7.1 Introduction

In previous Chapters, we have shown that the Generalized FEM using mesh-based handbook
functions is robust for the problems defined on complex domains. It has been shown that
the GFEM solution can achieve very high accuracy, and the p-handbook convergence of the
GFEM solution can be obtained for the problems with a large number of various types of
features. In this Chapter, we will further demonstrate the powerfulness of the Generalized
FEM using mesh-based handbook functions by applying it to the problems defined on
domains with a real porous media and/or composite material.

As it was discussed in Chapter I, the macro-behavior of material bodies depends upon
micromechanical properties, therefore the macro-analysis for the problems must be more
reliable if the information about the local micromechanical properties can be utilized. To
utilize the micro-scale properties in the macro-scale analysis, i.e. Multiscale Analysis, is now
a widely used idea in research for the problems with porous media, composite materials, or
random heterogeneous materials. In this area, various methods have been proposed. A short
list of these methods may include Adaptive Hierarchical Modeling (developed by Oden et al.
[18-25]), X-FEM (extended FEM, developed by Belytschko et al. [26-35]), Multiscale Finite
Element Method (developed by Hou et al. [36-39]), VCFEM (Voronoi Cell Finite Element
Method, developed by Ghosh et al. [40-43]), and Generalized FEM (GFEM, developed by
Babuska and Strouboulis, et al. [44-54]). In this Chapter, we will show how the Generalized
FEM using mesh-based handbook functions is powerful for Multiscale Analysis.

As our last model example, Model Problem VIII, let us consider the following heat

conduction problem:

([ —Au = 0, in €,
ou def
o g = V(2x —y) -n, on the outer boundary T, (7.1)
n
ou .
— =0, on the boundary of the voids.
\  On

if the domain (Q is a porous media; and
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—V(KVu) =0, in Q,
ou def (72)
Ka— =g = V(2 —y) -n, on the outer boundary T,
n

if the domain 2 is a composite material; where €2 is the domain shown in Figure 7.1, and,
in the case of composite material, the coefficient of heat conductivity K has the following

form:

K- K7, in the matrix, (7.3)
Ky, in the fibers

Figure 7.1. The domain with 16275 circular features for Model Problem VIII.

Figure 7.1 shows the cross-section of a unidirectional pre-preg produced by Ciba-Geigy,
and the material is denoted by HTA/6376. Babuska and Andersson et al. [1] gave a com-
putational analysis of damage and fracture in this material by concentrating on stochastic
constitutive properties and statistics of the maximal local fiber-matrix interface stresses. In
the following computation, for the sake of convenience, we will consider the case of a porous
media, i.e. the circles are voids. For the case of a composite material, the conclusion is the
same as it was demonstrated in pervious Chapters for the cases of 597 voids (in Chapter I11
and IV) and 597 inclusions (in Chapter V).

Let us define a window of interest for our analysis. The window of interest, denoted
by W, is a square located at the center of the domain, including 84 voids/fibers in the
interior and 28 voids/fibers intersecting the boundary of the square, shown in Figure 7.2.
Let us use this small window of interest, W, to address the difficulty of this kind of problem.
Figure 7.3 shows an FEM quadrilateral mesh for the window of interest, W, produced by
ANSYS for the case of porous media, including 11432 quadrilateral elements (12753 nodes).
If the whole domain could be meshed by ANSYS (in fact, ANSYS can not mesh the whole
domain), it would have about 2.5 million degrees of freedom if the bilinear standard FEM

is employed for the whole problem with porous media.
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Figure 7.2. (a). The problem domain. (b). The window of interest, W.
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Figure 7.3. An FEM quadrilateral mesh for the window of interest, W, produced by ANSYS for the

case of porous media.

7.2 Mesh-based handbook functions for Model Problem VIII

In multiscale analysis, the accuracy of the microscale information is essential for the correct
macroscale analysis. This was also analyzed in previous Chapters of this dissertation, i.e.
the effect of the error in the numerically constructed handbook functions and the effect of
the data included in the handbook problems. We have seen that the microscale information
of the problem can be reflected accurately by the mesh-based handbook functions.

Let us recall the definition of the handbook domain &)g?);d given in Chapter IV. For a

given vertex X, the handbook domain d)g?);d is the area including k + 1 layers of elements
around the vertex X, and including all the features intersecting the d layers of elements

(see Figure 4.14). The parameter d was an integer in the definition. Here let us first extend
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the handbook domain @gl(c);d for a non-integer d. A handbook domain (Dgf);d with a non-

integer d associated with a vertex X is defined as follows: First, define the neighborhood

(®)

wy’ centered at X, as it was defined before, formed by the k + 1 layers of elements around
the vertex X. Then define a window centered at the vertex X with the size 2dh, x 2dh,,
where h, and h, are the mesh size in x and y direction, respectively. Finally, use this
window to determine the features in the created handbook, i.e. all the features intersecting

this window and included in the neighborhood wgﬁ”‘)

Figure 7.4 shows the creation of the handbook (D%);d for a typical vertex X for k = 1 and
d = 1.25. Let us note that the range of the parameter d is 1 < d < k+ 1, and other choices

of d are meaningless.

are included in the created handbook.

The accuracy of the handbook functions %X;I are critical for achieving the p-handbook
convergence for the global GFEM solution. Based on the conclusions in previous Chapters,
we employ the handbook mesh T}, /g for this model problem. Figure 7.5 shows the T}, /g
125 (hown in Figure 7.4. The hand-

book functions obtained on the handbook mesh 7}, 5 have sufficient accuracy so that the

handbook mesh for the typical handbook domain d&

global GFEM solution converges exponentially.

The boundary conditions for the handbook problems were described in Chapter I1I. The
handbook functions ¢]X;1 were solved on the handbook mesh 7}, ;g shown in Figure 7.5, and
by using the bi-p (p = 5) FE basis together with voids/inclusions functions of degree one
(Pvoids = 1 O Pinclusions = 1) at Niayers = 0 around each void/inclusion. Figure 7.6 shows
the modulus of the gradient of handbook functions wj-(;l, j=1,...,4, of degree (a) pn, = 1
(V(R(2)) - n and V($(2)) - n), and (b) ppp, = 2 (V(R(22)) - n and V(S(z2)) - n), for the
porous media. In next Section, we will see that the enrichment of the global GFEM space

by these handbook functions makes the global GFEM solution converges exponentially.

7.3 p-handbook convergence of GFEM

Based on the microscale information, i.e. the handbook functions, described in the previous
Section, we are able to analyze the macroscale performance of the solution. We measure
the macroscale performance in terms of energy norm, i.e. the energy norm of the global
GFEM solution.

In order to compare, let us first compute the GFEM solution without using any hand-
book functions on serious global meshes. Figure 7.4(a) shows the 64 x 16 mesh which will
also be employed in the computation of the Generalized FEM solution using mesh-based
handbook functions, and Figure 7.7(a) and 7.7(b) show a part of 64 x 16 mesh and 512 x 128
mesh, respectively, in the window W. Let us remark that the comparison of Figure 7.7 and
Figure 7.3 gives a strong impression on the advantages of GFEM meshes.

Table 7.1 reports the h convergence of the energy norm of the GFEM solution for the
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Figure 7.4. Creation of a typical handbook domain associated with a vertex X. (a) The prob-

lem domain  including 16275 circular voids/inclusions covered by the 64 x 16 mesh Ap; (b) The
neighborhood wg(l) with voids/inclusions intersecting them; (c¢) The handbook domain JJ;):’L%. The
window enclosed by the dotted lines, with the size 2dh, x 2dh, (h, and h, are the mesh size in

and y direction, respectively), is used to determine the voids/inclusions in the handbook.
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Figure 7.5. Handbook mesh T}, /s employed in the computation for the typical handbook domain

@S);I.QS associated with the vertex X. The thick lines form the elements in the global mesh.

model problem VIII with 16275 voids, without using any handbook functions, while the
Figure 7.8 shows the plot of the h convergence. The character of slow h convergence is very
similar to the one shown in Table 4.4 and Figure 4.7 for the model example with 597 voids.

Now let us look into the results of the Generalized FEM using mesh-based handbook
functions. Table 7.2 reports the energy norm of the GFEM solution using the J)g);l'% mesh-
based handbook functions, for the model problem VIII with 16275 voids on the 46 x 16 mesh.
Figure 7.8 also shows the p-handbook convergence of the GFEM solution, in addition to
the h convergence. We see that the exponential convergence is achieved. Figure 7.9 shows
the modulus of the gradient of the GFEM solution with p = 2 and py, = 1, i.e. ug:F%i}l‘b:l,

in the window of interest W. The heat flow is clearly seen in Figure 7.9.
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MODULUSOF THE FLUX
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Figure 7.6. Examples of the handbook functions 1[1;(;1, j =1,...,4, for the handbook domain &g);1.25

shown in Figure 6.9, obtained on the handbook mesh T}, /s shown in Figure 7.4 for the case of porous
media. Shades of the gradient of the pairs of handbook functions of degree (a) php, =1 (V(R(2)) - n
and V(3(2)) - n), and (b) pup = 2 (V(R(22)) - n and V(S(22)) - n).
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Figure 7.7. The part of meshes in window W for: (a). 64 x 16 mesh; (b). 512 x 128 mesh.

Table 7.1. h convergence of the energy norm of the GFEM solution of the model problem VIII
with 16275 voids without using any handbook functions. The numbers in bracket are the number
of degree of freedom, and the percentage numbers are the relative error of the solution. Here the
GFEM solution for p = 5 and pp, = 5 on 64 x 16 mesh is used as overkill solution in the computation

of the relative error.

p=1 p=2 p=3 p=4 p=>5
16 x 4 2701.353529 | 2703.172748 | 2704.288811 | 2704.810770 | 2705.315804
elements (85) (297) (637) (1105) (1701)
46.81% 46.70% 46.63% 46.60% 46.56%
32 x 8 2702.743320 | 2704.622115 | 2705.730577 | 2706.908431 | 2708.299590
elements (297) (1105) (2425) (4257) (6601)
46.72% 46.61% 46.54% 46.46% 46.38%
64 x 16 2704.263155 | 2706.790012 | 2710.041620 | 2715.586063 | 2724.675923
elements (1105) (4257) (9457) (16705) (26001)
46.63% 46.47% 46.27% 45.92% 45.34%
128 x 32 | 2706.476436 | 2715.439616 | 2736.821667 | 2780.314896 | 2847.117415
elements (4257) (16705) (37345) (66177) (103201)
46.49% 45.93% 44.55% 41.57% 36.41%
256 x 64 | 2713.143027 | 2792.546746 | 2925.206309 | 2997.811775 | 3031.252637
elements (16705) (66177) (148417) (263425) (411201)
46.07% 40.68% 29.04% 19.57% 12.94%
512 x 128 | 2808.508364 | 3004.214408 | 3049.606656 | 3054.460128 | 3056.409060
elements (66177) (263425) (591745) (1051137) (1641601)
39.49% 18.49% 6.92% 4.03% 1.87%
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Table 7.2. p and pyp convergence of the energy norm of the solution of the model problem VIII
with 16275 voids on the 46 x 16 mesh using the @S);I.QS mesh-based handbook functions. The
numbers in bracket are the number of degree of freedom, and the percentage numbers are the
relative error of the solution. Here the solution for p = 5 and py, = 5, whose energy norm is
[ulipka =0y = 3056.943512 with the number of degree of freedom Nyof = 36363, is used as

overkill solution in the computation of the relative error.

Py =1 Pub = 2 Phb = 3
p=1 | 3054.835645 | 3055.665106 | 3056.356278
(3299) (5341) (7383)
3.711% 2.89% 1.96%
p=2| 3056.247411 | 3056.465516 | 3056.799249
(6455) (8499) (10535)
2.13% 1.77% 0.97%
p =3 | 3056.600494 | 3056.855226 | 3056.913921
(11651) (13693) (15735)
1.50% 0.76% 0.44%
16275 voids
1.000 ¢ \ \
% 0.100 - .
?
S
S
]
-
g 0.010 7@—0 p=1, p,,=0, mesh=16x4, ..., 512x128 |
x : r O—~0p=2, p,,=0, mesh=16x4, ..., 512x128
| A—\ p=3, p,,=0, mesh=16x4, ..., 512x128
I V—V p=4, p,,=0, mesh=16x4, ..., 512x128
&——<p=5, p,,=0, mesh=16x4, ..., 512x128
® ®p=1,p,=1,2,3, mesh=64x16
- —mp=2, p,.=1,2,3, mesh=64x16
A—Ap=3, p,,=1,2,3, mesh=64x16
| | | | | |
0.00%, o 10" 10 10° 10 10° 10° 10’
Number of Degree of Freedom (log scale)
Figure 7.8. Convergence of the GFEM solution using and without using the Jjg{l)"’l’% mesh-based

handbook functions for the model problem VIII with 16275 voids.



175

MODULUSOF THE FLUX

0.0% 25.0% 50.0% 75.0% 100.0% 150.0% 200.0%

Figure 7.9. Modulus of the gradient of the GFEM solution in the window W for the model problem
VIII with 16275 voids for p = 2 and pp, = 1 on the 64 X 16 mesh using the (:Jgg);l'ZS mesh-based
handbook functions.
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CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

8.1 Conclusions

In this dissertation, we proposed a new method for multiscale analysis, i.e. the Generalized
FEM using the mesh-based handbook functions. Let us summarize the main attributes of
the method.

Enrichment of the approximation space by mesh-based handbook functions: The method
establishes the approximation by enriching the standard FE basis by the mesh-based hand-
book functions which are incorporated into the approximation by employing the PUM. The
mesh-based handbook functions reflect the microscale behavior of the exact solution, and
have great impact on the accuracy of the macroscale analysis.

Meshless technology: The main difficulty in the application of the standard FEM in
engineering problems is the generation of a mesh as a partition of the problem domain
into triangles and/or quadrilaterals. The GFEM is capable of employing meshes which
are allowed to overlap part or all of the problem domain boundary and/or the interfaces
between multi-materials, For example, meshes of squares generated by the refinement of
one square which contains the problem domain in its interior. This attribute of the method
makes the macroscale analysis possible for the problems with a large number of features
and complex geometries.

The main conclusions of the Generalized FEM for the multiscale analysis are:

(1). The p-handbook (pyp,) version of the Generalized FEM is robust and can achieve
exponential convergence and high accuracy for difficult problems e.g. for the Laplacian in
domains with a large number of closely spaced features.

(2). To achieve similar accuracy without using handbooks may be practically impossible
in many cases.

(3). The exponential convergence and high accuracy may be polluted by errors in the
numerical construction of the handbook functions.

(4). The exponential convergence depends on the data included in the handbooks and
the employed buffer.

(5). The CPU cost of the Generalized FEM has three parts: (a) The cost of the numerical
construction of the handbook functions; (b) The cost of the numerical integration of the
stiffness coefficients of the linear system of GFEM equations for the global problem; (¢) The
cost of solving the linear system of GFEM equations for the global problem. The first part,
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namely the numerical construction of the handbook functions is the most expansive part
of the computation. The second part, the numerical integration of the stiffness coefficients
is expensive for higher pyy, and p, however it is still less, almost by an order of magnitude,
than the cost of the numerical construction of the handbook functions. The solution of the
linear system of GFEM equations is the least expensive part of the computation. Because
the computation of the handbook functions and the numerical integrations of the GFEM
stiffness coefficients have local character very efficient implementations of the Generalized
FEM may be achieved on parallel computers.

(6). Hierarchical implementation of the handbook problems should make the method
capable of solving efficiently problems of multiscale analysis with a very large number of
features.

(7). Our Generalized FEM is most effective when using a coarse mesh Aj, and a high
degree pp, and p, analogously as in the classical p-version [71] (which is most effective
when the solution is smooth and can achieve very high accuracy on a very coarse mesh).
The coarseness of the mesh Ay is only limited by the computational effort needed for the
numerical construction of the handbook functions corresponding to the mesh.

(8). Here we considered the Laplacian as our model problem. Similar results should be

expected if the Laplacian is replaced by the elasticity problem.

8.2 Recommendations for future work

There are many possibilities and a great potential for extending the ideas proposed in this
dissertation. A few of them are described as follows.

For the problems defined on domains with porous media and/or composite material, ho-
mogenization is a widely studied method. It is possible to find out the relationship between
the homogenization and the Generalized FEM using mesh-based handbook functions for
problems with periodic microstructures. Further, a large potential is to utilize the Gener-
alized FEM for developing a new method of "homogenization” for problems with randomly
located features, and/or heterogeneous problems.

A more effective way of using the Generalized FEM is expected. For example, for some
types of quantity of interest, such as the temperature and/or heat flux at a given point, we
may not need very accurate handbook functions at the places far away from the point of
interest. An adaptive scheme of the GFEM is visible for this purpose. But a good error
estimate has to be developed for the Generalized FEM, in order to implement the adaptive
GFEM. This is related to the next possibility of the extension.

It is possible to extend the capabilities of guaranteed a posteriori error estimations which
were developed for the FEM to the Generalized FEM in its most general setting, including

the use of the mesh-based handbook functions. The two-side error estimates will enhance
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the robustness of the Generalized FEM.

Another possibility of enhancing the effectivity of GFEM using mesh-based handbook
functions is to implement the parallel computing. The details need to be investigated in
this area.

The Generalized FEM using mesh-based handbook functions can also be extended to
other problems, such as time-dependent problems, nonlinear problems, etc.. The mesh-
based handbook functions have to be judiciously created and computed for reflecting the
local characteristics of the exact solution, so that the GFEM solution can achieve high

accuracy.
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