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ABSTRACT

SUSY Phenomenology. (August 2004)

Bo Hu, B.S., Southwestern Jiaotong University;

M.S., Beijing Normal University

Chair of Advisory Committee: Dr. Richard Arnowitt

Supersymmetric extensions to the Standard Model (SM) have many interesting

experimental consequences which can provide important hints to the physics beyond

the SM. In this thesis, we first study the anomalous magnetic moment of the muon

and show that a significant constraint on the parameter space can be obtained from its

current experimental value. In the next topic, we study the CP violations in B → φK

decays and show that the SM and the minimal supergravity model (mSUGRA) cannot

account for the current experimental observation. We then show that all the data

can be accommodated for a wide range of parameters in models with non-universal

soft breaking left-right A terms. In our last topic, which is based on a Horava-Witten

inspired model proposed by R. Arnowitt and B. Dutta, we extend their analysis to the

full fermion sector of the SM and propose a new mechanism different from the usual

see saw mechanism to generate small neutrino masses which are in good agreement

with the current neutrino oscillation data.
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CHAPTER I

INTRODUCTION

In the last three decades, particle physics achieved tremendous successes after the

establishment of the Standard Model (SM) as the fundamental law governing low

energy particle phenomena. The accuracy of its predictions has reached a few percent

[1]. However, the SM has its intrinsic flaws and many unsolved problems, such as

the hierarchy problem, the unification problem, the flavor problem, and so on [2].

Therefore, it has been long accepted that the SM, despite its remarkable achievement,

is an effective theory describing physics at low energy. During the last two decades,

many experiments were carried out or proposed to examine this idea. So far no

evidence for physics beyond the SM has been found, but possible deviations from the

SM predictions have been observed in recent experiments. Although we will have

to wait for the Large Hadron Collider (LHC) to encounter new physics directly and

to obtain first hand information, new physics can also manifest itself in many other

places [3]. Not only can non-collider experiments provide useful hints of new physics

and cross checks to the results obtained at colliders, some of them also are interesting

and important at their own rights, e.g. solar neutrino experiments and experiments

related to dark matter.

In this chapter we first introduce the SM and show that its problems lead to new

physics including supersymmetric models (which will be discussed briefly in section

2). Then in section 3, we will discuss the phenomenological aspects of supersymmetric

models. Details about the models considered in this thesis will be given in the next

The journal model is Nuclear Physics B.
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chapter.

1. The Standard Model

The Standard Model of the strong, weak and electromagnetic interactions is a gauge

theory based on the SU(3)C×SU(2)L×U(1)Y gauge group (see Appendix A for a short

description). The electroweak symmetry breaking reduces this group to SU(3)C ×

U(1)EM . The SM is extraordinarily successful not only because all the SM particles

have been discovered except the Higgs boson, but also because a large amount of

experimental data can be very well explained in its framework. However, theoretically

the SM has many unsolved problems and unexplained elements:

• A large number of free parameters (19 in total, see Appendix A) which have to

be measured experimentally.

• The unknown mechanism of the electroweak symmetry breaking (EWSB).

• The unexplained assignment of its gauge group.

• The unknown origin of its flavor structure and fermion mass spectrum.

• The hierarchy problem: radiative corrections to the Higgs mass, which is not

protected by any symmetries, is quadratic and consequently requires either a

ultraviolet cutoff at a low energy scale or unacceptable fine tunning if the validity

of the SM is to be pushed to a scale beyond TeV.

• The problem that the unification of gauge couplings can not be achieved in the

SM.

• The cosmological constant problem.
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Experimentally no clear signal of new physics beyond the SM has been observed.

Nevertheless, some possible deviations have been found:

• The baryon asymmetry and the dark matter content of the universe which

cannot be explained in the SM. In the past this has not been considered as

seriously as laboratory experiments due to the low accuracy in astrophysical

measurements, but this situation has been changed significantly since the recent

Wilkinson Microwave Anisotropy Probe (WMAP) experiment.

• Neutrino oscillations discovered at Super-Kamiokande [4] and Sudbury Neutrino

Observatory (SNO) [5]. To explain their observations, neutrinos are required

to possess very tiny masses which cannot be naturally explained by a slight

modified version of the SM.

• The deviations of the anomalous magnetic moment of the muon [6, 7] and

the CP asymmetry of the B0 → φKS [8, 9] decay from the SM predictions.

Although the current experimental results of these two quantities are not ex-

tremely convincing, their sensitivity to physics beyond the SM makes them not

only promising candidates to reveal the existence of new physics but also very

useful for the purpose of constraining any given theory of new physics.

We will discuss neutrino oscillations, the anomalous magnetic moment of the muon

and B → φK decays in detail in later chapters.

Naturally, the above discussions lead to the possibility that the SM needs certain

extensions. However, it is very unlikely that one can discard the SM totally at low

energy scale. Among all the theories proposed so far for new physics beyond the SM,

supersymmetric theory discussed in the next section has long been considered as the

most promising one due to its elegant solutions to many of the problems of the SM.
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2. Supersymmetric models

Supersymmetry (SUSY) is defined through supersymmetric transformations which

relate particles to their so-called superpartners with a change in spin by 1/2. In a

theory which is invariant under supersymmetric transformations, i.e. supersymme-

try being an exact symmetry of this theory, any particle and its superpartner must

share the same mass. Since this is not observed, supersymmetry must be broken in

nature. Although the mechanism of this breaking is unclear at this time, based on

both theoretical and phenomenological considerations, SUSY models [10, 11, 12] with

manifest broken supersymmetry still can be constructed. For example, the minimal

supersymmetric standard model (MSSM) can be built by assigning a superpartner to

each SM field and breaking SUSY via soft supersymmetry breaking terms which have

to be constrained by experiments since both the theory breaking to the MSSM and

the mechanism responsible for the breaking are unknown. Although SUSY has not

been discovered and there exists many uncertainties (including some inherited from

the SM) which presumably can be clarified by a more fundamental theory (e.g. string

theory), the success of SUSY is remakable:

1. The hierarchy problem can be simply solved in the supersymmetric extensions

to the SM because of the cancellation between the contributions of the SM fields

and their superpartners to the Higgs mass.

2. The unification of gauge couplings can be achieved in supersymmetric grand

unified theories (GUTs) where two distant scales, the electroweak (≈ 102−3

GeV) and the GUT scale (≈ 1016 GeV), can be connected through renormal-

ization group equations (RGEs). This provides us a way to investigate physics

at very high energies which is far from accessible in current laboratories. For

example, starting from a GUT theory which produces satisfactory low energy
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results when compared with experimental measurements, it is possible to dis-

cuss physics at even higher scale, e.g. up to the Planck scale (≈ 1018 GeV)

(beyond which the quantum effects of gravity become important and a more

fundamental theory has to take place). Therefore, SUSY leads us to not only

the solutions to some of the problems of the SM, but also it leads to a much

deeper understanding of nature and maybe (hopefully) the theory of everything.

3. The RGE running also provides a natural origin of the EWSB, which is usu-

ally referred as radiative electroweak symmetry breaking in literatures because

it is the radiative corrections that cause the RGE running and drive related

parameters to the values triggering the breaking.

4. The dark matter problem can be solved in R-parity conserved SUSY models

where the lightest superpartner (LSP) is stable and can serve as the major

constituent of the dark matter.

Besides these remarkable achievements of SUSY which are directly related to

the problems of the SM, other advantages of SUSY can also be found. For example,

invariance of a theory under local SUSY transformations will automatically bring

gravitational interaction into the theory and thus provides a possible way to unify

all known fundamental interactions. Moreover, SUSY is an indispensable component

of string theory, which presumably can provide a full and consistence description of

our microscopic world in the future. Many physicists believe that, no matter how our

understanding evolves in the future, SUSY will be present in the final answer. It is

partly because of this belief that SUSY phenomenology can grow into a very large

and active research area even no clear signal of SUSY has been found so far.
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3. SUSY phenomenology

Particle phenomenology is always closely related to experiments and SUSY phe-

nomenology is not an exception. Since SUSY has not been found, looking for SUSY

is one of the main tasks of the current particle experiments. Current experiments

including those planned or proposed can be roughly divided into two categories:

1. Direct productions of SUSY particles at colliders and detection of SUSY parti-

cles existing in nature. Collider experiments have the advantage of being able

to make accurate measurements. However detection experiments are more or

less related to astrophysics to which collider experiments can not provide direct

information.

2. Indirect searches (for a recent review, see [13]). Some important experiments in

this category include the Brookhaven E821 experiment of the anomalous mag-

netic moment of the muon, the b → sγ and B decay experiments by BABAR,

Belle and CLEO collaborations, WMAP measurement of the dark matter relic

density, etc.

Although currently available experimental results can mostly be turned into cer-

tain constraints on SUSY models and we have to wait for Large Hadron Collider

(LHC) to obtain accurate results, the examination of the current data cannot be over-

looked since it provides the essential information about the models under study with

implications for future experiments, including those at the LHC and those proposed

for the Next Linear Collider (NLC). For example, the current B0 → φKS results from

Belle and BABAR might be able to rule out the minimal supergravity (mSUGRA)

model which has been discussed extensively and consequently require a non-minimal

model which may have very different experimental signals. Some important results
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will be presented in the next chapter after a more detailed introduction to the SUSY

models studied in our work.
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CHAPTER II

SUSY MODELS

We will focus on N = 1 and mostly dimension D = 4 models in the works presented in

this thesis. N corresponds to the the number of spin 1/2 supersymmetry generators

or charges that exist. These can be defined as:

Q|B〉 ' |F 〉; Q|F 〉 ' |B〉 (2.1)

where B and F correspond to Bosonic states and Fermionic states, respectively. N >

1 supersymmetries cannot provide phenomenologically acceptable models and thus

will not be considered here. In principal, one can construct theories withD > 4, which

occurs in string models. However, for phenomenological studies D = 4 models are

more relevant and in any event they can be considered as effective models compactified

from higher dimensional fundamental theories. Although it is possible to construct

models containing large extra dimensions (see, for example [14]) which can produce

effects accessible in near future collider experiments and thus need to be explicitly

considered, we will not discuss this type of model here since they are not relevant to

our work.

In supersymmetric theories, fields are usually organized into supermultiplets, the

irreducible representations of the supersymmetry algebra. Given supermultiplets and

their gauge transformation properties, a low energy renormalizable supersymmetric

theory can be determined by its superpotential, a dimension 3 holomorphic function

of scalar fields. Details concerning the supersymmetric model building can be found

in, e.g. [15, 16], and will not be discussed here. We will just briefly introduce models

relevant to our works.
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1. The MSSM

The MSSM is the minimal low energy supersymmetric extension to the SM. In our

work it plays the role of the low energy effective theory at the electroweak scale.

As the minimal extension to the SM, its gauge group is the same as that of the

SM, SU(3)C × SU(2)L × U(1)Y . The MSSM superpotential can be written as:

WY = Y (u)qLH2uR + Y (d)qLH1dR + Y (e)lLH1eR + µH1H2. (2.2)

where

qL =

(

uL

dr

)

; lL =

(

νL

er

)

(2.3)

are the superpartners of the left handed quarks and leptons and uR, dR and eR are

the corresponding right handed ones. H1,2 are the Higgs bosons. Y u,d,e are 3 × 3

superpotential Yukawa coupling matrices. µ is a parameter of mass dimension one.

Both the Yukawa matrices and µ need not be real and hence can be possible sources

of CP violations. In addition we assume here the conservation of R-parity which can

be defined as

R = (−1)3(B−L)+2S (2.4)

where B, L and S correspond to the baryon number, lepton number and the spin,

respectively. It is easy to check that under this definition the SM particles and Higgs

are even and their superpartners are odd. R-parity conservation ensures that the su-

perpartners must appear in pairs in any interaction and thus the lightest superpartner

(LSP) must be stable.

As discussed in the last chapter, supersymmetry must be broken in any realistic

theory. Since the mechanism responsible for the breaking is unknown, supersymmetry

breaking is introduced phenomenologically by adding soft breaking terms manually
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into the Lagrangian. By soft it means that those terms will not reintroduce the hierar-

chy problem which has already been solved in the case with unbroken supersymmetry.

In fact even in the soft case it turns out that the soft mass parameters cannot be too

large and should be roughly at the order of 1 TeV which is the region we are interested

in. Given this requirement, the most general soft breaking Lagrangian can then be

written as:

−LMSSM
soft =

1

2

3
∑

α=1

mαλαλα +m2
H1
|H1|2 +m2

H2
|H2|2 +m2

qL
qLq

†
L

+m2
lL
lLl

†
L +m2

uR
uRu

†
R +m2

dR
dRd

†
R +m2

eR
eRe

†
R

+[A(u)Y (u)qLH2uR + A(d)Y (d)qLH1dR

+A(e)Y (e)lLH1eR + µBH1H2 + h.c.] (2.5)

where λα are gauginos, the superpartners of the gauge bosons. All the A’s and m’s

are 3× 3 complex matrices.

With its superpotential and soft breaking terms, the MSSM mass spectrum and

interactions can be computed in a standard way which can be found in many papers

(e.g. see [13, 16]). We will discuss this when necessary instead of presenting here the

full story.

The advantage of the MSSM is that it represents the most general case of the

minimal low energy supersymmetric model and is both of theoretical and phenomeno-

logical interest. However, as what can be seen from (2.2) and (2.3), it has a large

number of parameters. Exact counting shows that it contains at least 105 new phys-

ical parameters [17] in addition to the SM parameters. Therefore, the advantage of

the MSSM is more or less diluted by this large number of parameters. Nevertheless,

it is still very useful in the sense that it can be used to make constraints on many

parameters. Since many models at low energy, like those considered in this thesis,
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have the same structure of the MSSM, they must satisfy the same constraints as

the MSSM. So it is still the most frequently used model in SUSY phenomenological

studies.

2. Minimal supergravity model

It is obvious from the discussion in the previous section that, if one works directly

in the MSSM, all of its parameters have to be determined experimentally as was

done with the SM parameters. In addition, assuming that the MSSM is the correct

low energy model, the amount of the information needed for testing the validity of

the MSSM to a high accuracy would be enormous and makes this test extremely

complicated and impractical. One way out is to take the MSSM as the effective low

energy theory of an underlying theory which has simpler structure at high energy. A

large amount of work have been done in this direction and many models have been

proposed. Here we concentrate on supergravity (SUGRA) models [10, 12, 15, 18],

especially the minimal one, i.e. the minimal supergravity model (mSUGRA) [19, 20,

21, 22].

Supergravity incorporates gravity into the theory by requiring supersymmetry to

be locally invariant. The full Lagrangian with unbroken supersymmetry can be con-

structed systematically. The result is too complicated (e.g. see [10]) to be displayed

here. For phenomenological analysis it is good enough to take the limit of infinite

Planck scale (i.e, the flat limit) which simplifies the Lagrangian to a form similar

to that of the MSSM. The final structure strongly depends on the SUSY breaking

mechanism since in the unbroken case symmetries can determine the structure. One

phenomenologically acceptable SUSY breaking mechanism is to first break SUSY in a

hidden sector and then communicate the breaking to the observable sector by gravity
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[19]. mSUGRA discussed below is the minimal picture of this model.

In mSUGRA, at the GUT scale, the parameters of the soft breaking terms include

a universal scalar mass m0, a universal gaugino mass m1/2 and the parameter A0 of

the cubic scalar terms, corresponding to setting the following in (2.5):

mα = m1/2 ;

m2
H1

= m2
H2

= m2
qL

= m2
lL

= m2
uR

= m2
dR

= m2
eR

= m2
0 ;

A(u) = A(d) = A(e) = A0 . (2.6)

Then we are left with 5 parameters (notice that in (2.5) there are two more parameters,

µ and B). One can further require that the electroweak symmetry breaks radiatively

to eliminate one more parameter. At the tree level, this requirement will give, at the

electroweak scale,

1

2
M2

Z =
m2
H1
−m2

H2
tan2 β

tan2 β − 1
− µ2 (2.7)

and

Bµ =
1

2
(m2

H1
+m2

H2
+ 2µ2) sin 2β (2.8)

where tan β = 〈H2〉/〈H1〉, the ratio between the vacuum expectation values (VEVs) of

H2 and H1. (2.7) shows that µ
2 can be traded for tan β and then B can be eliminated.

Notice that the sign of µ cannot be determined by (2.7) and needs to be specified

at the weak scale. (In conventional mSUGRA, the soft breaking terms are assumed

real). Therefore, we have four new parameters and a sign in addition to the SM

parameters. In addition, when R-parity conservation is assumed, the superpotential

in the mSUGRA model is the same as the MSSM one given in (2.2).

The studies of the mSUGRA model usually start with a set of parameters at the

GUT scale and then run the renormalization group equations (REGs) [23, 24, 25, 26]
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down to the electroweak scale. The SM parameters in many cases can be taken

from the results of their SM fits at least as good approximations. In some cases,

SUSY corrections are significant and thus have to be taken into account, e.g. SUSY

corrections to the Higgs mass [27] and the mass of the bottom quark, mb [28, 29].

Compared with the MSSM with more than 100 new parameters, mSUGRA has a

much higher predictive power. Further, in mSUGRA, many analyses can be done in

a more complete and accurate way. For example, the mass insertion approximation

[30], which is not necessary in the mSUGRA case, is often used in the MSSM in

flavor changing processes. As a consequence, the mSUGRA parameter space can be

studied in an explicit way and correlations between experiments can be seen more

clearly. In addition, many of its variations can be studied without losing much of its

predictive power, e.g. models with non-universal soft scalar masses, gaugino masses,

off-diagonal terms, etc.

3. Experimental constraints

In this section we give a general overview of some important experimental constraints

on the mSUGRA parameter space. Their specific effects related to our work will

be discussed later. The constraints on the MSSM can be found in [13] and will be

skipped here since we will not work in the MSSM directly.

3.1. Limits on superpartner masses

The non-observation of any non-SM particles in collider experiments can establish the

lower limits on superpartner masses. For example (for a complete list, see [1]), the

current lower limit on the lightest neutralino mass, mχ̃0 , is 37 GeV at 95% confidence

level, and the lighest chargino masses, mχ̃±
1

, ∼ 100 GeV. However, since in most cases
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the part of the parameter space below those limits has already been excluded by some

other experimental constraints, e.g. those on the b→ sγ branching ratio and the mass

of the Higgs boson, they usually do not play an important role in constraining the

mSUGRA parameter space. Nevertheless, the important issue is that no non-SM

particle has been observed and no new physics theory can skip that test.

3.2. The lightest Higgs mass, mh

The Higgs boson is the only SM particle not yet found. The Higgs boson by itself is

an important issue since it is required by the Higgs mechanism of the gauge symmetry

breaking in the SM. It is the Higgs mass that manifests the hierarchy problem. In

addition, SUSY models require a very light Higgs (see [31] for a recent review) close

to the current bound [32]:

mh > 114.4 GeV, (2.9)

which is a significant constraint on the parameter space at low tan β. Due to the

uncertainties in theoretical calculations and the top mass, the above bound is usually

relieved by a few GeV, e.g. in the theoretical calculations we impose

mh > 111 GeV. (2.10)

3.3. b→ sγ

The current world average of the inclusive B → Xsγ branching ratio [33] is

Br(B → Xsγ) = (3.34± 0.38)× 10−4 (2.11)

which agrees with the latest SM theoretical prediction with full Next-to-Leading-

Order QCD corrections [34]:

Br(B → Xsγ) = (3.73± 0.30)× 10−4. (2.12)
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By comparing (2.11) with (2.12), one can see that new physics contributions to

Br(B → Xsγ) are strongly constrained. In our works we use a relatively broad

range to take into account the uncertainty in the theoretical calculation:

2.2× 10−4 < Br(B → Xsγ) < 4.5× 10−4. (2.13)

At large tan β it sets a lower bound on m1/2 for m0 . 1 TeV 1. In addition, it strongly

constrains the flavor changing b→ s transition, especially in non-universal models.

The direct CP asymmetry of b→ sγ also has been measured by CLEO [35]:

Ab→s+γ = (−0.079± 0.108± 0.022)(1.0± 0.030) (2.14)

or at 90% confidence level, −0.27 < Ab→s+γ < +0.10. We will consider this in our

later discussion on B → φK decays.

3.4. The dark matter relic density

One intriguing and open question in modern cosmology is the nature of the dark

matter which has been found to be the dominant matter component of the current

universe. (For a review see [36]). The recent WMAP result gives [37]

ΩCDMh
2 = 0.1126+0.008

−0.009 . (2.15)

where ΩCDM is the ratio of the current dark matter mass density to the critical mass

density and h is defined by the Hubble constant as H0 = 100h km s−1Mpc−1. We

implement this bound at the 2σ level in our calculation:

0.094 < ΩCDMh
2 < 0.129 . (2.16)

1There is also the LEP bound mχ̃±i
> 103 GeV which produces a lower bound on

m1/2 for any m0 (not just m0 . 1 TeV)
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As explained in the first section, the LSP in an R-parity conserved model is stable and

hence can be considered as a cold dark matter (CDM) candidate. By assuming that

the stable LSP is the main ingredient of the dark matter, the above bound can then be

translated into the constraint on the nature of the LSP and consequently the model

producing this LSP. In mSUGRA, it turns out that the dark matter relic density can

significantly reduce the parameter space to very narrow bands. One example is given

in Fig. 1 below.

3.5. The muon anomalous magnetic moment

The current world average of the muon anomalous magnetic moment, aµ = (gµ−2)/2,

is [7]

aEXP
µ = 11659208(6)× 10−10 (2.17)

which has a remarkable accuracy, 0.5 ppm (part per million). However, in theoret-

ical calculations, the hadronic contribution is still not well determined due to the

discrepancy in the experimental data used in the evaluation of the hadronic vacuum

polarization contribution to the photon propagator [38, 39]. The most recent SM

prediction using direct experimental e+e− → hadrons data gives [40]

aSMµ (e+e−) = (11659180.9± 8.0)× 10−10 . (2.18)

On the other hand, the one using τ decay data gives [40]

aSMµ (τ) = (11659195.6± 6.8)× 10−10 . (2.19)

Therefore, comparing (2.17) to (2.18) and (2.19), one finds that [40]

∆aµ = aEXP
µ − aSMµ =

{

27.1± 10.0× 10−10 (e+e− data)

12.4± 9.0 × 10−10 (τ data)
(2.20)

corresponding to 2.7σ and 1.4σ for e+e− and τ data, respectively.
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∆aµ given in (2.20) can be used as a bound on non-SM contributions to aµ. In

mSUGRA its lower (higher) bound produces a higher (lower) bound on m0 and m1/2.

Even if there is no deviation from the SM, the bound is still significant, although

a large deviation would be more welcome, for it would signal the existence of new

physics. More details will be given in the next chapter devoted to the muon g − 2.

3.6. Neutron and electron electric dipole moments

Usually in mSUGRA, for simplification, vanishing CP violating phases are assumed

because their effects in most applications are small. However, in general they can be

present and are hard to prevent from being large. Therefore, they must be considered

in any CP violating processes.

Currently the most significant constraints on CP violating phases are from exper-

imental measurements of the neutron and electron electric dipole moments (EDMs).

In SUSY models, an electron EDM arises from the diagrams involving intermediate

chargino-sneutrino states and intermediate neutralino-selectron states (for example,

see [41, 42]). The current experimental bounds on the neutron and electron EDMs

are [1]:

dn < 6.3× 10−26 e cm, de < 0.21× 10−26 e cm . (2.21)

Besides those experimental constraints mentioned above, there are other phe-

nomenological constraints which are very important in models like the MSSM but

not the mSUGRA model. For example, flavor changing neutral currents (FCNCs).

However, if one tries to extend mSUGRA, e.g. to include non-universal terms, these

constraints in general need to be included.

Fig. 1 below shows how the mSUGRA parameter space gets constrained by the

experimental data [43] for the case A0 = 0, µ > 0 and tan β = 40. In Fig. 1, the
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Fig. 1. Allowed region in the m0 - m1/2 plane from the relic density constraint for

tan β = 40, A0 = 0 and µ > 0.

red region was allowed by the older balloon data on the dark matter relic density,

and the narrow blue band by the recent WMAP data. The dotted red vertical lines

are different Higgs masses. The light green region to the left is excluded by the

B → Xsγ bound. The light blue region is excluded if ∆aµ > 11× 10−10. The yellow

region is excluded because in that region, instead of the neutralino, the LSP is the

lightest slepton, the stau, which is charged and hence cannot be the cold dark matter

component. Notice that the dark matter allowed region (the narrow blue band) is

so narrow that it can approximately determine m0 for a given m1/2 for fixed A0 and

tan β, and vice-versa.
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CHAPTER III

MUON ANOMALOUS MAGNETIC MOMENT*

Any particle with spin possesses an magnetic moment which can be expressed in

terms of the Landé g factor. Fig. 2 shows diagrammatically the contributions to g

for the muon.

p′ p p′ p p′ p

q q q

(a) (b) (c)

Fig. 2. (a) The lowest order contribution to the muon magnetic moment. (b) Dia-

grammatic representation of higher order contributions. (c) First order QED

contribution, as an example of (b).

To the lowest order, as shown in Fig. 2(a), g = 2. Higher order loop contributions

can be represented schematically by Fig. 2.(b). In general, g can be defined by the

muon-photon vertex [44]

ū(p′)

[

(p+ p′)µ
2m

+
g

2

iσµνq
ν

2m

]

u(p) . (3.1)

When g = 2 one recovers the tree level vertex ū(p′)γµu(p). The anomalous contribu-

tion to the magnetic moment of the muon is usually defined as

aµ ≡ (gµ − 2)/2 . (3.2)

∗Tables and figures presented in this chapter are reprinted with permission from
“Muon g − 2, Dark Matter Detection and Accelerator Physics” by R. Arnowitt,
B. Dutta, B. Hu, 2001, Phys. Lett. B 505, 177-183. Copyright 2001 by Elsevier.
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The QED calculation shown in Fig. 2(c) was first done by Schwinger [45] in

1948. Later, with the improvement of experimental techniques, higher order QED

contributions and non-QED contributions were calculated. We summarize below the

current status of the SM prediction for aµ.

1. muon g − 2 in the SM

The SM contribution to aµ can be written as the sum of the QED, electroweak and

hadronic contributions

aSMµ = aQED
µ + aEWµ + ahadµ . (3.3)

The dominant contribution to aSMµ is aQED
µ which can be expresses in a power serial

of α (≡ e2/4π)

aQED
µ =

5
∑

i=1

Ci

(α

π

)i

+O(α6) (3.4)

where C1 = 1/2 which is Schwinger’s original result. C2−5 also have been calculated.

The current theoretical value of aQED
µ is [40]

aQED
µ = 11658470.6(0.3)× 10−11 . (3.5)

The electroweak contribution is small but not negligible compared to the experimental

accuracy [40]

aEWµ = 15.4(0.2)× 10−10 . (3.6)

ahadµ can be further divided into three parts:

ahadµ = ahad, LOµ + ahad, NLO
µ + ahad, l-b-lµ (3.7)
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where the first two terms are the leading order and next-to-leading order hadronic

vacuum polarization contributions and the last term is the hadronic light-by-light

contribution [46]. The last two terms in (3.7) have been calculated to be [40]

ahad, NLO
µ = −10.0(0.6)× 10−10 ; ahad, l-b-lµ = 8.6(3.5)× 10−10 . (3.8)

However, the ambiguity in the evaluation of the leading order hadronic contribution,

ahad, LOµ , has not yet been clarified. There are two different results based on different

experimental data used in the analyses

ahad, LOµ =

{

696.3(7.2)× 10−10 (e+e− data [40])

711.0(5.8)× 10−10 (τ data [40])
(3.9)

Collecting all the SM contributions given above, one finds the results given in (2.18)-

(2.20).

2. muon g − 2 in mSUGRA

Before the advent of supergravity grand unified models in 1982 [19, 20, 21, 22], efforts

had been made to calculate a possible deviation from aSMµ within the framework

of global supersymmetry [47, 48, 49, 50, 51]. However, it had been shown many

years ago [51] that the anomalous magnetic moment vanishes in the limit of exact

global supersymmetry, and thus one needs broken supersymmetry to obtain a non-zero

result. The absence of a phenomenologically viable way of spontaneously breaking

global supersymmetry made realistic predictions for these models difficult. On the

contrary, spontaneous breaking of supersymmetry in supergravity (SUGRA) is easy

to achieve. The first complete analysis [52] in supergravity unified models was done

in 1984 by Yuan et al.

In SUGRA models, the spontaneous breaking of supersymmetry triggers the ra-

diative electroweak symmetry breaking and hence the scale of the new SUSY masses
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is required to be ∼ 100 GeV - 1 TeV, leading to the prediction [52] that the SUGRA

contributions to the anomalous muon magnetic moment, aSUGRA
µ , would be compara-

ble or larger than the electroweak contribution given in (3.6), 15.4(2) × 10−10. This

scale for the SUSY masses was further confirmed by the LEP data showing that

consistency with grand unification could be obtained if the SUSY masses also lie in

the above range [53]. In addition, SUGRA models with R-parity invariance predict

a dark matter candidate (the lightest neutralino) with the astronomically observed

amount of relic density if the SUSY masses again lie in this range.

It is thus reasonable to investigate whether the observed deviation from aEXP
µ

can be understood within the framework of SUGRA models, and here1 we consider

gravity mediated SUSY breaking with R-parity invariance for models with universal

soft breaking masses (mSUGRA).

SUGRA models have a wide range of applicability including cosmological phe-

nomena and accelerator physics, and constraints in one area affect predictions in other

areas. In particular, as first observed in [55] and emphasized in [56], that aµ increases

with tan β, as do dark matter detection rates. Thus as we will see, the deviation of

(2.20) will significantly affect the minimum neutralino-proton cross section for terres-

trial detectors. Even more significant is the fact that the astronomical bounds on the

χ̃0
1 relic density restrict the SUSY parameter space and hence the SUGRA predictions

1This work was done in 2001 [54]. Since that time both the experimental mea-
surement and the theoretical evaluations of aµ have been improved. The ambiguity
in ahad, LOµ (see section 1) found later after this work has led to an uncertain bound

on aNP
µ (NP means new physics). Therefore, currently the bound on aSUSY

µ is usually

used as an “optional” bound. However, once the ahad, LOµ problem is resolved, our
discussion here is still valid (after making certain changes in our numerical results).
Considering the ambiguity in aSMµ and that the bound based on the more reliable
e+e− data (see (2.20)) does not deviate very much from the one used in this work, we
do not update our numerical results here. All other discussion should apply in future
analyses.
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for aµ as well as what may be expected to be seen at the Tevatron RUN II and the

LHC. In order to carry out this analysis, when applying the experimental bounds,

we include all the co-annihilation effects, as well as the large tan β corrections to mb

and mτ (which are needed to correctly determine the corresponding Yukawa coupling

constants), the large tan β NLO corrections to the b → sγ decay [57, 58] and the

one and two loop corrections to the light Higgs (h) mass. The above corrections for

dark matter (DM) calculations were carried out in [59], and we will use the same

corrections here.

Before proceeding on, we state the range of parameters we assume 2. For aSUSY
µ

We take a 2σ bound

11× 10−10 < aSUSY
µ < 75× 10−10 , (3.10)

a 2σ bound on the b→ sγ branching ratio, 1.8×10−4 < BR(b→ sγ) < 4.5×10−4, and

a neutralino relic density range of 0.02 < Ωχ̃0

1
h2 < 0.25. (Assuming a lower bound

of 0.1 does not affect results significantly.) The b-quark mass is assumed to have

the range 4.0GeV < mb(mb) < 4.4 GeV. We also consider the bound on the Higgs

mass: mh > 114 GeV, which is the current LEP bound. However, the theoretical

calculations of mh have still some uncertainty as well as uncertainty in the t-quark

mass, and so we will conservatively interpret this bound to mean that our theoretical

values obey mh > 111 GeV. (Our calculations of mh are consistent with [60].) The

scalar and gaugino masses at the GUT scale obey (m0,m1/2) < 1 TeV. We examine

the range 2 < tan β < 40, and the cubic soft breaking mass is parameterized at the

GUT scale by |A0| < 4m1/2.

2Similar to what happened to aµ, as explained in footnote 1 on the last page, some
experimental bounds used here are different from those given in chapter II (which was
only intended to be a survey of some important experimental constraints), mostly
due to the improvement in experimental measurements over the time passed after
this work was complete.
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We consider first the mSUGRAmodel, which depends on the four parametersm0,

m1/2, A0, tan β and the sign of the µ parameter, as described in chapter I. The SUSY

contribution to aµ arises from two types of loop diagrams, i.e. those with chargino-

sneutrino intermediate states, and those with neutralino-selectron intermediate states,

both of which are shown in Fig. 3 below.

µ µ µ µ0
iχ

�

iχ −�
kl

�

kν
�

γ γ

Fig. 3. SUSY contributions to aµ: neutralino-selectron loop (left) and chargino-

sneutrino loop (right).

The dominant contribution arises from the loop diagram with the light chargino

(χ̃±
1 ). For moderate or large tan β, and when (µ± m̃2)

2 ¿M2
W , one finds

aSUGRA
µ

∼= α

4π

1

sin2 θW

(

m2
µ

mχ̃±
1

µ

)

tan β

1− m̃2

2

µ2






1− M2

W

µ2

1 + 3
m̃2

2

µ2

(

1− m̃2

2

µ2

)2






F (x) (3.11)

where m̃i = (αi/αG)m1/2, i = 1, 2, 3 are the gaugino masses at the electroweak scale

and αG ∼= 1/24 is the GUT scale gauge coupling constant. (One has mχ̃±
1

∼= m̃2
∼=

0.8m1/2, and the gluino (g̃) mass is mg̃
∼= m̃3.) The form factor in (3.11) is

F (x) = (1− 3x)(1− x)−2 − 2x2(1− x)−3 ln x (3.12)

where x = (mν̃/mχ̃±)
2. The sneutrino and chargino masses are related tom0 andm1/2

by the renormalization group equations. (The contribution from the heavy chargino,

χ̃±
2 reduces this result by about a third.) One finds for large m1/2 that F (x) ∼= 0.6 so

that aµ decreases as 1/m1/2, while for large m0, F decreases as ln(m2
0)/m

2
0 (exhibiting

the SUSY decoupling phenomena).
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One important consequence of (3.11) is that the sign of aSUGRA
µ is given by the sign

of µ. The aµ bound in (3.10) thus implies that µ is positive. This then has immediate

consequences for dark matter detection. As discussed in [59, 61], for µ < 0, accidental

cancellations can occur reducing the neutralino-proton cross section to below 10−10

pb over a wide range of SUSY parameters, and making halo neutralino dark matter

unobservable for present or future planned terrestial detectors. Thus this possibility

has now been eliminated, and future detectors (e.g. GENIUS) should be able to scan

almost the full SUSY parameter space for m1/2 < 1 TeV.

The lower bound in (3.10) plays a central role in limiting the µ > 0 SUSY

parameter space, particularly when combined with the bounds on the Higgs mass

and the b → sγ constraints. As seen above, lowering tan β can be compensated in

aµ by also lowering m1/2. However, mh decreases with both decreasing tan β and

decreasing m1/2. Thus the combined Higgs and aµ bounds put a lower bound on

tan β. This bound is sensitive to A0 since A0 enters in the L-R mixing in the stop

(mass)2 matrix and affects the values of the stop masses. We find for mh > 111 GeV

(i.e. the 114 GeV experimental bound), that tan β > 7 for A0 = 0, and tan β > 5

for A0 = −4m1/2. At higher mh the bound on tan β is more restrictive. Thus

for mh > 117 GeV (corresponding to an experimental 120 GeV bound), one has

tan β > 15 for A0 = 0, and tan β > 10 for A0 = −4m1/2. As the Higgs mass

increases, the bound on tan β increases. For large tan β, the relic density constraints

leave only co-annihilation regions possible [59, 62, 63], and these are very sensitive to

the value of A0.

Fig. 4 exhibits the allowed regions in them0−m1/2 plane for tan β = 40,mh > 111

GeV for A0 = 0, −2m1/2, and 4m1/2 (from bottom to top). The corridors terminate

at low m1/2 due to the b → sγ and mh constraints. Without the aµ constraint, the

corridors would extend up to the end of the parameter space (m1/2 = 1 TeV). We
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Fig. 4. Corridors in the m0 − m1/2 plane allowed by the relic density constraint for

tan β = 40, mh > 111 GeV, µ > 0 for A0 = 0,−2m1/2, 4m1/2 from bottom to

top. The curves terminate at low m1/2 due to the b→ sγ constraint except for

the A0 = 4m1/2 which terminates due to the mh constraint. The short lines

through the allowed corridors represent the high m1/2 termination due to the

lower bound on aµ.

see also that the relic density constraint effectively determines m0 in terms of m1/2

in this region. The lower bound of (3.10), however, cuts off these curves (at the

vertical lines) preventing m0 and m1/2 from getting too large. Thus for large tan β,

the gµ − 2 experiment puts a strong constraint on the SUSY parameter space. As

explained above, the restriction of the SUSY parameter space by the aµ constraint

affects the predicted dark matter detection rates. The exclusion of the large m0 and

largem1/2 domain of Fig. 4 generally raises the lower bounds on the neutralino-proton

cross section and hence the remain parameter space should generally be accessible to

future planned detectors.

In non-universal cases, both the neutralino-proton cross section and neutralino

dark matter relic density are affected by the non-universalities of the soft SUSY
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Fig. 5. mSUGRA contribution to aµ as a function of m1/2 for A0 = 0, µ > 0, for

tan β = 10, 30 and 40 (bottom to top).

breaking parameters in (2.6). For example, A reduction of µ2 by properly shifting

scalar masses from the universal value, m0, increases the higgsino content of the

neutralino, and thus increases the χ̃0
1 − χ̃0

1 − Z coupling and opens a new region of

allowed relic density at high m1/2 and high tan β [59]. The lower bound of aµ again

eliminates large m0 and m1/2 region and ensures that the minimal neutralino-proton

cross section remains detectable.

3. Discussion

The above discussion shows that for the mSUGRA model and it extensions with non-

universalities the aµ data, when combined with the mh, b → sγ and relic density

constraints have begun to greatly limit the SUSY parameter space. Thus the mh and

b → sγ constraints determine a lower bound on m1/2 and hence an upper bound on

aSUGRA
µ , while the experimental lower bound on aµ determines an upper bound on
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Table I. Allowed ranges for SUSY masses in GeV for mSUGRA assuming 90% C. L.

for aµ for A0 = 0.

χ̃0
1 χ̃±

1 g̃ τ̃1 ẽ1 ũ1 t̃1

(123-237) (230-451) (740-1350) (134-264) (145-366) (660-1220) (500-940)

m1/2. The combined aµ and mh bound puts lower bound on tan β for a given value of

A0. This can be seen most clearly in Fig. 5, where the mSUGRA contribution to aµ is

plotted as a function of m1/2 for A0 = 0, tan β = 10 (lower curve), tan β = 30 (middle

curve)and tan β = 40 (upper curve). Further, most of the allowed m1/2 region lies

in the the τ̃1 − χ̃0
1 co-annihilation domain ( m1/2

>∼ 350 GeV), and so from Fig. 4

one can see that m0 is approximately determined in terms of m1/2. In Fig. 5, the

mh bound determines the lower limit on m1/2 for tan β=10, while b→ sγ determines

it for tan β = 40. Both are equally constraining for tan β =30. If we consider the

90% C. L. bound (aµ > 21 × 10−10) [64]), one finds for A0 = 0 that tan β ≥ 10,

and for tan β ≤ 40 that m1/2 = (290 − 550) GeV, and m0 = (70 − 300) GeV. This

greatly constrains SUSY particle spectrum expected at accelerators, as can be seen in

Table I. Thus at the 90% C.L. bound on aµ only the τ̃1 and ẽ1 would possibly be

within the reach of a 500 GeV NLC (and very marginally the χ̃±
1 ), while all the SUSY

particles would be accessible to the LHC.

Another interesting features of Fig. 5 is that mSUGRA can no longer accommo-

date large values of aSUGRA
µ . If the future data should require a value significantly

larger than 40 × 10−10, this would be a signal for the existence of non-universal

soft breaking. From (3.11) one sees that one can increase aµ by reducing µ, and as

explained, this might be accomplished by non-universal soft breaking of the scalar

masses (and also from non-universal gaugino masses at MG.) Thus the gµ − 2 ex-
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periment may give us significant insight into the nature of physics beyond the GUT

scale.
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CHAPTER IV

B0 → φKS IN SUGRA MODELS WITH CP VIOLATIONS*

The SM is described by a locally Lorentz invariant Lagrangian. By virtue of the

CPT theorem, the SM is then invariant under a combined C (charge conjugation), P

(Parity) and T (time reversal) transformation. Experimentally CPT violation has not

yet been observed 1, but C, P and CP violations have been found in nature. Although

there is no direct experimental evidence of T violation, the CPT theorem implies that

T symmetry is also not a good symmetry if nature is described by a locally Lorentz

invariant theory, e.g. the SM.

In the SM, parity and charge conjugation symmetries are maximally violated due

to the V −A structure of the electroweak interaction. However, if the CKM phase δ

(see appendix A) were zero, CP would be invariant in the SM. Therefore, observed

CP violations imply a non-zero δ which can be extracted from CP violating processes

dominated by the SM contributions. The current fit of the experimental data to the

SM gives δ = 59◦± 13◦ [1]. The CP violating nature of the CKM matrix can be seen

in the unitarity triangle as follows. Since V †
CKMVCKM = I (where I is the unit matrix),

one has

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0 (4.1)

The unitarity triangle can then be constructed in the complex plane as shown in

∗Tables and figures presented in this chapter are reprinted with permission from
“B0 → φKS in SUGRA Models with CP Violations” by R. Arnowitt, B. Dutta,
B. Hu, 2003, Phys. Rev. D 68, 075008 (10 Pages). Copyright 2003 by the American
Physical Society.

1It has been suggested that the current neutrino data, including the LSND (the
Liquid Scintillating Neutrino Detector) data, might imply a breakdown of the CPT
invariance. (For a review, see [65].)
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α

βγ

*
ud ubV V *

td tbV V

*
cd cbV V

Fig. 6. The unitary triangle representation of (4.1).

Fig. 6. All the CKM elements, including the three angles of the unitarity triangle,

can be measured experimentally, especially in B decays (a summary of the current

experimental status can be found in [66]). It is then possible to test the validity of

the SM by examining its consistency with the experimental data. Although most

experiments are in agreement with the SM predictions, a possible deviation has been

found in the B0 → φKS decay. This deviation has been discussed by many authors

(see [67] and references therein) in the SUSY framework, especially in the minimal

supersymmetric standard model (MSSM) by employing the mass insertion method

[30]. Although these analyses can provide useful constraints on some off-diagonal

terms of the squark mass matrices, as explained in Chapter 2, it is certainly worthwhile

to investigate this problem in the context of grand unified models, especially the R-

parity conserved SUGRA models which can also provide a natural explanation to

the dark matter problem. Here we will examine the apparent deviation from the

SM found in B → φK decays in the context of SUGRA models including mSUGRA

and models with non-universalities. We also impose all other relevant experimental

constraints.

We begin by giving a brief description of the B → φK decays, the current exper-
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imental status of their CP asymmetries and branching ratios (BRs) and the discrep-

ancy found in the B0 → φKS decay. We also briefly discuss the QCD factorization

technique used in this work. (More details are given in appendices.)

1. CP asymmetry of B → φK decays

The time dependent CP asymmetry of B → φKS is described by (see Appendix B):

AΦKS
(t) ≡

Γ(B
0

phys(t)→ φKS)− Γ(B0

phys(t)→ φKS)

Γ(B
0

phys(t)→ φKS) + Γ(B0

phys
(t)→ φKS)

= −CφKS
cos(∆mBt) + SφKS

sin(∆mBt) (4.2)

where SφKS
and CφKS

are given by

SφKS
=

2 ImλφKS

1 + |λφKS
|2 , CφKS

=
1− |λφKS

|2
1 + |λφKS

|2 , (4.3)

and λφKS
can be written in terms of decay amplitudes:

λφKS
= −e−2iβA(B

0 → φKS)

A(B0 → φKS)
. (4.4)

In principal, the β in (4.4) should include the SUSY contributions to the Bd − Bd

mixing, which, however, are found to be small. Hence we will use the standard

definition for β:

β ≡ arg

(

VcdV
?
cb

VtdV ?
tb

)

. (4.5)

This definition is invariant under quark field rephasing, as are the other physical

observables.

Within the SM, sin 2β can be measured by SJ/ΨKS
in the B → J/ΨKS decay

(which is a tree level process). The current world average is

SJ/ΨKS
= 0.734± 0.055 (4.6)
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which is in excellent agreement with Buras’ SM evaluation, sin 2β = 0.715+0.055
−0.045 from

the CKM matrix [68] which does not make use of the B → J/ΨKS data. Since

B → J/ΨKS decay is dominated by the SM tree level contribution, we expect that

in our analysis the new physics will not affect the SM prediction for sin 2β from

B → J/ΨKS. As a consequence, we further assume that the current SM fit for the

CKM matrix will not be affected by models discussed here.

The SM also predicts that the CP asymmetries of B0 → φKS and B → J/ΨKS

should measure the same sin 2β with negligible O(λ2) corrections [69]. On the other

hand, the BaBaR and Belle measurements [70, 71, 72, 73] show a 2.7σ disagreement

between SφKS
and SJ/ΨKS

2

SφKS
= −0.38± 0.41 . (4.7)

In addition, the branching ratios (BRs) and the direct CP asymmetries of both the

charged and neutral modes of B → φK have also been measured [70, 71, 72, 73]3:

Br[B0 → φKS] = (8.0± 1.3)× 10−6,

Br[B+ → φK+] = (10.9± 1.0)× 10−6, (4.8)

CφKS
= −0.19± 0.30,

ACP (B+ → φK+) = (3.9± 8.8± 1.1).% (4.9)

Where ACP is the CP asymmetry of the charged B → φK decay defined as

ACP ≡
Γ(B− → φK−)− Γ(B+ → φK+)

Γ(B− → φK−) + Γ(B+ → φK+)
=
|λφK∓ |2 − 1

|λφK∓ |2 + 1
(4.10)

2After this work was done new data from Belle [9] gave a value of SφKS
= −0.96±

0.5+0.09
−0.11 (a 3.5σ deviation from the Standard Model) and new data from BaBar [74]

gave SφKS
= +0.47 ± 0.34. Belle and BaBar would then disagree by more than 2σ

and if one averages the new values one obtains [75] SφKS
= 0.02± 0.29 which is 2.5σ

from the Standard Model [76].
3Our average of Br[B+ → φK+] only includes BaBar and Belle since CLEO [77]

is 2.3σ away. Br[B+ → φK+] would become (9.4± 0.9)× 10−6 if CLEO is included.
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with

λφK∓ =
A(B− → φK−)

A(B+ → φK+)
. (4.11)

In general, any model should explain all these data. In particular, the relatively

small uncertainties in the BRs of B+ → φK+ and B0 → φKS need to be considered

in the analysis since they are highly correlated and both are based on the b → s

transition. In the SM, ACP (B
+ → φK+) is small and agrees with (4.9). So this

direct CP asymmetry result plays an important role in constraining the new physics

contribution which might explain the discrepancy between SφKS
and SJ/ΨKS

.

2. Decay amplitudes

From the above discussion, it is clear that our theoretical predictions for the ex-

perimental observables, e.g. SφKS
, CφKS

and AφK∓ , depend on the evaluation of

decay amplitudes. The most difficult part is the evaluation of the matrix elements

of related operators in the effective Hamiltonian between initial and final hadronic

states, e.g. |B〉 and 〈φK| in the case of B → φK decays. There are many ways of

doing this calculation. Here we adopt the newly developed QCD improved factor-

ization (BBNS approach) [78, 79, 80] which provides a systematic way to calculate

the matrix elements of a large class of B decays with significant improvements over

the old factorization approach (naive factorization). It allows a QCD calculation of

“non-factorizable” contributions and model independent predictions for strong phases

which are important in the theoretical evaluation of the direct CP asymmetries of B

decays, e.g. for B− → φK−. Recently Du et al. [81, 82, 83] have published an

improved calculation of B → PV decays. We followed here their calculational tech-

niques [81] which are based on the original work [78, 79, 80] of Beneke, et al.

Before proceeding on, we would like to make one comment. While the BBNS
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(a) (b)

K

φ

B

φ

B

K

Fig. 7. Hard spectator scattering diagram (a) and weak annihilation diagram (b). In

(a) the gluon can connect the spectator with either φ quark and in (b) the

gluon can originate from any B quark or K quark.

approach is an important advance in calculating B decays, it is not completely model

independent. In the BBNS approach the hard gluon (H) and annihilation (A) dia-

grams (see Fig. 7) contain infrared divergences which are parameterized by an ampli-

tude ρH,A (with ρH,A ≤ 1) and a phase φH,A. (More details can be found in [78, 79, 80]

and [81].) If the effects of these terms are small, the theoretical predictions are well

defined. However, if these terms are large or dominant, the theory becomes suspect.

We will see below that SφKs
is essentially independent of the infrared divergent terms,

though the branching ratios can become sensitive to ρA and φA.

The Effective Hamiltonian for B → φK in the SM is:

Heff =
GF√
2

∑

p=u, c

VpbV
?
ps

[

C1O
p
1 + C2O

p
2 +

10
∑

k=3

Ck(µ)Ok(µ)

+C7γO7γ + C8gO8g

]

+ h.c. (4.12)

where Qp
1,2 are tree operators, Q3,...,6, QCD penguin operators, Q7,...,10, electroweak

penguin operators, and Q7γ and Q8g, the electromagnetic and chromomagnetic dipole

operators. The explicit forms of Oi’s are given by

Qp
1 = (p̄b)V−A(s̄p)V−A , Qp

2 = (p̄ibj)V−A(s̄jpi)V−A ,
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Q3 = (s̄b)V−A(q̄q)V−A , Q4 = (s̄ibj)V−A(q̄jqi)V−A ,

Q5 = (s̄b)V−A(q̄q)V+A , Q6 = (s̄ibj)V−A(q̄jqi)V+A ,

Q7 = (s̄b)V−A
3
2
eq(q̄q)V+A , Q8 = (s̄ibj)V−A

3
2
eq(q̄jqi)V+A ,

Q9 = (s̄b)V−A
3
2
eq(q̄q)V−A , Q10 = (s̄ibj)V−A

3
2
eq(q̄jqi)V−A ,

Q7γ =
−e
8π2

mb s̄σµν(1 + γ5)F
µνb ,

Q8g =
−gs
8π2

mb s̄σµν(1 + γ5)G
µνb , (4.13)

where V ±A = γµ(1± γ5), i, j are color indices and a summation over q = u, d, s, c, b

is implied. The Wilson coefficients Ci(µ) in (4.12) can be obtained by running the

RGEs from the weak scale down to scale µ. The SUSY contributions will bring in

new operators Õi’s which can be obtained by changing L↔ R in the SM operators.

We use C̃i to denote the Wilson coefficient of Õi.

Using the above Hamiltonian the amplitude of B → φK is:

A(B → φK) = Af (B → φK) +Aa(B → φK) (4.14)

where Af are the factorized amplitudes which can be written as

Af (B → φK) =
GF√
2

∑

p=u, c

∑

i

VpbV
?
psa

p
i 〈φK|Oi|B〉f , (4.15)

and Aa is the weak annihilation decay amplitudes [81]:

Aa(B → φK) =
GF√
2
fBfφfK

∑

VpbV
?
psbi. (4.16)

The matrix elements 〈φK|Oi|B〉f in (4.15) are the factorized hadronic matrix elements

[84]. ai’s and bi’s contain the Wilson coefficients. Explicit expressions for them, as

well as for Aa(B → φK), can be found in [80] and [81].

One comment is that the decay amplitudes are calculated at scale µ ∼ mb where

only QCD effects are relevant. Our SUSY contributions are hidden in the Wilson

coefficients. The main idea is still that of the effective field theory: all the Wilson
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coefficients are first calculated at the weak scale by integrating out heavy particles

including the heavy gauge bosons, the top quark and the superpartners (or any rele-

vant non-SM particles), and then run down to the scale µ ∼ mb via the RGEs of the

effective theory [85].

3. B → φK decays in the Standard Model

We first discuss the B → φK decays in the SM. The largest theoretical uncertainties

in this calculation come from weak annihilation diagrams which mostly depend on

the divergent end-point integrals XA parameterized in the form [80, 81]

XA = (1 + ρAe
iφA) ln

mB

Λh

, Λh = ΛQCD, ρA ≤ 1. (4.17)

Hard spectator processes contain similar integrals XH which are parameterized in

the same way with ρA and φA in (4.17) being replaced by ρH and φH . However,

uncertainties from the hard spectator calculation are much smaller than those from

the weak annihilation for this decay, so we will mainly concentrate on the later. These

weak annihilation contributions depend also on the strange quark mass, ms, through

the chirally enhanced factor κχ [80]:

κχ =
2m2

K

mb(ms +mq)
(4.18)

where mq is md or mu.

In Fig. 8 we show the dependence of the branching ratio of B− → φK− mode

on φA and ms for ρA = 1. Fig. 9 shows the dependence of the BR on ρA for φA = 0.

Similar graphs can be obtained for B0 → φK0. Since in the SM the direct CP

asymmetry of charged B → φK decay (i.e. ACP defined by (4.10)) is small, we

can compare Br[B− → φK−] with the experimental measurement of Br[B+ → φK+]

given in (4.8).
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Fig. 8. Branching ratio of B− → φK− at ρA = 1. The solid curve corresponds to

µ = mb, dashed curve for µ = 2.5GeV with ms(2GeV) = 96MeV and the

dot-dashed curve for µ = mb with ms(2GeV) = 150MeV. The two straight

lines correspond to the cases without weak annihilation.

Before we discuss the graphs, we first list our parameters: ρH = 1 and φH = −68◦

for the XH defined as (4.17), fB = 180MeV, fφ = 233MeV and fK = 160MeV for

the decay constants of the B, φ and K mesons and FBK = 0.34 for the B → K form

factor [84, 86, 87, 88, 89]. The CKM matrix elements can be obtained through the

Wolfenstein parameterization [90]

VCKM ≡













1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1













+O(λ4). (4.19)

with A = 0.819, λ = 0.2237, ρ = 0.224 and η = 0.324 [91, 92]. The integral
∫ 1

0
(ΦB(ξ)/ξ)dξ = mB/λB, where ΦB is the B meson light-cone distribution amplitude,

is parameterized by λB = (0.35 ± 0.15) GeV [80]. For µ = 2.5GeV we use λB =

0.2GeV, and for µ = mb we use λB = 0.47GeV. In addition, we always use asymptotic
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Fig. 9. Branching ratio of B− → φK− at φA = 0. The solid curve corresponds to

µ = mb, dashed curve for µ = 2.5GeV with ms(2GeV) = 96MeV and the

dot-dashed curve for µ = mb with ms(2GeV) = 150MeV. The two straight

lines correspond to the cases without weak annihilation.

forms of the meson light-cone distribution amplitudes [80, 81]. If not mentioned, we

will use the above parameters in later calculations.

In both figures, we give results for two different scales and two different ms

values, i.e., µ = mb by solid lines (ms(2GeV) = 96MeV) and the dot-dashed lines

(ms(2GeV) = 150MeV) and µ = 2.5GeV by dashed lines (ms(2GeV) = 96MeV).

One can see that the scale dependence is not significant. The straight lines correspond

to the branching ratios neglecting the weak annihilation contribution. Comparing

Figs 8 and 9, we see that a large branching ratio comparable to the experimental

value is obtained only in the region ρA ' 1 and φA ' 0(or 2π). However, in this

region the weak annihilation diagrams dominate the branching ratio and thus the

theory is most suspect. In the remaining part of the parameter space, where the

weak annihilation effects are small and the theory is presumably reliable (which is
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the most of the parameter space), the SM prediction of the branching ratio is small,

about 3σ below the experimental value. We conclude therefore that where the theory

is reliable the SM is in significant disagreement with the experimental value of the

Br[B+ → φK+], and in order to obtain a SM value in accord with the experiment

one must use parameters where the theory is least reliable. A similar result holds for

the Br[B0 → φKs]. Here theory predicts a branching ratio about 10% smaller than

for B+ → φK+ (in accord with the experimental values of (4.8)) but again the SM

can achieve this only in the region where the weak annihilation processes dominate.

The dot-dashed line, in Fig. 8, corresponds to a larger value ofms and we see that

the BR is very sensitive to ms only in the large annihilation region. The region with

sufficiently large annihilation to accommodate the data decreases as ms increases,

since the annihilation amplitude then decreases, as can be seen from (4.18).

As explained in the previous section, the SM predictions for SφKS
and SJ/ΨKS

already have a large discrepancy. The analysis in this section shows that the SM also

cannot account for the branching ratios, further increasing the need for new physics.

In the next two sections we will discuss this problem in the framework of SUGRA

models. We first show in the next section that the mSUGRA model suffers from

the same problems as the SM. We then extend mSUGRA by adding non-universal A

terms and show that the current experimental results can be well accommodated.

4. mSUGRA

As shown in Chapter II, the SUGRA model at the GUT scale can be described by

its superpotential and soft-breaking terms:

WY = Y (u)qLH2uR + Y (d)qLH1dR + Y (e)lLH1eR + µH1H2
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Lsoft = −
∑

i

m2
i |φi|2 −

1

2

∑

α

mαλ̄αλα −
(

BµH1H2 +

(

AUqLH2uR + ADqLH1dR + ALlLH1eR
)

+ h.c.
)

. (4.20)

where mi’s denote scalar masses. In the minimal picture, the mSUGRA model con-

tains a universal scalar mass m0, a universal gaugino mass m1/2 and the universal

cubic scalar A terms:

m2
i = m2

0, mα = m1/2, AU,D,L = A0Y
(u,d,e). (4.21)

This model contains four free parameters and a sign: m0,m1/2, A0, tan β = 〈H2〉/〈H1〉

and the sign of µ.

The mSUGRA model discussed in this section is the usual mSUGRA model

extended by allowing non-zero CP violating phases which are necessary for the dis-

cussion of CP violating processes, e.g. B → φK decays in this work. In general, the

parameters m1/2, A0 and µ can be complex and their phases can be O(1). In order to

accommodate the experimental bounds on the electron and neutron EDMs without

fine tuning phases we extend mSUGRA by allowing the gaugino masses at MG to

have arbitrary phases [41, 42]. Thus the SUSY parameters with phases at the GUT

scale are

mα = |m1/2| exp(iφα), A0 = |A0| exp(iαA) and µ = |µ| exp(iφµ) (4.22)

where α = 1, 2, 3. However, by a phase transfomation we can set one of the gaugino

phases to zero and we choose φ2 = 0 (see, e.g. [13] for a discussion on phase reparam-

eterization). Therefore, we are left with four phases. The EDMs of the electron and

neutron can now allow the existence of large phases in the theory [93, 94, 95, 41, 42].

In our work, we use O(1) phases satisfying the EDM bounds given in (2.21).

We evolve the above parameters from the GUT scale down to the weak scale

using full matrix RGEs. Since the b→ s transition is a generation mixing process, it
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Table II. SφKS
at tan β = 10 and 40 in mSUGRA.

tan β 10 40

|A0| 800 600 400 0 800 600 400 0

m1/2 = 400 0.74 0.74 0.73 0.73 0.71 0.70 0.70 0.69

m1/2 = 500 0.74 0.74 0.74 0.74 0.72 0.72 0.72 0.71

is necessary to use the full 6×6 matrix form of squark mass matrices in the calculation.

We also include the one loop correction to bottom quark mass from SUSY [29], which

is important in the calculation of SUSY contributions to the Wilson coefficients of

the operator O7γ and O8g and consequently affects the calculations of B → Xsγ and

B → φK decays.

We now discuss the mSUGRA predictions on B → φK decays. Again let us

first mention the values of the parameters used in our calculation. We use ρA,H = 1,

φA,H = −68◦, ms(2GeV) = 122.5MeV and a CKM fit giving sin 2β = 0.73 and

γ = 59◦. (If we increase γ, the BR decreases, e.g. for γ = 79◦, the SM BR decreases

by ∼ 2%.) The SM braching ratio based on the same set of parameters is 4.72× 10−6

and the weak annihilation contribution is small (∼ 10 %).

In Table II, we give the numerical results for two different values of the mSUGRA

parameter tan β cases i.e. tan β = 40 and 10 and for different m1/2 and A0 in the

small weak annihilation case. The values given in Table II are the minimum that

can be reached subject to all other experimental constraints. For simplicity, we set

αA = π in the calculation of Table II. We use large phases for other parameters but

still satisfy the EDM constrains. For example, for m1/2 = 400 GeV and A0 = 800

GeV with tan β = 40, we find that φ1 = 70◦, φ3 = 33◦ and φµ = −13◦ (at the

weak scale) satisfy the EDM constraints (for reasons discussed in detail in [41, 42]).
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The phase αA has a very small effect on SφKS
and this effect becomes smaller as the

magnitude of A decreases. Thus a different value of αA, in the above fit, can change

SφKS
by ±4% for A0 = 800 GeV. This change is even smaller for smaller A0, e.g. for

A0 = 200 GeV, the change in SφKS
is less than 2%. The values of m0, for different

m1/2 and A0, are chosen such that the relic density constraint is satisfied. As shown

in Fig 4, the allowed range of m0 for a given m1/2 is very small and thus any m0 in

the allowed range can be used since the processes considered here are not sensetive

to the value of m0. We also satisfy the Br[b→ s+ γ] constraint and the Higgs mass

constraint.

It can be seen from Table II that the SφKS
values in mSUGRA differ only slightly

from the SM prediction which is sin 2β evaluated using just the CKM phase. The

branching ratios of B → φK decays also do not differ much from the SM prediction.

Even if one went to the large weak annihilation region to accommodate the large

branching ratios, SφKS
would still be similar to the numbers in Table II. Therefore,

mSUGRA can not explain the large BR and the 2.7σ difference between the SφKS
and

the SJ/ΨKS
experimental results. The reason is that, in mSUGRA, the only flavor

violating source is in the CKM matrix, which cannot provide enough flavor violation

needed for the b → s transition in B → φK decays. In the next section, we will

search for the minimal extension of mSUGRA that can solve both the BR and CP

problems of B → φK decays.

5. SUGRA model with Non-universal A terms

In the last section, we showed that mSUGRA contributions to B → φK decays are

negligible and thus mSUGRA needs to be extended if it is to explain the experimental

results of B → φK decays. It is obvious that some non-universal soft breaking terms
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which can contribute to the b → s transition are necessary. There are two ways of

enhancing the mixing between the second and the third generation: one can have

non universal terms in the squark mass matrices or in the AU,D matrices of (4.20).

However, in a GUT model, at least the Standard Model gauge group must hold at

MG and hence the only squark m2
23 that can occur is either left-left or right-right

coupling. As discussed in [96], such non-universal terms produce only small effects on

B → φK decays. Thus we are led to models with left-right mixing which can occur

in the AU,D matrices as the simplest possible non-universal term relevant to B → φK

decays. In this work then, we choose a model with non-zero (2,3) elements in the

trilinear coupling A terms of (4.20) to enhance the left-right mixing of the second and

the third generation. The A terms with non-zero 23 elements can be written as

AU,D = A0Y
(u,d) +∆AU,D (4.23)

where ∆AU,D are 3 × 3 complex matrices and ∆AU,D
ij = |∆AU,D

ij | exp(iφU,Dij ). When

∆AU,D = 0, mSUGRA is recovered. For simplicity, we discuss first the case of non-

zero ∆AD
23 and non-zero ∆AD

32 for tan β = 10 and 40. In both cases, all other entries

in ∆A(u,d) are set to zero. The other parameters are same as in the mSUGRA case.

We also set the phases such that the EDM constraints are obeyed. At the GUT scale,

we use a diagonal Yukawa texture for Y (u), while Y (d) is constructed as V Y
(d)
d where

V is the CKM matrix and Y
(d)
d is the diagonalized matrix of the down type Yukawa.

The phenomenological requirements for the Yukawa matrices are that they produce

the correct quark masses and the correct CKM matrix. Any other Yukawa texture

which satisfies the same requirements can be obtained through a unitary rotation.

Therefore, our results can be recovered with other Yukawa textures if our A terms

are rotated along with the Yukawas.
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In the calculations of decay amplitudes, we will use QCD parameters for the

small weak annihilation region (see the last section) where the theory is reliable. In

general it is possible that (see [81] for the calculational details of weak annihilation)

the new physics can change the behavior of annihilation contributions so that the

relevant Wilson coefficients can be reduced or increased significantly. However, in our

case with non-zero ∆AU,D
23,32 terms, the SUSY contribution mainly affects the Wilson

coefficients C8g(7γ) (possibly also C̃8g(7γ)) and these coefficients will not change the

annihilation contributions compared to what we have in the SM calculation and thus

our previous conclusion about the annihilation terms still holds.

5.1. Case I: |∆AD
23| = |∆AD

32| and φD23 6= φD32

We show our results for |∆AD
23| = |∆AD

32| but φD23 6= φD32 with tan β = 10 in Table III.

We note that |∆AD
23(32)| is an increasing function of m1/2. The phases φD23 and φD32

are approximately −30◦ and (75 ∼ 115)◦, respectively. The other SUSY phases are:

φ1 ∼ 22◦, φ3 ∼ 31◦ and φµ ∼ −11◦. In addition, as mentioned above, the phase of

A0, i.e. αA, is set to be π.

The Br[B− → φK−] is ∼ 10 × 10−6 in the parameter space of Table III. We

satisfy all other experiment constraints. We see that SUGRA models can explain the

Table III. SφKS
at tan β = 10 with non-zero AD

23 and AD
32.

|A0| 800 600 400 0 |∆AD
23(32)|

m1/2 = 300 −0.50 −0.49 −0.47 −0.43 ∼ 50

m1/2 = 400 −0.43 −0.40 −0.38 −0.36 ∼ 110

m1/2 = 500 −0.46 −0.46 −0.44 −0.31 ∼ 200

m1/2 = 600 −0.15 −0.13 −0.04 0.05 ∼ 280
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large BR and SφKS
of the B → φK decay modes even in the small annihilation region.

Comparing with (4.7), one sees that the values of SφKS
in the Table are within 1σ

range of the experimental measurement. Reducing the Br[B− → φK−] allows one

to increase SφKs
. For example, for A0 = 0 and m1/2 = 600 GeV, by adjusting φD32,

SφKs
can be reduced to -0.05 with Br[B− → φK−] ∼ 9 × 10−6. In Table IV we

show the direct CP asymmetries of the B− → φK− decay, i.e. AφK∓ , using the same

parameters as Table III. The CP asymmetry is around−(2 ∼ 3)% and agrees with the

experimental result shown in Eq.(4.9). This prediction depends on the choice of φA,H

in Eq.(4.17). For example, if we use φA,H = 28◦, we generate a large AφK∓ ∼ 27%.

We find that there exists a reasonably large range of φA,H where we can satisfy the

current bound on AφK∓ . For example, at m1/2 = 300 GeV and A0 = 800 GeV where

the SUSY contribution is the largest, we find that AφK∓ varies from 9% to −4% when

φA,H varies from −100◦ to −50◦ (for simplicity, we set φA = φH). In addition, since

the annihilation contribution is small in that range, we find that the branching ratio

is around (9.5 ∼ 11) × 10−6. The CP asymmetry of b → sγ is ∼1-3%. The present

experimental errors for CφKS
are still large. For this model, CφKS

∼ −AφK∓ , which

may be tested by future data.

Table IV. Ab→s+γ × 102 (left) and AφK∓ × 102 (right) at tan β = 10 with non-zero AD
23

and AD
32.

|A0| 800 600 400 0

m1/2 = 300 1.2 −3.7 1.4 −3.6 1.7 −3.6 2.2 −3.5

m1/2 = 400 1.9 −3.5 2.0 −3.4 2.2 −3.3 2.3 −3.3

m1/2 = 500 2.6 −3.5 2.6 −3.6 2.5 −3.5 2.4 −3.2

m1/2 = 600 2.0 −2.8 2.1 −2.7 2.1 −2.5 2.2 −2.2
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Table V. SφKS
(left) and Br[B− → φK−] × 106 (right) at tan β = 40 with non-zero

∆AD
23 and ∆AD

32.

|A0| 800 600 400 0

m1/2 = 300 −0.40 10.0 −0.38 10.0 −0.33 10.1 −0.05 10.0

m1/2 = 400 −0.11 8.0 −0.05 8.0 0.04 7.9 0.28 8.0

m1/2 = 500 0.07 6.0 0.16 6.1 0.24 6.1 0.37 6.2

m1/2 = 600 0.37 6.2 0.44 6.2 0.49 6.2 0.58 6.2

Table VI. Ab→s+γ × 102 (left) and AφK∓ × 102 (right) at tan β = 40 with non-zero AD
23

and AD
32.

|A0| 800 600 400 0

m1/2 = 300 −6.3 −3.5 −5.6 −3.4 −5.2 −3.3 −3.6 −2.6

m1/2 = 400 −3.0 −3.0 −2.1 −2.9 −1.7 −2.6 −0.7 −1.8

m1/2 = 500 −0.5 −2.9 −0.4 −2.5 −0.2 −2.2 0.2 −1.7

m1/2 = 600 0.2 −1.7 0.3 −1.4 0.4 −1.2 0.6 −0.8

In Table V and Table VI, we give our results for tan β = 40 with non-zero

∆AD
23(32). The phases φD23 and φD32 are −(70 ∼ 0)◦ and (80 ∼ 110)◦, respectively.

φ1 ∼ (25 ∼ 60)◦, φ3 ∼ 25◦ and φµ ∼ −8◦. The off-diagonal elements |∆AD
23(32)| vary

from 90 GeV to 250 GeV as m1/2 increases. We compare Table V with the results for

tan β = 10 shown in Table III and we see that only low m1/2 can satisfy experimental

data for tan β = 40. The most important reason for this is that left-right mixing

of the second and the third generation decreases significantly with increasing tan β.

This comes about as follows. The RGE running of AD
23(32) is not sensitive to tan β.

Therefore, for the same size of AD
23(32) input at the GUT scale, the weak scale values
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of AD
23(32) do not differ much for different tan β. However, the AD term enters into the

down squark matrix after electroweak symmetry breaking when H1 (see Eq.(4.20))

grows a vacuum expectation value proportional to cos β. Hence the left-right mixing

between the second and the third generation in the down squark matrix will be smaller

for large tan β. For low m1/2 this reduction can be compensated by increasing the

magnitude of AD
23(32). For example, for m1/2 = 300 GeV, we use |AD

23(32)| ∼ 90 GeV

in this case compared to 50 GeV in the case of tan β = 10 (see Table III). The

chargino diagram contribution increases with tan β and can help to generate a large

BR. But for large m1/2, when the chargino contribution goes down, |AD
23(32)| must

become much larger. However, as |AD
23(32)| increases, the pseudoscalar Higgs mass

becomes small at the same time (but µ does not get smaller), which prevents |AD
23(32)|

from having an unlimited increase. For example, for m1/2 = 600 GeV and A0 = 800

GeV, |AD
23(32)| = 250 GeV generates mA = 580 GeV which is still allowed for the

dark matter constraint to be satisfied in the τ̃ ↔ χ̃0 co-annihilation channel. If

|AD
23(32)| is increased more, the pseudoscalar mass gets smaller and the dark matter

constraint can still be satisfied due to the available χ0
1χ

0
1 → A → f f̄ channel. But

with a further reduction of the pseudoscalar mass by increasing |AD
23(32)| further, this

channel goes away when mA < 2mχ̃0 and we must again satisfy the relic density using

the stau-neutralino co-annihilation channel. However, the improvement of SφKs
in

this scenario is small. For example, for the point mentioned above, |AD
23(32)| can be

increased to around 480 GeV with relic density in the τ̃ ↔ χ̃0 channel but SφKS
can

only be reduced from 0.37 (see Table V) to 0.22 with the same branching ratio. Thus,

the SφKS
and the branching ratio still cannot be satisfied.

If we use φD23 = φD32 (equal phases) we have one less parameter, but that choice

will not be able to satisfy experimental results. The reason is that the weak phase

from the gluino contributions in the Wilson coefficients C8g and the weak phase from
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C̃8g will cancel when φ
D
23 = φD32 because C8g depends on A

D
23 but C̃8g depends on (AD

32)
?.

For example, for tan β = 10 we find that SφKS
∼ 0.7 since the gluino contribution

dominates at lower tan β. At tan β = 40, SφKS
can reach 0.45 since the chargino

contribution is larger at higher tan β, but this is not enough to satisfy the data.

5.2. Case II: |∆AU
23| = |∆AU

32| and φU23 = φU32

In this section we discuss the case ∆AD
23(32) = 0 but ∆AU

23(32) 6= 0. The phases used

are similar to those used in first two cases except φU23 = φU32. This case is more

complicated than the AD
23(32) 6= 0 case. We find that it is easier to start by comparing

them.

The first important change is that the ∆AU
32 contribution is much smaller than

the ∆AD
32 contribution to the mixing between the second and the third generation in

the down squark mass matrix due to the suppression by the second generation Yukawa

coupling in the RGE of AD
32. (Thus our choice of φU23 = φU32 has no loss of generality.)

Consequently, the size of the Wilson coefficient C̃8g is significantly reduced. Although

∆AU
23 still contributes, that contribution is also reduced (compared to ∆AD

23) due to

the RGE. Therefore, compared with the first case the total SUSY contributions are

reduced especially for tan β = 10 and thus it becomes harder to fit the experimental

results, as shown in Table VII.

Another important change is the roles of some experimental constraints which

are not important in the first case in the sense that they do not prevent the SUSY

contributions from increasing, or at least their limits are not reached when we have

solutions satisfying the B-decay data. Below are some comments concerning this:

1. For tan β = 40 and low m1/2, i.e. 300 GeV, the Br[B → Xsγ] will constrain the

size of ∆AU
23(32) . This is why the SφKS

and the branching ratio fit is not as good as

the corresponding one shown in Table III for the AD
23(32) 6= 0 case.
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Table VII. SφKS
(left) and Br[B− → φK−] × 106 (right) at tan β = 40 with non-zero

∆AU
23 and ∆AU

32.

|A0| 800 600 400 0 |∆AU
23(32)| (GeV)

m1/2 = 300 0.03 8.4 0.04 9.0 0.01 8.0 0.17 8.0 ∼ 300

m1/2 = 400 −0.07 8.5 −0.03 8.4 0 7.1 0.32 6.3 ∼ 600

m1/2 = 500 0 6.5 0.07 6.4 0.18 6.0 0.44 6.1 ∼ 800

m1/2 = 600 0.27 6.1 0.30 6.1 0.35 6.1 0.51 5.9 ∼ 1000

Table VIII. SφKS
(left) and Br[B− → φK−]× 106 (right) at tan β = 10 with non-zero

∆AU
23 and ∆AU

32.

|A0| 800 600 400 0 |∆AU
23(32)| (GeV)

m1/2 = 300 0.17 6.5 0.16 6.3 0.32 6.1 0.60 5.2 ∼ 300

m1/2 = 400 0.37 4.7 0.39 4.6 0.46 4.3 0.62 4.3 ∼ 550

2. When m1/2 increases, the size of ∆AU
23(32) also needs to be increased. But three

other additional constraints are present, i.e ∆MK and εK from the K0 −K0 mixing

and the mass of smallest up squarks (right-handed stop) mt̃R
. For example, for

m1/2 = 500 and A0 = 600 (and m0 = 431 GeV by the relic density constraint) we get

mg̃ ∼ mq̃ ∼ 1000 GeV (where mq̃ is the average squark mass and mg̃ is the mass of

the gluino, see [97] for more details) and we find that
√

|Re(δd12)2LL| = 7.1× 10−2 and
√

|Im(δd12)
2
LL| = 9.7 × 10−3 which are allowed by the experimental bounds on ∆MK

and εK [97] (the sizes of (δd12)LR, (δ
d
12)RL and (δd12)RR are around 10−8 ∼ 10−7 and

thus these bounds can be safely ignored in our case).

3. The situation for the right-handed stop mass is similar to the pseudoscalar Higgs

case we mentioned at the end of Case I. We use the τ̃ ↔ χ̃0 channel to satisfy the dark
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matter constraints. Although it’s possible to use a larger AU
23(32) which consequently

reduces mt̃R
more and then opens the t̃R ↔ χ̃0 channel, the room is small due to

the smallness of mχ̃0 . In addition, the MK and the εK bounds become harder to

satisfy when mt̃R
is small. Therefore, as in the case where the pseudoscalar Higgs

mass becomes small, possible improvements can not satisfy the experimental results

of both SφKS
and Br[B− → φK−].

A further difference is the tan β dependence. In Case I, as was discussed above,

gluino contributions depend inversely on tan β due to the way that AD
23(32) enters into

the down squark mass matrix. But in this case, the gluino contributions are reduced

significantly and the chargino plays a more important role, which will be enhanced by

tan β. Therefore, in this case, we see that larger tan β can satisfy the experimental

results at small m1/2, but small tan β cannot and that is why we have only given

results in Table VIII for two values of m1/2 at tan β = 10 since higher m1/2 cannot

improve the situation.

We also comment concerning A0 and its phase. So far, we have used the phase

π for A0. We find that using a different phase will not improve the results greatly. In

general, the improvement is at a few percent level. (This holds also for case I.) For

example, in Case II, for tan β = 40, m1/2 = 400 and A0 = 800, we find that using

αA ∼ −95◦ can improve SφKS
from -0.04 to -0.06.

Finally we note that the values of Ab→s+γ and AφK∓ remain small, i.e. Ab→s+γ

and AφK∓ are −(3 ∼ 0)% and −(3 ∼ 1)% at tan β = 10, and −(5 ∼ 0)% and

−(3 ∼ 1)% at tan β = 40.
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6. Summary and discussion

Here we have probed the B → φK decays in SUGRA models with CP violating

phases to explain the discrepancy between the experimental measurements and the

SM predictions of the CP asymmetry of B0 → φKS and the branching ratios of

the B → φK decays. We have calculated the CP asymmetries of B− → φK− and

B → Xsγ. In our analysis, we implemented all relevant experimental constraints, e.g.

Br[B → Xsγ], relic density, K0 − K̄0 mixing parameters and electron and neutron

EDMs, as mentioned in Chapter II. We used the improved QCD factorization method

[80, 81] for the calculation of decay amplitudes.

As shown in Section 3, The SM not only can not explain the CP asymmetry

of B0 → φKS, it also fails to satisfy the Br[B → φK] data barring the region

of large weak annihilation where the theory is most suspect. We then studied the

mSUGRA model and found that it also has the same problem. Therefore, if the

current experimental results continue to hold in the future, it will signal the first

significant breakdown of the Standard Model and also of mSUGRA. This conclusion

is important in the sense that one needs to construct a more complicated SUGRA

model to satisfy experimental data which will provide important guidance to our

future research on SUSY models and their signals at the accelerator experiments.

In Section 5, we considered the extension of the mSUGRA model by adding

non-universal A terms. For a GUT theory, the only natural choice is to have a left-

right mixing between the second and the third generation in the up or down quark

sectors i.e. ∆AU,D
23 and ∆AU,D

32 terms. We have examined thoroughly several different

possibilities in this extension and their theoretical predictions and have found a large

region of parameter space where all experimental results can be satisfied, including

the CP asymmetries and branching ratios of the B → φK decays. This result is
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obtained without resorting to large weak annihilation amplitudes and so is based on

reliable calculations of hadronic decays, and thus provides useful hints for the study

of hadronic B decays. Further the size of ∆AU,D
23 needed is the same as the other soft

breaking terms, and so is not anomalously small or large. Indeed, there are regions in

parameter space where the data can be accommodated with ∆AD
23 ≈ (20 − 30%)A0,

i.e. with only a small perturbation on mSUGRA. Thus, this study also can provide

important phenomenological information not only for accelerator physics but also

for building models at the GUT scale and for exploring physics beyond it. In this

connection, models based on Horava-Witten M-theory can naturally give rise to non-

zero values of ∆A23. In [98] it was shown that it was possible to construct a three

generation model with SU(5) symmetry using a non-standard embedding based on

a torus fibered Calabi-Yau three fold with a del Pezzo base dP7. The model allowed

Wilson line breaking to the Standard Model at MG, and also had vanishing instanton

charges on the physical orbifold plane. If in addition one assumed that the 5-branes

in the bulk clustered around the distant plane, one could explain without undue fine

tuning the general structure of the quark and lepton mass hierarchies and obtain the

LMA solution for neutrino oscillations [98, 99], which will be discussed in detail in

the next chapter.
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CHAPTER V

YUKAWA TEXTURES, NEUTRINOS AND H-W M-THEORY*

As shown in Chapter I, while the Standard Model (SM) has been successful in fitting

all current accelerator data, the origin of the quark and lepton mass spectrum re-

mains a puzzle requiring further understanding. Thus the explanation of the striking

hierarchy of masses (e. g. the up to top quark mass ratio is mu/mt ' 10−5) and the

hierarchy of elements in the CKM matrix all are beyond the scope of the Standard

Model. The matter has been further exacerbated by the discovery of neutrino masses,

since now in addition there is need for an explanation of the MNS matrix as well as

the origin of the very tiny neutrino masses. A large number of suggestions exist in

the literature attempting to explain these properties of quarks and leptons. One ap-

proach, starting perhaps with the work of Georgi and Jarlskog [100], suggests that

the fundamental origin of quark and lepton masses is to be found at high energies, i.

e. the GUT scale, MG
∼= 3 × 1016 GeV, and the complexity we see at low energies

arises from the running of the renormalization group equations (RGEs) down to the

electroweak scale. This approach, however, has not appeared to be too promising.

For example, the u and d Yukawa matrices with five zeros at the GUT scale given in

[101] can be written as

YU =









0
√
2λ6 0

√
2λ6

√
3λ4 λ2

0 λ2 1









; YD =









0 2λ4 0

2λ4 2λ3 0

0 0 1









(5.1)

∗Tables presented in this chapter are reprinted with permission from “Yukawa
Textures, Neutrino Masses and Horava-Witten M-Theory” by R. Arnowitt, B. Dutta,
B. Hu, 2004, Nucl. Phys. B 682, 347-366. Copyright 2004 by Elsevier.
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where λ = 0.2 is the Wolfenstein parameter, and the choice of (5.1), when evaluated

at the electroweak scale does indeed agree approximately with the quark masses and

CKMmatrix. However, to generate the experimental hierarchy one has to have entries

at the GUT scale of size λ6 ' 10−5, showing that the problem at the GUT scale is

very much the same as at the electroweak scale.

String theory represents at present the only model that has been proposed which

in principle can calculate the Yukawa matrices from first principles. Unfortunately,

mathematical tools to explicitly do this have not yet been developed. In spite of

this, the general formulation of the Yukawa problem in string theory opens new

windows for seeing how the quark and lepton hierarchies might naturally have arisen,

approaches not available in standard SUGRA GUT theory. In particular, the Horava-

Witten heterotic M-Theory [102, 103], which offers a natural explanation of why grand

unification can occur at MG rather than the Planck scale MP , has had significant

development (see [99] and references therein) giving rise to three generation models

with the SM low energy gauge group SU(3)× SU(2)×U(1). In this model, physical

space is one of two 10 dimensional (10D) orbifold planes separated by a finite distance

in the 11th dimension, the theory obeying S1/Z2 symmetry in the 11th dimension. Six

of the 10 dimensions are compactified to a Calabi-Yau (C-Y) threefold, the remaining

four being Minkowski space. An array of six dimensional 5-branes perpendicular to

the 11th dimension can exist between the two orbifold planes. While it is not possible

to make first principle calculations, one can examine whether the general structure

of such a theory can replicate the SM at low energy. In this connection, it was seen

in [98] that the general structure of the quark mass matrices can arise without undue

fine tuning if the 5-branes lie close to the distant orbifold plane, and the instanton

number of the physical orbifold plane, β(0) vanished. It was explicitly shown in [98]

that a three generation model with β(0) = 0 and SM gauge group indeed can exist for
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a torus fibered Calabi-Yau (with two sections) with del Pezzo base dP7. The quark

and CKM matrix were calculated for a model of this type in agreement with data, and

it was shown also in approximate analytic calculations how the mass hierarchies can

arise without undue fine tuning due to the general structure of the Kahler potential.

Here we extend the analysis of [98] in two directions. We first include the charged

lepton mass matrix and obtain the mass hierarchies experimentally seen. We then

consider neutrino masses. The conventional way for accounting for the very small

mass of neutrinos is the seesaw mechanism [104, 105, 106] which gives rise to Majorana

neutrino masses. We consider here, however, a new way of achieving small neutrino

masses based on the structure of the Kahler potential. This mechanism is different

from the seesaw mechanism, and gives rise to Dirac masses for the neutrinos. Neutrino

masses and the MNS matrix [107] are calculated consistent with the large mixing

angle (LMA) analysis of the solar, atmospheric, reactor and long baseline neutrino

data (e.g. see [108] for a global analysis in the context of three-neutrino oscillations).

In the next section we first give a brief review of M-Theory, and the basic results

obtained in [98] for torus fibered Calabi-Yau manifolds. In Section 2 we review and

update the results of [98] for the quark masses and extend this analysis to the lepton

sector. Then we introduce the new mechanism to obtain small neutrino masses and

show an explicit example for the masses and mixing angles for this model. A discussion

is given in the last section.

1. Horava-Witten Kahler potential

The Horava-Witten M-Theory is concerned with 11 dimensional supergravity on an

orbifold M10×S1/Z2, where Z2 is reflection of the 11th coordinate. One can think of

this space as an 11 dimensional space M11 bounded by two 10 dimensional orbifold
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planes M10 at x
11 = 0 and πρ. In the simplest case, M10 is the product space M4×X

whereM4 is Minkowski space and X is a (compact) C-Y threefold, the physical world

living on one of the orbifold planes (e.g. x11 = 0), the other orbifold plane being a

“hidden” sector. In addition, there may be six dimensional 5-branes lying along x11

at bulk points xn with 0 < xn < πρ, parallel to the orbifold planes, each with four di-

mensions spanningM4, the additional two dimensions wrapped around a holomorphic

curve in the Calabi-Yau space. The construction of a consistent theory involves a re-

markable set of interlocking constraints due to anomaly cancellation, gauge invariance,

and local supersymmetry leading naturally to a theory which possesses a number of

properties appropriate for phenomenology. Thus there must be E8 gauge interactions

with chiral multiplets on each M10 orbifold plane (SO(32) being excluded) which can

easily be broken on the physical plane to the SM group by Wilson lines. The 10D

gauge coupling constant, λ, is uniquely determined in terms of the 11D Planck mass,

κ−2/9, leading to the result that the fundamental scale of nature, the 11D Planck

mass, is O(MG), and explaining why grand unification occurs at MG rather than the

4D Planck mass (which is a derived quantity). Finally, a consistent theory exists

only as a quantum theory (the classical theory being inconsistent), something one

would hope might be true for any fundamental theory. Much progress has been made

in showing what the low energy structure of such a theory might be, and models

with three generations of quarks and leptons obeying the SM gauge group have been

constructed. While the details of the construction of the theory given in [102, 103] is

rather intricate, it is possible to see how the different elements interact to produce a

physically interesting model and so we first briefly summarize this construction. We

then give the relevant formulae needed to examine the low energy structure. Details

of the latter can be found in [109], and for the specific model considered here in [98].

The field content of 11D supergravity is the metric gIJ , the gravitino ψIJ , the
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three form CIJK and its field strength GIJKL. (In lowest order GIJKL = dICJKL.)

The Bose part of the Lagrangian is :

LS =
1

κ2

∫

M11

d11x
√
g

(

−1

2
R− 1

48
GIJKLG

IJKL

−
√
2

3456
εI1I2...I11CI1I2I3GI4...I7GI8...I11

)

. (5.2)

where the field strengths obey the field equations DIGIJKL = 0, and the Bianchi

identity dGIJKLM = 0. Here κ is the 11D gravitational constant. The Horava-Witten

theory comes about as follows. While in a smooth manifold 11D supergravity has

no anomalies, on an orbifold anomalies arise at the fixed points x = 0 and x = πρ.

To cancel these, it is necessary to put Yang Mills multiplets on each M10 orbifold

plane, and the cancellation occurs only if the gauge group on each manifold is (the

phenomenologically desirable) E8. To lowest order, the Yang Mills Lagrangian on

each M10 reads then:

LYM = − 1

λ2

∫

M10

d10x
√
g tr

(

1

4
FABF

AB +
1

2
χ̄ΓADAχ

)

. (5.3)

where A,B = 1, 2 . . . 10, and χ is the associated gaugino. However, (5.3) is not lo-

cally supersymmetric, and one must proceed in the usual fashion to add additional

interactions and modifications of the transformation laws to achieve local supersym-

metry. As usual, this involves coupling the gravitino to the Yang Mills supercurrent.

However, unlike the case where the Yang Mills and supergravity multiplets live in

the same space, the gravitino here lives in the 11D bulk, while the Yang Mills multi-

plet is constrained to live in 10D. For this situation, a locally supersymmetric Yang

Mills theory cannot be achieved simply by adding interactions on the orbifold plane.

It turns out that a supersymmetric theory can be achieved only by modifying the

Bianchi identities to read

dG11ABCD = 8π2
√
2
κ2

λ2
ΣN+1

0 J (n)δ(x11 − xn). (5.4)



59

where x0 = 0, xN+1 = πρ and xn, n = 1 . . . N are the positions of the five branes,

J (0,N+1) = − 1

16π2

(

trF ∧ F − 1

2
trR ∧R

)

x11=0,πρ

. (5.5)

and J (n), n = 1 . . . N are sources from the 5-branes. With (5.4), the total supergravity

+ (modified) Yang Mills Lagrangian can be made locally supersymmetric. However,

having gained supersymmetry, one has lost Yang Mills gauge invariance. For while

(5.4) implies that GABCD is gauge invariant, the corresponding potential C11AB now

is not, i.e. under a Yang Mills gauge transformation one has

δC11AB = − κ2

6
√
2λ2

[

tr
(

εFABδ(x
11)
)

+ tr
(

εFABδ(x
11 − πρ)

)]

. (5.6)

which implies the C ∧G ∧G term of (5.2) is not gauge invariant. Thus the classical

theory is not gauge invariant, and a consistent classical theory does not exist. How-

ever, in the quantum theory, there is in addition the 10D Majorana-Weyl anomaly,

and due to unique features of the E8 group can cancel the loss of gauge invariance of

the “Green-Schwarz” C ∧G ∧G term provided

λ2 = 2π(4πκ)2/3. (5.7)

Thus only a consistent quantum theory can be built, and this quantum theory deter-

mines the 10D gauge coupling constant in terms of the 11D gravitational constant.

(5.7) leads immediately to interesting phenomenological consequences. For com-

pactifying M11 on a Calabi-Yau manifold, one has to lowest order for the 4D gauge

coupling constant and Newton constant [110]

αG =
(4πκ2)2/3

2V ; GN =
κ2

16π2Vρ (5.8)

where V is the Calabi-Yau volume. Setting V1/6 = 1/MG (so that grand unification

occurs at the compactification scale as required by the LEP data) and using αG =

1/24, one finds that the fundamental 11D Planck mass is κ−2/9 ∼= 2MG and πρ−1 ∼=
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4.7×1015 GeV. Alternately one may say that the 11D Planck mass is the fundamental

scale and it sets the GUT scale, while the largeness of the 4D Planck mass is due

mostly to accidental 4π factors arising in the analysis.

We now summarize the basic formulae of [109] and [98] needed to build a phe-

nomenologically acceptable theory. The sources J (n) of (5.4) play an important role

in building a model. Thus if integrated over a set of independent 4 cycles C4i, they

define integer charges:

β
(n)
i =

∫

C4i

J (n) (5.9)

and (5.4) then implies Σβ
(n)
i = 0. Here β

(0)
i and β

(N+1)
i are the instanton charges

on the orbifold planes and β
(n)
i (n = 1 . . . N) are the magnetic charges of the 5-

branes. The existence of non-zero instanton Yang Mills fields with gauge group G

on the orbifold plane implies that E8 breaks into G × H where H is the remaining

symmetry at the GUT scale of the physical theory. We chose here G = SU(5) so that

H = SU(5).

Chiral matter arises from the components of the Yang Mills multiplet in the

Calabi-Yau part of the M10 orbifold [109]. Thus labeling the C-Y indices by holo-

morphic (anti-holomorphic) coordinates a(ā) = 1, 2, 3, then one can expand e.g. Fµb̄

in terms of a basis set of functions uxI in the C-Y space (I is a family index and

x a representation index), the coefficients in the Minkowski space being the scalar

components of the chiral multiplets C(R)Ip (where R is the representation):

Fµb̄ =
√
2παG

∑

R

uxIb̄(R)Txp(R)(DµC(R))Ip. (5.10)

In terms of these quantities, one then defines the metric

GIJ(a
i;R) =

1

vV

∫

X

√
ggab̄uIax(R)u

x
Jb̄(R) (5.11)
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and the Yukawa couplings [109]

λIJK(R1, R2, R3) =

∫

X

Ω ∧ uxI (R1) ∧ uyJ(R2) ∧ uzK(R3)f
(R1,R2,R3)
x,y,z (5.12)

where Ω is the covariantly constant (3,0) form, f projects out the gauge singlet parts,

and V ≡ vV is the volume of the Calabi-Yau space while v is the coordinate volume:

V =
1

v

∫

X

d6x
√
g; v =

∫

X

d6x (5.13)

In addition one defines the S, T i and 5-brane moduli by

Re(S) = V ; ReT i = V −1/3Rai; ReZn = zn (5.14)

where the modulus R is the orbifold radius divided by ρ and zn = xn/πρ. V can

be expressed in terms of the ai moduli by V (a) = 1
6
dijka

iajak where dijk are the

Calabi-Yau intersection numbers :

dijk =

∫

X

ωi ∧ ωj ∧ ωk (5.15)

Following the techniques of [110], the field equations and Bianchi identities in

(5.4) were solved in the presence of 5-branes to leading order O(κ2/3) [109] leading to

an effective four dimensional Lagrangian at compactification scaleMG. We now state

the results that were obtained. The gauge kinetic functions on the orbifold planes are

given by

f (1) = S + εT i

(

β
(0)
i +

N
∑

n=1

(1− Zn)2β(n)
i

)

f (2) = S + εT i

(

β
(N+1)
i +

N
∑

n=1

Z2
nβ

(n)
i

)

(5.16)

where

ε =
( κ

4π

)2/3 2π2ρ

V2/3
(5.17)
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The matter Kahler potential, K = ZIJ C̄ICJ , on the physical orbifold plane at x11 = 0

has the Kahler metric

ZIJ = e−KT /3

[

GIJ −
ε

2V
Γ̃iIJ

N+1
∑

n=0

(1− zn)2β(n)
i

]

(5.18)

where

KT = − ln[
1

6
dijk(T

i + T̄ i)(T j + T̄ j)(T k + T̄ k)] (5.19)

Γ̃iIJ = ΓiIJ − (T i + T̄ i)GIJ −
2

3
(T i + T̄ i)(T k + T̄ k)KTkjΓ

j
IJ (5.20)

and

KT ij =
∂2KT

∂Ti∂T̄ j
; ΓiIJ = K ij

T

∂GIJ

∂T j
(5.21)

The Yukawa matrices are

YIJK = 2
√
2παGλIJK ' 1.02λIJK (5.22)

for αG = 1/24. The Kahler metric on the distant orbifold plane at x11 = πρ is given

by (5.18) with zn → (1− zn).

2. Yukawa textures

The Yukawa couplings are given in (5.12) and (5.22) as integrals over the C-Y space.

A priori there is no reason to suggest that a hierarchy such as (5.2) should arise

and one expects that the non-zero entries to be O(1). Similarly, one expects a priori

that the non-zero elements of GIJ in (5.11) be of O(1). However, a mild hierarchy

can develop in the Kahler metric of (5.18) if the 5-branes all lie close to the distant

orbifold plane, i. e. dn = 1 − zn ∼= 0.1, and provided also β(0) = 0. Then the

second term will be small compared to the first (ε ∼= 0.9), and the model of [98]

assumed that GIJ contributes only to the first two generations of the u quark and dL
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quark (which appear together in the SU(5) 10 representation) but to all generations

of dR, while the second term contributes to all generations but is then dominant for

the third generation of uL, uR, dL. (That a C-Y manifold exits with β(0) = 0 with

three generations and a SM gauge group is non-trivial and was explicitly shown to be

possible in [98].) When the Kahler metric was diagonalized to a unit matrix, it was

seen that this idea was sufficient to generate a satisfactory explanation of the more

extreme Yukawa hierarchies at the electroweak scale, and we extend this idea here to

the lepton sector. Thus the Kahler metric has the general form

ZF = fT









1 O(1) O(d2)

O(1) O(1) O(d2)

O(d2) O(d2) O(d2)









(5.23)

where F stands for the different matter fields: q = uL, uR, dL, l = (νL, eL) and e = eR

and fT is given from Eq.(5.18) to be e−KT /3. We assume that GIJ has non-zero

elements of O(1) for all generations of dR. (For convenience, we’ve re-scaled the ZF
11

entry in (5.23) to 1.) The hierarchy then arises when one transforms the ZIJ to the

unit matrix by a unitary matrix U and a diagonal scaling matrix S to obtain the

canonical matter fields CI
F
′
:

CI
F =

1√
fT

(U (F )S(F ))IJC
J
F

′
(5.24)

where

diagS(F ) = (λ
−1/2
F1 , λ

−1/2
F2 , λ

−1/2
F3 ). (5.25)

and λFi, i = 1, 2, 3 are the eigenvalues of ZF
IJ/fT . A similar transformation is made

on the Higgs fields contribution to the Kahler potential

fTGH1,2
H̄1,2H1,2 (5.26)

with rescaling of H1,2:

H1,2 =
1

√

fTGH1,2

H ′
1,2 (5.27)
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Before making the transformation of (5.24), The Yukawa contribution to the

superpotential is [109]

WY = e
1

2
Km

1

3
YIJKC

ICJCK (5.28)

where Km = ln(S+ S̄)+KT is the moduli contribution to the Kahler potential. From

(5.14) and (5.19), one has

Km = −ln(2V )− ln(8R3). (5.29)

Written in terms of SM fields WY then is

WY =
1

4R3/2V 1/2
(Y (u)qLH2uR + Y (d)qLH1dR + Y (e)lLH1eR). (5.30)

and after the transformation to the canonical matter fields one has

WY = u′Lλ
(u)u′RH

′
2 + d′Lλ

(d)d′RH
′
1 + e′Lλ

(e)e′RH
′
1. (5.31)

where λ(u,d,e) are give by

λ
(u)
IJ =

1

8
√
2

1

R3V 1/2

1
√

GH2

(S(q)Ũ (q)Y (u)U (u)S(u))IJ (5.32)

λ
(d)
IJ =

1

8
√
2

1

R3V 1/2

1
√

GH1

(S(q)Ũ (q)Y (d)U (d)S(d))IJ (5.33)

λ
(e)
IJ =

1

8
√
2

1

R3V 1/2

1
√

GH1

(S(l)Ũ (l)Y (e)U (e)S(e))IJ (5.34)

We use here the notation “∼” for transpose. In (5.31), λ(u,d,e) play the role of the

Yukawa matrices at the GUT scale in the phenomenological analyses such as in [101].

However, in general they are not symmetric matrices and so M-Theory textures are

uniquely different from what has previously been considered in phenomenological

analyses. In brief, it is the smallness of the third generation eigenvalues of the Kahler

matrices appearing in the denominators of (5.32-5.34) (from the factor S of (5.25))

that give rise to the large third generation masses.
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In [98] we saw for the case of tan β = 3 how the above Yukawa matrices gave

rise to the experimental quark masses and CKM matrix elements at the electroweak

scale, and we showed there analytically how the hierarchies arose naturally without

undue fine tuning. We now update this analysis for the case of tan β = 40, and extend

the discussion to include the lepton sector. A choice of Kahler metric and Yukawa

matrices that satisfy all the current experimental data are given by

Zu = fT









1 0.3452 0

0.3452 0.1311 0.006365

0 0.006365 0.00344









,

Zd = fT









1 0.496 0

0.496 0.564 0.435

0 0.435 0.729









,

Z l = fT









1 −0.547 0

−0.547 0.432 0.025

0 0.025 0.09









,

Ze = fT









1 0.624 0

0.624 0.397 0.00574

0 0.00574 0.004407









,

diagY (u) = (0.0114, 0.0597, 0.104 exp[0.65πi]) ,

diagY (d) = (2.052, 0.2565, 1.8297) ,

diagY (e) = (0.307, 3.789, 1.821). (5.35)

The ZF
23, Z

F
32 and ZF

33 entries for F = u, l, e are O(d2) (for d = 0.1) as required

by (5.23). For simplicity we have assumed that the q and u quarks have identical

Kahler matrices and have the maximum number of zero entries, and that the Yukawa
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matrices are diagonal. One phase is assumed in the Yukawa matrices to account for

CP violation. To compare with low energy data, we use one loop Yukawa RGEs

and two loop gauge RGEs to evaluate the Yukawa couplings at the electroweak scale,

which we take to be mt. Below mt we assume that the Standard Model holds and

include in our calculations the QCD corrections (which are quite significant). The

QCD correction factors used were ηc = 2, ηu = 2.5 = ηd, ηb = 1.6 and ηs = 2.5.

Diagonalization of the low energy Yukawa matrices then allows one to generate the

low energy quark and lepton masses and the CKM matrix elements. The results are

shown in Table IX (where experimental values for lepton and quark masses are from

[1] and CKM entries from [111] unless otherwise noted), and are in good agreement

with experiment. Of course in a fundamental analysis, the precise entries in (5.35)

arise from integrals over the Calabi-Yau space, an analysis that cannot at this stage

be performed. However, our discussion has shown that the general structure of the

Kahler metric and Yukawa couplings arising in our Horava-Witten model can lead to

low energy quark and lepton spectra consistent with all current experiments without

the fine tuning used in phenomenological analyses.

Without knowledge of the value of the factors R3V 1/2
√

GH1,2
in the denominators

of (5.32-5.34), Kahler textures can only determine the mass ratios. As in [98], we use

the top Yukawa at the GUT scale to determine the value of this common factor. If

we write V = r6, where r is the mean radius of the Calabi-Yau manifold divided by

the co-ordinate radius, then for GH1,2
= 1, one finds that

R× r = 6.82. (5.36)

In the next section, we will show that R and r can be determined separately if massive

neutrinos enter our model via the mechanism proposed there.
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Table IX. Quarks and leptons masses and CKM matrix elements obtained from the

model with parameters given in (5.35). Masses are in GeV.

Quantity Theoretical Value Experimental Value

mt(pole) 175.2 174.3± 5.1

mc(mc) 1.27 1.0-1.4

mu(1 GeV) 0.00326 0.002-0.006

mb(mb) 4.21 4.0-4.5

ms(1 GeV) 0.086 0.108-0.209

md(1 GeV) 0.00627 0.006-0.012

mτ 1.78 1.777

mµ 0.1054 0.1056

me 0.000512 0.000511

|Vus| 0.221 0.2210± 0.0023

|Vcb| 0.042 0.0415±0.0011

|Vub| 4.96× 10−3 3.80+0.24
−0.13 ± 0.45× 10−3

|Vtd| 6× 10−3 9.2± 1.4± 0.5× 10−3

sin 2β 0.803 0.731± 0.056 [76]

3. Neutrino masses and oscillations

In the last section we presented a way to generate the Yukawa textures in the quark

and lepton sectors whose structures are the same as the SM. The consequence of the

masslessness of neutrinos in the SM is that the mass eigenstates of leptons are identical

to their gauge or flavor eigenstates and, unlike the quark sector which has a CKM

mixing matrix, the lepton sector does not. Therefore, there is no oscillations between

neutrinos in the SM. However, the neutrino experiments of Super-Kamiokande [112,
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113], SNO [114, 115] and KamLAND [116] have shown the existence of neutrino

oscillations which indicates that neutrinos are actually massive particles. In this

section we will show that massive neutrinos can be included in our model and their

masses and mixings can be fitted into the large mixing angle (LMA) solution [117].

The simplest way to include massive neutrinos to our model is to associate a right-

handed neutrino to every left-handed neutrino and insert by hand a term proportional

to

Y (ν)lLH2νR (5.37)

into superpotential (5.30). However, the Yukawa couplings in the neutrino sector

have to be extremely small and thus this solution is theoretically less interesting

unless there is a mechanism behind it. The most widely used way to overcome this

problem is the seesaw mechanism [104, 105, 106]. In seesaw models, besides the

usual Dirac mass terms (which are approximately the same size as other fermion

masses), one introduces additional very large Majorana masses which enter in the

off-diagonal entries of the neutrino mass matrix. As a consequence, some eigenvalues

are suppressed to the desired values when the diagonalization of neutrino mass matrix

takes place. The physical neutrinos in seesaw models are then of Majorana type while

other leptons and quarks are Dirac fermions. Here we propose a new way to generate

neutrino masses. In our model, neutrinos are of Dirac type and thus the similarity

between leptons and quarks is preserved and no neutrinoless double beta decay exists.

We will see that our new mechanism provides a reasonable physical explanation to

the origin of term (5.37).

The Kahler potential in principle can have gravitationally coupled trilinear terms

which are usually ignored as they generally are of negligible size. However, we assume

here that our Kahler potential at the GUT scale contains the holomorphic cubic term



69

K(3) = Kν +Kν
† where

Kν = κ11Y
(ν)lLH2νR (5.38)

where 1/κ11 is the 11 dimensional Planck mass (i.e. 1/κ11 'MG) and Y
ν is a Yukawa

matrix. We note that (5.38) is the only gauge invariant holomorphic cubic lepton term

involving νR and that κ11 is the natural scale for Horava-Witten theory. The Yukawa

contribution to the superpotential is still given by (5.31). One can transfer Kν from

the Kahler potential to the superpotential by a Kahler transformation (1/κ4 is the

4D Planck mass):

K → K −K(3),

W → eκ
2

4
KνW = W + κ 2

4KνW + · · · (5.39)

Now when supersymmetry breaks, the superpotential W will grow a VEV of size:

〈W 〉 ∼= 1

κ 2
4

MS (5.40)

where MS is of electroweak size. Consequently, after supersymmetry breaking, an

additional term appears in superpotential (5.31):

MS

MG

Y (ν)lLH2νR. (5.41)

We can now proceed as in the last Section. First diagonalize and rescale the Kahler

matrices ZIJ of νR and other fields to the unit matrix. Then make the necessary

transformations in the superpotential to the canonical normalized fields. The term

giving rise to neutrino masses can then be written as

ν ′Lλ
(ν)ν ′RH

′
2 (5.42)

where

λ
(ν)
IJ =

1√
2

1

R3/2

1
√

GH2

MS

MG

(S(l)Ũ (l)Y (ν)U (ν)S(ν))IJ (5.43)
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Note that the overall coefficient in (5.43) is different from the one in (5.32-5.34) be-

cause the neutrino term originates from the Kahler potential, not the superpotential

(5.28) which has the additional coefficient e
1

2
Km . It is thus possible to use the experi-

mental neutrino mass square differences to determine R. In the example given below,

we find that R = 2.13 produces acceptable neutrino masses (we assume MS = 1

TeV in our calculation), and from Eq.(5.36), one finds that r = 3.20. At the weak

scale, after the diagonalization of charged lepton and neutrino Yukawa matrices, the

Maki-Nakagawa-Sakata (MNS) lepton mixing matrix arises. We follow the standard

parameterization [1] (the phase similar to the one in the CKM matrix is ignored):

VMNS =









c12c13 s12c13 s13

−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13









. (5.44)

where cij = cos θij, sij = sin θij and i, j = 1, 2, 3.

The following is an example at tan β = 40. We use the lepton entries of (5.35),

and the following neutrino Kahler and Yukawa matrices at MG:

Zν = fT









1 −0.465 0

−0.465 0.3105 0.0254

0 0.0254 0.027









; (5.45)

diagY (ν) = (4, 0.4, 4). (5.46)

The neutrino mass square differences and mixing angles at the weak scale are then

calculated to be:

∆m2
21 = 5.5× 10(−5) eV2; (5.47)

∆m2
32 = 2.7× 10(−3) eV2; (5.48)

tan2 θ12 = 0.42; tan2 θ23 = 0.93. (5.49)
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with |Ue3| = 0.005. Since our model is a complete model of neutrino masses, we can

calculate all the masses themselves and not just the mass square differences. For the

above example we find

m1 = 6.5× 10−4 eV; m2 = 7.4× 10−3 eV; m3 = 5.2× 10−2 eV (5.50)

consistent with cosmological constraints on neutrino masses [118].

The analysis of solar and KamLAND data in terms of two neutrino oscillations

gives for the LMA solution [113]:

0.20 ≤ tan2 θS ≤ 0.68 ; 5.6× 10−5 ≤ ∆m2
S/eV

2 ≤ 8.9× 10−5 (5.51)

where ∆m2
S is the solar neutrino mass square difference and θS is the corresponding

mixing angle and the ranges in (5.51) (and (5.52) below) are 3σ around the central

value. The analysis of Super-Kamiokande and K2K data shows for the LMA solution

[119]:

0.85 ≤ sin2 2θA ≤ 1 ; 1.4× 10−3 ≤ ∆m2
A/eV

2 ≤ 3.8× 10−3 (5.52)

where ∆m2
A and θA are the relevant mass square difference and mixing angle for the

atmospheric neutrino oscillation.

Since in our case |Ue3| ∼= 0, solar and atmospheric neutrino oscillations decouple

[108, 120]. Therefore the two neutrino oscillation analysis can be applied to our case

with the effective mixing angles given by:

θS = θ12 , θA = θ23. (5.53)

(5.47)-(5.49), (5.51) and (5.52) show that our results agree with the current LMA

solution quite well.
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4. Summary and discussion

Here we extend a model of the quark mass hierarchy based on the Horava-Witten

M-Theory [98] to include charged leptons and massive neutrinos. The model is based

on the assumptions that five branes exists in the bulk lying near the distant orbifold

plane (i. e. about 90% of the way from the physical plane), and that the instanton

charges on the physical plane vanish. This can gave rise to a three generation model

with the Standard Model gauge group at the GUT scale. While one cannot calculate

Yukawa couplings in M-Theory (they involve integrals over the Calabi-Yau space)

these constraints were sufficient to qualitatively account for the quark mass hierarchy

at the electroweak scale without undue fine tuning. The mechanism that achieved

this was that the five brane contribution to the Kahler potential gave rise to small

Kahler matrix eigenvalues, and the quark masses were proportional to the reciprocal

square root of the eigenvalues when the kinetic energy was put into canonical form.

We saw that the same mechanism also gave rise qualitatively to the hierarchy of

charged lepton masses, again without any excessive fine tuning.

Neutrino masses can arise in these models if a right handed neutrino exists in

the massless particle spectrum. Then one can assume that the Kahler potential has

a cubic holomorphic contribution of the form of (5.38), the interaction being scaled

by the 11 dimensional Planck mass (the basic parameter of Horava-Witten theory).

When transformed to the superpotential by a Kahler transformation, this term gives

rise to neutrino masses of the correct size after supersymmetry breaking. (Thus the

mechanism being used here for the neutrino masses is similar to the one previously

used to generate a µ parameter of electroweak size [121].) it is possible then to chose

natural sized values for the Yukawa and Kahler matrix entries to generate masses and

CKM and MNS mixing angles in agreement with all low energy data. The neutrinos
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in this model are Dirac, and so will exclude neutrinoless double beta decay.

Aside from the Kahler and Yukawa matrices, the quark, lepton and neutrino

properties depend on the Calabi-Yau volume modulus V which we have parameterized

by V 1/6 = r and the radius modulus R. We have found that all the quark, lepton and

neutrino masses can be fit satisfactorily with r and R of O(1). Thus for the example

in text for tan β = 40 we found R = 2.13 and r = 3.20. One important feature of

this Horava-Witten model that has not been addressed here is how to stabilize the

position of the 5-brane close to the distant orbifold plane. One possibility may involve

quantum corrections, e.g. membrane potentials between the 5-brane and the orbifold

planes [122, 123, 124, 125].
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CHAPTER VI

CONCLUSION

Here we have discussed some important topics in SUSY phenomenology, including

the muon magnetic moment, B → φK decays and the phenomenological aspects of a

Horava-Witten M-Theory model. Our studies are carried out in the framework of the

SUGRA models. We considered all relevant experimental bounds in our analyses.

In the study of the muon magnetic moment we found that the current gµ −

2 data can impose a strong constraint on the SUSY parameter space and hence

can provide important information for the dark matter detection experiments and

accelerator experiments. As explained in Chapter 2, a large muon magnetic moment

can potentially reveal the existence of non-universal structure at the GUT scale and

thus provide important hints for the study of SUSY GUT models.

Then we showed that the current B → φK data, if it continues to hold in the fu-

ture, will signal the first significant breakdown of the Standard Model and mSUGRA.

The important consequence is that, in order to satisfy experimental data, one needs

to construct a more complicated SUGRA model, e.g. with non-universal terms at

the GUT scale, which may have very different signals in accelerator experiments. In

particular, the only natural way to account for both sin 2βφKS
and the branching

ratios for B → φK was to add off diagonal elements mixing the second and third

generations in the A soft breaking mass. This will provide important guidance to our

future research on SUSY GUT models and for string models.

We then considered a model based on Horava-Witten M-Theory. We showed

that this model can give a reasonable explanation to the origin of the SM mass

spectrum. The hierarchy of quark and lepton masses arise in the model from 5-
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branes being placed a distance dn from the distant orbifold plane. The choice of

dn ≈ 0.1 then replaces the phenomenological Wolfenstein parameter, producing the

mass hierarchy naturally. We further investigated the possibility to accommodate

the current neutrino data in this model. A new mechanism was proposed for this

purpose by assuming the existance of right handed neutrinos which could give rise

to cubic holomorphic contributions to the Kahler potential. When supersymmetry

breaks, neutrino masses of the right size occur and the current neutrino data can be

well satisfied in this model.

In short, SUSY is phenomenology that can bridge experiments and fundamental

theory. It is useful in planing experiments and examining experimental data. Results

obtained can then be used for further theoretical investigation.
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APPENDIX A

PARAMETERS OF THE STANDARD MODEL

The SM is built on the SU(3)C × SU(2)L×U(1)Y symmetry group (where subscript

“C”, “L” and “Y” are short for “color”, “left” and “hypercharge”). Its particle

spectrum can be divided into three sectors, i.e.

1. Gauge sector composed of gauge bosons, i.e. Ga, W i and B, corresponding to

SU(3)C , SU(2)L and U(1)Y separately,

2. Fermion sector containing three generations of quarks (qL = (uL , dL), uR and

dR) and leptons (lL = (νL eL), eR) (Generation index and color index are

suppressed here. Subscripts “L” and “R” correspond to left-handed and right-

handed.).

3. Higgs sector containing the Higgs doublet H = (H0 , H−).

All the particles gain masses through spontaneously breaking of

SU(3)C × SU(2)L × U(1)Y ⇒ SU(3)C × U(1)EM (A.1)

when the Higgs field develops a non-zero vacuum expectation value (VEV)

〈H〉 =
(

v

0

)

. (A.2)

In particular, after the spontaneously symmetry breaking (SSB), the Yukawa terms

LY = Y (u)q̄LH
+uR + Y (d)q̄LHdR + Y (e)l̄LHeR (A.3)

give rise to fermion masses except for the neutrinos. (See Chapter V for a discussion

on neutrino masses) The fermionic contribution to the Lagrangian is

Lfm = −Y (u)vūLuR + Y (d)vd̄LdR + Y (e)vēLeR

= M (u)ūLuR +M (d)d̄LdR +M (e)ēLeR (A.4)
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where M (u,d,e) are mass matrices in the flavor basis and thus need to be diagonalized

in order to obtain physical states. After the diagonalization of M u and Md, the

quark mixing Cabibbo-Kobayashi-Maskawa (CKM) matrix will appear in the charged-

current interactions. (There is no lepton mixing in the lepton sector since neutrinos

are strictly massless in the SM, as shown in (A.4).) In the flavor basis, the charged

currents are diagonal

LCC = − g√
2
(J+

µW
µ + h.c.) (A.5)

where W = (W 1 − iW 2)/
√
2 being the physical W boson and

J+
µ = ūLγµdL . (A.6)

The diagonalization of Mu and Md changes the flavor basis to the mass (physical)

basis and then

J+
µ = ūLγµVCKMdL (A.7)

where VCKM = U+
LDL with unitary matrices UL and DL diagonalizing Mu and Md

(of course, uR and dR need to be rotated at the same time). In the case of three

generations, VCKM is a 3×3 unitary matrix and can be parameterized by four physical

quantities including three real rotation angles θij (i, j = 1, 2, 3) plus one complex

phase δ [1]

VCKM =









Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









=









c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13









(A.8)
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Here sij = sin θij and cij = cos θij. Phase δ is the only source of CP violations in the

SM. In the framework of the SM, the CKM matrix elements cannot be determined

theoretically and thus have to be determined from experiments (see Chapter IV for

a brief discussion on current experimental status).

We can now count the number of physical parameters in the SM

• 6 quark masses and 3 lepton masses

• 3 gauge couplings

• 4 CKM parameters

• 2 Higgs potential parameters

which add up to 18 parameters in total or 19 if we add θQCD [126], as mentioned in

chapter I.
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APPENDIX B

CP ASYMMETRIES OF B → φK DECAYS

In general, there are three types of CP violations in B decays:

1. (Direct) CP violation in decay, which occurs when the amplitudes of a decay

and its CP-conjugate are not equal, e.g. A(B+ → φK+) 6= A(B− → φK−),

2. (Indirect) CP violation inB0−B̄0 mixing when the mass eigenstates are different

from CP eigenstates,

3. CP violation in the interference between decays and mixing.

We shall concentrate on the B0 → φKS decay discussed in Chapter IV. Since it

belongs to the third type, we start with B0 − B̄0 mixing.

For B0B̄0 system, the two mass eigenstates, BL and BH with masses ML and

MH respectively, can be written as linear combinations of B0 and B̄0 [127]

|BL〉 = p|B0〉+ q|B̄0〉

|BH〉 = p|B0〉 − q|B̄0〉 (B.1)

with |p2| + |q2| = 1. p and q are determined by interactions mixing B0 and B̄0, e.g.

electroweak interactions and possible new physics interactions. Ignoring the difference

between the decay widths of BL and BH , the time evolution of the mass eigenstates

is given by

|B0
L(t)〉 = e−(Γ/2+iML)t|B0

L(0)〉 ,

|B0
H(t)〉 = e−(Γ/2+iMH)t|B0

H(0)〉 . (B.2)
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Now consider a system with pure |B0〉 or |B̄0〉 at t = 0. At a later time t, the

system can then be described by

|B0
phys(t)〉 = f+(t)|B0〉+ q

p
f−(t)|B̄0〉 ,

|B̄0
phys(t)〉 =

p

q
f−(t)|B0〉+ f+(t)|B̄0〉 (B.3)

where

f+(t) = e−(Γ/2+iMB)t cos(∆MBt/2) ,

f−(t) = e−(Γ/2+iMB)ti sin(∆MBt/2) (B.4)

and

MB ≡ (MH +ML)/2 ; ∆MB ≡MH −ML . (B.5)

Substituting back to the definition of the time dependent CP asymmetry in (4.2) and

noticing that φKS is CP odd and q/p can be set to exp(−2iβ) because |q/p| ∼= 1 for

the B system [128], one recoveries the result given there.

In addition, in decay amplitudes (e.g. (4.4)), there are two types of phases that

may appear, i.e. weak phases and strong phases. Weak phases are phases from the

Lagrangian, e.g. the CKM phase in the SM and phases from the soft SUSY breaking

parameters in SUSY models. On the contrary, strong phases do not violate CP and

thus do not change sign in CP conjugate amplitudes. The origin of strong phases

is model dependent, e.g. via the Bander-Silverman-Soni (BSS) mechanism [129] in

which strong phases can arise in one loop diagrams. Strong phases are very important

for direct CP violations since, as shown in (4.10) and (4.11), ACP can be non-zero

only when Ā/A 6= 0, which can happen only when two different strong phase and

weak phases are present.
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APPENDIX C

QCD FACTORIZATION

As mentioned in Chapter IV, for exclusive non-leptonic B decays, the calculation of

decay amplitudes requires the evaluation of the matrix elements between hadronic

states, e.g. 〈M1M2|Oi|B〉 for B decays. Previously the method most used was naive

factorization (NF) in which the matrix element is approximated by a product of two

matrix elements of current operators, i.e.

〈M1M2|Oi|B〉 ' 〈M1|J1|0〉〈M2|J2|B〉 , (C.1)

and then parametrized into meson decay constants and transition form factors. De-

spite the fact that NF can provide good approximations for many decay modes, it has

some intrinsic problems. Theoretically the most serious one is its scale dependence,

which can be seen by noticing that the matrix elements in NF are scale independent

but, on the other hand, the Wilson coefficients Ci’s are scale dependent and hence

lead to scale dependent amplitudes, i.e. A ∝ Ci(µ)〈M1M2|Oi|B〉. Another problem

is that is that no strong phase can be produced in NF, as implied by (C.1), and hence

direct CP is totally missing in NF.

To overcome the problems of NF, some solutions have been proposed. One of

them is called generalized factorization [84] in which the scale dependence of Ci’s are

compensated by additional scale dependent factors from the radiative corrections to

Oi’s. The matrix elements are still calculated by the NF method, i.e. approximating

〈M1M2|Oi|B〉 by a product of a decay constant and a form factor. This factoriza-

tion approach, although used in many analyses, still has some unresolved problems,

e.g. gauge dependence (for more details, see, e.g. [130]). Another two approaches
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where the problems in NF are resolved are perturbative QCD (PQCD) and QCD

factorization (QCDF). A thorough review with a detailed comparison between those

approaches can be found in [131]. Here we concentrate on QCD factorization (or the

BBNS approach [78, 79, 80]).

In QCDF, factorization means the separation of long-distance (soft) contributions

from short-distance (hard) contributions, as demonstrated in the following QCDF

factorization formula for the decay of B meson into two light mesons [79]

〈M1M2|Oi|B̄〉 = FB→M1

∫ 1

0

du T I
i (u) ΦM2

(u) + (M1 ↔M2)

+

∫ 1

0

dξdudv T II
i (ξ, u, v) ΦB(ξ) ΦM1

(v) ΦM2
(u) (C.2)

where FB→M1,2 is a B →M1,2 form factor, Φ’s are light-cone distribution amplitudes

(LCDAs) and T I and T II are hard-scattering kernels. In QCDF, both transition form

factors and LCDAs are considered to be dominated by soft contributions and hence

have to be calculated by non-perturbative methods or determined experimentally.

(On the contrary, in PQCD form factors have been claimed to be perturbatively

calculable [131].) Hard-scattering kernels are the short-distance part and can be

calculated perturbatively. The consistency of the QCDF method has been argued

and explicitly shown by examples in [79] and [132].

Fig. 10 gives a graphic representation of (C.2) and can be understood as follows.

The light mesons produced in 2-body B decays are energetic and move apart very

fast. This decoupling makes it possible to calculate perturbatively the decay vertex

which are represented by T I,II in (C.2). Decoupled mesons are then described by

their LCDAs as meson states are intrinsically non-perturbative. The first term in

(C.2) describes the situation in which the soft spectator quark is not involved in the

decay vertex and hence the B → M1 transition is considered as a soft process and
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Fig. 10. Graphical representation of the factorization formula (C.2)

described by a form factor [79]. The second term describes the case with interactions

occuring between the outgoing energetic meson and the spectator quark.

Explicit vertex diagrams and calculations can be found in [79] and [132] and a

comprehensive formula list for B → PP, PV is given in [133]. As shown in (4.15), for

convenience, in most QCDF papers, decay amplitudes are usually presented in terms

of factorized matrix elements (i.e., the right hand side of (C.1)). However, QCDF

should not be taken as a simple extension to NF. At least, the second term in the

right hand side of (C.2) (which is a term at the next-to-leading order or the first

order of αs ≡ g2s/4π) is not present in NF. Nevertheless, QCDF does agree with NF

in the leading order (or the zeroth order of αs) [79], which can be considered as one

consistency check if NF is viewed as the correct first order approximation.

Although QCDF is an important advance, it is far from the end of the story.

For example, there are still infrared divergences when high order contributions to the

LCDAs are taken into account, causing the dependence on some phenomenological

parameters (i.e. ρ and φ in (4.17), see also Fig. 7 in Chapter 4 and discussion there).

This considerably limits its predictive power. In addition, QCDF does not have an

entirely self-consistent treatment for the annihilation contributions. Therefore, it

needs further investigation and is to be used with justification, especially to avoid the
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overusing or abusing those unexplained parameters mentioned above.
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