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ABSTRACT 
 

 
Optimal Fracture Treatment Design for Dry Gas Wells Maximizes Well Performance in 

the Presence of Non-Darcy Flow Effects. (August 2004) 

Henry De Jesus Lopez Hernandez,  

B.S., Universidad de Los Andes, Venezuela 

Chair of Advisory Committee:  Dr. Peter P. Valko 

 

This thesis presents a methodology based on Proppant Number approach for optimal 

fracture treatment design of natural gas wells considering non-Darcy flow effects in the 

design process. Closure stress is taken into account, by default, because it is the first 

factor decreasing propped pack permeability at in-situ conditions. Gel damage was also 

considered in order to evaluate the impact of incorporating more damaging factors on 

ultimate well performance and optimal geometry. Effective fracture permeability and 

optimal fracture geometry are calculated through an iterative process. This approach was 

implemented in a spreadsheet. 

Non-Darcy flow is described by the β factor. All β factor correlations available in the 

literature were evaluated. It is recommended to use the correlation developed specifically 

for the given type of proppant and mesh size, if available. Otherwise, the Pursell et al. or 

the Martins et al. equations are recommended as across the board reliable correlations for 

predicting non-Darcy flow effects in the propped pack.  

The proposed methodology was implemented in the design of 11 fracture treatments of 3 

natural tight gas wells in South Texas. Results show that optimal fracture design might 

increase expected production in 9.64 MMscf with respect to design that assumes Darcy 

flow through the propped pack. The basic finding is that for a given amount of proppant 

shorter and wider fractures compensate the non-Darcy and/or gel damage effect.  

Dynamic programming technique was implemented in design of multistage fractures for 

one of the wells under study for maximizing total gas production. Results show it is a 
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powerful and simple technique for this application. It is recommended to expand its use 

in multistage fracture designs. 
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CHAPTER I 
 

INTRODUCTION 
 
 

Laboratory tests,1 well modeling and simulation,2 and post fracture well evaluations3 

have shown that propped fracture permeability of natural gas wells may be significantly 

reduced by production and reservoir conditions as well as fracturing fluid and other 

secondary effects. Several authors4-6 agree that the most important variables affecting 

proppant pack permeability are: 

• Non-Darcy Flow 

• Time & Closure stress  

• Multiphase Flow 

• Gel Damage 

• Embedment 

• Proppant crushing 

• Fines migration 

The effects of single phase non-Darcy flow within propped fractures have been widely 

discussed and evaluated by a number of authors.7-11 Holditch and Morse8 mention that 

high pressure drop due to high flow velocities might be due to both turbulence and 

inertial resistance. They develop a numerical model to show the impact of non-Darcy 

flow in the deliverability of fractured wells. A single phase, two dimensional model, 

finite difference reservoir simulator was used. They conclude that non-Darcy effects 

should be considered in the design of hydraulic fracture treatments, otherwise the design 

might be far from optimal. Holditch and Moore also pointed out that effects of non-Darcy 

flow on gas well productivity index is a function of proppant type and not to consider it 

might result in a wrong analysis of well test interpretation. 

 
_______________ 

This thesis follows the style of Journal of Petroleum of Technology 
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Guppy, Cinco-Ley, Ramey and Samaniego2 presented a method to estimate effective 

fracture conductivity from drawdown data at two different flow rates. They developed a 

dimensionless model to describe the flow and pressure distribution in the fracture. This 

model was coupled to a 2D, single phase finite difference reservoir simulator to evaluate 

the behavior of non-Darcy flow trough the fracture. They saw that non-Darcy flow causes 

the fracture conductivity to appear lower than its nominal value (what they called true 

conductivity). 

Alvarez, Holditch and McVay4 pointed out that simulation history matching is the most 

appropriate method to analyze buildup pressure tests of hydraulically fractured natural 

gas wells due to non-Darcy flow effects.  They mention that not considering non-Darcy 

flow effects through the propped pack and/or using conventional methods of well test 

interpretation may result in wrong estimations of fracture half-length and fracture 

conductivity. They concluded that wrong estimates of fracture conductivity and 

permeability might result in overestimation of future gas production and incorrect actions 

to improve fracture performance in future wells. 

Vincent, Pearson and Kullman6 mention that engineers usually do not consider the effects 

of non-Darcy flow when designing fracture treatments because they assume it only 

happens in high rate wells. They showed that non-Darcy flow effects are significant even 

in wells considered low rate wells. Vincent, Pearson and Kullman estimate that the 

effects of not considering non-Darcy flow are not optimum fractures which causes lost 

revenues of $2 million per fracture. They use Stim-Lab´s SLFrac production model to 

perform their studies. Results show that the initially least attractive proppant due to cost 

could be the most appropriate considering the effective permeability in real conditions. 

Therefore, they conclude that ignoring multiphase and non-Darcy effects can lead to 

incorrect decisions regarding the required fracture width and proppant type. 

In 2002 unified fracture design12 was introduced. It is based in a new dimensionless 

number called proppant number which already determines the maximum possible 

productivity index achievable with the given amount of proppant. The concept can be 

also applied to situations, where non-darcy flow through the propped fracture is 

significant13.  
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All works presented above address very well the effects of non-Darcy flow in well test 

analysis, fracture design and well performance. However little work has been done 

regarding the reliability of the estimation of the β factor and its effect on the outcome. In 

the other hand, damaging effects on the fractured well are compensated injecting more 

proppant which increase gas production but also increase dramatically the treatment cost. 

We propose in this work to develop a spreadsheet for optimal fracture designs 

considering non-Darcy flow, closure stress and gel damage effects in the design process. 

The goal is to maximize gas production for a given mass of proppant. This application 

will be based in proppant number approach and H2FD spreadsheet. β correlations 

available in the literature will be evaluated to determine which of them really apply for 

non-Darcy flow analysis trough propped packs. Four 20/40 type of proppants will be 

considered in this evaluation. Spreadsheet will be used in the design of 11 hydraulic 

fractures in three wells completed in South Texas tight gas reservoir. Finally, Dynamic 

Programming technique will be implemented in the design of the multistage fracture, of 

one of these wells, for maximizing total gas production having as a constraint the total 

mass proppant to be injected into the well.  
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CHAPTER II 
 

LITERATURE REVIEW 

 

2.1 Proppant Number (Nprop) 

The best performance indicator of a stimulated natural gas well is the pseudo-steady state 

productivity index (J)12 

D
gg

pg

wfres

scg J
B

hk
pp

q
J

µα
π

1

2
=

−
= …………………………………………………………(2.1) 

The actual effect of the propped fracture appears in the variable JD. Dimensionless 

fracture conductivity (CfD) and penetration ratio ( xI =2xf/xe) are the two primary variables 

that control it. The dimensionless fracture conductivity, CfD is a measure of the relative 

ease with which the produced fluids flow inside the fracture compared to the ability of 

the fracture to gather fluids from the formation:  

fg

fpf
fD xk

wk
C = …………………………………………………………………………(2.2)                               

The Proppant number is a combination of the two dimensionless variables: 

fDxprop CIN 2= …………………………………………………………………………(2.3)                              

Substituting the definition of penetration ratio and dimensionless fracture conductivity 

into Eq. 2.3 we obtain the final form: 

res

wpf
prop V

V
k
k

N 22 −= …………………………………………………………………...(2.4)                               

showing that the Proppant number is the ratio of the propped volume (volume of 

proppant in the pay, in the two wings) to the reservoir volume, weighted by the 

permeability contrast. From one hand, the Proppant number is easy to use, because it is 

already determined by the selection of the type and amount of Proppant. On the other 

hand, its use is helpful, because it determines the maximum achievable dimensionless 

productivity index, as seen in Figs. 2.1 and 2.2.  For a specific Nprop the maximum JD 
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occurs for a well defined value of CfD. For example, optimum CfD is 1.6 for Nprop below 

0.1 (Fig. 2.1). However, for Nprop larger than 0.1 the optimal CfD increases with proppant 

number (Fig. 2.2). It happens because the Ix cannot exceed unity.   

 

 
Fig. 2.1 Dimensionless Productivity Index as a function of proppant number less than 0.1 
and dimensionless productivity index (Economides, Oligney and Valko12) 

 
 
 

 
Fig. 2.2 Dimensionless Productivity Index as a function of proppant number above 0.1 
and dimensionless productivity index (Economides, Oligney and Valko12) 
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For all proppant numbers, the optimum fracture dimensions can be obtained from  

2
1

1
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⎟
⎠
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= −
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= −

pfDopt

wpf
f khC

Vk
x …………………………………………………………………(2.6)    

Once the spacing of the wells in the reservoir has been defined, the denominator of Eq. 

2.4 is constant. Then, the proppant number will depend on propped fracture permeability 

(kf) and volume of proppant reaching the pay (Vp-2w).  

Though in the simple theory the treatment size already determines the maximum 

achievable dimensionless productivity index, this is not so in the case of non-Darcy flow 

in the fracture. The reason is that the effective Proppant permeability depends on the 

actual linear velocity of the gas in the fracture. Therefore, even if the treatment size is 

fixed, the effective Proppant number still varies with adjusting the width to length 

compromise. For gas wells, this effect is significant. 

 
 
2.2 Effective permeability formulation for non-Darcy flow effects 
 
Darcy´s law describes laminar flow through porous media. In this case pressure gradient 

is directly proportional to flow velocity  

f

g

k
v

L
P µ

=
∆
∆ ……………………………………………………………………………..(2.7) 

When flow velocity increases, Eq. 2.7 is not valid anymore due to the additional pressure 

drop caused by the frequent acceleration and deceleration of the particles of the moving 

fluid. These inertial effects8,14 are well described by the equation developed by 

Forchheimer15 :  

2av
k

v
L
P

f

g +=
∆
∆ µ

……………………………………………………………………….(2.8) 
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Cornell and Kartz16 rewrote the constant a  as the product of the β factor (called also non-

Darcy flow coefficient, inertial flow coefficient, turbulent factor) and the fluid density: 

2v
k

v
L
P

g
f

g βρ
µ

+=
∆
∆ ……………………………………………………………………..(2.9) 

When velocities are low, the second term in Eq. 2.9 can be neglected. However, for 

higher velocities this term becomes more important, especially for low viscosity fluids.17  

If we divide LHS and RHS of Eqs. 2.7 and 2.9 by µgv we obtain  

fg kvL
P 1

=
∆

∆
µ

…………………………………………………………………………(2.10) 

for Darcy flow and  

g

g

fg

v
kvL

P
µ

βρ
µ

+=
∆

∆ 1
………………………………………………………………(2.11) 

for non-Darcy flow. Comparing Eq. 2.10 and 2.11 we see that the effective permeability 

(determining the actual pressure drop) is  

g

gf

f
efff vk

k
k

µ
ρβ

+
=−

1
………………………………………………………………….(2.12) 

The Reynold number (NRe) in a porous media can be defined as  

g

gf vk
N

µ
ρβ

=Re ………………………………………………………………………..(2.13)                               

first suggested by Geertsma14. Substituting Eq. 2.13 into Eq. 2.12 we get the final 

expression of kf-eff describing the non-Darcy flow effects. 

Re1 N
k

k f
efff +

=− ……………………………………………………………………...(2.14) 
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2.3 β Factor Equations 
 

β factor is a property of the porous media.18,19 Empirical equations have been developed 

to estimate this factor20 based on lab data. For this work an extended search was done in 

various bibliographic databases  to collect β factor equations developed so far. These 

databases are: SPE, Petroleum Abstracts, Transport in Porous Media and Science Citation 

Index. A detailed review of the references allowed identifying 24 equations. These can be 

divided into two groups: (1) Equations developed from proppant tests, (2) Equations 

developed from core, pack bead tests and analytical studies. 

 
 
2.3.1 Equations developed from proppants tests 
 

2.3.1.1 Cooke 

It was the first equation developed to estimate β factor of proppants.21 Brady sand was 

used in the lab experiments. Based on the form of the Forchheimer equation presented in 

Eq. 2.9, Cooke plotted ∆P/Lµγv vs. ρv/µγ (X) to get the β factor, which is the slope of the 

curve on this plot. Five sand sizes and various stress levels were considered. X values of 

all tests were below three. Fluids used were brine, gas and oil. Cooke observed no 

difference of the results among fluids evaluated. All curves followed Eq 2.15. 

Coefficients are shown in Table 2.1.  

b
fk
a

=β ……………………………………………………………………………...(2.15) 

 
 

Table 2.1 Constants a and b of Cooke equation 
 

Sand 
Size 

(mesh) 

a b 

8/12 3.32 1.24
10/20 2.63 1.34
20/40 2.65 1.54
40/60 1.10 1.60
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2.3.1.2 Kutasov 

A semitheoretical equation was proposed as a function of darcian permeability, kf 

(Darcies), porosity, φp, and irreducible water saturation, Sw.22  From analyses of 

experimental and analytical investigations conducted by Evans and Evans, Fand, Ergun, 

Olovin and Bear, Kutasov he developed Eq. 2.16.  

5.15.0 ))1((
0343.1

wpf Sk
E

−
+

=
φ

β …………….………………................................................. (2.16) 

 

2.3.1.3 Maloney, Gall and Raible 

Nitrogen was used to simulate gas production.17 Pressure and temperature were 

maintained constant through the proppant pack to eliminate uncertainties in the variation 

of viscosity and density. Sandpack tests were performed at closure stresses from 1,000 to 

10,000 psi using various type of proppants. Results show that relationship between β and 

kf are independent of the sand concentration but is affected by proppant size distribution, 

grain shape and strength characteristics. They pointed out that if porosity is considered in 

β equation the dependence on proppant size distribution is less. Therefore, they proposed 

Eq. 2.17 for any type of proppant and mesh.  
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2.3.1.4 Martins, Milton-Tayler and Leung 

They pointed out that laboratory studies have been usually performed at X values below 

10.23 However, in field conditions X is normally higher than 10 so they performed tests 

for X up to 60 using dry nitrogen at ambient temperature, in order to identify different 

flow regimes. Tests were conducted for different type of proppants (i.e. intermediate 

strength proppant, sand) and mesh size (i.e. 16/20 and 20/40) at confining stresses of 

2,000, 4,000 and 5,000. They observed that at high rates all results are very similar 
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irrespective of the type of sand and mesh, so they proposed Eq. 2.18 as general equation 

for proppants.   

036.1
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They found that several flow regimes may be present for the range of X evaluated. In 

general, two linear behaviors were observed, one for X above 10 and other one for 

2<X<5. They conclude that the transition to the high rate flow regime occurs for 3<X<7 

independently of particle size. These authors also concluded that interpretation of results 

for X < 10 requires special attention. Therefore, they recommend performing lab tests for 

X > 10. 

 

2.3.1.5 Penny and Jin   

They plotted β factor vs. permeability for different type of 20/40 proppants (i.e. northern 

wide sand, precurred resin coated white sand, intermediate strength ceramic products and 

bauxite).1  Final equation developed by them has the same form as Cooke´s equation (Eq. 

2.15) where the coefficients a and b depends on type of sand. These coefficients are 

shown in Table 2.2. The correlation provides the so called dry β  factor because the 

authors propose to correct it for multiphase flow (when water or condensate is also 

flowing). Tests were conducted for values of X up to 20. They considered only one 

equation for the entire range of X.  

 
 

Table 2.2 Constants a and b of Penny & Jin equations for 20/40 mesh 
 

Type of proppant a b 
Jordan Sand 0.75 1.45
Precurred Resin-Coated Sand 1 1.35
Light Weight Ceramic 0.7 1.25
Bauxite 0.1 0.98
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2.3.1.6 Pursell, Holditch and Blakeley 

Three type of proppant were evaluated (i.e. Brady sand, Interprop and Carbolite) 

injecting nitrogen at constant closure stress and pore pressure, at different flow rates. 18 

They concluded that the relationship between permeability and β factor is only a function 

of mesh size and proppant permeability, and is independent of proppant type. They also 

concluded that β should be calculated in the region of high flow rate. However, X values 

in the tests were up to 6.  Pursell, Holditch and Blakeley developed two equations, with 

the same form of Cooke’s equation for 12/20 and 20/40 mesh size. Their coefficients a 

and b are shown in Table 2.3.  

 
 

Table 2.3 Constants a and b in Pursell equation 
 

Mesh a b 
12/20 1.144 0.635
20/40 1.123 0.326

 

 

2.3.2 Equations developed from other sources  

2.3.2.1 Belhaj, Agha, Nouri, Butt and Islam 

A numerical model was developed to describe non-Darcy behavior in porous media.24 

This model was verified and tested with experimental data. A triaxial system was built to 

test artificial sandstone sample at in situ reservoir conditions. All tests were performed 

flowing water trough the core.  Permeability and β factor were determined from 

experiment results and used as input data in the numerical model.  In general, they found 

a good match between numerical and experimental predictions. They proposed Eq. 2.19 

to estimate β factor. 
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2.3.2.2 Coles and Hartman 

They developed Eq. 2.20 to estimate β factor as a function of effective permeability and 

porosity.25 They passed gas through dry and saturated limestone and sandstones core 

samples to estimate β factor, so it is valid for both dry and saturated cases where kg is the 

effective permeability to gas. Core permeabilities ranged from 0.01 to 1000 md. They 

emphasized that relationship was obtained from plots with less scatter than data used to 

develop previous relationships. 
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2.3.2.3 Ergun 

He developed Eq. 2.21 from experiments of gas flow trough packed spheres. Dependence 

on flow rate, properties of the fluids, porosity, orientation, size, shape, and surface of the 

granular solids were also analyzed.26  
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2.3.2.4 Frederick and Graves 

β factor equation was developed from tests performed on 24 cores with confining stress 

from 1,000 to 5,000 psi and permeabilities ranged from 0.00197 to 1,230 md.27 In the plot 

used to get the correlation they included data from Cornell and Katz16, Geertsma14 and 

Evans et al28  experiments so it can be considered valid for permeabilites up to 350,000 

md. Tests were performed flowing gas in dry and brine saturated cores. Eq. 2.22 is a 

direct correlation between permeability and β. 
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2.3.2.5 Geertsma 

He proposed Eq. 2.23 to estimate β factor as a function of permeability and porosity. 14 

Experiments were conducted with both liquid and gas flow through unconsolidated 

sandstones, and gas flow through consolidated sandstones. This equation was validated 

for limestone using Gewers and Nichol data. 
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2.3.2.6 Janicek and Katz  

They developed the first equation for β factor (Eq. 2.24)  from laboratory experiments in 

sandstone, limestone and dolomite as function of permeability and porosity of porous 

media.29 
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2.3.2.7 Jones  

355 sandstones and 29 limestones cores plugs from reservoirs around the world were 

used in his studies.30 Confining stress between 800 psi and 6,000 psi was applied to all 

cores.  Sandstones and limestones permeability ranged from 0.01 to 2,500 md and from 

0.01 to 400 md respectively. Only Helium was used in all measurements. Finally Jones 

presented Eq. 2.25 like the equation that fits the best all data collected in the experiments. 
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2.3.2.8 Li  

A semitheoretical equation (Eq. 2.26) was developed for β which was verified comparing 

pressure drops predicted from simulations with results from experiments conducted by 
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him.31 Nitrogen was injected in several directions through a wafer-shaped Berea 

sandstone core sample. Performance of Eq. 2.26 and other equations found in the 

literature was evaluated using lab data of Firoozabadi et al experiments. Eq. 2.26 had the 

lowest average error so Li conclude it is the best to predict  β factor in berea sandstone. 
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2.3.2.9 Macdonald, El-Sayed, Mow and Dullen 

They modified equation proposed by Ergun26 and use experiment results of Gupte, Kyan, 

Dudgeon, Fancher and, Lewis and Pahl all consisting of gas and liquid flow through 

packed sphere beds of uniform size or known distribution.32 They got new values for the 

coefficients of modified Ergun  equation  
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2.3.2.10 Tek, Coats and Katz 

A partial differential equation was derived to represent flow of fluids at all rates.33 They 

presented an equation from Janice and Katz29 data (Eq. 2.28) also as function of porosity 

and permeability.  
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2.3.2.11 Thauvin and Mohanty 

They developed a pore-level network model where inputs are pore sizes distribution and 

network coordination number and outputs are permeability, β factor, tortuousity and 

porosity.34 They found that correspondence between β factor and permeability, porosity 

and tortuousity depend on the morphological parameters being changed. From all data 
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collected, a general correlation was derived to match all the morphological changes. 

However, correlation considered in our work is Eq. 2.29 that not considers tortuousity. 

Thauvin and Mohanty pointed out that there is no perfect correlation valid for all kind of 

porous media. 

fk
E 055.2 +
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2.3.3 General form of β equation 

All β factor equations presented so far are function of kf and/or φp. Therefore all these 

equations can be summarized in a general expression (Eq. 2.30) where a, b and c 

parameters are the difference for each case. Parameter c is 0 for equations that depends 

only on permeability. 
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Table 2.4 Parameters a, b and c of β equations in original units for  β  and kf 
  

EQUATION a b c β k 
Belhaj et al 1.15E+07 1.00 1.00 1/m md 
Cole and Hartman 2.49E+11 1.79 -0.54 1/ft md 
Cooke_Sand  8/12 3.32E+00 1.24 0.00 atm-sec2/g D 
Cooke_Sand 10/20 2.63E+00 1.34 0.00 atm-sec2/g D 
Cooke_Sand 20/40 2.65E+00 1.54 0.00 atm-sec2/g D 
Cooke_Sand 40/60 1.10E+00 1.60 0.00 atm-sec2/g D 
Ergun 4.24E+04 0.50 1.50 1/m md 
Frederick and Graves 1.98E+11 1.64 0.00 1/ft md 
Geertsma 5.00E-02 0.50 5.50 1/cm cm2 
Janice and Katz 1.82E+08 1.25 0.75 1/m md 
Jones 6.15E+10 1.55 0.00 1/ft md 
Kutasov 1.43E+03 0.50 1.50 1/cm D 
Li et al 1.39E+07 0.85 1.15 1/cm md 
Mac Donal et al 4.52E+04 0.50 1.50 1/m md 
Maloney et al 1.20E-03 0.50 7.10 1/cm cm2 
Martins et al 2.10E-01 1.04 0.00 atm-sec2/g D 
Penny and  Jin_Bauxite 20/40 1.00E-01 0.98 0.00 atm-sec2/g D 
Penny and  Jin_LWC 20/40 7.00E-01 1.25 0.00 atm-sec2/g D 
Penny and  Jin_RCS 20/40 1.00E+00 1.35 0.00 atm-sec2/g D 
Penny and  Jin_Sand 20/40 7.50E-01 1.45 0.00 atm-sec2/g D 
Pursell et al_12/20 6.35E-01 1.14 0.00 atm-sec2/g D 
Pursell et al_20/40 3.26E-01 1.12 0.00 atm-sec2/g D 
Tek et al 5.50E+09 1.25 0.75 1/m md 
Thauvin and Mohanty 2.50E+05 1.00 0.00 1/cm D 

 
 
 

Most of these β equations were developed in different units. Table 2.4 shows a summary 

of original units and a, b, anc c values. In this work parameter a  was recalculated (where 

necessary) in order to have β in 1/ft and kf in md. Results are presented in Table 2.5 

where we already can see important differences among correlations based on values of a, 

b and c parameters. 
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Table 2.5 Parameters a, b and c of β equations for  β in 1/ft and  kf in md 
 

EQUATION a b c 
Belhaj et al 3.51E+06 1.00 1.00 
Cole and Hartman 2.49E+11 1.79 -0.54 
Cooke_Sand  8/12 5.38E+11 1.24 0.00 
Cooke_Sand 10/20 8.51E+11 1.34 0.00 
Cooke_Sand 20/40 3.41E+12 1.54 0.00 
Cooke_Sand 40/60 2.14E+12 1.60 0.00 
Ergun 1.29E+04 0.50 1.50 
Frederick and Graves 1.98E+11 1.64 0.00 
Geertsma 4.85E+05 0.50 5.50 
Janice and Katz 5.55E+07 1.25 0.75 
Jones 6.15E+10 1.55 0.00 
Kutasov 1.38E+06 0.50 1.50 
Li et al 4.22E+08 0.85 1.15 
Mac Donal et al 1.38E+04 0.50 1.50 
Maloney et al 1.16E+04 0.50 7.10 
Martins et al 8.32E+09 1.04 0.00 
Penny and  Jin_Bauxite 20/40 2.69E+09 0.98 0.00 
Penny and  Jin_LWC 20/40 1.22E+11 1.25 0.00 
Penny and  Jin_RCS 20/40 3.47E+11 1.35 0.00 
Penny and  Jin_Sand 20/40 5.19E+11 1.45 0.00 
Pursell et al_12/20 5.30E+10 1.14 0.00 
Pursell et al_20/40 2.35E+10 1.12 0.00 
Tek et al 1.68E+09 1.25 0.75 
Thauvin and Mohanty 7.62E+09 1.00 0.00 

 
 
 
 
2.4 Optimization 
 
 
One of the most important goals of any major or independent oil and gas company is to 

maximize the recovery of hydrocarbons for maximum profits. It demands the technical-

economical optimization of operations performed in the field during the life of the asset. 

In fields where massive hydraulic fractures (MHF) are executed, to increase the 

productivity of the wells and consequently the field (i.g. tight gas reservoirs), optimal 
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fracture treatment designs are a key to maximize the economic return of the reservoir 

exploitation.   

 

 

2.4.1 Optimization of hydraulic fracture treatment designs 
 

Hydraulic fracturing is a multivariate process. It is because final results or objective 

function depends on more than one variable. In this work variables that can not be 

modified will be identified as system parameters.35 For example, net pay, reservoir 

permeability, and closure stress. Variables than can be changed to affect final results (i.e. 

objective function) are denominated decision variables. In this case type of proppant, 

mesh size, mass of proppant, proppant concentration, pump rates, frac fluid, proppant 

schedule are decision variables of the hydraulic fracturing process. Objective function 

can be Net Present Value (NPV) of the job, dimensionless productivity index or gas rate.  

Several approaches have been developed so far to optimize fracture treatment design in 

all type of reservoirs.  The most important currents are: 

• Multivariate optimization applying non-linear optimization techniques.35,36  

• Parametric optimization using 2D and 3D fracture and production models .4,37-40 

• Implementation of Virtual Intelligence tools to optimize future fracture jobs in a 

specific field based on results obtained in previous frac jobs performed in the 

same or similar fields. 41-43 

All these applications were developed for fracture design of one stage only. However, in 

multilayered reservoirs more than one fracture (i.e. stage) is usually required to connect 

all productive zones with the wellbore. In this case the goal is to maximize the overall 

performance of the well (i.e. total gas production) having the total mass of proppant 

available for the well as the main constraint.  

There are several methods available to solve an optimization problem. Candidate 

methods depend on the nature of the problem. In this work we selected dynamic 

programming (DP) as the method to use because its simplicity and effectiviness to 

optimize multistage processes.  
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2.4.2 Dynamic programming 
DP was developed by Richard Bellman in the mid 1950’s.44 DP is primarily applied to 

multistage decision processes. It is where a sequence of decisions has to be made at 

various stages of the evolution of the process. Since its creation DP has been used to 

solve resource allocation problems, production planning, problems with multiple 

constraints among other applications.44 

 

2.4.2.1 DP elements 

The followings elements integrate the formulation of a problem to be solved using DP.45  

Stages. Because this method was developed for multistage decision process, it is assumed 

that the problem can be subdivided in N number of stages. Stages can be in units of time 

or space.  

State. This is a set of variables (s0, s1, and so on) that can be used to describe the system 

at any stage. States can be deterministic or stochastic. 

Decisions. They are made at each stage of the process. Decision affects how well we 

achieve our objective. A sequence of N decisions causes the state s to change from initial 

value s0 to final one sN. They are usually constrained.  

State equations. Define rules how a decision change the state of the process in one stage 

to another state in next stage. State equations can be: time invariant or time variant; and 

continuous or discrete.46 

Objective function. Decisions are made to maximize or minimize the objective function. 

Ultimate value of the objective function depends on the policy (set of decisions made and 

constraints) and initial state so. 

Optimality. The principle of optimality in DP is equivalent to the statement that certain 

derivatives are zero.45 It considers that decision at each state does not depend on previous 

decisions or states. There is a recursive relationship representing the optimal decision for 

each state at stage i in terms of previously computed optimal decisions for states at 

subsequent stages i+1, i+2, etc. Final result is an optimal policy that maximizes or 

minimizes the objective function.  
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2.4.2.2 Advantages and disadvantages 

Advantages 

1. The problem is reduced to N stages 

2. The method gives a global maxima or minima  

3. Provide a program for sequential computation when classical functional solutions (i.e. 

Linear Programming, Non-Linear Programming, etc) are difficult to solve 

4. It does not require calculation of first or second derivative and is not subject to stability 

problems 

5. It can be applied in the maximization or minimization of functions where continuity 

prevents differentiation 

6.  The same problem can be solved using different definitions of stages, states, decisions 

and recursions. 

Disadvantages 

1. The higher the dimensionality of the states is the higher computational requirement is. 

2. There exist some problems that can be treated more simply and efficiently by other 

methods than using DP.  

3. It considers many paths compared to other methods. However, it is an advantage in 

stochastic processes where we need to know what to do for any state of each stage. 

 
2.4.2.3 Applications of dynamic programming (DP) in the petroleum industry 
 

In 1969 Bentsen and Donohue47 use DP to optimize the number and size of steam 

treatments in a thermal recovery process to maximize the profits over the entire life of the 

project. They mention that it is multistage decision problem because decision must be 

made each interval of time (i.g. a day). 

In 1971 Shamir48 implemented DP to define the optimal route of a pipeline transporting 

oil and gas for minimizing costs. Later in 1972 Martch and Norman49 developed an 

application (TRANSOPT) based on DP to minimize the annual cost of owing and 
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operating the facilities required to transport gas through the system (i.e. arrangement of 

pipeline and compressor stations connected in some arbitrary manner).  

Huppler50 used DP to find the best investment schedule for well drilling and compression 

in the exploitation of a gas reservoir for maximum net present value. In 1983 Lang and 

Horne51 found that DP was the most efficient technique to optimal production schedules 

(i.e. injection rates or downhole flowing pressure) that maximize oil production. They 

proposed to use this approach in enhanced oil recovery projects.  

Jegier52 developed an application based on DP for casing string design. The goal was to 

minimize the cost of a given casing size selecting the steel grade and weight that met 

strength requirements at each interval depth. It is the only DP application of all 

applications presented where stages are interval of space instead of unit of time. After 

extensive literature review, we noticed the opportunity to use DP for the first time in the 

design of hydraulic fracturing treatments specifically multistage fractures. 
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CHAPTER III 
 

FRACTURE TREATMENT DESIGN SPREADSHEET 
 
 

3.1 Spreadsheet capabilities definition 

Estimation of the effective propped fracture permeability at in situ conditions (i.e. 

assessment of damage mechanism that might affect final permeability) is a key in an 

optimal fracture treatment design. Proppant selection should be part of this process as 

well. Flowers, Hupp and Ryan19 pointed out that the trend of the petroleum industry is to 

use less expensive proppant which usually have lower permeabilities for a specific 

closure stress. It reduces costs but affects dramatically overall job economics and 

ultimate productivity of the well. 

Several production and fracture simulators for oil and gas wells have been developed so 

far. These simulators include remarks stated in previous paragraph and are commercial 

available. Some of them include the latest proppant permeability and β factors data as 

well as non-Darcy and multiphase flow effects.5,19  For example, the Predict K simulator 

(developed by Stimlab) combines reservoir transient production forecasting with a 

damaged hydraulic fracture. Moreover, closure stress, embedment, filter cake deposition 

and erosion, bulk gel damage, multiphase flow, and non-Darcy flow are accounted for. 

Each simulator follows a different approach to get an optimal design but none of them are 

based on proppant number approach.  

First fracture design application based on proppant number approach was developed by 

Economides, Oligney and Valko.12 HF2D is a fast 2D design package for traditional 

(moderate permeability and hard rock) and frac & pack (higher permeability and soft 

rock) with the PKN model. The design starts from the available mass of proppant; then 

optimum fracture dimensions are determined; finally, a treatment schedule is proposed, 

based on the PKN model, to achieve optimum placement of the proppant. Proppant 

properties must be input by user (i.e proppant permeability, porosity and specific gravity) 

as well as fluid properties (i.e. gas viscosity and formation volume factor). It requires that 

user estimate proppant permeability after closure stress, non-Darcy flow and other effects 

for a specific proppant type and mesh size. Estimation of effective permeability after non-
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Darcy flow effects is an iterative process and requires additional input variables other 

than those included in HF2D (i.g. Flowing bottomhole pressure, beta factor equation, 

etc). Based on these limitations the development of a new fracture design spreadsheet for 

natural gas wells is required. 

The new application should satisfy the following requirements to have a versatile 

spreadsheet: 

1. Include a proppant database with the option of including new proppants 

2. Calculate effective permeability after closure pressure effects 

3. Consider the effects of non-Darcy flow on effective proppant permeability 

4. Include β factor equation database where new equations can be incorporated 

5. Calculate  gas properties (i.e. viscosity and Z factor) at specific conditions of 

temperature and pressure 

6. Consider additional variables affecting effective fracture permeability such as gel 

damage for a more realistic assestment of actual fracture permeability 

 

3.2    Effects to be considered in the effective propped pack permeability calculation 

3.2.1 Closure stress 

A hydraulic fracture grows normal to the plane of minimum principal in situ stress (Fig. 

3.1). In a homogeneous formation the minimum principal stress is equal to closure stress. 

However, lithology typically varies with depth. Therefore, minimum principal stress 

varies in magnitude and direction over the gross pay interval. In this case, closures stress 

represents the stress at which created fracture globally close (i.e. global average for the 

interval). Techniques commonly used to determine closure stress are the step rate test, 

shut-in decline and flowback analysis.53 

Fracturing fluid (i.e. pad and slurry) is injected at high pressures into the formation to 

overcome closure stresses and, create and propagate a hydraulic fracture. When fluid 

injection ceases stresses acts to close the fracture and confine proppant. The effective 

stress acting on the proppant is 
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fractureceff PP −=σ ……………………..……………................................................... (3.1) 

Effective stress (σeff) results in compaction and consequently some reduction in proppant 

permeability, which is then magnified by crushing of the grains (Fig. 3.2).  Reservoir 

pressure depletion decreases the net closure stress (Pc).54 On the other hand, flowing 

pressure within the fracture (Pfracture) typically decreases with time, increasing the net 

closure stress. In general, the most critical condition is when pressure within the fracture 

is 0 psi. It is the case assumed in this work . 

 

 

 

 

 

 

 

 

Fig. 3.1 Orientation of created fracture respect to principal stresses 

 

 

 

 

 

 

 

 

Fig. 3.2 Closure stress compact the propped pack reducing its initial permeability 
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Four commonly used 20/40 mesh proppants will be initially included in the proppant 

database. These proppants are resin coated sand (RCS), low weight ceramic low strength 

(LWC_LS), low weight ceramic high strength (LWC_HS) and sintered bauxite (SB). 

Data on variation of proppant permeability with stress are usually provided by the 

proppant manufacturer. Fig. 3.3 shows this information for all four proppants.  The 

overall behavior is the result of proppant strength, grain size and grain size distribution, 

quantities of fines and impurities, roundness and sphericity, and proppant density.53 The 

magnitude of the closure stress is the startpoint for selecting the proppants to be consider 

in the treatment design. Therefore, proppants which maximum stress reported in Fig. 3.3 

are below actual closure stress should not be considered in the design. Table 3.1 shows 

the specific gravity and porosity for each proppant. This data will be used in the design 

process. 
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Fig. 3.3 Effective permeability at different closure stress for proppants considered in this 
work 
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Table 3.1 Additional proppant properties required in the design process 

 
Type of Proppant SGp φp 
RCS 2.62 0.40
LWC LS 2.70 0.42
SB 3.56 0.45
LWC HS 2.71 0.42

 

 

3.2.2 Non-Darcy flow 

The main objective of this work is to consider the effects of non-Darcy flow in the 

design. In Chapter I, we mentioned that not considering this effect might result in wrong 

designs and proppant selection which impacts severely the ultimate economic 

performance of the job. All β equations presented in Chapter I will be included in this 

application to evaluate how equation selected affects optimum fracture geometry and 

well performance. The algorithm used to calculate the effective propped pack 

permeability due to non-Darcy flow effects is presented in Chapter IV through an 

application example. 

 

3.2.3 Gel damage effects 

Fracturing fluids are one the most important components of a successful fracture 

treatment. The main functions of these fluids are to transmit the hydraulic pressure from 

the pumps to the formation and transport proppant along the created fracture.12,53  

Water based systems are the most widely used fracturing fluids. In this case, polymers are 

added to proportionate viscosity to the fluid. Guar gum and it derivatives such as 

hydroxypropil guar (HPG) and carboxymethyl-hydroxypropyl guar (CMHPG) are the 

polymers typically used as gelling agents.  

During the treatment polymer deposits a filter cake on the fracture wall due to the leakoff 

of the fracturing fluid into the formation.55 Gel concentration within the fracture increases 

with time as an effect of the fluid leakoff as well.  Deposited cake is subject to erosion 

and part of the polymer within the fracture comes out in the flowback. However, most of 
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the polymer remains in the fracture (Fig. 3.4). Final effect is a reduction of the cross 

sectional area of flow which decreases permeability. 

We considered two ways to account the effects of gel damage upon proppant 

permeability. The first one is as a percentage of retained permeability.56 Flowers, Hupp 

and Ryan19 mention that usually engineer designing hydraulic fractures include a damage 

of 50% or more to proppant permeability as a consequence of damage by polymers. In 

this case effective permeability is  

damagekk fefff %⋅=− ………...……….…………………………………………… (3.2) 

Second approach was presented by Pen and Jin.1 They proposed to quantify the effects of 

gel damage upon β factor. This correlation was obtained from plot of measured percent of 

damage and β factor, for various frac fluids and proppants. Finally, gel damage effect is 

quantified with the following equation 

100
%

10
damage

F = …………………………………………………………………….....… (3.3) 

where the beta factor after damage is  

ββ ×= F´ …………………………………………………………………………….. (3.4) 

 

 

 Fig. 3.4 Polymers within the fracture reduces cross sectional area 
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3.3    Effective permeability calculation 

Calculation of the effective permeability of the propped fracture considering the effects 

of closure stress, non-Darcy flow and gel damage should be performed in a sequential 

way. This sequence depends on factors finally to be considered, and the method selected 

to calculate the effective permeability due to these factors (i.e. for gel damage effect). In 

the development of this application, we consider that at least the effects of the closure 

stress upon permeability should be considered. Therefore, the user has the option of 

including or not the non-Darcy and/or gel damage effects.  

The algorithm proposed to calculate the effective permeability is presented in Fig. 3.5. 

Effective permeability after closure stress effects are calculated from tables or figures 

provided by manufacturer. The proppant database included in the spreadsheet has the 

table of proppant permeability vs. closure stress for each mesh available of proppants 

considered. Porosity and specific gravity is also included. Structure of the database is 

presented in Appendix A. For closure stress magnitudes other than those provided in the 

table, the permeability will be calculated by interpolation. An important restriction to be 

implemented in this application is not allow the user select a proppant when actual 

closure stress is above the maximum closure stress reported in proppant database.  

Once effective permeability for closure stress is calculated code check if user want to 

include gel damage effects (Fig. 3.5). If so and permeability correction is upon proppant 

permeability, code calculates new effective permeability from Eq. 3.2. Otherwise code 

will check if user wants to consider non-Darcy flow effects. If so, the code will execute 

algorithm presented in Chapter IV for calculating effective permeability due to non-

Darcy flow effects. Otherwise, ultimate effective permeability will be nominal 

permeability after closure stress or permeability corrected with Eq. 3.2, if it applies.  
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Fig. 3.5 Algorithm to be implemented in spreadsheet VBA code to calculate the effective 
fracture permeability 

 

 

3.4    Spreadsheet structure 

Spreadsheet developed in this work is based on H2FD spreadsheet that comes with 

Unified Fracture Design book.12 As stated in Chapter 3.1, H2FD was developed for 

fracture treatment design in low, medium and high permeability oil and gas wells. It is 

based on proppant number approach and includes PKN model to calculate fracture 

growth with time. 

Proposed spreadsheet is an adaptation of HF2D spreadsheet for fracture treatment designs 

in natural gas wells. Main feature of this application is the calculation of effective 

proppant permeability considering closure stress, non-Darcy flow and gel damage effects. 

New application consists on four worksheets: 
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• Traditional design for low and medium permeability (“Traditional”) 

• Tip screen out design (“TSO”) for high permeability 

• Proppant database  

• β factor equations database 

Traditional and TSO worksheets have the same data structure. It is considering that in 

both cases input and output variables are similar.  

 

3.4.1 Input data window 

It was structured by sections to facilitate the user the collection and input of data 

required. Fig. 3.6 shows the INPUT window interface for Traditional design. The same 

input variables are required for TSO design except in the “CONSTRAINTS” section 

where one more variable is required for TSO design. 

 

3.4.1.1 Proppant data 

• Mass for two wings. It is the total mass of proppant in lbm to be injected into the 

formation.  It is the single most important decision variable of the design procedure. 

• Proppant selection. Type of proppant to be used in the design can be picked up 

from corresponding list (Fig. 3.7). Only proppants included in proppant database will be 

displayed in this list. However, user can input new proppants as needed (Appendix A).  

• Size (Mesh). The available sizes change automatically when a type of proppant is 

selected. Sizes displayed are the ones included in the proppants database for the proppant 

selected (Fig. 3.8).  

• Specific Gravity. It depends only on the type of proppant selected and is 

independent of the mesh size and closure stress because is a property of the material  

which proppant is made. It is automatically updated when User select a new type of 

proppant. However, actual value be changed by the user based on his/her experience and 
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type of proppant to be finally used. The default value comes from the specific gravity 

specified in the Proppant database. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6 Structure of the input windows for a traditional design 

 

 

 

 

 

 

Fig. 3.7 Selection of the type of proppants available in Proppants Database 
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Fig. 3.8 Selection of the mesh size available for the type of proppant selected 

 

• Porosity of Pack. It depends on type of proppant, mesh and closure pressure. 

This value is automatically updated when User changes one of the variables mentioned 

previously. However, User can input a new value directly in the cell if proppant to be 

used in the design is quite different to the proppant specified in database and data is not 

available. 

• Pack permeability. It corresponds to the nominal permeability of the type of 

proppant and mesh selected at in situ conditions of closure stress. This value 

automatically changes when type of proppant, mesh or closure stress is changed. It comes 

from the permeability table specified for each proppant and mesh size as a function of the 

closure stress. If closure stress does not correspond to exact values specified in the table, 

the application interpolates to get the permeability at the actual closure stress. This 

application does not allow User to select a specific proppant above the maximum closure 

stress specified in the database. When it occurs a warning message box is displayed (see 

Fig. 3.9). 

 

 

 

 

 

Fig. 3.9 Warning message when a proppant is going to be used above the maximum limit 

of closure stress 
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3.4.1.2  Gas Properties 

• Gas Specific Gravity. It is the measured or estimated specific gravity (SGg) of 

the gas to be produced.  

• Calculate Z and Viscosity. Select this option when no lab measurements are 

available. Correlations used to calculate z-factor and viscosity were selected based on 

numerous evaluations performed by McCain57 to establish what the best correlations are 

to estimate gas, oil and water properties at any condition of pressure and temperature. 

Z Factor McCain recommends58 to use the Dranchunk Abou-Kassem equation (Eq. 3.5)59 

that duplicates Standing Katz z-factor chart with an average absolute error of 0.660. He 

mentions that accuracy of the equation decrease when pressure and temperature increase. 

For example, when pseudo reduce pressure and temperature are 30 and 2.8 respectively 

error is three percent.  
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A1 = 0.3265, A2 = -1.0700, A3 = -0.5339, A4 = 0.01569, A5 = -0.05165, A6 = 0.5475,           

A7 = -0.7361, A8 = 0.1844, A9 = 0.1056, A10 = 0.6134, A11 = 0.7210. 
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TT = ……………………………………………………………………………... (3.7) 

pr
pr P

PP = ..……………….…...…………………………………………...……..…… (3.8) 

McCain showed in further studies that the best estimation of z-factor is when critical 

pressure and temperature of the mixture is calculated with Piper, McCain and Corredor 

correlation  (Eqs. 3.9 and 3.10).61 This correlation was developed using a set of 1,482 
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data points, ranging in composition from lean sweet to rich acid, and fitted the data base 

with and average absolute error of 1.3 percent. Piper, McCain and Corredor correlation 

directly account for the effects of hydrogen sulfide, carbon dioxide (maximum 50%) and 

nitrogen (maximum 10%). 

J
KTpc

2

= …………………………………………………………………………....... (3.9) 

J
T

p pc
pc = ………………...…………………………..……………………………... (3.10) 
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αi and βi are shown in Table 3.2 

 

 
Table 3.2 Coefficients of Piper, McCain and Corredor correlation for critical properties 

calculation 

i αi βi 

0 0.11582 3.8216 

1 -0.45820 -0.06534 

2 -0.90348 -0.42113 

3 -0.66026 -0.91249 

4 0.70729 17.438 

5 -0.099397 -3.2191 
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Gas viscosity  McCain suggests57 using Lee, Gonzalez and Eakin correlation62 to estimate 

this variable. The accuracy of this correlation (Eq. 3.14) is 2% at low pressure and to 

within 4% at high pressure when the specific gravity of the gas is < 1.0. 

)10)(exp( 4−= C
gg BA ρµ ………………………………………………………..….. ( 3.14) 

where, 

TM
TM

A
g

g

++
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=

26.192.209
)01607.0379.9( 5.1

…………………………………………….……...… (3.15) 

gM
T

B 01009.0)4.986(448.3 ++= ………………………………………...…...…… (3.16) 

C = 2.447 – 0.2224B …………………………………………………...……...…… (3.17) 

VBA code was developed to calculate z-factor and gas viscosity from correlations 

presented above (Appendix B). 

• Input Z and Viscosity. Select this option if lab measurements of z-factor and gas 

viscosity are available for temperature and pressure of interest. Then enter the magnitude 

of the variables in the corresponding text box.  It is usually recommended to use 

measured values instead of calculated ones when they are available. 

 

3.4.1.3  Constraints 

• Max possible added proppant concentration. The most important equipment 

constraint. Some current mixers can provide more than 15 ppga. Often it is not necessary 

to ramp up to the maximum possible concentration. 

• Multiply opt length by factor. This design parameter can be used to force a sub-

optimal design. If the optimum length is considered too small (fracture width too large), a 

value greater than one is used. If the optimum length is too large (fracture width too 

small), a fractional value may be used. This possibility of user intervention is handy or 

investigating the pros and cons of departing from the technical optimum. The default 

value is 1.  
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• Multiply Nolte pad by factor. In accordance with Nolte’s suggestion, the 

exponent of the proppant concentration schedule and the pad fraction (relative to total 

injected volume) are initially taken to be equal. Inputting a value other than 1 has the 

effect of increasing or decreasing the pad fraction accordingly. The program adjusts the 

proppant schedule to ensure the required amount of proppant is injected. 

• TSO criterion Wdry/Wwet (Only available in TSO worksheet). Specifies the 

ratio of dry with (when only dehydrated proppant is left in the fracture) to wet width 

(dynamically achieved during pumping), and is needed only for the TSO design. 

According to our assumption, screenout happens when ratio of dry-to-wet width reaches 

the user specified value. We suggest using a number between 0.5 and 0.75 initially, but 

this number should be refined locally based on evaluation of successful TSO treatments. 

 

3.4.1.4  Frac Job Parameters 

• Fracture height is usually greater than the permeable height. It is one of the most 

design parameters. Derived from lithology information, or can be adjusted iteratively by 

the user to roughly match the fracture length. Based on our experience the ratio of total 

fracture length to fracture height (i.e. aspect ratio AR) is approximately 4. In other words 

0.4
2

≈=
f

f

h
x

AR ……………………………………………..……………………… (3.18) 

• Slurry injection rate (two wings, liq+ prop). The injection rate is considered 

constant along fracture treatment. It includes both the fracturing fluid and the proppant. 

Additional proppant simply reduces the calculated liquid injection rate. 

• Rheology, K'. Power law consistency of the fracturing fluid (slurry, in fact) 

• Rheology, n'. Power law flow behavior index. 

• Leakoff coefficient in permeable layer. Leakoff outside the permeable layer is 

considered zero, so when the ratio of fracture height to permeable-layer thickness is high, 

the apparent leakoff coefficient calculated from this input is much lower than the input 
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itself. If leakoff is suspected outside of the net pay, this parameter may be adjusted along 

with fracture height. 

• Spurt loss coefficient. Accounts for spurt loss in the permeable layer. Outside of 

the permeable layer, spurt loss is considered zero. 

 

3.4.1.5  Reservoir 

• Average reservoir pressure. It is used to calculate gas flow rate with the 

pressure square form of Darcy flow equation.   

• Reservoir temperature. It is usually measured in °F but is required in °R. It is 

used to calculate gas properties and gas flow rate. 

• Formation permeability. Effective permeability to gas of the formation. 

• Permeable (leakoff) thickness. This parameter is used in calculation if the 

Productivity Index (as net thickness) and the apparent leakoff coefficient-assuming no 

leakoff (or spurt loss). 

• Pre-treatment skin factor. Can be set to zero as it does not influence the design. 

It is only used as a basis for calculating the “folds of increase” in productivity. 

• Closure stress. It is required to calculate proppant pack permeability at in situ 

stress conditions.  

• Plane strain modulus, E'. Defined as Young’s modulus divided by one minus 

the Poissson ratio squared 

 21
´

υ−
=

EE ………………………………………………………………………….  (3.19) 

 Is almost the same as Young’s modulus, and about twice the shear modulus (the effect of 

the Poisson ratio is small). For hard rock, it might be 106, for soft rock 105 psi or less.  
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3.4.1.6  Well 

• Bottomhole pressure. Required to estimate gas rate and gas properties (Bg, µg, ρg 

and  z-factor). It can be obtained from direct measurements or using flow correlations. 

• Well drainage radius. Needed for optimum design. It can be obtained from 

build-up test, well spacing, etc. 

• Well radius. Needed for pseudo-skin factor calculation. Dimension can be 

obtained from caliper. If a caliper log is not available it can be estimated from drill-bit 

diameter. 

 

3.4.2  Proppant permeability correction window 
As mentioned before, this application was developed to consider the impairments of non-

Darcy and gel damage on the effective permeability. Fig. 3.10 shows the window where 

these factors are considered during the frac job design. This window is accessed by 

clicking on “Click here” button at the end of the PROPPANT section of INPUT DATA 

window. This window is the same for Traditional and TSO designs. Each worksheet (i.e. 

TRAD and TSO) has its own window to keep the individuality of each type of design.  

 

3.4.2.1 Non-Darcy Flow 

This effect is considered when checkbox next to this label (Fig. 3.10) is active (i.e. a 

check mark is displayed in this checkbox). When it occur the list of β factor equations 

becomes actives. Initially all 24 β factor equations reported in Chapter I are included in 

the spreadsheet (i.e. they are in Beta Equations worksheet). However, β factor equations 

displayed in the list are ones that can be used for type of proppant and mesh size selected 

in INPUT window. It is because some β factor equations were developed for specific 

type of proppant and mesh size. For example, Pen and Jin equation was developed only 

for 20/40 sand, resin coated sand, low weight ceramic and bauxite. Therefore, if a type of 

proppant and/or mesh size other than these is selected, this equation will not appear in the 

list.  
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Fig. 3.10 Selection of factors to be considered in the effective propped pack permeability 

calculations 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11 List of β factor available for actual proppant and mesh size 
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Equations developed from proppant tests are identified with a star (*) next to the name of 

the equation (Fig. 3.11).  If User considers proppant porosity to be used in the design has 

a high degree of uncertainty only β equations presented in Table 3.3 should be initially 

considered. If there is a correlation developed specifically for proppant type and mesh 

size considered in the design, then, it should be the correlation to use. Otherwise, a 

systematic evaluation of equations should be performed to select finally what correlation 

to use. 

 
 

Table 3.3 β equations that depend only on permeability 
 

Cooke*    8/12 
Cooke*  10/20 
Cooke*  20/40 
Cooke*  40/60 
Frederick et al 
Jones 
Martins et al* 
Penny and  Jin*  Bauxite 
Penny and  Jin*  LWC 
Penny and  Jin*  RCS 
Penny and  Jin*  Sand 
Pursell et al*  12/20 
Pursell et al*  20/40 
Thauvin and Mohanty 

        * Equations developed for proppants 

  

 

3.4.2.2. Gel Damage 

This effect is considered when a checkmark appears in the check box next to gel damage 

label. When it occurs all elements of gel damage section are active. Then user can select 

what approach to use for considering gel damage effects. It can be either on effective 

permeability or β factor. In both cases a percentage of gel damage must be specified. It is 

introduced in the % of Damage text box (see Fig. 3.10). This percentage can be modified 
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by hand directly on the text box or clicking the up or down arrows of the spin button next 

the text box. In this case % of Damage increase or decrease by one unit. 

Note that if in “Effects to be considered” section (Fig. 3.10) Gel Damage is selected and 

Non-Darcy Flow is not, the option by default in “Gel Damage” section is to apply % of 

Damage to proppant pack permeability. 

User can return to input window clicking on Back Home button. Once all input data have 

been validated and entered user can run the code clicking on “Run application” button. A 

message will let know him/her when calculations are completed.  

 

3.5    Calculated results 

Results comprise theoretical optimum (variables reported in the “Optimum placement 

without constraints” section) and actual placement (variables reported in the section with 

the same name). One may or may not be able to achieve the technical optimum fracture 

dimensions, depending on certain constraints. A boldface blue message appears in the 

spreadsheet to denote when optimum fracture dimensions cannot be achieved. Output 

variables are the same for both Traditional and TSO design in the placements section 

(Fig. 3.12 and Fig. 3.13 respectively). These variables are: 

 

• Reynold number  

• Effective proppant pack permeability 

• Proppant number  

• Dimensionless productivity index  

• Optimal dimensionless fracture conductivity 

• Optimal half length 

• Optimal propped width  

• Post treatment pseudo skin factor  

• Folds of increase of PI 

• Gas well rate  
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Figure 3.12 Output parameters reported in the Traditional design worksheet 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Output parameters reported in the TSO design worksheet 
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CHAPTER IV 

FIELD CASES APPLICATION AND ANALYSIS 

 

Spreadsheet for optimal fracture designs considering non-Darcy flow and gel damage 

effects was presented in chapter III. Correlations and methods in which this application is 

based were introduced in chapter II and III. 

The purpose of this is chapter is to show the impact of implementing an optimal design 

considering appropriately the non-Darcy flow and gel damage effects versus neglecting 

them. Moreover, the importance of selecting appropriately β equation will be 

demonstrated. 

Design and analysis of 11 fracture treatments in three natural gas wells are presented as 

application examples. These wells are identified as PS #1, PS #2 and PS #3. They are 

located in a tight gas reservoir in South Texas. It is a very heterogeneous reservoir with 

six multilayered producing sands. Therefore, several fractures are typically performed in 

each new well (i.e. multistage fractures), as part of the completion, to connect prospective 

sands with the wellbore.  

Previous studies performed in this field, to optimize future fracture treatments, indicate 

that 60,000 lbm per stage and maximum 5 stages should be considered for each new well. 

Based on these recommendations and well log analyses, selected stages for cases of study 

are presented in Table 4.1. As can be seen,  reservoir pressure, net pay and gas effective 

permeability ranges from 4,000 to 8,000 psi, 8 to 51 ft and 0.05 to 0.2 md respectively. 

An important index to be considered in our studies is the kghp product that varies from 

0.40 to 10.20 md-ft. Closure stress was included because its effects on the effective 

fracture permeability. It varies from 5,968 to 9,000 psi. Table 4.2 shows additional data 

required in the design process. Flowing bottomhole pressure (pwf) in new wells is 

typically 1,400 psi. This value will be used in this study. Well spacing and well radius are 

all the same for all wells in this field except the well radius in PS #3 is 0.281 ft. 
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Table 4.1 Reservoir properties of stages proposed for fracture design 

Well Stage 
pres      
(psi) 

Tres    
(psi) 

Pc      
(psi) 

kg      
(md) 

hp     
(ft) 

kghp     
(md-ft) 

1 8,050 264 9,000 0.073 74.5 5.44 
2 7,848 257 8,800 0.200 51.0 10.20 
3 7,365 250 8,300 0.123 15.0 1.85 
4 6,256 250 7,400 0.063 15.0 0.95 

PS #1 

5 5,842 250 7,200 0.083 9.5 0.79 
1 7,093 225 8,160 0.050 8.0 0.40 
2 7,091 228 7,900 0.070 12.0 0.84 
3 6,956 228 7,664 0.054 14.0 0.76 PS #2 

4 6,894 229 7,670 0.044 12.0 0.53 
1 4,284 220 5,968 0.200 8.0 1.60 PS #3 2 5,254 220 5,968 0.200 39.0 7.80 

  

 

Table 4.2 Additional well data required for fracture design 

Well 
Pwf      

(psi) 
re          

(ft) 
rw         
(ft) 

PS #1 1,400 745 0.281
PS #2 1,400 745 0.327
PS #3 1,400 745 0.327

  

Gas specific gravity and non-hydrocarbon content is required to estimate gas properties 

such as viscosity, z-factor, density and formation volumetric factor to be used in well 

deliverability and effective propped pack permeability calculations. This data is presented 

in Table 4.3. It was assumed that gas composition is constant for all stages of the same 

well. 

 

Table 4.3 Gas specific gravity and contaminants content 

Well SGg 
N2      

(mole %) 
CO2      

(mole %) 
H2S      

(mole %) 
PS #1 0.664 0.099 0.159 0 
PS #2 0.640 0.090 0.190 0 
PS #3 0.644 0.511 0.044 0 
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4.1 Calculation of the effective propped pack permeability for non-Darcy flow and 

gel damage effects 

The algorithm implemented in the spreadsheet to find the optimum dimensions while 

incorporating the non-Darcy flow and gel damage effects will be illustrated here on the 

example of stage 2 of PS #3 using RCS as the proppant of choice.  

Initially, kf corresponding to the closure stress is calculated. It is obtained from the 

proppant permeability vs. closure stress data for RCS proppant (chapter III)  at closure 

stress for this stage (i.e. 5,968 psi). The obtained kf by interpolation is 134,248 md. Gel 

damage will be taking into account on the initial β factor (i.e. Pen & Jin correlation). 

Percentage gel damage is assumed 50%. 

To estimate the amount of Proppant in pay, we need fracture height. There is no evidence 

of fracture height containment in wells fractured in this field. Based on our experience an 

aspect ratio (AR) of four will be kept as a general rule throughout the design.  

4
2

==
f

f

h
x

AR …………...……………………………………………………............ (4.1) 

When fracture length changes during the optimization process, the assumed fracture 

height changes too. In the given example the fracture height, hf is assumed to be 111 ft.  

The iterative process starts with a Reynold number guess. A sensitivity analysis was 

performed to determine is speed of convergence and final results (i.e. new effective 

permeability) are affected by the magnitude of initial guess. It was varied from 0 to 100 

(values typically found at field conditions). Results show that speed of convergence and 

final results are independent of initial guess. Therefore, this value was set to 10 in the 

code. In this example initial guess is close to the ultimate Reynold number based on 

spreadsheet results (i.e. 21.51). Then, a new Reynold number is calculated at the end of 

the process. Iteration stops when error calculated in step 8 is 0.01% or less. 
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1. Calculate effective permeability (kf-eff) 

NRe = 21.51, this can be initial guess or new Reynold number calculated in step 8. 

Re1 N
k

k f
efff +

=− ………...………………………………............................................. (4.2)  

where kf is in md and  kf-eff  is obtained in md.  

mdk efff 963,5
51.211

248,134
=

+
=−  

 

2. Calculate proppant number 

Reservoir volume (Vres) 

peres hrV 2π= …...……………………………………................................................... (4.3)                               

where re is in ft, hp is in ft and Vres is obtained in ft3. Then 

32 78.639745 ftEVres =⋅⋅= π  

The volume of proppant injected (Vi-2w) 
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( ) pp
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wi SG

M
V

φ−
= −

− 1
016.0 2

2 …………..…………………………………………….…........ (4.4)                               

where Mp-2w is in lbm and Vi-2w is obtained in ft3. Then 

( )
( )

3
2 610

62.240.01
000,60016.0 ftV wi =

⋅−
⋅

=−  

Volume of proppant reaching the pay (Vp-2w) is estimated from the ratio of pay to the 

fracture height: 

f

p
wiwp h

h
VV 22 −− = ………...…………………………….............................................. (4.5)                               

where Vi-2w is in ft3, hp is in ft, hf is in ft and Vp-2w  is obtained in ft3. Then 
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3
2 214

111
39610 ftV wp =⋅=−  

The Proppant number (Nprop) is obtained from 
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V
k

k
N 22 −−= …………..……………………................................................. (4.6)                               

where kf-eff  is in md, kg is in md, Vp-2w is in ft3 and Vres is in ft3. Then 

19.0
78.6

214
2.0
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=⋅
⋅

=
E

N prop  

 

3. Calculate optimal dimensionless fracture conductivity (CfDopt) and optimal 

dimensionless productivity index (JDopt) 

It is obtained from algorithm to calculate these two parameters for a given proppant 

number . In this case the  results are 

CfDopt = 1.66   and, JDopt = 0.55 

 

4. Calculate optimal fracture dimensions 

Optimal fracture length (xf) 
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x ……………….…….………….................................................. (4.7)                               

where kf-eff is in md, Vp-1w (for 1 wing) is in ft3, kg is in md, hp is in ft and xf is obtained in 

ft.  

ftx f 221
392.066.1

107963,5 2
1

=⎟
⎠
⎞

⎜
⎝
⎛

⋅⋅
⋅

=                                                                

(fracture height estimate was close enough, but might be improved to 2*221/4 = 110.5 for 

the next iteration.) 
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The optimal propped width (wfp) 

2
1

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−

−

pefff

wpgfDopt
fp hk

VkC
w …………………………...……............................................. (4.8)                              

where kg is in md, Vp-1w (volume in the pay in 1 wing) is in ft3, kf-eff is in md, hp is in ft 

and wfp  is in ft. Then, 

ftw fp 012.0
39963,5
1072.066.1 2

1

=⎟
⎠

⎞
⎜
⎝

⎛
⋅
⋅⋅

=  

 

5. Calculate gas production (qgsc) 

Dopt
resg

wfrespg
scg J

Tz
pphk

q
µ424,1

)( 22 −
= …………………………………………..…........... (4.9)                               

where kg is in md, hp is in ft, pres and pwf are in psi, µg is in cp, Tres is in °R and qgsc is in 

Mscf/day.  

µg and z-factor are calculated for average pressure (pres + pef)/2 and Tres using correlations 

recommended in Chapter III and data presented in Table 4.3 for PS #3 well. Results are 

µg= 0.0205, and  z = 0.944     herein 
 

dayMscfq
scg /871,555.0

680944.00205.0424,1
)400,1254,5(392.0 22

=⋅
⋅⋅⋅

−⋅⋅
=  

 

6. Calculate gas velocity within the fracture 

Gas formation volumetric factor (Bg) 

wf

res
g p

zT
B 0282.0= …………..……..………………................................................... (4.10) 
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where Tres is in °R, pwf is in psi and Bg is obtained in rcf/scf. Z-factor is calculated at 

bottomhole conditions (i.e. pwf and Tres) because non-Darcy flow within the propped pack 

is more critical at this point.  Z is 0.934. In the example, 

scf
rcfBg 0128.0

400,1
680934.00282.0 =

⋅
⋅=  

Gas velocity (v) 

fpf

gscg

wh
qB

v
500

= ……………...………………………............................................... (4.11)                               

where Bg is in rcf/scf, qgsc is in Mscf/day, hf is in ft, wfp is in ft and v is obtained in ft/day. 

In our example,  

dayftv /209,28
012.0111

871,50128.0500
=

⋅
⋅⋅

=  

 

7. Calculate Reynold number 

Molecular weight of the mixture (Mg) 

gairg SGMM ⋅= ,……….........……………………................................................. (4.12) 

where Mair is in lb/lb mole 

molelblbM g _/68.18644.029 =⋅=  

Density of the gas (ρg) 

res

gwf
g zRT

Mp
=ρ ……………………………………………………………….......... (4.13) 

where pwf is in psi, Mg is in lb/lb mole, Tres is in °R and ρg is in lbm/ft3 and  

Rmolelb
ftpsiaR

°⋅
⋅

=
_

732.10
3

 

z-factor is at bottomhole conditions too 
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Therefore,  

3/84.3
680732.10934.0

68.18400,1 ftlbmg =
⋅⋅

⋅
=ρ  

Beta factor (β) 

c
p

b
fk

a
φ

β = ………..……………………………...................................................... (4.14) 

where kf is in md and β is in 1/ft. For Penny and Jin Correlation RCS 20/40,  a = 

3.47E11, b = 1.35, c = 0.00, then 

ftE /1462,41
40.0248,134

1147.3
035.1 =

⋅
=β  

It has to be corrected for gel damage 
 

100
%

10
damage

F = ……………….……………………………………………………… (4.15) 
 

16.310100
50

==F , and  
 

ββ ×= F´ ……………………………………………………...………………….... (4.16) 
where β is in 1/ft. In this example 
 

ft/1_020,131462,4116.3´ =⋅=β  

 

Reynold number (NRe) 

g

gf vk
N

µ
ρβ ′

×= −16
Re 1083.1 ………………………….…………...…………......... (4.17) 

where β is in 1/ft, kf is in md, ρg is in lbm/ft3, v is in ft/day and µg is in cp. In the example,  

35.22
0156.0

209,2884.3248,134020,1311083.1 16
Re =

⋅⋅⋅
⋅×= −N  
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8. Error of Re number 

%9.3100
51.21

51.2135.22
100

Re

ReRe =⋅
−

=⋅
−

=
old

oldnew

N
NN

Error                                                                                     

The Reynold number calculated in step 7 is used in step 1 and the calculations are 

repeated until the error ≤ 0.01. 

 

4.2 Beta correlation evaluation 

Some β equations have been developed for a specific type of proppant and/or mesh size. 

It is the case of Pen & Jin1 and Cooke21 equation. There are also other correlations 

obtained from proppant tests which have been proposed by their authors as general 

correlations for proppants. It means that these correlations can be used in the analysis of 

non-Darcy flow effects through propped packs irrespective the type of proppant and mesh 

size.     

In the example calculation Pen and Jin correlation was used because it was developed 

specifically for type of proppant considered in the example (i.e. RCS 20/40). However 

three questions may arise: 1) What if a proppant to be injected into the formation does not 

have a specific β equation ? 2) Are general β equations for proppant really general? 3) 

Can be a β equation developed from a source other than proppant tests be used in this 

case?  

These questions will be answered comparing the frac design results in term of ultimate 

gas rate using each β equation. Comparisons were performed in PS #1_Stage 3, PS 

#2_Stage 1 and PS #3_Stage 2. It is because these stages represent a high, medium and 

low value of kghp product relative to 11 stages proposed. These values are 1.85, 0.40 and 

7.80 md-ft for PS #1_Stage 3, PS #2_Stage 1and PS #3_Stage 2, respectively. The 

purpose of this is to check if kghp product affects the results and consequently conclusions 

derived. 

The equation of Pen & Jin will be used as a reference in Fig. 4.1 because it was 

developed specifically for RCS 20/40. We can see there that results obtained with general 



  52   

correlation for proppants (i.e. Pursell et al, Kutasov, Maloney et al and Martins et al) are 

relatively close to the Pen & Jin results. But definitively the best match is obtained with  

Pursell et al. and Martins et al. equations, despite the fact that RCS was not used in the 

development of these equations. In both cases the equations were obtained from tests 

were X was varied up to 60 at different closure stresses using Nitrogen (similar to Pen & 

Jin). Therefore, lab test conditions and analysis were similar to the Pen & Jin 

experiments.  Maloney et al. used several proppant types to derive their β equation but 

they only ran their experiments for one value of X. It might affect the applicability of this 

equation at different flow conditions,  specially in field applications were X is tipically 

above 10.23 Kutasov used lab data from experiments of four different authors. This 

equation includes proppant and packed bed experiments which might affect its 

applicability to proppants.  

In the other hand, only three equations derived from other sources gave similar results to 

the Pen & Jin equation (i.e. Thauvin and Mohanty, Geerstma, and Li). The Thauvin and 

Mohanty correlation evaluated in this work comes from the simplest morphological 

structure (i.e. model, pore size distribution and network coordination number) studied by 

them. This morphology is typical of a propped pack. It is high porosities (0.40) and low 

tortuousity. Geertma used unconsolidated sands in his experiments. Although 

permeabilities are lower compare to typical proppant permeability, the nature of the 

porous media is similar. In general, we can say that the best matches are obtained for 

equations derived from experiment or analysis in porous media very similar to a proppant 

bed. The findings confirm that β is a property of the porous media18,19 and is related to the 

nature of its morphological structure.34 

We can see in Figs. 4.1, 4.2 and 4.3 that relative results among all equation are the same 

as presented in Fig. 4.4. The equations due to Martins et al. and Pursell et al. are the best 

across the board correlations. The same results were obtained for evaluations performed 

in  PS #1_Stage 3 and PS #2_Stage 1  (Appendix C). The results suggest that selection of 

the β correlation should be independent of the kghp product of the well. Thauvin and 

Mohanty and Li. equations could be also used but equations developed from proppant 

tests should be considered first. 
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Fig. 4.1 Comparison of optimal design results in terms of gas rate production for 20/40 
RCS proppant 
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Fig. 4.2 Comparison of optimal design results in terms of gas rate production for 20/40 
LWC_LS proppant 
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Fig. 4.3 Comparison of optimal design results in terms of gas rate production for 20/40 
SB proppant 
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Fig. 4.4 Comparison of optimal design results in terms of gas rate production for 20/40 
LWC_HS proppant 
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4.3 Optimal fracture geometry and bottomhole pressure sensitivity analysis 

We can infer from application example presented in section 4.1 that kf-eff and 

consequently fractured well performance and optimal fracture geometry depends on 

pressure drawdown (∆P). It is determined by pwf, in this case, which depends on 

operational conditions at the surface. PS #1_Stage 3, PS #2_Stage 1and PS #3_Stage 2 

will be used in this analysis to show how variations in kghp might also affect final results.  

Pwf was varied from 1,000 psi to 4,000 psi. We observe in Figs. 4.5, 4.6 and 4.7 that the 

less pwf is the wider and shorter fractures are required.   

We also observe that the higher the kghp product is variations of optimal lengths and 

widths are more substantial for the same increase in pwf. For example, for PS #3_Stage 2 

optimal length varies from 321 to 396 ft for LWC_LS when bottom pressure varies from 

1,000 to 4,000 psi. It is an increase of 23.3 %; for PS #1_Stage 3 optimal length varies 

from 375 to 420 ft (12 %); and for PS #2_Stage 1 optimal lengths varies from 598 to 632 

ft (5.7 %). The same relative variations can be observed regarding the optimum fracture 

width and proppant type. It suggests that the higher the kghp product is, the more 

important is to incorporate the non-Darcy effect inside the optimization loop. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 Optimal fracture geometry varies for PS #3_Stage 2 at different values of pwf 
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Fig. 4.6 Optimal fracture geometry varies for PS #1_Stage 3 at different values of pwf 
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Fig. 4.7 Optimal fracture geometry varies for PS #2_Stage 1 at different values of pwf 
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4.4 Comparison of optimal fracture designs results considering non-Darcy flow and 

gel damage effects  

We present in this section how neglecting non-Darcy flow and gel damage effects might 

result in poor fracture designs. Once the optimal mass of proppant to be injected into the 

formation has been established (i.e. 60,000 lbm in this work), the next step is to define 

how to place this amount of proppant into the formation (i.e. fracture geometry) for 

maximizing gas rate production and consequently return of the investment. 

We can see from Fig. 4.8 three different scenarios for Stage 2 of PS #3 using LWC_LS 

20/40 as the proppant of choice. First, Darcy flow is assumed during the fracture design 

process. Expected production is 12,619 Mscd/day from design resulting of this 

assumption. However, as we mention before, non-Darcy flow through the fracture is 

present. If we keep the first design, ultimate production will be in reality 5,591 Mscf/day. 

(Of course many authors have been pointed this out before us.) However, if we consider 

the non-Darcy flow effect during the optimization itself, applying the design 

methodology presented in this and previous chapters, a new optimal fracture geometry is 

obtained. It results in gas rate production of 7,545 Mscf/day which makes a difference of 

1,954 Mscf/day with respect to the original design. We observe in Fig. 4.8 that an 

optimal fracture design implies a shorter and wider fracture to compensate the effects of 

non-Darcy flow.  

If gel damage effects are now considered similar results than Fig 4.8 are obtained. We 

can see in Fig. 4.9 that expected production is 4,822 Mscf/day when a Darcy design is 

implemented in the presence of non-Darcy flow and gel damage within the fracture. If 

this design is optimized, considering appropriately these factors, ultimate gas production 

will increase to 6,664 Mscf/day. Again, the effects of non-Darcy flow and gel damage are 

compensated in part with a shorter and wider fracture. From Figs. 4.8 and 4.9 we can 

deduce that the more factors decreasing fracture permeability are considered (Appendix 

C), we will require wider and shorter fractures to compensate the new effects for a given 

amount of proppant. 
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Fig. 4.8 Considering non-Darcy flow effects in the fracture design maximizes ultimate 
well deliverability 
 
 
 
 

 
 

Fig. 4.9 Considering non-Darcy flow and gel damage effects in the fracture design 
maximizes ultimate well deliverability 

 

 



  61   

The result of implementing an optimal design in the multistage fractures of wells PS #1, 

PS #2 and PS #3 might result in an additional production of 9,600 Mscf/day with respect 

to the design where non-Darcy flow effects through the propped fracture are neglected 

(see  Table 4.4). Moreover, if gel damage is present an optimal design for these stages 

might result in an additional production of 9,360 Mscf/day (see Table 4.5). 

 
 
 

Table 4.4 Gas expected production increases after implementing an optimal design for 
non-Darcy flow effects 

 

Well Stage 

qgsc 
(Mscf/day) 
Darcy flow 

design 

qgsc 
(Mscf/day) 

Optimal 
design 

Difference   
(Mscf/day) 

1 6,869 9,578 2,709 
2 10,315 14,117 3,802 
3 2,554 3,256 702 
4 1,533 1,608 75 

PS #1 

5 1,155 1,202 47 
1 948 956 8 
2 1,623 1,744 121 
3 1,590 1,627 37 PS #2 

4 1,237 1,230 -7 
1 1,166 1,364 198 PS #3 2 5,591 7,545 1,954 

      TOTAL 9,646 
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Table 4.5 Gas expected production increases after implementing an optimal design for 
non-Darcy flow and gel damage effects 

 

Well Stage 

qgsc 
(Mscf/day) 
Darcy flow 

design 

qgsc 
(Mscf/day) 

Optimal 
design 

Difference   
(Mscf/day) 

1 6,074 8,453 2,379 
2 8,949 12,740 3,791 
3 2,554 2,860 306 
4 1,245 1,459 214 

PS #1 

5 926 1,087 161 
1 961 832 -129 
2 1,300 1,591 291 
3 1,277 1,458 181 PS #2 

4 1,003 1,062 59 
1 940 1,205 265 PS #3 2 4,822 6,664 1,842 

      TOTAl 9,360 
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CHAPTER V 
 

MULTISTAGE FRACTURING OPTIMIZATION 
 

 

Fracture designs and sensitivity analyses results presented in chapter IV were based on 

the premise that total mass of proppant to be injected in each well, selection of intervals 

(i.e. stages) to be fractured and amount of proppant to be placed into selected stages, and 

maximum number of stages to be fractured per well had been already determined by 

evaluations performed on datasets of fracture jobs executed in the field. These guidelines 

are: 

• 60,000 lbm of proppant should be injected per stage  

• Maximum 5 stages  and 300,000 lbm per well 

• The following sequence of depth intervals is suggested for selection of the 5 

stages to be fractured : 

1. 7,500’-7,750’ 

2. 7,000’-7,250’ 

3. 7,750’-8,000’ 

4. 7,250’-7,500’ 

5. 9,250’-9,500’ 

6. 9,000’-9,250’ 

7. 8,750’-9,000’ 

8. 9,750’-10,000’ 

9. 8,000’-8,250’ 

10. 8,250’-8,500’ 

11. 8,500’-8,750’ 

 

Based on these premises the optimum multistage fracture design is reduced to optimal 

single stage fracture designs (for each stage of each well). However, in multilayered tight 

gas reservoirs is not always the case. Engineers have to decide the total amount of 

proppant to inject per well, select what stages are going to be fractured and how much 
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proppant should be injected into each stage to maximize total gas rate of each new well. 

It does not have an obvious solution. In this chapter we propose a methodology based on 

Dynamic Programming to come up with an optimal solution for this case. 

 
5.1 Problem statement 
 
5.1.1 Definition and calculation of number of stages 

A multilayered reservoir is composed of thin layers of rocks which properties varies 

based on depositional environment, composition of the rock, etc (see Fig. 5.1). 

Hydrocarbons can be produced from one these layers if the following requirements are 

satisfied: 1) Rock has porosity, 2) Gas or oil is found in the rock pores, 3) Pores are 

interconnected (i.e. has some permeability), 4) There is enough gas or oil to pay (at least) 

the investment made to drill, complete and produce the well. In tight gas reservoir (i.e. 

very low permeability gas reservoirs) wells are typically fractured to increase gas 

production.  

 

 

Fig. 5.1 Multilayered reservoir  
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Because of restrictions imposed by mechanical properties of the rock, in situ stress, 

equipment used to inject the fracturing fluid at high pressures into the formation, etc. the 

final fracture height is limited (see Fig. 5.2). Then, only some layers are connected to the 

wellbore (through the fracture) which is considered one stage. Production coming from 

these layers might not be enough to make the project economically attractive. Therefore, 

more fractured interval or stages are required to connect more prospective producer 

layers to the wellbore (see Fig.5.3). It is called multistage hydraulic fracturing.  

 

 

 

 

Fig. 5.2 Fracture height grow is limited and only connects some layers of all prospective 

layers 
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Fig. 5.3 More fractures are required to connect prospective layers with the wellbore 
 

 

The first step is to calculate the number of stages that will be considered in the 

optimization process applying DP. It is obtained as follow: 

1) Select the top depth of prospective layers  (i.g. 7,000 ft) 

2) Select the bottom depth of prospective layers (i.g. 9,000 ft) 

3) Divide total interval in sub-interval (i.e stages) of same length (i.g. 250 ft) 

4) Number of stages are 

lenghtStage
depthBottomdepthTop

N
_

__ −
= ……………………….……………...……… (5.1) 

In the example, 
 

8
250

000,9000,7
=

−
=

ft
ftft

N      (see Fig. 5.4) 
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Fig. 5.4 Calculation of number of stages  
 
 
 
5.1.2 Gas production calculations 
 

Once the number of stages (N) has been calculated, the next step is to determine which of 

these stages should be fractured and how much proppant (i.e. mass of proppant) should 

be placed into each one to maximize total gas production (i.e. the sum of gas production 

coming from each fractured stage). In the optimization arena it is called an Allocation 

Problem .The star point of our methodology is that total mass of proppant (Mtotal) to be 

injected into the well had been already dictated by economics. It is one and by far the 

most important restriction.  

From chapters II, III and IV we can conclude that gas production coming from a fractured 

stage is a function of: 

• Reservoir properties: Reservoir pressure, reservoir temperature, net pay, reservoir 

permeability to gas and drainage area 
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• Gas properties 

• Proppant number: mass of proppant in the net pay, specific gravity, porosity and 

effective proppant permeability (considering non-Darcy flow effects and 50% of 

gel damage) 

• Bottomhole pressure 

We can see in Fig. 5.4 that one stage comprise several layers. Therefore, reservoir 

properties are the average for the stage. In addition to this, we assume in chapter IV that 

reported  hp and kg have deterministic values.  However, previous studies performed in 

this field showed that there are uncertainties in the ultimate value of these parameters. 

We will assume that the average values of hp and kg for each stage follow a triangular 

probabilistic distribution (Fig. 5.5). 

 

 

 

Fig. 5.5 Triangular probabilistic distribution 

 

 

X in Fig. 5.5 is the variable of interest (i.e. either kg or hp), and p(x) is the probabilistic 

distribution function of X. Therefore for each stage Xmin, Xml and Xmax for hp  (i.e. minhp, 

mlhp and maxhp) and kg (i.e. minkg, mlkg and maxkg) is part of the required data. Given 
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U(X) (i.e. probability of occurrence of X), X is calculated using inversion function of 

triangular distribution (Appendix D).   

Although we mention previously that gas production is a function of several parameters, 

in next section we will consider it is only a function of mass of proppant because it is the 

only parameter that will be varied. Because of the stochastic nature of hp and kg, gas rate 

(for a specific mass of proppant at any stage) will be calculated using Monte Carlo 

simulation as follow: 

1. Generate a random number between 0 and 1 (i.e. U(X)) 

2. Calculate correspondent value of hp using inversion function 

3. Generate a second random number between 0 and 1 (i.e. U(X)) 

4. Calculate correspondent value of kg using inversion function 

5. For the mass of proppant considered, and hp and kg  calculated in step 2 and 4 

respectively,  calculate gas rate expected from an optimal fracture design          

(i.e. considering non-Darcy flow and 50% of gel damage) 

6. Repeat 100 times steps 1 to 5. At this point we will have 100 values of gas rates 

for same mass of proppant in the same stage. Ultimate gas production is the 

arithmetic average of these 100 production rates. 

This algorithm was implemented as an Excel function called qgas (Appendix D). 

 
 
5.2 Problem formulation for DP optimization 
 

Basic elements of any optimization problem  using DP are presented below adapted to 

multistage hydraulic fracturing case.  

Stages 

It corresponds to the number of candidates stages (N) for being fractured. Method to 

calculate N was introduced in section 5.1.1.  
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Decisions 

Decision to be made at each stage i is the mass of proppant (mi) to be placed in such stage 

for maximizing total gas rate production. Gas rate is a continuous function of mass of 

proppant. However, we will treat mi as a discrete variable (i.e. positive integer series). 

For example, set of values of mi  for one stage could be 0, 20,000, 40,000 and 60,000 

lbm. 

State  

The variable of state at stage i is the mass of proppant remaining (si) of total mass of 

proppant (Mtotal) initially available for the well.   

Equation of state 

It establish the relationship between state at stage i + 1 (si+1) and state (si) and decision 

made (mi) at stage i. 

iii mss −=+1 ……………………………………………………………………..…… (5.2)                              

where    i = 1, 2, ….. , N                        

Objective function  

It is to maximize total gas production coming from fractured stages having as constraint 

the total mass of proppant available for the well. In other words, 

( )i

N

i
i mqMax∑

=1
............................................................................................................... (5.3)                           

Subject to,    

∑
=

=
N

i
totali Mm

1
............................................................................................................ (5.4)                           

where,                       

qi(mi) = 0,      if mi = 0          and 

qi(mi) is calculated following approach presented in section 5.1.2 ,        if mi  > 0 
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Recursive relation 

It will allow establishing the optimal policy to maximize gas rate production. In this case, 

optimal policy is the amount of proppant to inject into each stage, even 0 lbm, to satisfy 

the objective function.  

                                 

                qi(mi),                                                                            if    i = N 

fi(si)=        

                max   {qi(mi) + fi+1(si – mi):mi  ≤ {si}},                        if    i = 1 to N-1 

 
 
 
5.3 Example application 
 

Proposed optimization methodology will be implemented in the design of multistage 

fractures of PS #1 in order to show the potential of DP technique for this specific 

application. LWC_LS 20/40 proppant will be the proppant to use in the design. Non-

Darcy flow and 50% of gel damage will be considered. β factor will be calculated using 

Pen & Jin correlation. DP components specified in section 5.2 will be defined below for 

PS #1  application example. 

Stages 

After a detailed review of well logs of PS #1, the interval of interest for multistage 

fracturing is from 8,000’ (i.e. top of the interval) to 10,000’ depth (i.e. bottom of the 

interval).   The stage length was set to 200’ to avoid fracture overlapping between two 

contiguous stages, if both are going to be fractured. 

Finally, number of stages is 

stages
ft

ftft
N 10

200
000,10000,8

=
−

=  

Data required for all stages to calculate gas rate production are presented in Tables 5.1 

and 5.2. 
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Table 5.1 Reservoir properties and initial propped pack permeability for stages 1 to 10 

Stage 
Pres    
(psi) 

Tres   
(°F) 

minhp  
(ft) 

mlhp  
(ft) 

maxhp  
(ft) 

mink   
(md) 

mlk   
(md) 

maxk  
(md) 

Pc    
(psi) 

kf       
(md) 

1 5,842 250 8 9.5 11 0.05 0.083 0.10 7,200 182,000
2 5,950 250 1 3 5 0.01 0.020 0.03 7,300 178,000
3 6,256 250 10 15 18 0.04 0.063 0.90 7,400 174,000
4 7,365 250 10 15 18 0.09 0.123 0.20 8,300 140,250
5 7,480 253 1 2 4 0.01 0.030 0.04 8,600 130,500
6 7,645 256 1 3 5 0.02 0.030 0.04 8,700 133,750
7 7,848 257 30 51 60 0.10 0.200 0.25 8,800 124,000
8 7,935 260 2 3 5 0.01 0.020 0.04 8,900 120,750
9 8,050 264 30 75 80 0.05 0.073 0.10 9,000 117,500

10 8,200 267 1 2 4 0.02 0.040 0.06 9,100 114,250
 

 

 

Table 5.2 Common data for stages 1 to 10 

re              (ft) 745
SGg 0.664
N2           (%) 0.099
CO2        (%) 0.159
H2S         (%) 0
pwf    (psi) 1,400
SGp 2.70
φp 0.42

 

 

Decisions 

At each stage, decision will be to inject 0 or 60,000 lbm of proppant. Of course, decision 

set could include more values (i.g. 0, 20,000, 40,000, etc). However, the main purpose of 

this example is to show the usefulness of DP technique. Therefore, only two values are 

considered to simplify computations and computer programming. This work can be 

extended to include more details in both data and formulation of the problem.    
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Objective function 

It is assumed that total mass of proppant to inject in PS #1 is 300,000 lbm. Then, 

( )i
i

i mqMax∑
=

10

1

 

subject to 

∑
=

=
10

1
000,300

i
i lbmm         i = 1, 2, ….. , N              and            mi = {0, 60,000} 

 

Recursive relation 

                                 

                qi(mi),                                                                            if    i = 10 

fi(si)=        

                max   {qi(mi) + fi+1(si – mi):mi  ≤ {si}},                        if    i = 1 to 9 

 
 

Recursive relation is typically solved in DP using tables such as Tables 5.3, 5.4 and 5.5. 

These are the solution “by hand” of one realization of Montecarlo simulation for stages 1, 

9 and 10. The tables for the others stages are presented in Appendix D. Rows shaded in 

green represent optimal decision for correspondent stage. This process was automated 

using VB (see code in Appendix D). Optimal policy and consequently final results 

(Table 5.6) were the same from both the tables and VB code which validates the code 

and simplicity of DP technique to solve such as multistage decision problem.  
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Table 5.3 Recursive relation for stage 10 

i = 10 
si  \  mi Opt mi fi(mi)

0 0 0
60,000 60,000 161

120,000 60,000 161
180,000 60,000 161
240,000 60,000 161
300,000 60,000 161

 
 
 
 

Table 5.4 Recursive relation for stage 9 

i = 9 
si  \  mi 0 60,000 Opt mi fi(mi) 

0 0 - 0 0
60,000 161 4,957 60,000 4,957

120,000 161 5,118 60,000 5,118
180,000 161 5,118 60,000 5,118
240,000 161 5,118 60,000 5,118
300,000 161 5,118 60,000 5,118

 
 
 
 

Table 5.5 Recursive relation for stage 1 

i = 1 
si  \  mi 0 60,000 Opt mi fi(mi) 
300,000 17,920 18,444 60,000 18,444
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Table 5.6 Optimal policy for multistage fracturing of PS #1 for one realization of 
Montecarlo simulation 

Stage mi 
(lbm) 

q(mi) 
(Mscfd)

1 60,000 685
2 0 0
3 60,000 3,383
4 60,000 1,822
5 0 0
6 0 0
7 60,000 7,597
8 0 0
9 60,000 4,957

10 0 0
Total  18,444

 
 
 

Additional realizations of Montercarlo simulation were evaluated. Optimal policy did not 

changed but total gas production did. 
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CHAPTER VI 
 

SUMMARY AND CONCLUSIONS 
 
 
 

6.1 Summary 
 

 

This work started with a review of β correlations available in the literature. Three type of 

correlations were identified: correlations obtained from proppant lab tests, correlations 

obtained from packed bead and core lab tests, and correlation obtained from analytical 

studies. 

A spreadsheet was developed for optimal fracture designs in natural gas wells 

considering the effects of closure stress, non-Darcy flow and gel damage. To account the 

non-Darcy flow and gel damage effects in the design process is optional to the user. This 

new application is based on H2FD spreadsheet developed by Economides, Oligney and 

Valko.12 Effective propped pack permeability and optimal geometry is calculated through 

and iterative process. A proppant database is included in the spreadsheet to get proppant 

properties such as specific gravity, porosity and permeability vs. closure stress for each 

available mesh size, required in the calculations. Moreover, a β factor correlation 

database is also included to evaluate the impact of correlation selected in optimal fracture 

geometry and gas deliverability. 

The new spreadsheet was used to evaluate all β correlations available, as well all, 

perform fracture designs and analysis of 11 stages of three wells (i.e. PS #1, PS #2 and 

PS #3) completed in a natural tight gas reservoir in South Texas. Four types of 20/40 

proppants are considered in this work: RCS, LWC LS, SB and LWC HS. In addition to 

this, Dynamic Programming technique was implemented in the multistage fracture design 

of PS #1 to maximize total gas production. Monte Carlo simulation was performed to 

incorporate the stochastic nature of average reservoir permeability and net pay of each 

stage in the optimization process. 
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6.2 Conclusions 
 
The following conclusions can be derived from the present research: 

 

1. β factor is a property of the porous media and is related the nature of its 

morphological structure. 

2. Pursell et al and Martin et al β factor equations are recommended as general 

equations in the design and analysis of fracture treatments considering non-Darcy 

flow effects if there is no specific β equation available for proppant being used. 

The Thauvin and Mohanty and Li et al. equations could be also used, but, of 

course, equations developed from proppant lab tests should be considered first. 

3. The β factor equation selection should not be influenced by the kghp product of the 

formation to be fractured. 

4. Shorter and wider fractures are required to compensate the effects of non-Darcy 

flow for a specified mass of proppant to be injected into the formation. The 

optimum fracture geometry varies somewhat with pressure drawdown. Therefore, 

operational pwf should be estimated as best as possible for an optimal design. 

Finding the optimum dimensions compensates for a large part of the non-Darcy. 

This point has been neglected in the previous literature. 

5. The higher the kghp product is, the more important is to implement the non-Darcy 

flow compensation within the optimization loop. 

6. The more factors decreasing propped pack permeability are considered (i.g. gel 

damage) the wider and shorter the fracture should be to compensate their effects. 

7. DP is a powerful and easy to implement optimization technique in multistage 

fracture design for maximum gas deliverability when total mass of proppant to be 

injected into the well is a constraint. It is recommended to expand its application, 

through more application examples, incorporating all the complexities of the 

process. 
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NOMENCLATURE 
 
 

a  =  numerator of β equation 
AR  =  aspect ratio 
b  =  power of proppant permeability in β equation  
Bg  =  gas formation volumetric factor, rcf/scf 
c  =  power of proppant porosity in β equation 
CfD  =  dimensionless fracture conductivity,  
CfDopt  =   optimal dimensionless fracture conductivity 
i =  index of number of stage 
hf  =  fracture height, ft 
hp  =  net pay, ft 
Ix  =  penetration ratio 
J  =  well productivity index, Mscfd/psi 
JD  =  dimensionless productivity index 
kg  =  reservoir gas permeability, md 
kf   =  initial or nominal proppant permeability, md 
kf-eff  =  effective proppant permeability, md or cm2 or D 
∆L  =  differential length in pressure drop calculation, ft 
Mair  =  molecular weight of air, lb/lb mole 
Mg  =  molecular weight of gas mixture, lb/lb mole 
mi =  mass of proppant to inject in stage I, lbm  
Mtotal =  total mass of proppant available for one well, lbm 
N =  number of stages 
NRe  =  Reynold number 
NRe new =  Reynold number calculated at the end of actual iteration 
NRe old  =   Reynold number calculated in previous iteration 
Nprop  =  proppant number 
p =  pressure of interest for gas properties calculation, psi 
∆P  =  pressure drop, psi 
Pc  =  closure pressure, psi 
pfracture =  Pressure within the fracture, psi 
ppc =  critical pressure, psi  
ppr =  pseudo reduced pressure 
pres  =  reservoir pressure, psi 
pwf   =  flowing bottomhole pressure, psi 
qi = gas rate production for stage i, Mscf/day 
qgsc  =  gas rate production at standard conditions, Mscf/day 
R  =  universal constant of gas law, psia.ft3/lb mole°R 
re  =  drainage radius, ft 
rw  =  well radius, ft 
si =  state of the system at stage i 
sf   =  pseudo fracture skin factor 
SGpp  =  proppant specific gravity 
SGg  =  gas specific gravity 
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T =  temperature of interest for gas properties calculation, °R or °F 
Tpc =  critical temperature 
Tpr =  pseudo reduced temperature  
Tres  =  reservoir temperature, °R or °F 
v  =  gas velocity, ft/day  
Vp-2w  =  volume of proppant in the net pay, ft3 

Vp-1w  =  volume of proppant in pay in one wing, ft3 

Vi-2w  =  total volume of proppant to be injected, ft3 

Vres  =  reservoir volume, ft3 

wfp  =  propped fracture width, ft or in 
X        =   inertial force due to gas flow, gr-cm2s/cp 
xe  =  reservoir length, ft 
xf   =  fracture half- length, ft 
z  =  gas compressibility factor 
α1  =  conversion units constant 
β  =  non-Darcy flow coefficient, 1/ft or 1/m or 1/cm or atm-sec2/gr 
φpp  =  proppant porosity 
µg  =  gas viscosity, cp 
µγ =  fluid viscosity in Cooke experiments, cp 
ρg  =  gas density, lb/ft3 

ρpr =  pseudo reduced gas density  
σeff   =  effective in situ stress, psi 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  80   

REFERENCES 
 

1. Penny, G.S., and Jin, L.: “The Development of Laboratory Correlations Showing 
the Impact of Multiphase Flow, Fluid, and Proppant Selection Upon Gas Well 
Productivity,” paper SPE 30494 presented at the 1995 SPE Technical Conference 
and Exhibition, Dallas, 22-25 October. 

2. Guppy, K.H., Cinco-Ley, H., Ramey, H.J. and Samaniego, F.: “Non-Darcy Flow 
in Wells With Finite-Conductivity Vertical Fractures,” Society of Petroleum 
Engineers Journal, (October 1982), 681. 

3. Alvarez, C.H., Holditch, S.A., and McVay, D.A.: “Effects on Non-Darcy Flow on 
Pressure Transient Analysis of Hydraulically Fractured Gas Wells,” paper SPE 
77468 presented at the 2002 SPE Annual Technical Conference and Exhibition, 
San Antonio, 29 September – 2 October.  

4. Richardson, M.: “A New and Practical Method for Fracture Design and 
Optimization,” paper SPE 59736 presented at the 2000 SPE/CERI Gas 
Technology Symposium, Calgary, 3-5 April. 

5. Barree, R.D., Cox, S.A., Barree, V.L. and Conway, M.W.: “Realistic Assessment 
of Proppant Pack Conductivity for Material Selection,” paper SPE 84306 
presented at the 2003 SPE Annual Technical Conference and Exhibition, 
Colorado, 5–8 October. 

6. Vincent, M.C., Pearson, M., and Kullman, J.: “Non-Darcy and Multiphase Flow 
in Propped Fractures: Case Studies Illustrate the Dramatic Effect on Well 
Productivity,” paper SPE 54630 presented at the 1999 SPE Western Regional 
Meeting, Anchorage, 26-28 May. 

7. Settari, A., Stark, A.J., and Jones, J.R.: “Analysis of Hydraulic Fracturing of High 
Permeability Gas Wells to Reduce Non-Darcy Skin Effects,” Journal of Canadian 
Petroleum Technology (May 2000), 39, No. 5, 57. 

8. Holditch, S.A., and Morse, R.A.: “The Effects of Non-Darcy Flow on the 
Behavoir Of Hydraulically Fractured Gas Wells,” Journal of Petroleum 
Technology (October 1976), 1169. 

9. Ubani, E.A. and Evans, R.D.: “Non-Darcy Compressible Flow of Real Gases in 
Propped Fracture,” paper SPE 11101 presented at the 1982 Annual Fall Technical 
Conference and Exhibition, New Orleans, 26-29 September. 

10. Gidley, J.L.: “A Method for Correcting Dimensionless Fracture Conductivity for 
Non-Darcy Flow Effects,” SPE Production Engineering (November 1991) 391. 

11. Settari, A., Bale, A., Bachman, R.C. and Floisand, V.: “General Correlation for 
the Effect of Non-Darcy Flow on Productivity of Fractured Wells,” paper SPE 
75715 presented at the 2002 SPE Gas Technology Symposium, Calgary, 30 April-
May. 

12. Economides, M.J., Oligney, R.E. and Valko, P.: Unified Fracture Design, Orsa 
Press, Alvin, Texas, 2002. 



  81   

13. Economides, M.J., Oligney, R.E. and Valko, P.: “Applying unified fracture design 
to natural gas wells,” Word Oil (October 2002) 50. 

14. Geertsma, J.: “Estimating the Coefficient of Inertial Resistance in Fluid Flow 
Through Porous Media,” Society of Petroleum Engineering Journal (October 
1974) 445. 

15. Forchheimer, P.: “Wasserbewegung durch Bode,” ZVDI (1901) 45, 1781. 

16. Cornell, D. and Katz, D.L.: “Flow of Gases through Consolidated Porous Media,” 
Industrial and Engineering Chemistry (1953) 45, No. 10, 2145. 

17. Maloney, D.R., Gall, B.L. and Raible, C.J.: “Non-Darcy Gas Flow Through 
Propped Fractures: Effects of Partial Saturation, Gel Damage, and Stress,” paper 
SPE 16899 presented at the 1987 Annual Technical Conference and Exhibition of 
the Society of Petroleum Engineers, Dallas, 27-30 September. 

18. Pursell, D.A., Holditch, S.A. and Blakeley, D.M.: “Laboratory Investigation of 
Inertial Flow in High-Strength Fracture Proppants,” paper SPE 18319 presented at 
the 1988 Annual Technical Conference and Exhibition of the Society of 
Petroleum Engineers, Houston, 2-5 October. 

19. Flowers, J.R., Hupp, M.T. and Ryan, J.D.: “The Results of Increased Fracture 
Conductivity on Well Performance in a Mature East Texas Gas Field,” paper SPE 
84307 presented at the 2003 Annual Technical Conference and Exhibition of the 
Society of Petroleum Engineers, Denver, 5-8 October. 

20. Li, D. and Engler, T.W.: “Literature Review on Correlations of the Non-Darcy 
Coefficient,” paper SPE 70015 presented at the 2001 SPE Permian Basin Oil and 
Gas Recovery Conference, Midland, 15-16 May. 

21. Cooke, C.E.: “Conductivity of Fracture Proppants in Multiple Layers,” Journal of 
Petroleum Technology (September 1973) 1101. 

22. Kutasov, I.M.: “Equation predicts non-Darcy flow coefficient,” Oil & Gas 
Journal (15 March 1993) 66. 

23. Martins, J.P., Milton-Tayler, D. and Leung, H.K.: “The Effects of Non-Darcy 
Flow in Propped Hydraulic Fractures,” paper SPE 20709 presented at the 1990 
Annual Technical Conference and Exhibition of the Society of Petroleum 
Engineers, New Orleans, 23-26 September. 

24. Belhaj, H.A., Agha, K.R., Nouri, A.M., Butt, S.D. and Islam, M.R.: “ Numerical 
and Experimental Modeling of Non-Darcy Flow in Porous Media,” paper SPE 
81037 presented at the 2003 SPE Latin American and Caribbean Petroleum 
Engineering Conference, Port-of-Spain, 27-30 April. 

25. Coles, M.E. and Hartman, K.J.: “Non-Darcy Measurements in Dry Core and the 
Effect of Immobile Liquid,” paper SPE 39977 presented at the 1998 SPE Gas 
Technology Symposium, Calgary, 15-18 March. 

26. Ergun, S.: “Fluid Flow Through Packed Columns,” Chemical Engineering 
Progress (1952) 48, No. 2, 89. 



  82   

27. Frederick Jr., D.C. and Graves, R.M.: “New Correlations To Predict Non-Darcy 
Flow Coefficients at Immobile and Mobile Water Saturation,” paper SPE 28451 
presented at the 1994 SPE Annual Technical Conference and Exhibition, New 
Orleans, 25-28 September. 

28. Evans, R.D., Hudson, C.S. and Greenlee, G.E.: “The Effect of Liquid Saturation 
on the Non-Darcy Flow Coefficient in Porous Media,” paper SPE 14206 
presented at the 1985 SPE Annual Technical Conference, Las Vegas, 22-25 
September. 

29. Janicek, J.D. and Katz, D.L.: “Applications of Unsteady State Gas Flow 
Calculations,” Proc., U. of Michigan Research Conference, June 20, 1995. 

30. Jones, S.C.: “Using the Inertial Coefficient, β, To Characterize Heterogeneity in 
Reservoir Rock,” paper SPE 16949 presented at the 1987 Annual Technical 
Conference and Exhibition of the Society of Petroleum Engineers, Dallas, 27-30 
September. 

31. Li, D.: “Analytical Study of the Wafer Non-Darcy Flow Experiments,” paper SPE 
76778 presented at the 2002 SPE Western Regional/AAPG Pacific Section Joint 
Meeting, Anchorage, 20-22 May. 

32. Macdonald, I.F., El-Sayed, M.S., Mow, K. and Dullen, F.A.L.: “Flow through 
Porous Media-the Ergun Equation Revisited,” Ind. Eng. Chem. Fundam. (1979) 
18, No. 3, 199. 

33. Tek, M.R., Coats, K.H. and Katz, D.L.: “The Effect of Turbulence on Flow of 
Natural Gas Through Porous Reservoirs,” Journal of Petroleum Technology (July 
1962) 799. 

34. Thauvin, F. and Mohanty, K.K.: “Network Modeling of Non-Darcy Flow 
Through Porous Media,” Transport in Porous Media (1998) 31, 19. 

35. Babcock, R. E. and Perry, R.H.: “Non-linear Dynamic programming of Hydraulic 
fracturing models,” paper SPE 2159 presented at the 1968 Annual Fall Meeting of 
the SPE of AIME, Houston, 29 September-2 October. 

36. Rahman, M.M., Rahman, M.K. and Rahman, S.S.: “Multivariate Fracture 
Treatment Optimization for Enhanced Gas Production From Tight Reservoirs,” 
paper SPE 75702 presented at the 2002 SPE Gas Technology Symposium, 
Calgary, 30 April-2 May. 

37. Meng, H.Z. and Brown, K.E.: “Coupling of Production Forecasting, Fracture 
Geometry requirements and Treatment Scheduling in the Optimum Hydraulic 
Fracture Design,” paper SPE 16345 presented at the 1987 SPE?DOE Low 
Permeability Reservoir Symposium, Denver, 18-19 May. 

38. Hareland, G. and Rampersand, P.R.: “Hydraulic Fracturing Design Optimization 
in Low-Permeability Gas Reservoirs,” paper SPE 27033 presented at the 1994 
SPE Latin American and Caribbean Petroleum Engineering Conference, Buenos 
Aires, 27-29 April. 



  83   

39. Huffman, C.H., Harkrider, J.D. and Thompson, R.S.: “Fracture Simulation 
Treatment Design Optimization: What Can the NPV vs X, Plot Tell Us?,”  paper 
SPE 36575 presented at the 1996 SPE Annual Technical Conference and 
Exhibition, Denver, 6-9 October. 

40. Aly, A.M. El-Banbi, A.H., Holditch, S.A., Wahdan, M., Salah, N.M. et.al.: 
“Optimization of Gas Condensate Reservoir Development by Coupling Reservoir 
Modeling and Hydraulic Fracturing Design,” paper SPE 68175 presented at the 
2001 SPE Annual Middle East Oil Show and Conference, Bahrain, 17-20 March. 

41. Mohaghegh, S., Hefner, M.H. and Ameri, S.: “Fracture Optimization eXpert 
(FOX) – How Computational Intelligence Helps the Bottom-Line in Gas Storage; 
A Case Study,” paper SPE 37341 presented at the 1996 SPE Eastern Regional 
Conference, Columbus, 23-25 October. 

42. Xiong, H. and Holditch, S.A.: “An Investigation Into the Application of Fuzzy 
Logic to Well Stimulations Treatment Design,” paper SPE 27672 presented at the 
1994 SPE Permian Basin Oil and Gas Recovery Conference, Midland, 16-18 
March. 

43. Mohaghegh, S., Balan, B., Ameri, S. and McVey, D.S.: “A Hybrid, Neuro-
Genetic Approach to Hydraulic Fracture Treatment Design and Optimization,” 
paper SPE 36602 presented at the 1996 SPE Annual Technical Conference and 
Exhibition, Denver, 6-9 October. 

44. Butenko, S.: “Introduction to Dynamic Programming,” Class notes, Non-Linear 
and Dynamic Programming Course, Department of Industrial Engineering, Texas 
A&M University, Spring 2004. 

45. Gluss, B.:An Elementary Introduction to Dynamic Programming, Allyn and 
Bacon Inc., Boston, Massachusetts, 1972. 

46. White, D.J.: Dynamic Programming, Oliver & Boyd LTD, Tweeddale, 
Edinburgh, 1969. 

47. Bentsen, R.G. and Donohue, D.A.T.: “A Dynamic Programming Model of the 
Cyclic Steam Injection Process,” Journal of Petroleum Technology (December 
1969) 1582. 

48. Shamir, U.: “Optimal route for Pipelines in Two-Phase Flow,” Society of 
Petroleum Engineers Journal (September 1971) 215. 

49. Martch, H.B and Norman, J.M.: “Optimization of the Design and Operation of 
Natural Gas Pipeline Systems,” paper SPE 4006 presented at the 1972 Annual 
Fall Meeting of the SPE of AIME, San Antonio, 8-11 October. 

50. Huppler, J.D.: “Scheduling Gas Field Production for Maximum Profit,” paper 
SPE 4039 presented at the 1974 SPE-AIME Annual Fall Meeting, San Antonio, 
8-11 October. 

51. Lang, Z.X. and Horne, R.N.: “Optimum Production Scheduling Using Reservoir 
Simulators: A Comparison of Linear Programming and Dynamic Programming 



  84   

Techniques,” paper SPE 12159 presented at the 1983 SPE Annual Technical 
Conference and Exhibition, San Francisco, 5-8 October. 

52. Jegier, J.: “An Application of Dynamic Programming to Casing String Design,” 
Institute of Mathematics, University of Mining and Metallurgy, Cracow, (June 
1983) 

53. Economides, M.J. and Nolte, K.G.: Reservoir Stimulation, John Wiley & Sons 
LTD, Chichester, West Sussex, 2000. 

54. Mongotmery, C.T. and Steanson, R.E.: “Proppant Selection: The Key to 
Succesful Fracture Stimulation,” Journal of Petroleum Technology (December 
1985) 2163. 

55. Parker, M.A. and McDaniel, B.W.: “Fracture Treatment Design Improved by 
Conductivity Measurements Under In-Situ Conditions,” paper SPE 16901 
presented at the 1987 SPE Annual Technical Conference and Exhibition, Dallas, 
27-30 September. 

56. Penny, G.S., and Jin, L.: “The Use of Inertial Force and Low Shear Viscosity to 
Predict Cleanup of Fracturing Fluids within Proppant Packs,” paper SPE 31096 
presented at the 1996 SPE Formation Damage Symposium, Lafayette, 22-25 
February. 

57. McCain, W.D.: “Reservoir-Fluid Property Correlations-State of the Art,” SPE 
Reservoir Engineering  (May 1991) 266. 

58. McCain, W.D.: The Properties of Petroleum Fluids, PennWell Publishing 
Company, Tulsa, Oklahoma, 1990. 

59. Dranchuk, P.M. and Abou-Kassem J.H.: “Calculation of Z Factors for Natural 
Gases Using Equations of State,” Journal of Canadian Petroleum Technology 
(July-September 1975) 34. 

60. Takacs, G.: “Comparisons made for computer Z-factor calculations,” The Oil and 
Gas Journal (December 1976) 65. 

61. Piper, L.D., McCain Jr., W.D. and Corredor, J.H.: “Compressibility Factors for 
Naturally Ocurring Petroleum Gases,” paper SPE 26668 presented at the 1993 
SPE Annual Technical Conference and Exhibition, Houston, 3-6 October. 

62. Lee, A.L., Gonzalez, M.H. and Eakin, B.E.: “The Viscosity of Natural Gases,” 
Journal of Petroleum Technology (August 1966) 997. 

 
 
 
 
 
 
 
 
 



  85   

APPENDIX A 
 
 

PROPPANT AND BETA EQUATION DATABASE 
 

Specifications for four types of commonly used proppants are provided in the 

spreadsheet. These were included just as a reference. The same database is used for both 

Traditional and TSO design. Remember User can input a new proppant if it is going to be 

used in the field. Proppants included are: 

• Resin Coated Sand (RCS). It corresponds to Acfrac Excel 20/40. Data was 

provided by Borden Chemical. 

• Low weight ceramic (LWC) low strenght. It corresponds to CARBO 

ECONOPROP® 20/40 proppant. Data was provided by Carboceramics. 

• Low weight ceramic (LWC) high strenght. It corresponds to CARBO 

LITE®  20/40 proppant. Data was provided by Carboceramics.  

• Sintered Bauxite. It corresponds to CARBO HSP™ 20/40 proppant. Data 

was provided by Carboceramics.  

 

How to enter a new proppant? 

Follow the steps presented below to enter a new proppant and its properties in the 

proppant database. Each step is illustrated in Fig. A.1. 
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Fig. A.1 Steps to input a new proppant in the database 

 

1. Select “Proppants” worksheet. Fig. A.1 shows the window user will see when this 

worksheet is selected. 

2. Enter the name, type of proppant, specific gravity and mesh sizes for new 

proppant in the first empty row just below the last register. (e.g. Row 28 in Fig. 

A.1) 

a. Enter in column A the name you want to use to identify the new proppant. 

It is the name that will appear in the Proppant selection Combo Box of the 

input windows. It can be a generic name or the commercial name. 

b. Enter in column B the type of proppant that correspond to new proppant. 

This register is used to define what β factor equation might be used for 

proppant selected. Remember that some β equations have been developed 

for a specific type of proppant. Spreadsheet is case sensitive so use Upper 

and Lower case appropriately to match Proppant Restriction of β equation 

database. Possible types of proppant are presented below. 
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i. Sand: Ottawa sand, Brady sand, etc might be considered just Sand 

for this purpose. 

ii. RSC: Resine Coated Sand. 

iii. LWC: Low Weight Ceramic. 

iv. Bauxite: Sintered Bauxite may be included in this group. 

c. Enter in column C the specific gravity of the proppant. 

d. Enter from column F (i.e. column F, column G and so on) the mesh sizes 

available for this proppant. Use the standard format to specify mesh size 

(i.g. 12/20). Check that format of the cell is “Text”. 

3. Enter from the row just below the row used in step 2 the closure stresses, porosity 

and permeabilities of the proppants 

a. Enter in Column D, from this row until the required row, the closure stress 

manufacturer considered to evaluate proppant permeability and porosity.  

b. Enter in Column E the porosity that corresponds to each closure pressure. 

This variable is not usually reported in the Product Datasheet provided by 

the manufacturer. Therefore, if no information is available, enter for all 

closure stresses the estimated average porosity of this proppant.  

c. Enter the permeability that corresponds to a closure stress for each mesh 

size of the proppant in the respective column (starting from column F). 

This information is usually provided by the manufacturer in the technical 

datasheet of the product. 

4. Check all data entered is correct. Then click “Update” button to include the new 

proppant in the Proppant selection combo box list of the INPUT DATA windows. 

5.  Click “Back to Traditional Design” or “Back to TSO” to return to “TRAD” or 

“TSO” worksheets respectively. 

Any proppant can be removed from the proppant database. For that, just select the rows 

where information of the proppant is stored and the Delete these rows.  
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Check not to leave empty rows between last register of a proppant and the first 

register of the next one. Finally click on “Update” button. 

Spreadsheet includes all β factor equations presented in Chapter II. These equations are 

in the Beta factor worksheet which basically consists on name of the correlation and a, b 

and c parameters of the equation. 

How to  enter a new β equation ? 

Users have the option to include new β equations. Before explaining the steps to do so 

remember that: 

• β factor equations included in the spreadsheet follows this general form 

c
p

b
fk
a
φ

β =  

• β must be in 1/ft and kf in md. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. A.2 Access to β equations database from Proppant Permeability Correction window 
 
 

STEP 1STEP 1
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1. Access “Beta Equations” worksheet from “Proppant Permeability Correction” 

window (see Fig. A.2) or the traditional way people access a worksheet in an 

Excel workbook (see Fig. A.3) 

2. Enter the new β equation information in the row just below the last β equation 

already existing in the database (i.g. row 26 in Fig. A.3). 

a. Enter in Column A the name of the equation. It is usually the last 

name(s) of the author(s) of the equation.  

For example: 

Lopez ( 1 author) 
Lopez and Romero (2 authors) 
Lopez et al (more than 2 authors)  

 
 If equation was developed for proppant enter a * right after the 

last character of the original name of the equation. For 

example: 

Lopez*    ( 1 author) 
Lopez and Romero*    (2 authors) 
Lopez et al*   (more than 2 authors)  

 
 Sometimes in the same work equations are developed for 

different type of proppants or mesh. In this case enter the   

parameter that differentiates the equation developed for the 

same author(s). For example, if Lopez et al developed a 

equation for  16/30  Bauxite and  other for  20/40  Bauxite, 

then enter these like two different equations with the following 

name (it is the case of Cooke and Pen and Jin equations in the 

original database) 

 

Lopez et al*   16/30, in one row   and 
Lopez et al*   20/40, in the next row  
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b. Enter coefficient a in Column B. Usually coefficient a is related to the 

units of the original equation. Therefore, if β factor and kf are in other 

units different than 1/ft and md respectively in the original equation, 

convert first the original units to proposed units. Then input the 

resulting a  value.  

c. Enter coefficient b in Column C. Although original units of β and kf  

are different that required, parameter b remain the same. 

d. Enter coefficient c in Column D. Although original units of β and kf 

are different than required, parameter c remain the same. 

e. If the new equation is restricted to a type of proppant, specify it in 

Column E (“Proppant Restriction”). Type of proppant specified here 

should match with at least one type of proppant of proppant available 

in the database.  Consider the following classification like a reference: 

i. Sand. Ottawa sand, Brady sand, etc might be considered just 

Sand for this purpose. 

ii. RSC: Resine Coated Sand. 

iii. LWC: Low Weight Ceramic. 

iv. Bauxite. Sintered Bauxite may be included in this group. 

Note that spreadsheet is case sensitive so use Upper and Lower 

case appropriately. If a β factor equation was developed for a 

specific type of proppant and size do a unique reference in TYPE 

of proppant in proppant database and Proppant Restriction in β 

equations database. For example is a β equation was developed for 

CARBO HSP™  20/40, enter carbohsp2040 in the fields mentioned 

above. 

f. When new β equation is restricted to a mesh it must be specified in 

Column F (“Mesh Restriction”). Use the standard format to specify 

mesh size (i.g. 20/40). Check that format cell is “Text”.  
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When β equation has been developed from cores or analytical studies 

leave Column E and F in blank. 

6. Check all data entered is correct. Then click “Update” button. It will order 

equations alphabetically and will include news one it in the β Equation combo 

box of the “Proppant Permeability Correction” window if this equation is 

elegible for the actual type of proppant or mesh size. It applies for both 

Traditional and TSO design  

7.  Click “Back to Traditional Design” or “Back to TSO” to return to actual 

design. 

A β factor equation can be removed from the database. Eliminate the rows that contain 

the β equation and then Click on “Update” button. 

 

 

 
Fig. A.3 Steps to input a new β equation in the database  
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APPENDIX B 
 
 

VB CODE FOR GAS VISCOSITY AND Z FACTOR ESTIMATION 
 
Correlations were codified in VBA as Excel functions. Each function follows the 

structure of original correlation. Only name of parameters were changed specially those 

parameters represented with greek letters. 

 
 
Code to calculate critical  temperature of the mixture (Tpc) 
 
Input 
 
sg: specific gravity of the gas 
n2: % of nitrogen in the gas mixture 
co2: % of carbon dioxide in the gas mixture 
h2s: % of hydrogen sulfide in the gas mixture 
 
Function Tpc(sg As Double, n2 As Double, co2 As Double, h2s As Double) As Double 
Dim yn2 As Double; mole fraction of Nitrogen 
Dim yco2 As Double; mole fraction of Carbon Dioxide 
Dim yh2s As Double; mole fraction of Hydrogen Sulfide 
Dim J As Double 
Dim K As Double 
Const a0 As Double = 0.11582; α0 

Const a1 As Double = -0.4582; α1 
Const a2 As Double = -0.90348; α2 
Const a3 As Double = -0.66026; α3 
Const a4 As Double = 0.70729; α4 
Const a5 As Double = -0.099397; α5 
Const b0 As Double = 3.8216; β0 

Const b1 As Double = -0.06534; β1 
Const b2 As Double = -0.42113; β2 
Const b3 As Double = -0.91249; β3 
Const b4 As Double = 17.438; β4 
Const b5 As Double = -3.2191; β5 
Const Tcn2 As Double = 227.5; Critical temperature of Nitrogen 
Const Pcn2 As Double = 493.1; Critical pressure of Nitrogen 
Const Tcco2 As Double = 547.9; Critical temperature of Carbon Dioxide 
Const Pcco2 As Double = 1071; Critical pressure of Carbon Dioxide 
Const Tch2s As Double = 672.4; Critical temperature of Hydrogen Sulfide 
Const Pch2s As Double = 1300; Critical pressure of Hydrogen Sulfide 
yn2 = n2 / 100 
yco2 = co2 / 100 
yh2s = h2s / 100 
J = a0 + a1 * yh2s * (Tch2s / Pch2s) + a2 * yco2 * (Tcco2 / Pcco2) + a3 * yn2 * (Tcn2 / Pcn2) + a4 * sg + 
a5 * (sg ^ 2) 
K = b0 + b1 * yh2s * (Tch2s / Sqr(Pch2s)) + b2 * yco2 * (Tcco2 / Sqr(Pcco2)) + b3 * yn2 * (Tcn2 / 
Sqr(Pcn2)) + b4 * sg + b5 * (sg ^ 2) 



  93   

Tpc = (K ^ 2) / J 
End Function 
 
 
Code to calculate critical  pressure of the mixture (Ppc) 
 
Input 
 
sg: specific gravity of the gas 
n2: % of nitrogen in the gas mixture 
co2: % of carbon dioxide in the gas mixture 
h2s: % of hydrogen sulfide in the gas mixture 
 
Function Ppc(sg As Double, n2 As Double, co2 As Double, h2s As Double) As Double 
Dim yn2 As Double; mole fraction of Nitrogen 
Dim yco2 As Double; mole fraction of Carbon Dioxide 
Dim yh2s As Double; mole fraction of Hydrogen Sulfide 
Dim J As Double 
Dim K As Double 
Const a0 As Double = 0.11582; α0 

Const a1 As Double = -0.4582; α1 
Const a2 As Double = -0.90348; α2 
Const a3 As Double = -0.66026; α3 
Const a4 As Double = 0.70729; α4 
Const a5 As Double = -0.099397; α5 
Const b0 As Double = 3.8216; β0 

Const b1 As Double = -0.06534; β1 
Const b2 As Double = -0.42113; β2 
Const b3 As Double = -0.91249; β3 
Const b4 As Double = 17.438; β4 
Const b5 As Double = -3.2191; β5 
Const Tcn2 As Double = 227.5; Critical temperature of Nitrogen 
Const Pcn2 As Double = 493.1; Critical pressure of Nitrogen 
Const Tcco2 As Double = 547.9; Critical temperature of Carbon Dioxide 
Const Pcco2 As Double = 1071; Critical pressure of Carbon Dioxide 
Const Tch2s As Double = 672.4; Critical temperature of Hydrogen Sulfide 
Const Pch2s As Double = 1300; Critical pressure of Hydrogen Sulfide 
yn2 = n2 / 100 
yco2 = co2 / 100 
yh2s = h2s / 100 
J = a0 + a1 * yh2s * (Tch2s / Pch2s) + a2 * yco2 * (Tcco2 / Pcco2) + a3 * yn2 * (Tcn2 / Pcn2) + a4 * sg + 
a5 * (sg ^ 2) 
K = b0 + b1 * yh2s * (Tch2s / Sqr(Pch2s)) + b2 * yco2 * (Tcco2 / Sqr(Pcco2)) + b3 * yn2 * (Tcn2 / 
Sqr(Pcn2)) + b4 * sg + b5 * (sg ^ 2) 
Ppc = (K / J) ^ 2 
End Function 
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Code to calculate z-Factor  
 
Because z-Factor is an implicit correlation, it was solved using Newton-Raphson method. 
Initially the correlations was solved for ρpr. Then z-factor was calculated for solution of 
ρpr. 
 

( )
( )k

k
kk

xf
xfxx

'
1 −=+  

 
Input 
 
p: pressure of interest 
t: temperature of interest 
sg: specific gravity of the gas 
n2: % of nitrogen in the gas mixture 
co2: % of carbon dioxide in the gas mixture 
h2s: % of hydrogen sulfide in the gas mixture 
 
Function z(p As Double, t As Double, sg As Double, n2 As Double, co2 As Double, h2s As Double) As 
Double 
Dim Tc As Double; Critical temperature of the gas mixture 
Dim Tpr As Double; Pseudo reduce temperature of the gas mixture 
Dim Pc As Double; Critical pressure of the gas mixture 
Dim Ppr As Double; Pseudo reduced pressure of the gas mixture 
Dim deviation As Double 
Dim rho1 As Double; new value of ρpr 
Dim rho0 As Double; old value of ρpr 
Dim frho0 As Double; f(ρpr) 
Dim Dfrho0 As Double; f’(ρpr) 
Const a1 As Double = 0.3265 
Const a2 As Double = -1.07 
Const a3 As Double = -0.5339 
Const a4 As Double = 0.01569 
Const a5 As Double = -0.05165 
Const a6 As Double = 0.5475 
Const a7 As Double = -0.7361 
Const a8 As Double = 0.1844 
Const a9 As Double = 0.1056 
Const a10 As Double = 0.6134 
Const a11 As Double = 0.721 
Tc = Tpc(sg, n2, co2, h2s) 
Tpr = t / Tc 
Pc = Ppc(sg, n2, co2, h2s) 
Ppr = p / Pc 
deviation = 100 
rho1 = 0.27 * Ppr / Tpr 
Do 
rho0 = rho1 
frho0 = 1 - 0.27 * Ppr / (rho0 * Tpr) + (a1 + a2 / Tpr + a3 / Tpr ^ 3 + a4 / Tpr ^ 4 + a5 / Tpr ^ 5) * rho0 + 
(a6 + a7 / Tpr + a8 / Tpr ^ 2) * rho0 ^ 2 - a9 * (a7 / Tpr + a8 / Tpr ^ 2) * rho0 ^ 5 + a10 * (1 + a11 * rho0 ^ 
2) * (rho0 ^ 2 / Tpr ^ 3) * Exp(-a11 * rho0 ^ 2) 
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Dfrho0 = 0.27 * Ppr / (rho0 ^ 2 * Tpr) + a1 + a2 / Tpr + a3 / Tpr ^ 3 + a4 / Tpr ^ 4 + a5 / Tpr ^ 5 + (a6 + a7 
/ Tpr + a8 / Tpr ^ 2) * 2 * rho0 - a9 * (a7 / Tpr + a8 / Tpr ^ 2) * 5 * rho0 ^ 4 + (2 * a10 * rho0 / Tpr ^ 3) * 
(1 + a11 * rho0 ^ 2 - a11 ^ 2 * rho0 ^ 4) * Exp(-a11 * rho0 ^ 2) 
rho1 = rho0 - frho0 / Dfrho0 
deviation = 100 * Abs(rho1 - rho0) / rho0 
Loop Until deviation < 0.01 
z = 0.27 * Ppr / (rho1 * Tpr) 
End Function 
 
 
Code to calculate gas viscosity (µg) 
 
Input 
 
p: pressure of interest 
t: temperature of interest 
sg: specific gravity of the gas 
n2: % of nitrogen in the gas mixture 
co2: % of carbon dioxide in the gas mixture 
h2s: % of hydrogen sulfide in the gas mixture 
 
 
Function ug(p As Double, t As Double, sg As Double, n2 As Double, co2 As Double, h2s As Double) As 
Double 
Dim zug As Double; z-factor 
Dim mw As Double; Molecular weight of the gas mixture 
Dim a As Double 
Dim b As Double 
Dim c As Double 
Dim rho As Double; density of the gas mixture 
zug = z(p, t, sg, n2, co2, h2s) 
mw = 28.97 * sg 
a = (9.379 + 0.01607 * mw) * t ^ 1.5 / (209.2 + 19.26 * mw + t) 
b = 3.448 + 986.4 / t + 0.01009 * mw 
c = 2.447 - 0.2224 * b 
rho = p * mw / zug / 669.8 / t 
ug = a * Exp(b * rho ^ c) * 0.0001 
End Function 
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APPENDIX C 
 
 

β CORRELATIONS EVALUATION AND EFFECTIVE PROPPANT 
PERMEABILITY 

 
 
 

 
 
 
Fig. C.1 Comparison of optimal design results in terms of gas rate production for 20/40 
LWC_LS proppant (PS #1_Stage3) 
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Fig. C.2 Comparison of optimal design results in terms of gas rate production for 20/40 
SB proppant (PS #1_Stage3) 
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Fig. C.3 Comparison of optimal design results in terms of gas rate production for 20/40 
LWC_HS proppant (PS #1_Stage3) 
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Fig. C.4 Comparison of optimal design results in terms of gas rate production for 20/40 
LWC_LS proppant (PS #2_Stage1) 
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Fig. C.5 Comparison of optimal design results in terms of gas rate production for 20/40 
SB proppant (PS #2_Stage1) 
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Fig. C.6 Comparison of optimal design results in terms of gas rate production for 20/40 
LWC_HS proppant (PS #2_Stage1) 
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Table C.1 Effects of closure stress, non-Darcy flow and gel damage upon propped pack 

effective permeability 

 
    Effective propped pack permeability, kf-eff (md) 

Well Stage 
Closure 
stress 

Non-Darcy 
Flow  

Non-Darcy Flow 
+ GD applied to 

permeability 

Non-Darcy Flow 
+ GD applied to   

β factor 
1 117,500 8,389 4,682 4,016
2 124,000 8,230 4,549 3,874
3 140,250 23,447 12,859 11,492
4 174,000 37,839 20,925 19,326

PS #1 

5 182,000 48,826 27,077 25,612
1 144,800 44,253 24,172 23,262
2 154,000 34,264 18,912 17,526
3 163,440 35,842 19,916 18,430PS #2 

4 163,200 41,660 22,820 21,434
1 231,120 65,115 35,293 33,666PS #3 2 231,120 21,539 12,012 10,243
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APPENDIX D 
 

VB CODE FOR OPTIMAL MULTISTAGE HYDRAULIC FRACTURING 
DESIGN USING DYNAMIC PROGRAMMING 

 
 
VB code of inversion function of triangular probability distribution  
 
Function trianinv(min As Double, ml As Double, max As Double, u As Double) As Double 
Dim h, AT1, a1, b1, c1, AT2, a2, b2, c2 As Double 
h = 2 / (max - min) 
AT1 = (ml - min) * h / 2 
    If u < AT1 Then 
        a1 = 1 
        b1 = -2 * min 
        c1 = min ^ 2 - 2 * u * (ml - min) / h 
        trianinv = (-b1 + (b1 ^ 2 - 4 * a1 * c1) ^ 0.5) / (2 * a1) 
    Else 
        AT2 = (max - ml) * h / 2 
        a2 = 1 
        b2 = -2 * max 
        c2 = max ^ 2 - 2 * (max - ml) * (AT1 + AT2 - u) / h 
        trianinv = (-b2 - (b2 ^ 2 - 4 * a2 * c2) ^ 0.5) / (2 * a2) 
    End If 
End Function 
 
 
 
VB code to calculate gas rate from an optimal fracture design as an Excel function  
 
Function qgas(pr As Double, tr As Double, k As Double, hp As Double, re As Double, sg As Double, n2 
As Double, co2 As Double, h2s As Double, bhp As Double, m As Double, kf As Double, phip As Double, 
sgp As Double, a As Double, b As Double, c As Double, geldam As Double) As Double 
' Units conversion constants 
Const acre As Double = 4046.9 
Const bbl As Double = 0.1589873 
Const gallon As Double = 0.00378541 
Const inch As Double = 0.0254 
Const ft As Double = 0.3048 
Const lbm As Double = 0.4535924 
Const lbf As Double = 4.448222 
Const psi As Double = 6894.757 
Const cp As Double = 0.001 
Const md As Double = 9.869233E-16 
Const Pi As Double = 3.14159265358979 
'Fix variables 
Dim vres As Double 'Reservoir volume, ft3 
Dim pave As Double 'Average pressure, psi 
Dim ugave As Double 'Gas viscosity at reservoir temperature and average pressure 
Dim zgave As Double 'Z-factor at reservoir temperature and average pressure 
Dim ugwf As Double 'Gas viscosity at wellbore flowing conditions 
Dim zgwf As Double 'Z-factor at at wellbore flowing conditions 
Dim bg As Double 'Gas formation volume factor, rcf/scf 
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Dim gasden As Double 'Gas density, kg/m3 
Dim beta As Double 'Beta factor, 1/m 
'Dynamic variables 
Dim nreold As Double 'Reynold number for dynamic calculation 
Dim nrenew As Double 'Reynold number for dynamic calculation 
Dim error As Double 'Error between old and new Reynold number 
Dim kfeff As Double 'Effective permeability, md 
Dim vprop As Double 'Propped pack volume, ft3 
Dim nprop As Double 'Proppant number 
Dim jd As Double 'Dimensionless productivity index 
Dim cfd As Double 'Dimensionless productivity index 
Dim ix As Double 'Penetration ratio 
Dim xf As Double 'Fracture lenght, ft 
Dim wf As Double 'Propped width, in 
Dim hf As Double 'Fracture height, ft 
Dim v As Double 'gas velocity within the fracture 
Dim qg As Double 'gas rate production, mscfd 
'FIXED CALCULATIONS 
vres = 3.14159265358979 * re ^ 2 * hp 
pave = (pr + bhp) / 2 
ugave = ug(pave, tr + 460, sg, n2, co2, h2s) 
zgave = z(pave, tr + 460, sg, n2, co2, h2s) 
ugwf = ug(bhp, tr + 460, sg, n2, co2, h2s) 
zgwf = z(bhp, tr + 460, sg, n2, co2, h2s) 
bg = 0.0283 * zgwf * (tr + 460) / bhp 
gasden = sg * 1.22 / bg 
kf = kf * (1 - geldam / 100) 
beta = a / ((kf ^ b) * (phip ^ c)) 
'INITIAL VALUES BEFORE ITERATION 
nreold = 9 
hf = 200 
error = 100 
'ITERATIONS 
Do Until error < 0.01 
    kfeff = kf / (1 + nreold) 
    vprop = 0.016 * (m / 2) / ((1 - phip) * sgp) * (hp / hf) 
    nprop = (4 * vprop * kfeff) / (k * vres) 
    Call FracOpt(nprop, jd, cfd, ix) 
    xf = ((vprop * kfeff) / (cfd * hp * k)) ^ 0.5 
    hf = xf / 2 
    wf = 12 * ((cfd * vprop * k) / (hp * kfeff)) ^ 0.5 
    qg = k * hp * (pr ^ 2 - bhp ^ 2) * jd / (1424 * ugave * zgave * (tr + 460)) 
    v = 0.021159 * bg * qg / (hf * wf) 'units 
    nrenew = beta * (kf * 9.869233E-16) * v * gasden / (ugwf * 0.001) 
    error = 100 * Abs(nrenew - nreold) / nreold 
    nreold = nrenew 
Loop 
qgas = qg 
End Function 
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VB code to calculate average gas rate from Montecarlo simulation 
 
Option Explicit 
Sub qgrandom() 
'This soubroutine is to generate averaged random gas production 
'VARIABLES DECLARATION 
'Input 
Dim pres(1 To 10) As Double 
Dim tres(1 To 10) As Double 
Dim minhp(1 To 10) As Double 
Dim mlhp(1 To 10) As Double 
Dim maxhp(1 To 10) As Double 
Dim mink(1 To 10) As Double 
Dim mlk(1 To 10) As Double 
Dim maxk(1 To 10) As Double 
Dim re(1 To 10) As Double 
Dim sgg(1 To 10) As Double 
Dim n2(1 To 10) As Double 
Dim co2(1 To 10) As Double 
Dim h2s(1 To 10) As Double 
Dim bhp(1 To 10) As Double 
Dim kf(1 To 10) As Double 
Dim pf(1 To 10) As Double 
Dim sgf(1 To 10) As Double 
Dim a(1 To 10) As Double 
Dim b(1 To 10) As Double 
Dim c(1 To 10) As Double 
Dim pgd(1 To 10) As Double 
'Mass of proppant 
Dim m As Double 
'Auxiliar variables for random process 
Dim uhp As Double 
Dim hpa As Double 
Dim uk As Double 
Dim ka As Double 
Dim qga As Double 
Dim cumm As Double 
'Counters 
Dim i As Integer 
Dim j As Integer 
'Ultimate production 
Dim qgave As Double 
' 
'CALCULATIONS 
m = 60000 
With ThisWorkbook.Worksheets("random") 
For i = 1 To 10 
pres(i) = .Cells(1 + i, 2).Value 
tres(i) = .Cells(1 + i, 3).Value 
minhp(i) = .Cells(1 + i, 4).Value 
mlhp(i) = .Cells(1 + i, 5).Value 
maxhp(i) = .Cells(1 + i, 6).Value 
mink(i) = .Cells(1 + i, 7).Value 
mlk(i) = .Cells(1 + i, 8).Value 
maxk(i) = .Cells(1 + i, 9).Value 
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re(i) = .Cells(1 + i, 10).Value 
sgg(i) = .Cells(1 + i, 11).Value 
n2(i) = .Cells(1 + i, 12).Value 
co2(i) = .Cells(1 + i, 13).Value 
h2s(i) = .Cells(1 + i, 14).Value 
bhp(i) = .Cells(1 + i, 15).Value 
kf(i) = .Cells(1 + i, 16).Value 
pf(i) = .Cells(1 + i, 17).Value 
sgf(i) = .Cells(1 + i, 18).Value 
a(i) = .Cells(1 + i, 19).Value 
b(i) = .Cells(1 + i, 20).Value 
c(i) = .Cells(1 + i, 21).Value 
pgd(i) = .Cells(1 + i, 22).Value 
Cells(1 + i, 23).Value = "" 
Next i 
End With 
For i = 1 To 10 
cumm = 0 
For j = 1 To 100 
uhp = staticrand() 
hpa = trianinv(minhp(i), mlhp(i), maxhp(i), uhp) 
uk = staticrand() 
ka = trianinv(mink(i), mlk(i), maxk(i), uk) 
qga = qgas(pres(i), tres(i), ka, hpa, re(i), sgg(i), n2(i), co2(i), h2s(i), bhp(i), m, kf(i), pf(i), sgf(i), a(i), b(i), 
c(i), pgd(i)) 
cumm = cumm + qga 
Next j 
qgave = cumm / 100 
With ThisWorkbook.Worksheets("random") 
Cells(1 + i, 23).Value = qgave 
End With 
Next i 
Call dpopt 
End Sub 
 
 
VB code to solve the recursive relation function 
 
Sub dpopt() 
Dim n As Integer 
Dim totalm As Integer 
Dim i As Integer 
Dim qgr() As Double 
Dim r As Integer 
Dim f() As Double 
Dim m As Integer 
Dim xi() As Double 
Dim optm() As Integer 
Dim j As Integer 
Dim k As Integer 
Dim totalgas As Double 
Dim remain As Integer 
Dim x As Double 
Dim interval() As Integer 
Dim qginterval() As Double 
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Dim c As Integer 
With ThisWorkbook.Worksheets("random") 
    For c = 1 To 5 
        Cells(1 + c, 25).Value = "" 
        Cells(1 + c, 26).Value = "" 
    Next c 
Cells(7, 26).Value = "" 
End With 
n = 10 
totalm = 300 
ReDim qgr(1 To n, 0 To 60) 
ReDim f(1 To n + 1, 0 To totalm) 
ReDim xi(1 To n, 0 To totalm, 0 To 60) 
ReDim optm(1 To n, 0 To totalm) 
ReDim interval(1 To 5) 
ReDim qginterval(1 To 5) 
With ThisWorkbook.Worksheets("random") 
    For i = 1 To n 
        qgr(i, 0) = 0 
        qgr(i, 60) = .Cells(1 + i, 23).Value 
    Next i 
End With 
For r = 0 To totalm Step 60 
    f(n + 1, r) = 0 
Next r 
For i = n To 1 Step -1 
    For r = 0 To totalm Step 60 
        For m = 0 To 60 Step 60 
            If r >= m Then 
                xi(i, r, m) = qgr(i, m) + f(i + 1, r - m) 
            Else 
                xi(i, r, m) = 0 
            End If 
        Next m 
        If xi(i, r, 0) >= xi(i, r, 60) Then 
            optm(i, r) = 0 
            f(i, r) = xi(i, r, 0) 
        Else 
            optm(i, r) = 60 
            f(i, r) = xi(i, r, 60) 
        End If 
    Next r 
Next i 
j = 0 
k = 0 
totalgas = 0 
remain = totalm 
Do 
    Do 
        j = j + 1 
        x = optm(j, remain) 
    Loop Until x = 60 
    k = k + 1 
    interval(k) = j 
    qginterval(k) = qgr(j, 60) 
    totalgas = totalgas + qgr(j, 60) 
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    remain = remain - 60 
Loop Until remain = 0 
With ThisWorkbook.Worksheets("random") 
    For c = 1 To k 
        Cells(1 + c, 25).Value = interval(c) 
        Cells(1 + c, 26).Value = qginterval(c) 
    Next c 
Cells(2 + k, 26).Value = totalgas 
End With 
End Sub 
 
 
 

Table D.1 Recursive relation for stage 8 

i = 8 
si  \  mi 0 60,000 Opt mi fi(mi) 

0 0 - 0 0
60,000 4,957 127 0 4,957

120,000 5,118 5,084 0 5,118
180,000 5,118 5,245 60,000 5,245
240,000 5,118 5,245 60,000 5,245
300,000 5,118 5,245 60,000 5,245

 
 
 

Table D.2 Recursive relation for stage 7 

i = 7 
si  \  mi 0 60,000 Opt mi fi(mi) 

0 0 - 0 0
60,000 4,957 7,597 60,000 7,597

120,000 5,118 12,554 60,000 12,554
180,000 5,245 12,715 60,000 12,715
240,000 5,245 12,842 60,000 12,842
300,000 5,245 12,842 60,000 12,842
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Table D.3 Recursive relation for stage 6 

i = 6 
si  \  mi 0 60,000 Opt mi fi(mi) 

0 0 - 0 0
60,000 7,597 108 0 7,597

120,000 12,554 7,705 0 12,554
180,000 12,715 12,662 0 12,715
240,000 12,842 12,823 0 12,842
300,000 12,842 12,950 60,000 12,950

 

 

Table D.4 Recursive relation for stage 5 

i = 5 
si  \  mi 0 60,000 Opt mi fi(mi) 

0 0 - 0 0
60,000 7,597 84 0 7,597

120,000 12,554 7,681 0 12,554
180,000 12,715 12,638 0 12,715
240,000 12,842 12,799 0 12,842
300,000 12,950 12,926 0 12,950

 
 
 
 

Table D.5 Recursive relation for stage 4 

i = 4 
si  \  mi 0 60,000 Opt mi fi(mi) 

0 0 - 0 0
60,000 7,597 1,822 0 7,597

120,000 12,554 9,419 0 12,554
180,000 12,715 14,376 60,000 14,376
240,000 12,842 14,537 60,000 14,537
300,000 12,950 14,664 60,000 14,664
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Table D.6 Recursive relation for stage 3 

i = 3 
si  \  mi 0 60,000 Opt mi fi(mi) 

0 0 - 0 0
60,000 7,597 3,383 0 7,597

120,000 12,554 10,980 0 12,554
180,000 14,376 15,937 60,000 15,937
240,000 14,537 17,759 60,000 17,759
300,000 14,664 17,920 60,000 17,920

 
 
 
 

Table D.7 Recursive relation for stage 2 

i = 2 
si  \  mi 0 60,000 Opt mi fi(mi) 

0 0 - 0 0
60,000 7,597 72 0 7,597

120,000 12,554 7,669 0 12,554
180,000 15,937 12,626 0 15,937
240,000 17,759 16,009 0 17,759
300,000 17,920 17,831 0 17,920
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