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ABSTRACT

Bayesian Multivariate Spatial Models and Their Applications. (August 2004)

Joon Jin Song, B.S., Yeungnam University

M.S., Kyungpook National University

Chair of Advisory Committee: Dr. Bani K. Mallick

Univariate hierarchical Bayes models are being vigorously researched for use in

disease mapping, engineering, geology, and ecology. This dissertation shows how the

models can also be used to build model-based risk maps for area-based roadway traffic

crashes. County-level vehicle crash records and roadway data from Texas are used to

illustrate the method. A potential extension that uses univariate hierarchical models

to develop network-based risk maps is also discussed.

Several Bayesian multivariate spatial models for estimating the traffic crash rates

from different types of crashes simultaneously are then developed. The specific class of

spatial models considered is conditional autoregressive (CAR) model. The univariate

CAR model is generalized for several multivariate cases. A general theorem for each

case is provided to ensure that the posterior distribution is proper under improper

and flat prior. The performance of various multivariate spatial models is compared

using a Bayesian information criterion. The Markov chain Monte Carlo (MCMC)

computational techniques are used for the model parameter estimation and statistical

inference. These models are illustrated and compared again with the Texas crash data.

There are many directions in which this study can be extended. This dissertation

concludes with a short summary of this research and recommends several promising

extensions.
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CHAPTER I

INTRODUCTION

Statistical spatial models have been used in diverse applications, such as engi-

neering, geology, ecology, and public health, for analyzing geographically referenced

data. Advances in computing power, Geographic information system (GIS), and

computational techniques, such as the Markov Chain Monte Carlo (MCMC), allow

sophisticated spatial models to be developed. In biostatistical field, spatial models

have particularly been increasingly employed to analyze disease rates and develop

disease maps.

This chapter is organized as follows. First, a brief review of spatial data is given.

The research objectives and contributions are then presented. Finally, the organiza-

tion of this dissertation is outlined.

1.1 Spatial Data

Spatial data can be viewed as realizations as a spatial stochastic process

{Y (s) : s ∈ D},

where s is the location from which the data is observed and D is a random set in d-

dimensional Euclidean space. A realization of an underlying spatial stochastic process

is denoted by {y(s) : s ∈ D}.
Spatial data are generally categorized into three types; (1) geostatistical or point-

referenced data, (2) lattice or areal data, and (3) point pattern data. A brief review

The format and style follow that of Journal of the American Statistical Association.



2

for these types of data and the associated spatial models is provided in following

subsections.

1.1.1 Geostatistical Data

The basic principle for geostatistical data analysis is based on a stochastic process

{Y (s) : s ∈ D}, where D is assumed to be a fixed subset of Rd. Let Y (s) =

(Y (s1), · · · , Y (sn))
T denote n observations at sites s1, · · · , sn in a region of interest

D ∈ Rd. The observed data are used to predict some unknown observations at

unobserved sites. Kriging is the most popular method for spatial prediction which is

a optimal least squares interpolation. This prediction method depends on the second-

order properties of the spatial process Y (s).

The spatial process Y (s) is often assumed to follow Gaussian process. The basic

model is developed by means of the following model

Y (s) = m(s) + ε(s) (1.1)

where m(s) is the mean function of the process and ε(s) is a random process. The

total variation in (1.1) is divided into large-scale variation (the mean function m(s))

and small-scale variation (the residual random process ε(s)). Residual process is as-

sociated with a covariance function, which expresses covariance of two values of ε(si)

and ε(sj).

The several approaches for the analysis have been developed, such as plug-in ap-

proach under a Gaussian process (Kitanidis 1983; Mardia and Marshall 1984; Kitani-

dis and Lane 1985), nonparametric regression methods for spatial prediction (Laslett

1994; Journel 1983), median polishing kriging for nonstationary mean (Cressie 1986,

1993), and nonparametric estimation of nonstationary spatial covariance (Sampson

and Guttorp 1992). For further methods in detail, see Cressie (1993).
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1.1.2 Lattice Data

Analogous to geostatistical data, denote that Ys1 , · · · , Ysn are lattice data ob-

served at n sites. The apparent difference between geostatistical data and lattice data

is that the latter are observed at every site. In addition, D is a fixed subset of Rd

and it is partitioned into a finite number of lattices (or areal units), while site index

s in geostatistical data varies continuously over D.

In practice, the lattices (or areal units) are irregular such as zip codes or coun-

ties and the data are regularly sums or average of quantities of interest over these

lattices. Spatial association over the lattices are introduced by a neighborhood struc-

ture and there are two popular models, the simultaneously autoregressive (SAR) and

the conditional autoregressive (CAR) models, that incorporate such neighborhood

structure. Whittle (1954) proposed the SAR model which has the advantage in com-

putation when likelihood methods are used, while the CAR model is developed by

Besag (1974) and this model is computationally convenient for Gibbs sampling in

Bayesian framework.

The general approach in Bayesian hierarchical spatio-temporal models is to em-

bed spatial random effect with the CAR prior and time effect in generalized linear

model. This approach is commonly used in disease mapping studies and is also uti-

lized in Chapter III and IV.

1.1.3 Point Pattern Data

Recall that {s1, · · · , sn} is a set of the locations in a region of interest. A

quantity of interest to be analyzed in point pattern data is the locations of n events

in a region D. The objective of the analysis is to investigate whether the pattern

of data shows complete spatial randomness, clustering, or regularity. For example,

consider residences of persons with a particular disease or locations of a certain species
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of tree in a forest.

In contrast to previous two types of data, a quantity of interest, occurrence of

events, is usually fixed and the locations si are random. The studies on spatial point

pattern can be found in Pielou (1959, 1977), Getis and Boots (1978), Marquiss et al.

(1978), Ripley (1981), Diggle (1983), and Upton and Fingleton (1985).

1.2 Research Problems, Objectives and Scope

Spatial data is frequently multivariate. For example, incidences of several dis-

eases, such as leukemia, pediatric asthma, and lung cancer, would be generally col-

lected at county or census tract level in public health. In such case, we expect not

only the dependence between incidences of different diseases at a given areal unit,

but also spatial association between the incidences across areal units.

The main objective of this dissertation is to explore multivariate spatial model-

ing for multivariate measurements over areal units. For areal-based data, we propose

several types of multivariate extension based on general univariate conditional autore-

gressive (CAR) model. The second goal is to ensure posterior propriety for proposed

models with improper prior, vague flat prior. Finally, the multivariate spatial models

are applied to real data, Texas crash data and risk maps are generated based on

estimated crash risk rate.

1.3 Research Contributions

Statistical methodologies in transportation safety community play an important

role to investigate traffic crash rate and to improve roadway safety. However, re-

search on spatial models for roadway traffic crashes has not conducted much. One of

contribution of this research is to introduce model-based statistical approach to the

community and to illustrate this by vehicle crash records and roadway inventory data
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at county level in Texas.

A variety of spatial models for univariate data have been developed in the past

decade. As indicated earlier, it is often necessary to have spatial models to analyze

multivariate data. Recently, Carlin and Banerjee (2003) proposed multivariate condi-

tional autoregressive (MCAR) model for spatially and temporally correlated survival

data. We also propose several spatial models for multivariate data based on general

univariate conditional autoregressive (CAR) model.

Vague flat prior is usually adopted for fixed effect, such as regression param-

eters. Though this prior is a simple and convenient choice, it can lead a improper

joint posterior distribution, so that the resulting posterior distribution make Bayesian

inference impossible. Therefore, it is imperative to ensure that the joint posterior is

proper under vague flat prior. The studies to obtain sufficient condition on posterior

propriety were found in Chen et al. (2002), Hobert and Casella (1996), and Chen

et al. (2003). Ghosh et al. (1998) provided sufficient conditions to gain a proper

joint posterior with a univariate CAR prior for spatial random effect. Since vague

flat prior is assigned to regression parameters in multivariate model setup proposed

here, theorems to obtain proper posteriors corresponding to each spatial prior are

provided. These multivariate models are applied to Texas crash data and inferential

results and crash risk map are shown.

1.4 Organization of Dissertation

This dissertation is composed of five chapters. In Bayesian framework, all mod-

els and methodologies proposed in this dissertation are developed and the analyses

of real data are carried out.

In Chapter II, we briefly review selective literature and topics concerning about

univariate CAR model, multivariate CAR model, and posterior propriety.
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Chapter III shows how hierarchical Bayes models, which are being vigorously

researched for use in disease mapping, can also be used to build model-based risk

maps for area-based traffic crashes. Country-level vehicle crash records and roadway

data from Texas are used to illustrate the method. A potential extension that uses

hierarchical models to develop network-based risk maps is also discussed.

We consider several Bayesian multivariate spatial models for estimating the crash

rates from different types of crashes in Chapter IV. Conditional autoregressive (CAR)

model is considered for the spatial effect model and is generalized for the multivariate

case. A general theorem for each case is provided to ensure that posterior is proper

under vague flat prior. The different models are compared according to some Bayesian

criterion. Markov chain Monte Carlo (MCMC) is used for computation. We illustrate

these methods with Texas crash data.

Finally, Chapter V concludes this dissertation with a short summary and some

suggestions for future study. The Appendices include proofs for the theorems pro-

posed in Chapter IV.
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CHAPTER II

LITERATURE REVIEW

2.1 Conditional Autoregressive (CAR) Models

Conditional autoregressive (CAR) models are introduced by Besag (1974). In

recent, the models have been increasingly used in broad application for spatial data

analysis because these models allow to model fitting using a Gibbs sampler. CAR

models have been implemented by two ways to model spatial association with areal

data. Firstly, Geman and Geman (1984) showed direct spatial modeling of observa-

tions and the second approach is hierarchical modeling. Spatial association in areal

data is commonly described by spatial random effect in hierarchical model and CAR

models are employed as the priors of the random effect in Bayesian framework.

The full conditional distributions of CAR models are defined as

p(ηi|ηj 6=i) ∼ N

( ∑
j

cijηj, τ
2
i

)
, i = 1, · · · , n. (2.1)

From Brook’s Lemma, the joint distribution is uniquely determined by

f(η) ∼ N(0, (I −C)−1D), (2.2)

where I is identity matrix, C = {cij}, and D = Diag(τ 2
1 , · · · , τ 2

n). The covariance

matrix in (2.2) must be symmetric, and the conditions are obtained,

cij
τ 2
i

=
cji
τ 2
j

, (2.3)

for all i and j.

In practice, a proximity matrix W is usually constructed to describe neighbor-

hood relationship between areal unit. Suppose we set cij = wij/wi+ and τ 2
i = σ2

η/wi+,
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where W = {wij} and wi+ =
∑

j wij. Then the full conditionals (2.1) and the joint

distribution (2.2) are rewritten by

p(ηi|ηj 6=i) ∼ N

(∑
j

wijηj/wi+, σ
2
η/wi+

)
(2.4)

and

f(η) ∝ exp

{
− 1

2σ2
η

ηT (DW −W )η

}
, (2.5)

where DW is a diagonal matrix with entries wi+. Note that the distribution in (2.5)

is improper because of (DW −W )1 = 0. To remedy this problem, Sun et al. (2000)

introduced a propriety parameter ρ into mean specification in (2.3). The parameter ρ

can be interpreted as a measure spatial association over areal unit. If λ−1
1 < ρ < λ−1

k ,

where λ1 < · · · < λn are the eigenvalues of D
−1/2
W WD

−1/2
W , DW − ρW becomes

nonsingular. Let W ∗ = Diag(1/wi+)W denote the scaled adjacency matrix. This

matrix allows the propriety parameter to be |α| < 1 . In Chapter IV, the propriety

parameter is denoted by α to distinguish from ρ. Carlin and Banerjee (2003) proved

that the precision matrix with the propriety parameter α corresponding to the scaled

adjacency matrix is symmetric and diagonally dominant. It indicates that the pre-

cision matrix is nonsingular because a symmetric and diagonally dominant matrix is

positive definite.

Although the introduction of the propriety parameter obviously overcomes im-

propriety of CAR specification, improper CAR model is still often implemented in

spatial modeling. Banerjee at el. (2004) discussed a few reasons why improper CAR

models are often used instead of proper CAR models. Firstly, the mean of ηi is

intended to be an average of its neighbors in original concept of CAR models, but

the mean becomes some proportion of the average of its neighbors by adding the
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propriety parameter. They also conducted some simulations in order to examine the

performance of calibration of ρ. It is found that a descriptive spatial association mea-

sure is not enough to indicate strong spatial correlation even though the propriety

parameter ρ is almost equal to 1. This suggests that the parameter which is usually

interpreted as ”strength of spatial association” can misinform about the strength of

association. Finally, proper CAR models can make the range of spatial pattern re-

stricted. Therefore, the choice between two types of CAR models is ambiguous and

can be determined by data or researchers.

Besag et al. (1991) proposed the pairwise difference specification which is the

most popular formulation in CAR models,

f(η) ∝ exp

{
− 1

2σ2
η

∑

i6=j
wij(ηi − ηj)

2

}
. (2.6)

This specification is referred to the intrinsic autoregressive (IAR) model.

The general approach in Bayesian hierarchical spatio-temporal models is to em-

bed spatial random effect and time effect in generalized linear model. At the first level

of hierarchy, conditional mean of observations, measurement of interest are assumed

to be mutually independent and the spatial modeling is accomplished in the second

level of hierarchy.

2.2 Multivariate Conditional Autoregressive (MCAR) Models

Mardia (1988) developed the fundamental theory for multivariate Gaussian Markov

random field (GMRF). Based on his work, Carlin and Banerjee (2003) formulated

multivariate conditional autoregressive (MCAR) models.

Consider ηT = (ηT1 , · · · ,ηTp ), where ηi is a n × 1 vector, and a multivariate

normal distribution,

η ∼ N(0,B−1), (2.7)



10

where B is a precision matrix with blocks Bij. Similar to univariate CAR models,

the full conditionals of ηi given ηj, j 6= i are obtained by

p(ηi|ηj 6=i) ∼ N

(∑
j

Cijηj,Σi

)
, (2.8)

where Cij = −B−1
ii Bij and Σi = B−1

ii are n × n matrices. The joint distribution is

also uniquely determine by Brook’s Lemma,

f(η) ∼ N(0, (I −C)−1Σ), (2.9)

where C and Σ are block diagonal matrices with entities Cij and Σi, respectively.

The propriety parameter could be included in (2.9) to avoid the impropriety problem.

Kim et al. (2001) proposed twofold conditional autoregressive model for bivariate

data analysis. The model allows different diseases to share information each other.

But, the model is limited to bivariate data and it is infeasible to generalize the model

for a number of diseases.

Gelfand and Vounatsou (2003) provided a class of multivariate proper conditional

autoregressive models. A new parametric linear transformation is also proposed for

an extension which gives fascinating interpretation.

In recent, Jin, et al. (2004) point out the difficulty to specify covariance matrix

in multivariate spatial models in areal data. The above studies (Carlin and Baner-

jee 2003; Gelfand and Vounatsou 2003) are concerned about the precision matrix

, instead of the covariance matrix. The key drawback of precision matrix specifi-

cation approach in multivariate areal models results in obscure interpretation. To

overcome this difficulty, they proposed a new class of generalized multivariate con-

ditional autoregressive (GMCAR) models for areal data. The joint distribution for

the multivariate spatial process is defined through simple conditional and marginal

forms.
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These multivariate conditional autoregressive models are also often used as spa-

tial prior of spatial random effect in the generalized linear mixed model framework.

Although several approaches have been proposed, there is no attempt to check pos-

terior propriety with improper prior. As indicated earlier, impropriety of CAR prior

could be resolved by plugging in the propriety parameter, but it is still necessary

to check posterior propriety unless proper priors for all parameter in the models are

specified.

2.3 Posterior Propriety

Once there is no faithful information about parameter θ or an inference only

based on data is desired, a noninformative prior which has no information about

parameter θ is an appropriate choice. For example, if a parameter space is a bounded

continuous, Θ = [a, b], the uniform distribution is often selected as noninformative

prior for θ,

p(θ) =
1

(b− a)
, a < θ < b.

Suppose that a parameter space is unbounded, Θ = (−∞,∞). Then a suitable

prior could be

p(θ) = c,

where c > 0 is any constant. However, this prior is improper,
∫
p(θ)dθ = ∞, so that

it seems that the prior is not acceptable in Bayesian inference. Nevertheless, the prior

make Bayesian inference possible if the integration of the likelihood function f(x|θ)
with respect to θ results in a finite value K. It indicates that there exists some finite

normalizing constant and Bayesian inference could be carried out,

p(θ|x) =
f(x|θ) · c∫
f(x|θ) · cdθ =

f(x|θ)
K

.
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However, we need to pay attention to ensure whether the resulting posterior is proper

under improper prior because the prior does not always lead proper posterior. For

example, in high-dimensional models, the data do not contain sufficient information

in order to identify all parameters in models, so that it is required that some priors

for parameters should be informative.

Hobert and Casella (1996) warned the users of hierarchical linear mixed models

with improper priors not to implement MCMC without ensuring that the resulting

posterior is proper. Generally, improper priors are elicited for variance components

in hierarchical linear mixed models because of the reasons for the choice in the begin-

ning of this chapter. By dealing with conjugate priors in the prior specification, the

full conditionals required for the Gibbs sampling are easily derived and it seems that

there is no problem in general Bayesian inference. However, the Gibbs sampler itself

could not point out whether the posterior is proper or not. Although the resulting

posterior is improper, the output from a Gibbs sampler can behave perfectly. But,

the posterior inference based on the output is worthless because it is from a nonex-

istent posterior distribution. They showed this situation with real data analysis and

provided the theorems to give sufficient conditions for posterior propriety under im-

proper priors.

Ibrahim and Laud (1991) provide two theorems that allow Jeffrey’s priors to be

used in generalized linear models with fixed scale parameters. The theorems also give

sufficient and necessary conditions for the propriety of the posterior and prior.

Ghosh et al. (1998) present the theorem to ensure posterior propriety in hierar-

chical Bayes generalized linear mixed models with spatial random effect.

Sun et al. (2001) examined necessary and sufficient conditions for posterior pro-

priety in hierarchical linear mixed models with the improper priors for the fixed effects

and variance components.
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Chen et al. (2002) investigated the posterior propriety for generalized linear

mixed model when an improper prior is placed on the regression parameters. The

propriety is considered under a general link function and a general covariance struc-

ture for random effects.
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CHAPTER III

UNIVARIATE HIERARCHICAL SPATIAL MODELS

3.1 Introduction

Transportation-related deaths and injuries constitute a major public health prob-

lem in the United States. Injuries and fatalities occur in all transportation modes,

but crashes involving motor vehicles account for almost 95% of all transportation

fatalities and most injuries. Despite the progress made in roadway safety in the past

several decades, tens of thousands of people are still killed and millions of people are

injured in motor vehicle crashes each year. For example, in 1999 nearly 42,000 people

were killed in traffic crashes and over 3.2 million more were injured.

Motor vehicle fatalities are the leading cause of unintentional injury deaths, fol-

lowed by falls, poisonings, and drownings (about 16,000, 10,000, and 4,400 deaths per

year, respectively) (NSC 2002). They are also responsible for as many pre-retirement

years of life lost as cancer and heart disease, about 1.2 million years annually. In fact,

motor vehicle crashes are the leading cause of death for people aged 1 to 33. Societal

economic losses from these crashes are huge, estimated by the National Highway Traf-

fic Safety Administration to exceed $230 billion in 2000. Thus, much work remains to

be done to develop a better understanding of the causes of vehicle crashes-their chains

of events and operating environments-and to develop countermeasures to reduce the

frequency and severity of these crashes (USDOT 1996-1999).

Safety is one of the U.S. Department of Transportation’s (USDOT’s) five current

strategic goals, and Rodney Slater, a former Transportation Secretary stated: ”Safety

is a promise we keep together.” Indeed, roadway safety intersects with all five core

functional areas within conventional highway engineering (planning, design, construc-
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tion, operation, and maintenance) and crosscuts the boundaries of other engineering

(vehicle and material) and nonengineering areas (human factors, public health, law

enforcement, education, and other social sciences). Thus, research in roadway safety

requires interdisciplinary skills and essential cooperation from various engineering and

social science fields.

In 2002, a series of conferences was hosted by the Bureau of Transportation

Statistics under the general title of ”Safety in Numbers: Using Statistics to Make the

Transportation System Safer.” These conferences supported the top strategic safety

goal of promoting public health and safety ”by working toward the elimination of

transportation-related deaths, injuries, and property damage” (USDOT 2002).

3.1.1 Contributing Factors, Countermeasures, and Resources

Motor vehicle crashes are complex events involving the interactions of five ma-

jor factors: drivers, traffic, roads, vehicles, and the environment (e.g., weather and

lighting conditions) (e.g., Miaou 1996). Among these factors, driver error has been

identified as the main contributing factor to a great percentage of vehicle crashes, and

many research efforts are being undertaken to better understand human and other

synergistic factors that cause or facilitate crashes. These factors include operator im-

pairment due to the use of alcohol and drugs, medical conditions, or human fatigue

and the operator’s interaction with new technologies used on the vehicle.

Countermeasures to reduce the number and severity of vehicle crashes are being

sought vigorously through various types of community, education, and law enforce-

ment programs and improved roadway design and vehicle safety technology. However,

many of these programs have limited resources and need better tools for risk assess-

ment, prioritization, and resource scheduling and allocation.

Recognizing that ”to err is human” and that driver behavior is affected by vir-
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tually all elements of the roadway environment, highway engineers are constantly

redesigning and rebuilding roadways to meet higher safety standards. This includes

designing and building roadways and roadsides that are more ”forgiving” when an

error is made, more conforming to the physical and operational demands of the vehi-

cle, and that better meet drivers’ perceptions and expectations in order to reduce the

frequency of human errors (TRB 1987). The relatively low fatality rate on the Inter-

state Highway System (about half the fatality rate of the remainder of the nation’s

highways) is evidence of the impact of good design on highway safety (Evans 1991).

Many impediments keep highway engineers from achieving their design and op-

erational goals, including a lack of resources and a vast highway system that needs to

be built, operated, maintained, audited, and improved. They must make incremental

improvements over time and make difficult decisions on the tradeoffs among cost,

safety, and other operational objectives. Consequently, knowing where to improve

and how to prioritize and schedule improvements is as important as knowing which

roadway and roadside features and elements to add or improve. Tools for identifying,

auditing, ranking, and clinically evaluating problem sites; developing countermea-

sures; and allocating resources are essential for highway engineers who make these

decisions.

3.1.2 Disease Mapping and Methods Using Spatial Models

In recent years, a multiplicity of the studies for disease mapping and ecological

analysis has been conducted using spatial(-temporal) models in Bayesian framework.

This model-based approach has yielded a dramatic gain in the number and scope of

applications in public health studies of risks from disease such as leukemia, pediatric,

asthma, and lung cancer (Carlin and Louis 1996; Knorr-Held and Besag 1998; Xia

et al. 1997; Ghosh et al. 1999; Lawson et al. 1999; Zhu and Carlin 1999; Dey et al.
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2000; Sun et al. 2000; Lawson 2001; Green and Richardson 2001). A special issue

of ”Statistics in Medicine” entitled ”Disease Mapping with a Focus on Evaluation”

was also published to report the development of this approach (vol. 19, Issues 17-18,

2000). Among other applications, disease mapping have been used to:

• describe the spatial variation in disease incidence for the formulation and vali-

dation of etiological hypotheses;

• identify and rank ares with potentially elevated risk and time trends so that

action may be taken;

• provide a quantitatively informative map of disease risk in a region to allow

better risk assessment, prioritization, and resource allocation in public health.

Clearly, roadway traffic safety planning has similar requirements and can potentially

benefit from these kinds of maps.

Studies have shown that risk estimation using hierarchical Bayes models has

several advantages over estimation using classical methods. One important point

that has been stressed by almost all of these studies is that individual incidences

of diseases of concern are relatively rare for a typical analysis unit such as census

tract or county. As a result, estimates based on simple aggregation techniques may

be unreliable because of large variability from one analysis unit to another. This

variability makes it difficult to distinguish chance variability from genuine differences

in the estimates and is sometimes misleading for analysis units with a small population

size. Hierarchical Bayes models, however, especially those Poisson-based generalized

linear models with spatial random effects, have been shown to have the ability to

account for the high variance of estimates in low population areas and at the same

time clarify overall geographic trends and patterns (Ghosh et al. 1999; Sun et al.

2000).
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Note that in the context of sample surveys the type of problem described above

is commonly referred to as a small area, local area, or small domain estimation prob-

lem. Ghosh and Rao (1994) conducted a comprehensive review of hierarchical Bayes

estimations and found them favorable for dealing with small area estimation problems

when compared with other statistical methods. Hierarchical models are also gaining

enormous popularity in fields such as education and sociology, in which data are often

gathered in a nested or hierarchical fashion: for example, as students within class-

rooms within schools (Goldstein 1999). In these fields, hierarchical models are often

called multilevel models, variance component models, or random coefficients models.

The overall strength of the Bayesian approach is its ability to structure compli-

cated models, inferential goals, and analyses. Among the hierarchical Bayes methods,

three are most popular in disease mapping studies: empirical Bayes (EB), linear Bayes

(LB), and full Bayes methods. These methods offer different levels of flexibility in

specifying model structures and complexity in computations. As suggested by Law-

son (2001): ”While EB and LB methods can be implemented more easily, the use

of full Bayesian methods has many advantages, not least of which is the ability to

specify a variety of components and prior distributions in the model set-up.”

To many statistical practitioners, it is fair to say that the challenges they face

dealing with real-world problems come more often from the difficulties of handling

nonsampling errors and unobserved heterogeneity (because of the multitude of factors

that can produce them) than from handling sampling errors and heterogeneity due

to observed covariates. One potential advantage of using the full Bayes model is

the flexibility that it can provide in dealing with and adjusting for the unobserved

heterogeneity in space and time, whether it is structured or unstructured.
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3.1.3 Objectives and Significance of Work

Mapping transforms spatial data into a visual form, enhancing the ability of

users to observe, conceptualize, validate, and communicate information. Research

efforts in the visualization of traffic safety data, which are usually stored in large and

complex databases, are quite limited at this time because of data and methodological

constraints (Smith et al. 2001). As a result, it is common for engineers and other

traffic safety officials to analyze roadway safety data and make recommendations

without actually ”seeing” the spatial distribution of the data. This is not an optimal

situation.

To the best of our knowledge, unlike the public health community, which has

developed models for disease mapping, the roadway safety research community has

not done much to develop model-based maps for traffic crash data. One of the objec-

tives of the study presented here was to initiate development of model-based mapping

for roadway traffic crashes. Vehicle crash records and roadway inventory data from

Texas were used to illustrate the nature of the data, the structure of models, and

results from the modeling.

Overall, TxDOT maintains nearly 80,000 centerline-miles of paved roadways,

serving about 400 million vehicle-miles per day. Over 63% of the centerline-miles

are rural two-lane roads that, on average, carry fewer than 2,000 vehicles per day.

These low volume rural roadways carry only about 8% of the total vehicle-miles on

state-maintained (or on-system) highways and have less than 7% of the total reported

on-system vehicle crashes. Due to the low volume and relatively low crash frequency

on these roads, it is often not deemed cost-effective to upgrade these roads to the

preferred design standards. However, vehicles on these roadways generally travel at

high speeds and thus tend to have relatively more severe injuries when vehicle crashes
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occur. For example, in 1999, about 26% of the Texas on-system crashes were fatal

(K), incapacitating injury (A), and nonincapacitating injury (B) (or KAB) crashes,

compared with over 40% of the crashes on rural, two-lane, low volume on-system

roads (Fitzpatrick et al. 2001). As a result, we have chosen to focus this study on

crashes occurring on rural, two-lane, low-volume, on-system roads.

This paper is organized as follows: the next section briefly describes the sources

and nature of the data analyzed in this study, followed by a quick review of modeling

and computational techniques and a discussion of Poisson-based hierarchical Bayes

model with space-time effects and possible variants. Results from models of various

levels of complexities are then presented and compared, and we conclude with a

discussion of future work.

3.2 Description of Data

The Texas Department of Transportation (TxDOT) maintains highway develop-

ment with 25 geographic districts and each of them includes 6 to 17 counties. District

offices divide their work into area offices and area offices into local maintenance of-

fices. Design and maintenance, right-of-way acquisition, construction oversight, and

transportation planning are mainly administrated and accomplished locally due to

the diversity of climates and soil conditions in Texas. Figure 1 is a map to show

geographic districts, counties, and urbanized areas in Texas.
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Figure 1: Geographic Districts, Counties, and Urbanized Areas in Texas.

The measurements of interest in this study are Annual KAB crash frequencies

for rural, two-lane, low volume on-system roads at the county level from 1992 to 1999.

The number of reported KAB crashes by county in 1999 is shown in Figure 2. Low-

volume roads refer to road segments carrying fewer than 2,000 vehicles per day and

4,824 KAB crashes were occurred on the roads of interest in 1999. Figure 3 shows

total vehicle-miles for the same year (in millions of vehicle-miles traveled, or MVMT).

The highest, lowest, and average of the ”raw” annual KAB crash rates by county are

displayed by a bubble plot in Figure 4 and the rate represents in number of crashes

per MVMT. In Figure 4, raw crash rate is expressed in terms of the diameter of the

ball. The three balls on the lowest left corner indicate 1.0, 0.5, and 0.25 crashes per
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Figure 2: The Number of KAB Crashes on Rural, 2-Lane, Low-Volume, On-System
Roads in Each Texas County: 1999.

MVMT, respectively. The rate of county average over 8 years is 0.45 crashes/MVMT.

Note that two of the urban counties and one rural county are excluded from this study

because these counties have almost no rural two-lane roads with the level of traffic

volumes of interest.

Figure 3 shows total vehicle-miles for the same year (in millions of vehicle-miles

traveled, or MVMT). The highest, lowest, and average of the ”raw” annual KAB crash

rates by county are displayed by a bubble plot in Figure 4 and the rate represents in

number of crashes per MVMT. In Figure 4, raw crash rate is expressed in terms of

the diameter of the ball. The three balls on the lowest left corner indicate 1.0, 0.5,
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and 0.25 crashes per MVMT, respectively. The rate of county average over 8 years is

0.45 crashes/MVMT. Note that two of the urban counties and one rural county are

excluded from this study because these counties have almost no rural two-lane roads

with the level of traffic volumes of interest.

Figure 4 shows that crash rates in most counties over the eight-year period are

stable, whereas remarkable differences between the highest and the lowest rates are

found in several counties. It is clear that eastern counties have considerable higher

rates and east-west is divided in terms of the KAB crash rates. Rural roadways in the

eastern counties are limited by the rolling terrain and tend to have less driver-friendly

characteristics, with more horizontal and vertical curves (Figure 5), restricted sight

distance, and less forgiving roadside development (e.g., trees closer to the travelway

and steeper side slopes). Besides, rural roads in more and larger urbanized areas

in the east tend to have higher roadside development scores, higher access density,

and narrower lanes and/or shoulders (Fitzpatrick et al. 2001). Figure 6 shows that

the proportions related to wet-weather crashes are generally higher in northern and

eastern counties. In addition, it is found in Figure 7 that eastern counties have more

crashes at intersections than western counties.

The National Highway System Designation Act of 1995 repealed the national

maximum speed limit and returned authority to set speed limits to the states. Speed

limits for daylight on many highways in Texas were increased from 55 mph to 70 for

passenger vehicles and to 60 for trucks in early 1996. Griffin et al. (1998) investigated

relationship between speed limit raising and the number of KAB crashes increased

using monthly time series data from January 1991 to March 1997. The study indicated

that the number of KAB crashes on the roads whose speed limits were raised increased

in five out of the six highway categories considered during the post-invention periods.

Furthermore, the speed limit raising resulted in increases in both the number of
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Figure 3: Vehicle-Miles Traveled on Rural, 2-Lane, Low-Volume, On-System Roads
in Each Texas County: 1999.

injuries and fatalities related to speed, 3.3% for incapacitating injuries, 7.0% for non-

incapacitating injuries, and 14% for fatalities from 1995 to 1996. Hence, a change in

KAB crash rates in 1996 is expected in this study.

3.3 Bayesian Hierarchical Models

As part of our modeling efforts, we developed a Poisson hierarchical Bayes model

for traffic crash risk mapping at the county level for state-maintained rural, two-lane,

low volume roads (fewer than 2,000 vehicles per day) in Texas. In general, the model

consists of six components:
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Figure 4: ”Raw” Annual KAB Crash Rates in Crashes per MVMT by County: 1992-
1999 (Highest, Average, and Lowest in the 8-Year Period). The Diameter of the Dark
Outer Circle Represents the Highest Crash Rate; the Light Gray Intermediate Band
Represents the Average Crash Rate; and the Medium Gray Inner Circle Represents
the Lowest Crash Rate.

• an offset term: the amount of travel occurring on state-maintained rural, two-

lane, low volume roads (fewer than 2,000 vehicles per day)

• a fixed TxDOT district effect

• a fixed or random covariate effect term

• a random spatial effect component using conditional autoregressive prior in

which the inverse of the Great Circle distance between the centroid of counties
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Figure 5: Proportion of KAB Crashes That Occurred on Sharp Horizontal Curves
in Each County (In Percent; Averaged over the 1992-1999 Period and 6 Neighboring
Counties).

is employed as the weights for structuring spatial association

• a fixed or random time effect term to represent year-to-year changes

• an exchangeable random effect component representing a pure independent ran-

dom local spatio-temporal variation that is independent of all other components

in the model

In this chapter, we consider a fixed effect as an effect that is subject only to the un-

certainty associated with an unstructured noninformative prior distribution with no

unknown parameters and the sampling variation.1 A fixed effect can, however, vary
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Figure 6: Proportion of KAB Crashes That Occurred under Wet Pavement Conditions
for Each County: 1999 (In Percent; Averaged over 6 Neighboring Counties).

by individual districts, counties, and time periods (see the discussion of model hierar-

chy). Note also that unlike the traditional traffic crash prediction models (Maher and

Summersgill 1996; Miaou 1996; and Hauer 1997), which were concerned principally

with modeling the fixed effects for individual sites (e.g., road segments or intersec-

tions), this study focuses more on exploring the structure of the random component

of the model for area-based data. The rediscovery by statisticians in the last 15+

years of the Markov chain Monte Carlo (MCMC) methods and new developments, in-

cluding convergence diagnostic statistics, are revolutionizing the entire statistical field

(Besag et al. 1995; Gilks et al. 1996; Carlin and Louis 1996; Roberts and Rosenthal
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Figure 7: Proportion of KAB Crashes That Were Intersection, Intersection Related,
or Driveway Access Related for Each County: 1999 (In Percent).

1998; Robert and Casella 1999). At the same time, improved computer processing

speed and lower data-collection and storage costs are allowing more complex statisti-

cal models to be put into practice. These complex models are often hierarchical and

high dimensional in their probabilistic and functional structures. Furthermore, many

models also need to include dynamics of unobserved and unobservable (or latent)

variables; deal with data distributions that are heavily tailed, highly overdispersed,

or multimodal; and work with datasets with missing data points. MCMC provides

a unified framework within which model identification and specification, parame-

ter estimation, performance evaluation, inference, prediction, and communication of
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Figure 8: Proportion of KAB Crashes Involving Vehicles That Ran Off Roads and
Hit Fixed Objects on the Roadside for Each County: 1999 (In Percent; Averaged over
6 Neighboring Counties).

complex models can be conducted in a consistent and coherent manner.

With today’s desktop computing power, it is relatively easy to sample the pos-

terior distributions using MCMC methods that are needed in full Bayes methods.

The advantage of full Bayesian treatment is that it takes into account the uncer-

tainty associated with the estimates of the random-effect parameters and can provide

exact measures of uncertainty. Maximum likelihood methods, on the other hand,

tend to overestimate precision, because they ignore this uncertainty. This advan-

tage is especially important when the sample size is small. Other estimation meth-
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ods for hierarchical models are also available, e.g., iterative generalized least squares

(IGLS), expected generalized least squares (EGLS), and generalized estimating equa-

tions (GEE). These estimation procedures tend to focus on obtaining a consistent

estimate of the fixed effect rather than exploring the structure of the random compo-

nent of the model (Goldstein 1999).

For some problems, existing software packages such as WinBUGS (Spiegelhalter

et al. 2000) and MLwiN (Yang et al. 1999) can provide Gibbs and other MCMC

sampling for a variety of hierarchical Bayes models. For the models presented in this

paper, we relied solely on the WinBUGS codes. At present, however, the type of

spatial and temporal models available in WinBUGS is somewhat limited and will be

discussed later.

3.3.1 Notations

We let the indices i, j, and t represent county, TxDOT district, and time period,

respectively, where i = 1, 2, · · · , I; j = 1, 2, · · · , J ; and t = 1, 2, · · · , T .

For the data analyzed, we have 251 counties, divided among 25 districts, and

8 years of annual data (i.e., I = 251, J = 25, and T = 8). As indicated earlier,

each district may include 6 to 17 counties, which will be represented by county set

Dj, where j = 1, 2, · · · , 25. That is, Dj is a set of indices representing counties

administered by TxDOT district j.

We define variable Yit as the total number of reported KAB crashes on the rural

road of interest in county i and year t. We also define νit as the observed total vehicle-

miles traveled (VMT) in county i and year t for the roads in discussion, representing

the size of the population at risk. In addition, we define xitk as the kth covariate

associated with county i and year t. Three covariates were considered.
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3.3.2 Covariates

The first covariate xit1 is a surrogate variable intended to represent the percentage

of time that the road surface is wet due to rain, snow, etc. Not having detailed

weather data, we chose to use the proportion of KAB crashes that occurred under

wet pavement conditions as a surrogate variable. In addition, we do not expect general

weather characteristics to vary much between neighboring counties. Therefore, the

proportion for each county is computed as the average of this and six other neighboring

counties that are close to the county in terms of their Great Circle distances. We do,

however, expect weather conditions to vary significantly from year to year. Thus, for

each county i, we have xit1 change with t.

The second covariate xit2 is intended to represent spatial differences in the number

of sharp horizontal curves in different counties. The actual inventory of horizontal

curves on the highway network is not currently available. However, when a traffic

crash occurs, site characteristics including the horizontal curvature are coded in the

traffic crash database. We chose to use the proportion of KAB crashes that occurred

on sharp horizontal curves in each county as a surrogate variable, and we define

a sharp horizontal curve as any road segment having a horizontal curvature of 4

or higher degrees per 100-foot arc. Given that this roadway characteristic is mainly

driven by terrain variations, we do not expect this characteristic to vary much between

neighboring counties. Therefore, as in the first covariate, the proportion for each

county is computed as the average of this and six other neighboring counties that are

close to the county in terms of their Great Circle distances. Furthermore, for this

type of road, we did not expect the proportion to vary in any significant way over the

eight-year period in consideration. Thus, the average proportion from 1992 to 1999

was actually used for all t. In other words, for each county i, xit2 are the same for all
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t.

The third covariate xit3 is a surrogate variable intended to represent degrees

of roadside hazards. As in the second covariate, the actual inventory of hazards

(ditches, trees, and utility poles), available clear zones, and geometry and surface

type of roadsides are not available. Similar to the first covariate, a surrogate variable

was devised to indicate the proportion of KAB crashes that ran off roads and hit

fixed objects on the roadside. We also do not expect this characteristic to vary much

between neighboring counties over the eight-year period in consideration. Again, the

average proportion from 1992 to 1999 was used for all t, i.e., for each county i, xit3

are the same for all t. Figure 8 shows the spatial distribution of this variable.

The use of these surrogate variables is purely data driven (as opposed to theory

driven) and empirical in nature. We use the proportion of wet crashes (xit1) as an

example to explain the use and limitation of such surrogate measures in practice.

First, variables such as ”percentage of wet crashes” and ”wet crashes to dry crashes

ratio” are commonly used in wet-weather accident studies. Examples in the literature

include Coster (1987), Ivey and Griffin (1990), and Henry (2000). These authors

reviewed various wet-weather accident studies, and the relationships between 1) skid

numbers (or friction values) of pavement and percentage of wet weather accidents,

and 2) skid numbers and wet/dry pavement surfaces were quite well documented.

Although they were conducted with limited data, these wet weather accident studies

also suggest that crash rates are higher during wet surface conditions than under dry

surface conditions, and some indicate that traffic volumes are reduced by about 10%

to 20% during wet weather in rural areas (no significant reduction was found in urban

areas).

Second, the use of percentage of wet crashes as a surrogate variable in this study

to explain the variation of crash rates by county mixes several possible relationships
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and has limited explanatory power. A positive correlation of percentage of wet crashes

and crash rate mixes has at least two possible relationships: 1) the effect of wet surface

conditions on crash rates, and 2) the effect of rainfall (or other precipitation) on traffic

volumes. Everything else being equal, if the wet surface crash rate is the same as

the dry surface crash rate, then we do not expect this positive correlation to be

statistically significant in the model regardless of the relative traffic volumes during

wet or dry surface conditions. We interpret a positive correlation as an indication

that a higher crash rate is indeed experienced during wet surface conditions than

during dry conditions. However, because of the lack of data on traffic volumes by

wet and dry surface conditions, we are not able to quantify the difference in crash

rates under the two surface conditions. This is the main limitation in using such a

surrogate measure.

3.3.3 Probabilistic and Functional Structures

The space-time models considered in this study are similar to the hierarchical

Bayes generalized linear model used in several disease mapping studies cited earlier.

At the first level of hierarchy, conditional on mean µit, Yit values are assumed to be

mutually independent and Poisson distributed as

Yit ∼ Poisson(µit). (3.1)

The mean of the Poisson is modeled as

µit = νitλit, (3.2)

where total VMT νit is treated as an offset and λit is the KAB crash rate. The rate,

which has to be non-negative, is further structured as

log(λit) =
T∑
t=1

J∑
j=1

αjtI(i ∈ Dj) +
∑

k

βkxitk + δt + ηi + eit, (3.3)
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where I(S) is the indicator function of the set S. This makes the first term on the

right hand side of equation (3.3) the intercept representing district effects at different

years; xitk are covariates discussed earlier and their interactions; δt represents year-

to-year time effects due, e.g., to speed limit, weather, and socioeconomic changes; ηi

is a random spatial effect; eit is an exchangeable, unstructured, space-time random

effect; and αjt and βk are regression parameters to be estimated from the data. As

defined earlier, Dj is a set of indices representing counties administered by TxDOT

district j.

Many possible variations of equation (3.3) were and could potentially be con-

sidered in this study. For each component that was assumed to have a fixed effect,

the second level of hierarchy was chosen to be an appropriate noninformative prior.

On the other hand, for each component that was assumed to have a random effect,

the second level of hierarchy was a prior with certain probabilistic structure that

contained unknown parameters. The priors for these unknown parameters (called

hyperpriors) constitute the third level of the hierarchy. What follows are discussions

of the variation of models considered by this study, some limitations of the WinBUGS

software, and possible extensions of the models considered.

The intercept term, which represents the district effect over time, was assumed

to have fixed effects with noninformative normal priors. For the covariates xitk, we

considered both fixed and random effects. That is, βk was assumed to be either a fixed

value or random variable. The three covariates discussed earlier and three of their

interactive terms, xit4 = xit1xit2, xit5 = xit1xit3, and xit6 = xit2xit3, were included in

the model. It is important to note that the values of these covariates were centered for

better numerical performance. Noninformative normal priors were also assumed for

fixed-effect models. For the random-effect model, βk, k = 1, 2, · · · , 6, are assumed to

be independent and normally distributed with mean µβk
and variance σ2

βk
, expressed
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as N(µβk
, σ2

βk
). Noninformative normal and inverse gamma priors (or more precisely

hyperpriors) were assumed for µβk
and σ2

βk
, respectively.

With 251 counties and 8 years of data, the data are considered to be quite rich

spatially but rather limited temporally, as are data in many disease mapping studies.

Because of this limitation, we only considered two simple temporal effects for δt : fixed

effects varying by t (or a year-wise fixed-effect model) and an order-one autoregressive

model (AR(1)) with the same coefficient for all t. Again, noninformative priors were

used for both models. For the model to be identifiable, in the fixed-effect model, δ1

was set to zero, and in the AR(1) model, δ1 was set to be an unknown fixed constant.

From the fixed effect, we expected to see a change in δt at t = 5 (1996), due in part

to the speed limit increase in that year.

Recent disease mapping research has focused on developing more flexible, yet

parsimonious, spatial models that have attractive statistical properties. Based on

the Markov random field (MRF) theory, Besag’s conditional autoregressive (CAR)

model (Besag 1974, 1975) and its variants are by far the most popular ones adopted

in disease mapping. We considered several Gaussian CAR models, all of which have

the following general form

p(ηi|η−i) ∝ r1/2
η exp

{
− rη

2

∑
i∗∈Ci

wii∗(ηi − ηi∗)
2

}
, (3.4)

where η−i represents all η except ηi, Ci is a set of counties representing ”neighbors”

of county i, wii∗ is a positive weighting factor associated with the county pair (i, i∗).

This equation is shown to be equivalent to

p(ηi|η−i) ∼ N(µηi
, σ2

ηi
),

where µηi
=

∑
i∗∈Ci∗

(wii∗/wi+)ηi∗ , σ
2
ηi

= 1/(rηwi+), and wi+ =
∑

i∗∈Ci∗
wii∗ . In our

study, we had wii∗ = 1/dcii∗ , where dii∗ is the Great Circle distance between the
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centroid of county i and i∗, and c is a constant parameter equal to 1 or 2 (note that

dii∗ ranges roughly from 30 to 700 miles.) With regard to the number of neighbors,

we adopted a more generous definition by allowing every other county i∗(6= i) to be

a neighbor of county i.

In theory, we could treat the constant c as an unknown parameter and estimate it

from the data. However, in the current version of WinBUGS, the weights of the built-

in CAR spatial model do not allow unknown parameters (Spiegelhalter et al. 2000),

which we found to be a limitation for our application. In a separate attempt to find a

good range of the decay constant for the inverse distance weight in the CAR model,

we adopted a simpler model that included only the offset, the yearwise time effect,

and the Gaussian CAR components. We estimated the same model with different c

values between 0 and 4 and found that model performance was best achieved when the

decay constant was set between 1 and 2 (based on the deviance information criterion

to be discussed shortly). Weights with an exponential form wii∗ = exp(−cdii∗) were

also examined but are not reported in this paper.

We also explored the L-1 CAR models of the following form:

p(ηi|η−i) ∝ rη exp

{
− rη

∑
i∗∈Ci

wii∗ |ηi − ηi∗|
}
, (3.5)

where rη is a fixed-effect parameter the same for all i. Weights with the same c as in

the Gaussian CAR models were considered. WinBUGS constrains the sum of ηi to

zero to make both the Gaussian CAR and L-1 CAR spatial models identifiable. A

non-informative gamma distribution was used as hyperpriors for rη in equations (3.4)

and (3.5).

The spatial correlation structure represented by equations (3.4) and (3.5) is con-

sidered global in the sense that the distribution functions and associated parameters

(c and rη) do not change by i. More sophisticated models allowing spatial correla-
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tion structure to be adaptive or location specific are being actively researched (e.g.,

Lawson 2000; Green and Richardson 2001). Still, computational challenges seem to

be keeping researchers from exploring more flexible, yet parsimonious, space-time in-

teractive effects, and more research in this area needs to be encouraged (Sun et al.

2000).

For the exchangeable random effects, we considered two commonly used distri-

butions. One distribution assumed eit to be independent and identically distributed

(iid) as

eit ∼ N(0, σ2
e). (3.6)

Another distribution assumed an iid one-parameter gamma distribution as

exp(eit) ∼ G(ψ, ψ), (3.7)

which has a mean equal to 1 and a variance 1/ψ. The use of a one-parameter gamma

distribution (instead of a two-parameter gamma) ensures that all model parameters

are identifiable. Again, non-informative inverse gamma and gamma distributions

were used as hyperpriors for σ2
e and ψ, respectively.

3.4 Deviance Information Criterion and Variants

The deviance information criterion (DIC) has been proposed to compare the

fit and complexity (measured by the effective number of parameters) of hierarchical

models in which the number of parameters is not clearly defined (Spiegelhalter et al.

1998; Spiegelhalter et al. 2002). DIC is a generalization of the well-known Akaike

Information Criterion (AIC) and is based on the posterior distribution of the deviance

statistic

D(θ) = −2 log(p(y|θ)) + log(f(y)),
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where p(y|θ) is the likelihood function for the observed data vector y given the pa-

rameter vector θ, and f(y) is some standardizing function of the data alone. For the

Poisson model, f(y) is usually set as the saturated likelihood, i.e., f(y) = p(y|µ = y)

where µ is a vector of the statistical means of vector y.

DIC is defined as a classical estimate of fit plus twice the effective number of

parameters, which gives

DIC = D(θ̄) + 2pD = D̄ + pD, (3.8)

where D(θ̄) is the deviance evaluated at θ̄, the posterior means of the parameters

of interest; pD is the effective number of parameters for the model; and D̄ is the

posterior mean of the deviance statistics D(θ).

As with AIC, models with lower DIC values are preferred. From equation (3.8),

we can see that the effective number of parameters pD is defined as the difference

between the posterior mean of the deviance D̄ and the deviance at the posterior

means of the parameters of interest D(θ̄)

pD = D̄ −D(θ̄).

It was shown that in nonhierarchical models (or models with negligible prior infor-

mation) DIC is approximately equivalent to AIC. It has also been emphasized that

the quantity of pD can be trivially obtained from an MCMC analysis by monitoring

both θ and D(θ) during the simulation. For the random-effect model considered in

equations (3.1) through (3.3), the parameter vector θ should include αjt, βk, δt, ηi

and eit for all i, j, k, and t.

In addition to DIC values and associated quantities D̄, D(θ̄), and pD, we also used

some goodness-of-fit measures that attempted to standardize DIC in some fashion.
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This includes DIC divided by sample size n and R2
DIC , which defined as

R2
DIC = 1− DICmodel −DICref

DICmax −DICref
(3.9)

where DICmodel is the DIC value for the model under evaluation, DICmax is the max-

imum DIC value under fixed one-parameter model, DICref is a DIC values from a

referenced model that, ideally, represents some expected lower bound of the Poisson

hierarchical model for a given dataset.

Clearly, R2
DIC is devised in the spirit of the traditional r2 goodness-of-fit measure

for regression models. Through simulations, Miaou (1996) evaluated several similar

measures using AIC for overdispersed Poisson models. Since DIC is known to be non-

invariant with respect to the scale of the data (Spiegelhalter et al. 1998; Spiegelhalter

et al. 2002), an analytical development of DICref is difficult. However, we know that

for a model with a good fit, D̄ should be close to sample size n (Spiegelhalter et al.

2002). We, therefore, chose DICref = n as a conservative measure for computing

R2
DIC ; that is, the effective number of parameters was essentially ignored.

Another goodness-of-fit indicator considered is 1/ψ, which is the variance of

exp(eit) under the gamma model, indicating the extent of overdispersion due to ex-

changeable random effect. In theory, this value could go to zero when such effects

vanish. Thus, similar to R2
DIC , we can devise the following measure:

R2
ψ = 1− (1/ψ)model

(1/ψ)max
,

where (1/ψ)model is the variance of exp(eit) for the model under consideration, and

(1/ψ)max is the amount of overdispersion under the simplest model. In essence,

(1/ψ)ref , the expected lower bound, is set to zero.
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3.5 Results

Table 1 lists 42 models of various complexities examined by this study. These

models include simplified versions of the general model presented in equations (3.2)

and (3.3), as well as models for reference purposes, e.g., models 1 to 3. Model 1 is

a saturated model, in which the estimates of the Poisson means µ̂it are equal to yit.

Model 2, expressed as α∗0, is a one-parameter Poisson model without the offset, and

model 3 is another one-parameter model with the offset. Essentially, model 2 focuses

on traffic crash frequency and model 3 on traffic crash rate.

In Table 1, the following symbols are used:

• αj stands for fixed district effects.

• βF and βN respectively represent fixed covariate effects and random covariate

effects with independent normal priors.

• δF and δAR respectively stand for fixed time and AR(1) time effects.

• For the random spatial effects, ηN1 and ηL1, represent the Gaussian and L-1

CAR models shown in equations (3.4) and (3.5), respectively, and both have a

decay constant c equal to 1.

• ηN2 and ηL2 represent similar spatial models with a decay constant c equal to

2.

• The components eN and eG represent exchangeable random effects as presented

in equations (3.6) and (3.7), respectively.

We experienced some computational difficulties for the models that included the βN

component when we tried to include all six main and interactive effects. Therefore,

for all models with the βN component, we only included the three main effects.
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In computing R2
DIC , DICmax is defined as the maximum DIC value under a fixed

one-parameter model, which is model 2 in the table when crash frequency is the focus

and model 3 when crash rate is the focus. Similarly, in computing R2
ψ, (1/ψ)max is

set as the amount of overdispersion under the simplest model with an eG error com-

ponent, which is model 11 for models focusing on the crash rate.

As a rule, in our development we started with simpler models, and the posterior

means of the estimated parameters of these simple models were then used to produce

initial values for the MCMC runs of more complex models.

In general, the models presented in the table are ordered by increasing com-

plexity: intercepts only, intercepts + covariate effect, intercepts + covariate effect

+ exchangeable effect, intercepts + covariate effect + exchangeable effect + spa-

tial/temporal effects, and so on. Models 7 to 9 and the last eight models include a

more complex fixed-effect intercept term. The models are presented in the table in

line with the order in which they were estimated with the WinBUGS codes.

The MCMC simulations usually reached convergence quite quickly. Depending

on the complexity of the models, for typical runs, we performed 10,000 to 20,000 it-

erations of simulations and removed the first 2,000 to 5,000 iterations as burn ins. As

in other iterative parameter estimation approaches, good initial estimates are always

the key to convergence. For some of the models, we have hundreds of parameters and

MCMC monitoring plots based on the Gelman-Rubin statistics (which are part of the

output from the WinBUGS codes). Because estimated parameters usually converge

rather quickly, their convergence plots, which are not particularly interesting to show,

are not presented here.

From DIC and other performance measures in Table 1, several observations can

be made:
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• For the exchangeable random effect, models with a gamma assumption (equa-

tion 3.6) are preferred over those with a normal assumption (equation 3.5).

This is observed by comparing the performance of, e.g., model 15 with model

14, model 18 with model 17, and model 27 with model 26.

• Models with fixed covariate effects are favored over their random-effect coun-

terparts. This is seen by comparing, e.g., model 25 with model 24 and model

33 with model 34.

• Models with fixed time effects (e.g., model 23) performed better than those with

AR(1) time effects (e.g., model 22).

• Models with separate district and time effects (αj and δt) are preferred over

those with joint district time effects (αj). For example, we can compare the

performance of model 27 with model 42 and model 40 with model 24.

• For comparable model structures, adding a spatial component decreases the DIC

value quite significantly, which indicates the importance of the spatial compo-

nent in the model. As an example, we can compare model 17 with model 20.

Except for the spatial component, these two models have the same structures

(in intercept terms, covariate effects, and the error component). Model 17 does

not have any spatial component, while model 20 includes a normal CAR model.

The DIC value drops from 3,287 for model 17 to 2,755 for model 20, a very

significant reduction when compared with the differences in DIC values for var-

ious models presented in Table 1. Other comparisons that would give the same

conclusion include model 19 vs. model 22 or model 38 with models 40 and 42.

• No particular spatial CAR models considered by this study, i.e., ηN1, ηL1, ηN2,

or ηL2, were clearly favored over other CAR models.
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• Despite the empirical nature of the two goodness-of-fit measures R2
DIC and R2

ψ,

seeing some of the better models that have values exceeding 0.9 provides some

comfort as to the general explanatory capability of these models.

Table 2 shows some statistics of the estimated posterior density of a selected

number of parameters for model 27, which was one of the best models in terms of the

DIC value and other performance measures discussed above. Also, Figure 9 presents

estimated posterior mean crash rates, as well as their 2.5 and 97.5 percentiles, in a

bubble plot for 1999 by county.

From Table 2, one can see that the fixed-time effect δt jumps from about 0 in

previous years to about 0.05 in t = 4 (1995) and has another increase to about 0.09

at t = 5 (1996). The value comes down somewhat (about 0.06) in 1998 (t = 7) and

1999 (t = 8) but is still significantly higher than those in the preintervention periods.

It has been suggested that the jump in 1995 was perhaps due to higher driving speeds

by drivers in anticipation of a speed limit increase, and higher crash rates in 1996

were due in part to the speed limit increase and less favorable winter weather (Griffin

et al. 1998). Lower δt values in 1998 and 1999 may suggest that drivers had adjusted

themselves and become more adapted to driving at higher speeds.

From the same model (model 27), estimates of αj, i.e., district effects, range from

about -0.5 to -1.5, indicating significant district-level variations in crash risk. The

covariate effects βk indicate that the horizontal curve variable is the most influential

and statistically significant variable in explaining the crash rate variations over space.

Wet pavement condition is the second-most significant variable. The ran-off-road

fixed-object variable is not a statistically significant variable, which suggests that

ran-off-road fixed-object crash risk is correlated with and perhaps exacerbated by the

presence of sharp horizontal curves and wet pavement conditions.
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Table 2: Example MCMC Simulation Output for Model 27: Some Statistics of the
Estimated Posterior Density for a Selected Number of Parameters. Set δ1 to 0 as
Baseline.

Parameter Mean Standard error 2.5% Median 97.5%
α1 -0.963 0.154 -1.269 -0.964 -0.662
α2 -0.639 0.148 -0.929 -0.635- -0.356
α3 -1.131 0.162 -1.450 -1.128 -0.823
α4 -1.240 0.183 -1.595 -1.237 -0.882
α5 -1.288 0.155 -1.595 -1.283 -0.993
α6 -1.427 0.182 -1.768 -1.429 -1.066
α7 -1.376 0.128 -1.629 -1.375 -1.127
α8 -1.218 0.130 -1.479 -1.215 -0.978
α9 -0.984 0.158 -1.283 -0.986 -0.666
α10 -0.582 0.162 -0.889 -0.584 -0.260
α11 -0.610 0.156 -0.924 -0.602 -0.321
α12 -0.498 0.208 -0.918 -0.489 -0.097
α13 -0.919 0.149 -1.232 -0.914 -0.634
α14 -0.668 0.137 -0.943 -0.668 -0.398
α15 -0.770 0.139 -1.045 -0.772 -0.503
α16 -0.893 0.165 -1.216 -0.891 -0.551
α17 -0.754 0.139 -1.030 -0.756 -0.495
α18 -0.630 0.170 -0.966 -0.621 -0.294
α19 -0.649 0.171 -0.975 -0.645 -0.326
α20 -0.877 0.208 -1.282 -0.880 -0.459
α21 -1.005 0.308 -1.656 -0.981 -0.442
α22 -1.561 0.224 -1.980 -1.566 -1.114
α23 -1.189 0.147 -1.483 -1.187 -0.901
α24 -1.114 0.378 -1.831 -1.127 -0.379
α25 -1.401 0.156 -1.712 -1.396 -1.094
δ1 0 0 0 0 0
δ2 0.0132 0.026 -0.0380 0.0129 0.0645
δ3 -0.0156 0.027 -0.0677 -0.0156 0.0376
δ4 0.0508 0.027 -0.0009 0.0508 0.1034
δ5 0.0929 0.027 0.0418 0.0926 0.1453
δ6 0.0886 0.027 0.0365 0.0886 0.1408
δ7 0.0632 0.027 0.0111 0.0631 0.1155
δ8 0.0603 0.026 0.0089 0.0601 0.1123
β1 0.00286 0.0018 -0.00079 0.0029 0.00648
β2 0.00723 0.0019 0.0035 0.00721 0.01103
β3 -0.00057 0.0014 -0.00346 -0.00057 0.00229
β4 -0.00004 0.0002 -0.00050 -0.00004 0.0004
β5 0.00009 0.0002 -0.00028 -0.00010 0.00048
β6 -0.00015 0.0002 -0.00045 -0.00015 0.00014
ψ 46.52 5.04 37.83 46.18 57.41

1/ψ 0.0023 0.0002 0.0019 0.0023 0.0028
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3.6 Discussion

Most of the methodologies developed in disease mapping were intended for area-

based data, e.g., number of cancer cases in a county or census tract during a study

period. While we demonstrate the use of some of these methodologies for roadway

traffic crashes at the county level, we recognize that, fundamentally, traffic crashes

are network-based data, whether they are intersection, intersection-related, driveway

access-related, or nonintersection crashes. Figure 10 gives an example of the locations

of KAB crashes on the state-maintained highway network of a Texas county in 1999.

Thus, an obvious extension of the current study is to develop risk maps for

traffic crashes on road networks. The problem is essentially one of developing hier-

archical models for Poisson events on a network (or a graph). We expect that, in

different applications, these maps may need to be developed by roadway functional

classes, vehicle configurations, types of crashes (e.g., those involving drunk drivers),

and crash severity types (e.g., fatal, injury, and noninjury crashes). We also expect

these network-based maps to be useful for roadway safety planners and engineers to

1) estimate the cost and benefit of improving or upgrading various design and op-

erational features of the roadway, 2) identify and rank potential problem roadway

locations (or hotspots) that require immediate inspection and remedial action, and

3) monitor and evaluate the safety performance of improvement projects after the

construction is completed. Such maps need to be constructed from quality accident-,

traffic-, and roadway-related databases and with scientifically grounded data visual-

ization and modeling tools.

Modeling and mapping of traffic crash risk need to face all the challenges just as

in the field of disease mapping, i.e., multilevel data and functional structures, small

areas of occurrence of studied events at each analysis unit, and strong unobserved
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Figure 9: Estimated KAB Crash Rates in Crashes per MVMT by County from Model
27: 1999 (97.5 Percentile Mean, and 2.5 Percentile of the Posterior Density). The
Diameter of the Dark Outer Circle Represents the 97.5 Percentile Estimates; the
Light Gray Intermediate Band Represents the Mean; and the Medium Gray Inner
Circle Represents the 2.5 Percentile Estimates.

heterogeneity. The hierarchical nature of the data can be described as follows: In a

typical roadway network, other than the fact that roadway networks are connected

or configured in specific ways, individual road entities are classified by key geomet-

ric characteristics (e.g., segments, intersections, and ramps), nested within roadway

functional or design classifications, further nested within operational and geographical

units, and subsequently nested within various administrative and planning organiza-

tions. Strong unobserved heterogeneity is expected because of the unobserved driver
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Figure 10: Locations of KAB Crashes on the State-Maintained Highway Network of
a Texas County in 1999.

behaviors at individual roadway entities that are responsible for a large percentage

of crash events.

Every state maintains databases on vehicle crash records and roadway inventory

data. We hope that the results of our study using Texas data will motivate the de-

velopment of similar studies in other states. We also envision that the network-based

hierarchical models we propose can potentially be utilized in other transportation

modes and in computer and communication network studies to further the explo-

ration and interpretation of incidence data. Furthermore, the hierarchical Bayes

models with spatial random effects described in this paper can be used to develop
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more efficient sampling surveys in transportation that alleviate multilevel and small-

area problems. Finally, the models have been shown to have the ability to account for

the high variance of estimates in low-population areas and at the same time clarify

overall geographic trends and patterns, which make them good tools for addressing

some of the equity issues required by the Transportation Equity Act for the 21st

Century.
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CHAPTER IV

MULTIVARIATE HIERARCHICAL SPATIAL MODELS

4.1 Introduction

Though highway safety community is a latecomer in the application of gener-

alized linear models (GLM) in data analysis, recently there a surge of applications

of GLM in highway safety research. The use of overdispersed Poisson, including the

negative-binomial regression models and their variations has become very popular.

Examples include Morris et al. (1991), Hauer (1992), Miaou et al. (1992), Miaou and

Lum (1993), Miaou (1994), Miaou (1996), Bonneson and McCoy (1996), Mather and

Summersgill (1996), Shankar et al. (1997), and Vogt and Bared (1998). Adjusting

for the regression-to-the-mean and local effect has been an important problem sur-

rounding many “before-after” safety evaluation and problem site identification studies

using empirical-Bayes estimators (Hauer 1992; Christiansen et al. 1992; Flowers and

Griffin 1992). Also, the use of logistic and ordered probit regression models has now

become fairly common in studying the factors that affect the crash severity (Duncan

et al. 1998; McGinnis et al. 1998).

Most of the above mentioned papers ignore the spatial dependence among the

crash data. A very recent exception is Miaou et al. (2003) who studied the geograph-

ical pattern of crashes in the state of Texas. The analysis of spatially referenced data

has been an increasingly active area of both methodological and applied statistical

research. Sophisticated computer programs known as geographic information system

(GIS) have revolutionized the analysis and display of such data sets, through their

ability to “layer” multiple data sources over a common study area. Finally, Markov

chain Monte Carlo (MCMC) algorithms enable the fitting of complex hierarchical
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models in a full Bayesian framework, permitting full posterior inference for underly-

ing parameters in complex model settings. That way we can avoid the naive empirical

Bayes analysis which usually underestimates uncertainties related to the model.

In this chapter, we will explore the extension of spatial models in a multivariate

setup. Such models are necessary to analyze more than one type of crashes simulta-

neously, since a number of different crashes may share the same set of risk factors.

As an example, for different types of crashes, the risk factor could be the excessive

curvature or the bad condition of the road. The main purpose of this work is to

borrow strength or share information from similar sources, as well as the most di-

rectly available sources, to improve crash risk estimates. Estimation of crash risk for

a particular crash type may be improved by using information from other types of

crash.

We will propose four multivariate models to improve crash risk estimates. In

the first two models, the correlation among the regions is induced by a random error

term and this is a spatial analog of “shared component” models proposed by Knorr-

Held and Best (2000). The third model will be based on the correlated conditional

autoregressive (CAR) structure where the correlation is induced through the scale

parameters of the CAR model. The final model is a multivariate CAR model following

a suggestion of Mardia (1988). A Bayesian criterion is used to choose the best fitted

model for our data.

The improper prior is usually used in prior specification of Bayesian hierarchical

modeling, which makes it imperative to check that the joint posterior is proper.

Ghosh et al. (1998) provided sufficient conditions to obtain a proper posterior for the

univariate CAR prior. We will extend the results in the multivariate set up.

The outline of the remaining sections is as follows. In Section 2 of this Chapter,

we review briefly the univariate hierarchical Bayesian model. Several versions of
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multivariate hierarchical Bayesian models are introduced in Section 3. Data analysis

based on the multivariate models is carried out and some concluding remarks are

made in Section 4. The proofs of some of the technical results are deferred to the

Appendices.

4.2 Univariate Hierarchical Model

Let y1, y2, · · · , yn denote measurements in a given period of time for the n regions.

Conditional on θ = (θ1, · · · , θn)T , y1, · · · , yn are assumed to be independent with

pdf’s

p(yi|θi) = exp(yiθi −Ψ(θi))h(yi).

This is the one-parameter exponential family model.

Ghosh et al. (1999) developed a hierarchical model as θi = qi + xTi β + ηi + ei

for i = 1, · · · , n, where qi is a known parameter. The xi are region-level covariates

, having parameter coefficient β. The ei capture region-wide heterogeneity via an

exchangeable normal prior. Finally, the ηi are the parameters that make this a truly

spatial model by capturing regional clustering. They assumed that the spatial random

effects ηi and random errors ei were mutually independent, Also the ηi have a pairwise

difference prior with joint pdf

p(η) ∝ (σ2
η)
−1/2 exp

{
− 1

2σ2
η

∑

i6=j
wij(ηi − ηj)

2

}
, (4.1)

where wij = wji. This is the so-called pairwise difference prior considered quite

extensively in Besag et al. (1995). The errors ei were assumed to be iid with 0

mean and variance σ2
e . Finally, β, σ2

e , and σ2
η were mutually independent and β ∼

Uniform(Rp), (σ2
e)
−1 ∼ G(a/2, b/2), and (σ2

η)
−1 ∼ G(c/2, d/2). Throughout this

chapter, a random variable Z is said to have a G(α, p) distribution if it has a pdf of
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the form f(z) ∝ exp(−αz)zp−1. The joint posterior under the given prior is

π(θ,β,η, e, rη, re|y) ∝
∏
i

p(yi|θi)

× rn/2e exp

{
− re

2

n∑
i=1

(θi − qi − xTi β − ηi)
2

}

× rn/2η exp

{
− rη

2

∑

1≤i<l≤n
wil(ηi − ηl)

2

}

× r(d/2)−1
η exp

(
− crη

2

)
r(b/2)−1
e exp

(
− are

2

)
, (4.2)

where rη = σ−2
η and re = σ−2

e .

Ghosh et al. (1999) provided sufficient conditions to ensure that the posterior is

proper. The Bayesian analysis was implemented by the Markov chain Monte Carlo

(MCMC) numerical integration technique. The full conditionals needed for such

implementation are available in Ghosh et al. (1999).

4.3 Multivariate Hierarchical Model

4.3.1 Introduction

In this section, we propose four multivariate hierarchical Bayesian spatial mod-

els. Let yi = (yi1, · · · , yiq)T , i = 1, · · · , n denote the n response vectors. For our

specific example, the responses are the numbers of crashes at n regions due to q dif-

ferent causes. Analogous to the previous section, we begin with the one-parameter

exponential family model

p(yij|θij) = exp[θijyij − ψ(θij)]h(yij), (4.3)

j = 1, · · · , q; i = 1, · · · , n. In the next stage, we model the θij as

θij = xTijβ + ηij + eij (j = 1, · · · , q; i = 1, · · · , n), (4.4)
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where the xij are p-component column vectors (p < q). Writing θi = (θi1, · · · , θiq)T ,

ηi = (ηi1, · · · , ηiq)T , X i = (xi1, · · · ,xiq) and ei = (ei1, · · · , eiq)T , we can rewrite (4.4)

as

θi = X iβ + ηi + ei, i = 1, · · · , n. (4.5)

In the above, the errors ei and the spatial effects ηi are assumed to be mutually inde-

pendent. Throughout this chapter, we assume that ei ∼ N(0,Σe) and rank(X i) = p.

We will introduce various spatial priors for the ηi in the next four subsections. In

particular, we will consider various CAR priors for the ηi. We will label these priors

as CAR priors I-IV.

4.3.2 CAR Prior I

We first consider the case when ηi = ηi1q, i = 1, · · · , n. This amounts to the

assumption that all the components of the spatial vector ηi in a given region are

equal, i.e. the spatial influence is not cause-specific. For η1, · · · , ηn, we consider the

pairwise difference prior as given in (4.1). At the final stage of the hierarchical model,

it is assumed that β, rη and Σe are mutually independent with β ∼ uniform(Rp),

rη ∼ G(a/2, b/2), and Σe has an inverse Wishart distribution with pdf

π(Σe) ∝ |Σe|−(γ+q+1)exp[−(1/2)tr(Σ−1
e A)].

This distribution will be written symbolically as IW(A, γ). Now writing

y = (y11, · · · , y1q, · · · , yn1, · · · , ynq)T , η = (η1, · · · , ηn)T and θT = (θT1 , · · · ,θTn ),

the joint posterior is given by

π(θ,β,η,Σe, rη|y) ∝
∏
i,j

p(yij|θij)

× |Σe|−n/2 exp

{
− 1

2

n∑
i=1

(θi −K1
i )
TΣ−1

e (θi −K1
i )

}
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× rn/2η exp

{
− rη

2

∑

1≤i<l≤n
wil(ηi − ηl)

2

}

× |Σe|−(γ+q+1)/2 exp

{
− 1

2
trΣ−1

e A

}

× r(b/2)−1
η exp

(
− arη

2

)
, (4.6)

where K1
i = ηi1q + X iβ. The prior for β is improper. We present a general theorem

ensuring that the posterior is proper.

Theorem 4.3.1 Assume a > 0, n+ b > 0, and n > p+ q. Then, if

∫ ∞

−∞
exp{yijθ − ψ(θ)}dθ <∞

for all yij, the joint posterior pdf of the θij given y is proper.

The proof of the theorem is deferred to Appendix A.

Direct evaluation of the posterior of the θij given y involves high-dimensional

numerical integration and is not computationally feasible. Instead the Gibbs sampler

is used requiring generation of samples from the full conditional distributions of the

parameters. These conditionals are given by

rη|θ,β,η,Σe,y ∼ Gamma

(
1

2

( ∑

1≤i<l≤n
wil(ηi − ηl)

2 + a

)
,
n+ b

2

)
;

Σe|θ,β,η, rη,y ∼ IW

(
A +

n∑
i=1

(θi − ηi −X iβ)(θi − ηi −X iβ)T , n+ γ

)
;

β|θ,η,Σe, rη,y ∼ Np(µβ,Σβ);
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ηi|θ,β, ηl(l 6= i),Σe, rη,y ∼ N

(
(θi −X iβ)TΣ−1

e 1q + rηwi+η̄i

1Tq Σ
−1
e 1q + rηwi+

,
1

1Tq Σ
−1
e 1q + rηwi+

)
;

π(θi|θl(l 6= i),β, η,Σe, rη,y) ∝
∏
j

p(yij|θij) exp

{
− 1

2
(θi −K1

i )
TΣ−1

e (θi −K1
i )

}
,

where µβ = (
∑n

i=1 XT
i Σ

−1
e X i)

−1(
∑n

i=1 XT
i Σ

−1
e (θi−ηi1q)), Σβ = (

∑n
i=1 XT

i Σ
−1
e X i)

−1,

wi+ =
∑

l 6=iwli and η̄i =
∑

l 6=iwliηl/wi+. The full conditionals for rη, Σe and β are

standard, and it is easy to generate samples from them. Also, the conditionals of the

θi are log-concave, so that one can use the adaptive rejection sampling (Gilks and

Wild 1992) to generate samples from them.

4.3.3 CAR Prior II

The model considered in the previous subsection is based on the assumption that

all the components of ηi, the ith the spatial effect vector are the same (i = 1, · · · , n).

In this subsection, we consider the situation when the vectors (η1j, · · · , ηnj) (j =

1, · · · , q) are mutually independent, and η1j, · · · , ηnj have the joint prior

π(η1j, · · · , ηnj|rηj
) ∝ rn/2ηj

exp

{
− rηj

2

∑

1≤i<l≤n
wil(ηij − ηlj)

2

}
. (4.7)

Also, we assign the same prior distributions for all the other parameters as in the

previous subsection. Then the joint posterior is given by

π(θ,β,η,Σe, rη|y) ∝
∏
i,j

p(yij|θij)

× |Σe|−n/2 exp

{
− 1

2

n∑
i=1

(θi −K2
i )
TΣ−1

e (θi −K2
i )

}

×
q∏
j=1

[
rn/2ηj

exp

{
− rηj

2

∑

1≤i<l≤n
wil(ηij − ηlj)

2

}]

× |Σe|−(γ+q+1)/2 exp

{
− 1

2
trΣ−1

e A

}
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×
q∏
j=1

r(bj/2)−1
ηj

exp

(
− ajrηj

2

)
,

(4.8)

where K2
i = ηi + X iβ and rη = (rη1 , · · · , rηq)

T . The following theorem is provided

to ensure that the posterior is proper under vague flat prior for β.

Theorem 4.3.2 Assume aj > 0, n+ bj > 0, j = 1, · · · , q, and n > p+ q. Then, if

∫ ∞

−∞
exp{yijθ − ψ(θ)}dθ <∞

for all yij, the joint posterior probability density function of the θij given y is proper.

The proof is provided in Appendix B.

The full conditionals required for Gibbs sampling are given by

rηj
|θ,β,η,Σe,y ∼ Gamma

(
1

2

( ∑

1≤i<l≤n
wil(ηij − ηlj)

2 + aj

)
,
n+ bj

2

)
;

Σe|θ,β,η, rη,y ∼ IW

(
A +

n∑
i=1

(θi − ηi −X iβ)(θi − ηi −X iβ)T , n+ γ

)
;

β|θ,η,Σe, rη,y ∼ Np(µβ,Σβ);

ηi|θ,β, ηl( 6= i),Σe, rη,y ∼ N(µη,Ση);

π(θi|θj(j 6= i)),β,η,Σe, rη,y) ∝
∏
j

p(yij|θij) exp

{
− 1

2
(θi −K2

i )
TΣ−1

e (θi −K2
i )

}
,

where µβ = (
∑n

i=1 XT
i Σ

−1
e X i)

−1
∑n

i=1 XT
i Σ

−1
e (θi − ηi), Σβ = (

∑n
i=1 XT

i Σ
−1
e X i)

−1,

µη = (Σ−1
e + wi+R)−1(Σ−1

e (θi −X iβ) + Rwi+ηi+

2
, Ση = (Σ−1

e + Rwi+)−1, and R =

Diag(rη1 , · · · , rηq).
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4.3.4 CAR Prior III

The first two spatial models do not induce correlation among the type of crashes

directly. In this subsection, we consider correlated CAR(CCAR) priors for spatial ran-

dom effects where the scale parameters, say, rηj
vary across the different components

j = 1, · · · , q. Also, we assume that the logarithms of the scale parameters have a joint

multivariate normal distribution. Writing ρ = (ρ1, · · · , ρq)T = (logrη1 , · · · , logrηq)
T ,

we assume that ρ ∼ Nq(0,Σ). Now the spatial models for different crash types are

correlated through the scale parameter and we can measure the strength of the corre-

lation as well. The other components of the model remain the same as in the previous

subsection. We first prove the following theorem which provides sufficient conditions

for the proper joint posterior.

Theorem 4.3.3 Assume n+ γ > 0. Then if

∫ ∞

−∞
exp{yijθ − ψ(θ)}dθ <∞

for all yij, the joint posterior probability density function of the θij given y is proper.

The proof is provided in Appendix C.

The full conditionals needed for Gibbs sampler are given by

ρj|θ,β,η,Σe,ρl(l 6= j),y ∝ exp

{
ρjn− exp(ρj)

∑
1≤i<l≤nwil(ηij − ηlj)

2 − ρTΣ−1
η ρ

2

}
;

Σe|θ,β,η,ρ,y ∼ IW

(
A +

n∑
i=1

(θi − ηi −X iβ)(θi − ηi −X iβ)T , n+ γ

)
;
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β|θ,η,Σe,ρ,y ∼MN(µβ,Σβ);

ηi|θ,β,η−i,Σe,ρ,y ∼ N(µη,Ση);

π(θi|θj(j 6=i),β,η,Σe,ρ,y) ∝
∏
j

p(yij|θij) exp

{
− 1

2
(θi −K2

i )
TΣ−1

e (θi −K2
i )

}
,

where µβ, Σβ, µη, and Ση are the same as in the previous subsection and R =

Diag(exp(ρ1), · · · , exp(ρq)).

4.3.5 CAR Prior IV

In this subsection, we consider a different Bayesian version of a multivariate CAR

model first introduced by Mardia (1988). Carlin and Banerjee (2003) considered a

special case which is what we consider as well. Under this framework, conditional on

V , the spatial effect is given by V −1 = (D − αW ) ⊗ Λ. Here ⊗ is the Kronecker

product, D = Diag(m1, · · · ,mn), mi being the number of neighbors for the ith region;

W is the adjacency matrix; Λ−1 describe the relative variability and covariance rela-

tionships between the different crashes given the neighboring sites; α ∈ (0, 1) is the

propriety parameters for V to repair the possible singularities in it. Thus, V −1 may

be looked upon as the Kronecker product of two partial precision matrices: D−αW

for spatial components, and Λ for variation across crashes.

We assume a beta (c, d) prior for α and a Wishart (s,B) prior for Λ. Other prior

specifications remain the same as in the previous section. Then the joint posterior is

given by

π(θ,β,η,Σe, α,Λ|y) ∝
∏
i,j

p(yij|θij)

× |Σe|−n/2 exp

[
− 1

2

n∑
i=1

(θi −K2
i )
TΣ−1

e (θi −K2
i )

]
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× |D − αW |q/2|Λ|n/2 exp

(
− 1

2
ηTV −1η

)
αc−1(1− α)d−1

× |Σe|−(γ+q+1)/2 exp

[
− 1

2
tr(Σ−1

e A)

]

× |Λ|(s−q−1)/2 exp

[
− 1

2
tr(ΛB)

]
, (4.9)

where K2
i = ηi + X iβ. The following theorem is proved to ensure that the posterior

is proper.

Theorem 4.3.4 Suppose n + s > q, n + γ > 0, and
∫
p(yij|θ)dθ < ∞ for all (i, j).

Then the posterior is proper.

The proof is provided in Appendix D.

For Gibbs sampling, the full conditionals are given by

Σe|θ,β,η, α,Λ,y ∼ IW

(
A +

n∑
i=1

(θi − ηi −X iβ)(θi − ηi −X iβ)T , n+ γ

)
;

β|θ,η,Σe, α,Λ,y ∼MN(µβ,Σβ);

ηi|θ,β,η−i,Σe, α,Λ,y ∼ N(µ∗
η,Σ

∗
η);

π(α|θ,β,η,Σe,Λ,y) ∝ |D − αW |q/2αc−1(1− α)d−1;

Λ|θ,β,η,Σe, α,y ∼ Wishat(B, n+ s);

π(θi|θj(j 6=i),β,η,Σe,V ,y) ∝
∏
j

p(yij|θij) exp

{
− 1

2
(θi −K2

i )
tΣ−1

e (θi −K2
i )

}
,
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where µβ = (
∑n

i=1 XT
i Σ

−1
e X i)

−1(
∑n

i=1 XT
i Σ

−1
e (θi−ηi)), Σβ = (

∑n
i=1 XT

i Σ
−1
e X i)

−1,

Σ∗
η = [Σ−1

e + (mi − αwii)Λ]−1, and µ∗
η = Σ∗

η[Σ
−1
e (θi −X iβ +

1

2

∑

j(6=i)
(αwij)Ληij].

4.4 Data Analysis

The data for the illustration for proposed multivariate spatial models also comes

from county-level vehicle crash records and roadway data in Texas. The TXDOT

has maintained the traffic crash data by separating four types of crash based on a

location in which a traffic crash occurs:

• Intersection crash: a traffic crash which occurs within the limits of an intersec-

tion.

• Intersection-related crash: a traffic crash which (1) occurs on an approach to

or exit from an intersection and (2) result from an activity, behavior or control

related to the movement of traffic units through the intersection.

• Driveway access crash: a traffic crash occurs a driveway access or involves a road

vehicle entering or leaving another roadway by way of on a driveway access.

• Non-intersection crash: a traffic crash that is not intersection crash, intersection-

related crash, and driveway access crash.

The same covariates in Chapter III are considered here:

• Wet: a surrogate variable intended to represent the percentage of time that the

road surface is wet due to rain, snow, and so forth. Not having detailed weather

data, we chose to use the proportion of KAB crashes that occurred under wet

pavement conditions.
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• Curve: a surrogate variable to capture spatial variations in the number of sharp

horizontal curves in different counties. Since actual inventory of horizontal

curves on the highway network is not available, we chose to use the proportion

of KAB crashes that occurred on sharp horizontal curves in each county as a

surrogate variable.

• Obj: a surrogate variable to represent degree of roadside hazards. The propor-

tion of KAB crashes that ran off roads and hit fixed objects on the roadside is

used as a surrogate variable due to similar reason to the first covariate.

Refer to Chapter III or Miaou et al. (2003) for more detail background and description

of the data. The interaction terms between covariates are involved in the model. In

additional, note that two of the urban counties and on rural county were removed

from the analysis for having no rural two-lane roads with the level of traffic volume

of interest, i.e., fewer than 2,000 vehicles per day on average.

Let Yij be the number of jth type of reported KAB crashes in county i, i =

1, · · · , n(= 251), j = 1, · · · , q(= 4). At the first level of hierarchy, conditional on

mean µij, Yij are assumed to be mutually independent and Poisson distributed as

Yij ∼ Poisson(µij). (4.10)

The mean of the Poisson is modeled

µij = νijλij (4.11)

where νij is an offset (in million of vehicle-miles traveled, or MVMT) and λij is the

KAB crash rate. Since the rate has to be nonnegative, it is structured as

θij = log(µij) = log(λij) + log(νij) = log(νij) + xTi βj + ηij + eij, (4.12)
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where xi is covariates, βj is regression coefficient vector, ηij is spatial random effect,

and eij is exchangeable random effect. For simplicity of notation, we can rewrite the

expression as

θi = X iβ + ηi + ei, (4.13)

where X i = Iq ⊗ xTi , β = (βT
1 , · · · ,βT

q )T , and xTi is a p× 1 row vector for county i.

θi’s can be expressed as a N(= n× q)× 1 column matrix θ = (θT1 , · · · ,θTn )T and the

model is given by

θ = Xβ + η + e, (4.14)

where XT = (XT
1 , · · · ,XT

n )T , η = (ηT1 , · · · ,ηTn )T , and e = (eT1 , · · · , eTn )T .

Prior distributions of all parameters in the model are specified as those in previous

section and four types of spatial priors for multivariate models are considered in this

analysis. Posterior propriety for each proposed spatial prior is ensured through the

theorems with the integrability of the likelihood. Let θij = log(µij) and ψ(θij) =

exp(θij). Then, the integral in the theorems is replaced by

∫ ∞

0

ξ
yij−1
ij exp(−ξij)dξij <∞,

which hold when yij = 1, 2, · · · . Therefore, all proposed theorems hold for poisson

models with additional requirement yij = 1, 2, · · · .
As mentioned earlier, posterior inference is carried out by MCMC and Gibb sam-

pler is implemented for most of the parameters whose full conditionals are available

in closed form. The rest of them are sampled using Metropolis-Hastings algorithm.

It is only necessary to replace exponential family by poisson density in the full con-

ditionals and note that sampling step for θ is only depend on likelihood function.

Hyperparameters which are satisfied with the conditions suggested in the theorems
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Table 3: DIC and pD Values for Various Multivariate Spatial Models: Model 1=Model
with Same Spatial Effect. Model 2=Model with Independent CAR. Model 3=Model
with Correlated CAR. Model 4=Model with Multivariate CAR and Different Choices
of α.

PD DIC
Model 1 516.8 1480.3
Model 2 481.1 1399.6
Model 3 455.0 1385.2

Model 4 (with fixed α=1) 462.8 1391.0
Model 4 (with single, unknown α) 459.6755 1391.2

Model 4 (with multiple, unknown α) 457.5247 1385.9

are specified.

We have used all of our models to fit the data and made model comparison

based on the DIC values have been presented in the Table 3. It is clear that cor-

related CAR and multivariate CAR with unknown α is performing well. We will

present other results based on the correlated CAR model.

We plot the posterior distribution of the regression parameters corresponding to

the covariates and their interactions for each of the responses in Figures 11, 12, 13

and 14. From Figure 11 it is clear that the covariates curve and obj has significant

effect on intersection crashes. Also the intersection between wet-curve and curve-obj is

significant. From Figures 12 and 13, we reach to the similar conclusion for intersection

related crashes and driveway crashes. For the non-intersection crashes the main

significant variables remain same except this time the covariate obj assign significant

mass towards 0 from Figure 14. Altogether the covariate wet is not significant for all

the responses but the other two covariates curve and obj and their interactions have

significant effect.

We have also plotted the posterior distributions of the correlation of the spa-

tial scale parameters ρ in Figure 15. All of the parameters have significant positive

correlations which is expected. Higher correlation has been seen among intersec-
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tion, intersection related and driveway crashes. All these responses have lower but

significant positive correlation with non-intersection crash.

The predicted maps based on our model is presented in Figure 16. Form the

map it is clear that east Texas has higher crash risk than the west. By further

investigation we found the high risk sites for each type of crashes are rural areas near

to the big cities like Dallas, Austin, San Antonio, and Fort Worth. Limited by the

rolling terrain in the eastern counties, roadways in rural area tend to have less driver-

friendly characteristics with, e.g., more horizontal and vertical curves, restricted sight-

distance, and less forgiving roadside development (e.g. tree closer to the travelway

and steeper side-slopes). In additional, with more and larger urbanized areas in

the ease, rural roads tend to have higher roadside development scores, higher access

density, and narrow lanes and/or shoulder(Fitzpatrick et al. 2002).



67

−0.2 −0.1 0 0.1 0.2 0.3
0

1000

2000

3000
(a)

−0.1 0 0.1 0.2 0.3
0

1000

2000

3000
(b)

−0.3 −0.2 −0.1 0 0.1
0

1000

2000

3000

4000
(c)

−0.06 −0.04 −0.02 0 0.02
0

1000

2000

3000
(d)

−0.06 −0.04 −0.02 0 0.02 0.04
0

1000

2000

3000

4000
(e)

−0.04 −0.03 −0.02 −0.01 0
0

1000

2000

3000
(f)

Figure 11: Plot of the Posterior Distributions of the Covariates for Interaction Crash.
Regression Parameters Corresponding to (a) Wet, (b) Curve, (c) Obj, and the Inter-
actions (d) Wet.Curve, (e) Wet.Obj, (f) Curve.Obj.
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Figure 12: Plot of the Posterior Distributions of the Covariates for Interaction-Related
Crash. Regression Parameters Corresponding to (a) Wet, (b) Curve, (c) Obj, and
the Interactions (d) Wet.Curve, (e) Wet.Obj, (f) Curve.Obj.
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Figure 13: Plot of the Posterior Distributions of the Covariates for Driveway Crash.
Regression Parameters Corresponding to (a) Wet, (b) Curve, (c) Obj, and the Inter-
actions d) Wet.Curve, (e) Wet.Obj, (f) Curve.Obj.
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Figure 14: Plot of the Posterior Distributions of the Covariates for Non-Interaction
Crash. Regression Parameters Corresponding to (a) Wet, (b) Curve, (c) Obj, and
the Interactions d) Wet.Curve, (e) Wet.Obj, (f) Curve.Obj.
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Figure 15: Plot of the Posterior Distributions of the Correlation Coefficients be-
tween the Responses. Correlation Coefficients Corresponding to (a) Intersection and
Intersection-Related, (b) Intersection vs Driveway Access, (c) Intersection vs Non-
Intersection, d) Intersection-Related vs Driveway Access, (e) Intersection-Related vs
Non-Intersection, (f) Driveway Access vs Non-Intersection.
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Figure 16: Predicted Map for Different Types of Crash.
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CHAPTER V

CONCLUSIONS

We explored possible hierarchical spatial models in multivariate data. As pre-

liminary study, Texas crash data is analyzed with univariate spatial models and it

is also considered for the illustration of multivariate spatial models. The sufficient

conditions to ensure posterior propriety using vague flat prior on regression parameter

are obtained.

The best model in terms of DIC is suggested in univariate spatial model frame-

work and estimated crash risk map is also shown with the selected model. It sub-

stantially supports that there is spatial pattern in Texas crash data and spatial effect

is significant. The development of models and risk maps for traffic crash on road

network is suggested as an extension of the study in discussion of Chapter III.

It is also an interesting topic to apply statistical ranking criteria to identify sites

on a road network for further engineering inspection and safety improvement. A fu-

ture study in transportation application can be to explore some of the issues raised

regarding ranking methodology in light of the recent statistical development in spatio-

temporal generalized linear mixed models.

We proposed the extension of univariate CAR model to multivariate setup. DIC

is also selected for model comparison and it suggests that correlated CAR and mul-

tivariate CAR with unknown α outperform than the other models. Based on the

estimated crash rate, crash risk maps are generated with four types of crashes.

Some studies on multivariate spatial models have been conducted, but poste-

rior propriety is not considered. As indicated earlier, the propriety is always not

guaranteed under improper priors and it should be considered as an important step
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in MCMC. The proper joint posterior distribution corresponding to each proposed

multivariate spatial prior is ensured by the theorem and the detail proofs are in Ap-

pendices.

In contrast to the models in Chapter III, only spatial random effects are included

in the proposed models. It is potentially useful to add time effect and to investigate

time trend in data when data are observed over certain time period.
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APPENDIX A

PROOF OF THEOREM 1

Let zi = ηi − ηn (i = 1, · · · , n− 1) and zn = 0. Then, the transformed posterior is

π(θ,β, z, ηn,Σe, rη|y) ∝
∏
i,j

p(yij|θij)

× exp

{
− 1

2

n∑
i=1

(ci − ηn1q)
TΣ−1

e (ci − ηn1q)

}

× exp

{
− rη

2
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2

}
rn/2η
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{
− 1

2
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e A

}
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)
,

where z = (z1, · · · , zn−1)
T and ci = θi −X iβ − zi1q. Writing c̄ = n−1

∑n
i=1 ci, one

has

∑n
i=1 (ηn1q − ci)
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n(1
T
q Σ

−1
e 1q)− 2nηn(1
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Now integrating with respect to ηn,
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× exp
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Next, by the inequality
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where gi = θi − θ̄ − (zi − z̄)1q (i = 1, · · · , n), one gets
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where in the above and in what follows, K(> 0) is a generic constant.

Next integrating with respect to β,

π(θ,z,Σe, rη|y) ≤ K
∏
i,j

p(yij|θij)(1Tq Σ−1
e 1q)

−1/2|Σβ|1/2
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The above is bounded above by
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Hence, integrating first with respect to z and then with respect to rη, one gets

π(θ,Σe|y) ≤ K
∏
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Let ζ1 ≤ ζ2 ≤ · · · ζq denote the eigenvalues of Σe. Then, ζ−1
q is the smallest eigenvalue

of Σ−1
e .

Now by the inequalities (1Tq Σ
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one gets

π(θ|y) ≤ K
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i,j

p(yij|θij).

The propriety of the posterior now follow from the assumption that
∫
p(yij|θ)dθ <∞

for all i and j.
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APPENDIX B

PROOF OF THEOREM 2

By the transformation zi = ηi − ηn (i = 1, · · · , n − 1) and zn = 0, writing zT =

(zT1 , · · · , zTn−1), the joint posterior is given by

π(θ,β,z,ηn,Σe, rη|y) ∝
∏
i,j

p(yij|θij)

× |Σe|−n/2 exp

{
− 1

2

n∑
i=1

(ci − ηn)
TΣ−1

e (ci − ηn)

}

× |Σe|−(γ+q+1)/2 exp

{
− 1

2
trΣ−1

e A

}

×
q∏
j=1

rn/2ηj
exp

{
− rηj

2

∑

1≤i<l≤n
wil(zij − zlj)

2

}

×
q∏
j=1

r(bj/2)−1
ηj

exp

(
− ajrηj

2

)
,

where ci = θi−zi−X iβ. Let c̄ = n−1
∑n

i=1 ci. Then integrating with respect to ηn,

π(θ,β,z,Σe, rη|y) ∝
∏
i,j

p(yij|θij)

× |Σe|−(n−1)/2 exp

[
− 1

2

n∑
i=1

(ci − c̄)TΣ−1
e (ci − c̄)

]

×
q∏
j=1

rn/2ηj
exp

{
− rηj

2

∑

1≤i<l≤n
wil(zij − zlj)

2

}

× |Σe|−(γ+q+1)/2 exp

{
− 1

2
trΣ−1

e A

}

×
q∏
j=1

r(bj/2)−1
ηj

exp

(
− ajrηj

2

)
.
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Now writing ci − c̄ = gi − (X i − X̄)β, where gi = θi − zi and X̄ = n−1
∑n

i=1 X i,

integration with respect to β yields

π(θ,z,Σe, rη|y) ∝
∏
i,j

p(yij|θij)× |Σβ|1/2

× exp

[
− 1

2

n∑
i=1

(gi − (X i − X̄)β∗)
TΣ−1

β (gi − (X i − X̄)β∗)

]

× |Σe|−(γ+n+q−p)/2 exp

{
− 1

2
trΣ−1

e A

}

×
q∏
j=1

[
r((n+bj)/2)−1
ηj

exp

{
− rηj

2

(
aj +

∑

1≤i<l≤n
wil(zij − zlj)

2

)}]
,

where as before Σ−1
β =

∑n
i=1(X i − X̄)TΣ−1

e (X i − X̄) and β∗ = Σ−1
β [

∑n
i=1(X i −

X̄)TΣ−1
e gi]. Now, writing K(> 0) once again for a generic constant,

π(θ,z,Σe, rη|y) ≤ K
∏
i,j

p(yij|θij)|Σβ|1/2|Σe|−(γ+n+q)/2 exp

{
− 1

2
trΣ−1

e A

}

×
q∏
j=1

[
r((n+bj)/2)−1
ηj

exp

{
− rηj

2

(
aj +

∑

1≤i<l≤n
wil(zij − zlj)

2

)}]
.

Next, integrating first with respect to z and then with respect to rη, one gets

π(θ,Σe, |y) ≤ K
∏
i,j

p(yij|θij)|Σβ|1/2|Σe|−(γ+n+q)/2 exp

{
− 1

2
trΣ−1

e A

}

Arguing as in the previous section, we get

π(θ,Σe, |y) ≤ K
∏
i,j

p(yij|θij)[tr(Σ−1
e )](q−1)(p+γ)/2|Σe|−(n+q−p)/2 exp

{
− 1

2
trΣ−1

e A

}

This leads to

π(θ|y) ≤ K
∏
i,j

p(yij|θij),

after integration with respect to Σe. The result follows now from the condition of the

theorem.



90

APPENDIX C

PROOF OF THEOREM 3

The joint posterior is given by

π(θ,β,η,Σe,ρ, |y) ∝
∏
i,j

p(yij|θij)

× |Σe|−n/2 exp

{
− 1

2

n∑
i=1

(θi −K2
i )
TΣ−1

e (θi −K2
i )

}

×
q∏
j=1

[
exp(ρjn/2) exp

{
− exp(ρj)

2

∑

1≤i<l≤n
wil(ηij − ηlj)

2

}]

× |Σe|−(γ+q+1)/2 exp

{
− 1

2
tr(Σ−1

e A)

}

× exp

{
− 1

2
ρTΣ−1

η ρ

}]
,

where K2
i = ηi + X iβ. As in the previous section, writing zi = (zi1, · · · , ziq)T =

ηi−ηn (i = 1, · · · , n− 1), zT = (zT1 , · · · , zTn−1), gi = (θi− θ̄)− (zi− z̄), integration

with respect to ηn yields

π(θ,β,z,Σe,ρ, |y) ∝
∏
i,j

p(yij|θij)× |Σe|−(n−1)/2

× exp

{
− 1

2

n∑
i=1

(gi − (X i − X̄)β)TΣ−1
e (gi − (X i − X̄)β)

}

×
q∏
j=1

[
exp(ρjn/2) exp

{
− exp(ρj)

2

∑

1≤i<l≤n
wil(zij − zlj)

2

}]

× |Σe|−(γ+q+1)/2 exp

{
− 1

2
tr(Σ−1

e A)

}

× exp

{
− 1

2
ρTΣ−1

η ρ

}
.
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Next integrating with respect to β and writing K(> 0) for a generic constant, one

gets

π(θ,z,Σe,ρ, |y) ≤ K
∏
i,j

p(yij|θij)|Σβ|1/2

×
q∏
j=1

[
exp(ρjn/2) exp

{
− exp(ρj)

2

∑

1≤i<l≤n
wil(zij − zlj)

2

}]

× |Σe|−(γ+n+q)/2 exp

{
− 1

2
tr(Σ−1

e A)

}

× −1

2
ρTΣ−1

η ρ

}
,

where as before Σ−1
β =

∑n
i=1(X i − X̄)TΣ−1

e (X i − X̄).

Now integrating with respect to z, one gets

π(θ,Σe,ρ, |y) ≤ K
∏
i,j

p(yij|θij)|Σβ|1/2
q∏
j=1

exp((n− 1)ρj/2)

× exp(−ρTΣ−1
η ρ/2)|Σe|−(γ+n+q)/2 exp

{
− 1

2
tr(Σ−1

e A)

}

Next integrating with respect to ρ, and using the finiteness of the mgf of a multivariate

normal distribution, one gets

π(θ,Σe, |y) ≤ K
∏
i,j

p(yij|θij)|Σβ|1/2|Σe|−(γ+n+q)/2 exp

{
− 1

2
trΣ−1

e A

}

The rest of the proof is the same as in the previous sections.



92

APPENDIX D

PROOF OF THEOREM 4

Let gi = θi −X iβ (i = 1, · · · , n), and gT = (gT1 , · · · , gTn ). Now we write

∑n
i=1 (θi −X iβ − ηi)

TΣ−1
e (θi −X iβ − ηi) + ηTV −1η

= ηT (In ⊗Σ−1
e + V −1)η − 2gT (In ⊗Σ−1

e )η + gT (In ⊗Σ−1
e )g

= [η − (In ⊗Σ−1
e + V −1)−1(In ⊗Σ−1

e )g]T (In ⊗Σ−1
e + V −1)

× [η − (In ⊗Σ−1
e + V −1)−1(In ⊗Σ−1

e )g] + gT [(In ⊗Σ−1
e )

− (In ⊗Σ−1
e )(In ⊗Σ−1

e + V −1)−1(In ⊗Σ−1
e )]g

Noting that (In⊗Σ−1
e )−(In⊗Σ−1

e )(In⊗Σ−1
e +V −1)−1(In⊗Σ−1

e ) = [(In⊗Σ−1
e )−1+

V ]−1 = C,say, integration with respect to η yields

π(θ,β,Σe, α,Λ|y) ∝
∏
i,j

p(yij|θij)

× |Σe|−n/2|In ⊗Σ−1
e + V −1|−1/2 exp

(
− 1

2
gTCg

)

× |D − αW |q/2|Λ|n/2αc−1(1− α)d−1

× |Σe|−(γ+q+1)/2 exp

[
− 1

2
tr(Σ−1

e A)

]

× |Λ|(s−q−1)/2 exp

[
− 1

2
tr(ΛB)

]
.
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Next writing XT = (XT
1 , · · · ,XT

n ), θT = (θT1 , · · · ,θTn ),

gTCg = βT (XTCX)β − 2βTXTCθ + θTCθ

= [β − (XTCX)−1XTCθ]T (XTCX)[β − (XTCX)−1XTCθ]

+ θT [C −CTX(XTCX)−1XTC]θ.

Hence, integrating with respect to β, one gets

π(θ,Σe, α,Λ|y) ∝
∏
i,j

p(yij|θij)

× |Σe|−n/2|In ⊗Σ−1
e + V −1|−1/2|XTCX|−1/2

× exp

[
− 1

2
θT{C −CTX(XTCX)−1XTC}θ

]

× |D − αW |q/2|Λ|n/2αc−1(1− α)d−1

× |Σe|−(γ+q+1)/2 exp

[
− 1

2
tr(Σ−1

e A)

]

× |Λ|(s−q−1)/2 exp

[
− 1

2
tr(ΛB)

]
.

Hence, writing K(> 0) for a generic constant which does not depend on any unknown

parameters,

π(θ,Σe, α,Λ|y) ≤ K
∏
i,j

p(yij|θij)

× |Σe|−(n+γ+q+1)/2|In ⊗Σ−1
e + V −1|−1/2|XTCX|−1/2

× |D − αW |q/2αc−1(1− α)d−1 exp

[
− 1

2
tr(Σ−1

e A)

]
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× |Λ|(n+s−q−1)/2 exp

[
− 1

2
tr(ΛB)

]
.

But, |In ⊗Σ−1
e + V −1|−1/2 ≤ |V −1|−1/2 = |V |1/2 = |D − αW |−q/2|Λ|−n/2. Thus,

π(θ,Σe, α,Λ|y) ≤ K
∏
i,j

p(yij|θij)

× |Σe|−(n+γ+q+1)/2|XTCX|−1/2

× αc−1(1− α)d−1 exp

[
− 1

2
tr(Σ−1

e A)

]

× |Λ|(s−q−1)/2 exp

[
− 1

2
tr(ΛB)

]
.

The rest of the proof is the same as in previous sections.
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