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ABSTRACT 
 

An Empirical Comparison of Item Response Theory and 

Classical Test Theory Item/Person Statistics. 

 (August 2004) 

Troy Gerard Courville, B.S., Louisiana State University- 

Shreveport; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Bruce Thompson 

 
 

 In the theory of measurement, there are two competing 

measurement frameworks, classical test theory and item 

response theory. The present study empirically examined, 

using large scale norm-referenced data, how the item and 

person statistics behaved under the two competing 

measurement frameworks. The study focused on two central 

themes: (1) How comparable are the item and person 

statistics derived from the item response and classical test 

framework? (2) How invariant are the item statistics from 

each measurement framework across examinee samples? The 

findings indicate that, in a variety of conditions, the two 

measurement frameworks produce similar item and person 

statistics. Furthermore, although proponents of item 

response theory have centered their arguments for its use on 

the property of invariance, classical test theory 

statistics, for this sample, are just as invariant. 
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CHAPTER I 

INTRODUCTION 

 Psychological research deals with complex structures 

that manifest their existence in various situations. 

Implicit in many situations is the understanding that a 

complex measurement framework must be employed to 

generalize beyond the single situation in which a 

measurement is observed. In psychology, we define the 

manifestation of structures as responses, while the 

structures are referred to as constructs. It is the 

relationship between the constructs and responses that is 

of special interest. To represent the relationship, models 

are developed. When a model is employed, constructs are 

rendered as latent variables and are expressed as measured 

response variables.  

As models develop, they emerge into theories. As 

theories develop, divergence will often appear between the 

established theory and contemporary thinking. While this 

divergence may evolve into a dramatic alteration of the 

theory, this divergence, which at the time is portrayed as 

the bridge over a gulf in theoretical philosophy, can also 

be little more than a different way of viewing the 

previously defined theory.  

_______________                   
This dissertation follows the style and format of 
Educational and Psychological Measurement. 
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Currently such a debate rages in the theory of measurement. 

In the theory of measurement, there are two competing 

measurement frameworks, classical test theory and item 

response theory. It is in the statistical analyses 

underlying each theory that the differences are most 

evident.  

Classical Test Theory 

 Classical test theory, just like item response theory, 

is an attempt to explain measurement error. In classical 

test theory, the model of measurement error is based on the 

correlation coefficient. The correlation coefficient, 

developed by Charles Spearman, attempts to explain error 

using two components: a true correlation and an observed 

correlation (Crocker & Algina, 1986; Traub, 1997). 

 The correlation coefficient, and classical test theory, 

is based on the theory that the average value of a 

measurement, taken over all possible measurements, will equal 

the true measurement in the population (Cochran, 1977). 

Implicit in the theory is 1) the error is random and 2) a 

single measurement is comprised of three components: an 

observed indicator, an hypothetical indicator that represents 

the true population value, and a hypothetical concept that 

represents the amount of disagreement between the true 

indicator and the observed indicator. Therefore, classical 
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test theory can be depicted as:  

X = T + E.  

This equation represents the three components as discussed 

above, with T being the hypothetical indicator/score, X the 

observed indicator/score, and E the amount of random 

disagreement between T and X. The equation can represent the 

amount of random error (E) as either an addition to or 

subtraction from the true score. As the random error (E) 

component approaches 0, the observed score (X) approaches the 

true scores (T).  

 Since its inception, classical test theory has been the 

dominate measurement model, having a significant impact on 

test-level and item-level information. In the collection of 

test-level information, one uses classical test theory with 

the hypothetical indicator (T) as the average score generated 

from the population of examinees. The observed indicator (X) 

is average score for the examinees who actually took the 

test. Reliability, test-level information concerning with 

consistency of scores across test administrations, is the 

correlation, or a reliability index, between the observed and 

true scores. However, because the true score is a 

hypothetical indicator and the observed indicator is an 

unbias estimator of the true score, the correlation between 

the observed scores on parallel tests can be used as an 

estimate of reliability, or a reliability coefficient. 
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However, one should note that a reliability coefficient is in 

a squared metric (i.e., r2, R2). Furthermore, reliability 

coefficients can be negative if 1) the two tests used to 

compute the reliability coefficient are not parallel or 2) a 

large amount of random error (E) which is usually the case 

with small samples and/or a small number of items (Thompson, 

2002). 

 While classical test theory has been successfully 

applied to test-level information, the symbiotic relationship 

between reliability and item characteristics magnifies the 

role classical test theory plays in the development of item-

level statistics (item difficulty and item discrimination).  

 Classical test theory is a simplistic model. Because of 

this, classical test theory invokes few assumptions thus 

allowing the theory to be applied to many testing situations. 

 If a test is dichotomously scored, classical test item 

difficulty, p, is the proportion of the total examinees 

responding to an item correctly. Because, as Fan (1998) 

noted, p is an inverse indicator of item difficulty, as an 

increasing number of examinees incorrectly answer an item, 

the p value decreases. 

 Item discrimination statistics focus not on how many 

people correctly answer an item, but on whether the correct 

people get the item right or wrong. Although there are 

several methods used in classical test theory to assess item 
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discrimination, often discrimination is expressed as a point-

biserial correlation between a dichotomously scored item and 

the scores on the total test.  

Item Response Theory 

     Classical test theory does have its theoretical 

weaknesses. Fan (1998) summarized this problem with 

classical test theory estimators as involving circular 

dependency. Classical test statistics are sample dependent 

in that as the sample changes, the estimators would change 

(Cantrell, 1997; Henson, 1999). Therefore, the classical 

test theory estimators are not generalizable across 

populations. Because of the criticisms heaped upon classical 

test theory, many test developers have turned to item 

response theory. 

 Item response theory (IRT) is, for some researchers, 

the answer to the limitations of classical test theory. IRT 

is a modeling technique that tries to describe the 

relationship between an examinee’s test performance and the 

latent trait underlying the performance (Cantrell, 1999; 

Hambleton & Swaminathan, 1985; Henard, 2000). 

 The most commonly used IRT models are built off a 

single ability parameter. The ability parameter, θ, is very 

similar to the classical test theory total-test true score. 

In fact, the relationship between the observed score and the 

ability parameter is the same relationship as the observed 
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score and true score: 

T = ΣgPg(θ), or 

X = ΣgPg(θ) + E. 

 In contrast to classical test theory, item response 

models are lauded for their ability to generate invariant 

estimators. That is, theoretically IRT ability estimates, 

θ, are “item-free” (i.e., would not change if different 

items were used) and the item difficulty statistics are 

“person-free” (i.e., would not change if different persons 

were used). For single ability, dichotomously scored test 

items, IRT employs three different models. 

 A one-parameter model, the simplest of the three 

models, has the following function: 

Pg(θ) = eDa(θ - bg) /1 + eDa(θ - bg). 

Looking at the one-parameter model, one can see its 

relationship between this model and the single parameter 

logistic regression. The value of D is usually set to 1.7 

(Crocker & Algina, 1986). The a parameter is the item 

discrimination parameter with the b parameter being the item 

difficulty parameter. However, in the one-parameter model the 

item discrimination is assumed to be a constant. The one-

parameter model is often called in the Rasch model (Crocker & 

Algina, 1986; Hambleton & Swaminathan, 1985; Henard, 2000). 

 The two-parameter model has the same function as 

presented for the one-parameter model. However, in the two-
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parameter model, the item discrimination parameter will vary 

across items, as does the item difficulty parameter. 

 The three-parameter model, the most general model, 

includes a psuedo-guessing parameter especially useful for 

multiple-choice and true-false testing. In the one and two 

parameter, the lower asymptote moves toward the probability 

value of 0 rather quickly. This indicates that examinees in 

this area have a lower probability of achieving success on an 

item than they really have because they can “guess” the 

correct answer. The three-parameter model is expressed as 

follows: 

Pg(θ) = cg + {[(1- cg ) eDa(θ - bg) ]/ 1 + eDa(θ - bg)}. 

 Despite its assumed advances, item response models are 

subject to strict assumptions. Two major assumptions of 

item response theory are unidimensionality and local 

independence. Unidimensionality states that there is only 

one ability being measured. This assumption can never be 

strictly met. The assumption can be satisfied if a single 

dominant factor underlies responses. A second assumption is 

local independence, which necessitates that, excluding 

ability, there is no relationship between the test items 

and the examinee’s responses. If these assumptions are met, 

an IRT model can be successfully employed. 

Purpose of the Study 

 Over the past twenty-three years, since Lord’s 1980's 
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book Applications of Item Response Theory to Practical 

Testing Problems, item response theory (IRT) has become the 

jewel of large-scale test construction programs. However, 

some investigations (Fan, 1998; MacDonald & Paunonen, 2002) 

have studied the empirical difference between these two 

models. Fan (1998) noted that “Because IRT differs 

considerably from CTT in theory, and commands some crucial 

theoretical advantages over CTT, it is reasonable to expect 

that there would be appreciable differences between the IRT- 

and CTT-based item person statistics” (p. 360). 

 However, articles by Fan (1998), Lawson (1991), 

MacDonald and Paunonen (2002), Skaggs and Lissitz (1986, 

1988) and Stage (1998a, 1998b, 1999) have all pointed to 

little difference between item response estimates and 

classical test theory estimates. In Stage’s (2000) work with 

the SweSAT test READ, she noted that “the agreement between 

results from item-analyses performed within the two different 

frameworks IRT and CTT was very good. It is difficult to find 

greater invariance or any other obvious advantages in the IRT 

based item indices” (pp. 19-20). Furthermore, Fan’s (1998) 

research “failed to support the IRT framework for its 

ostensible superiority over CTT in producing invariant item 

statistics” (p. 378). MacDonald and Paunonen (2002) agreed 

with Fan and Stage, with an important caveat: 

When the collection of potential test items in a 
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pool possesses a narrow range of item difficulty 
values (common in personality and interest 
assessments), then item discrimination estimates 
should be largely accurate for both IRT and CTT 
measurement frameworks. In such a situation, item 
selection decisions based on either framework 
should result in the selection of roughly the same 
set of test items. On the other hand if the range 
of items difficulty statistics exceeds a narrow 
range of item difficulty values (about -0.5 to .5, 
common in achievement and ability tests), then the 
accuracy of item discrimination estimates begins to 
decrease with CTT methods. (p. 942) 
 

 However, findings of this type were first indicated by 

Nunnally in 1979 when he wrote that “when scores developed by 

ICC theory can be correlated with those obtained by the more 

usual approach to simply sum items scores, typically it is 

found that the two sets of scores correlated .90 or higher; 

thus it is really hair splitting to argue about any 

difference between the two approaches or any marked departure 

from linearity of the measurement obtained from the two 

approaches” (p. 224). 

 The present study is designed to replicate the work 

done by Fan (1998). As Fan (1998) noted, a principle 

limitation of his study was his use of criterion-referenced 

test and its inherent tendency toward items that have limited 

item difficulty ranges. This limitation is especially 

unsettling considering the results of MacDonald and Paunonen 

(2002). Considering the results of both Fan and MacDonald and 

Paunonen (2002), the present study consists of 80,000 

examinees drawn from a population of 322,460 examinees who 
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took the written form of the ACT Assessment, a norm-

referenced test.  As MacDonald and Paunonen (2002) noted, 

typical IRT item difficulty values range achievement or 

ability from -0.5 to .5. For the present study, looking 

across all subtests, the IRT item difficulty ranges from    -

3.349 to 3.621.  

 The present study focused on two central themes: (1) 

How comparable are the item and person statistics derived 

from the item response and classical test framework? (2) How 

invariant are the item statistic from each measurement 

framework across examinee samples?  

 Specifically, this study addressed the same five 

research questions presented by Fan: 

1. How comparable are the CTT-based and IRT-based examinee 

ability estimates? 

2. How comparable are the CTT-based and IRT-based item 

difficulty estimates? 

3. How comparable are the CTT-based and IRT-based item 

discrimination estimates? 

4. When compared across different samples, how invariant 

are the CTT-based and IRT-based item difficulty 

estimates? 

5. When compared across different samples, how invariant 

are the CTT-based and IRT-based item discrimination 

estimates? 
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Organization of the Study 

 The present student consists of three explanatory and 

three data-related chapters. Chapter II covers classical 

test theory, from its roots in measurement error and the 

correlation coefficient to classical test theory’s use in 

reliability and item-level statistics.  Chapter III covers 

item response theory and its basic concepts, use of the 

normal ogive, and general models employed in single 

ability, dichotomously-scored tests. Chapter IV develops 

the differences between the two models.  Chapter V, the 

method section, covers the study’s design.  The final two 

chapters cover the data results and summary information. 

 

 

 

 



   
         

 

12

CHAPTER II 

CLASSICAL TEST THEORY 

We know that constructs manifest themselves as 

responses. We also know that responses will change from 

situation to situation. Measurement is the quantification of 

the relationship between the responses and the constructs.  

In measurement, a response can take several forms, from 

the analysis of written content to the counting of stimulus 

responses in a pavlovian experiment. A second component 

involves an underlying unobservable construct (Carmines & 

Zeller, 1979). For instance, the scores from an intelligence 

test represent an observed response, and the theory of 

intelligence upon which the test was derived is considered an 

underlying unobservable concept. Carmines and Zeller (1979) 

combine this into a definition of measurement: 

 Measurement focuses on the crucial relationship 
between the empirically grounded indicator(s)--that 
is, the observable response-and the underlying 
unobservable concept(s). When this relationship is 
a strong one, analysis of empirical indicators can 
lead to useful inferences about the relationships 
among the underlying concepts. In this manner, 
social scientists can evaluate the empirical 
applicability of theoretical propositions. (p. 11)  

 

Reliability and Validity 

Carmines and Zeller’s (1979) definition of measurement 

requires two useful concepts in the evaluation of a 

measurement: reliability and validity. Reliability focuses on 
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the empirical indicator’s ability to consistently represent 

the underlying concept. For an empirical indicator to 

consistently represent the underlying concept, the empirical 

indicator must give consistent results. Thompson (2002) 

explained these considerations using the analogy of a 

bathroom scale: 

Some days when you step on your bathroom scale 
you may not be happy with the resulting score. 
On some of these occasions, you may decide to 
step off the scale and immediately step back 
on to obtain another estimate. If the second 
score is half a pound lighter, you may 
irrationally feel somewhat happier... But if 
your second weight measurement yields a score 
25 pounds lighter than the initial 
measurement, rather than feeling happy, you 
may instead feel puzzled or perplexed. If you 
then measure your weight a third time, and the 
resulting score is 40 pounds heavier, you 
probably will question the integrity of all 
the scores produced by your scale. It has 
begun to appear that your scale is exclusively 
producing randomly fluctuating scores. In 
essence, your scale measures "nothing." (p. 4) 
 

As Thompson (2002) noted, "When measurements yield scores 

measuring 'nothing,' the scores are said to be 'unreliable.'" 

 Validity is the degree to which an empirical indicator 

measures the intended underlying concept/theory, and only 

that construct. For an empirical indicator to represent the 

underlying concept the indicator must not only give 

consistent results, but the results must have a direct 

relationship to the underlying concept. The implications in 

the previous statement leads to an important conclusion about 
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the relationship between validity and reliability: 

Reliability is a necessary but not sufficient condition for 

validity. As Thompson (2002) explained 

Let's presume that upon repeated uses on a 
given morning your bathroom scale (to your 
possible disappointment) repeatedly yields the 
same estimate of your weight: 200 pounds. This 
evidence suggests that the scores may be 
reliable. However, if you inferred from your 
score(s), "Gosh, I must be brilliant, because 
an IQ of 200 is quite high," questions of 
score validity might arise! ...Scores can't 
both measure nothing and measure something. 
The only time that perfectly unreliable scores 
could conceivably be valid is if someone was 
designing a test intended consistently to 
measure nothing. But people do not ever design 
tests to measure nothing, because measurements 
of random fluctuations are already widely 
available in the form of dice and coin flips 
and other mechanisms. (p. 6) 
 

 Both reliability and validity are population specific. 

For instance, a commonly given intelligence test is the 

Wechsler Intelligence Test. The Wechsler has three different 

versions based on age level. If one were to give the Wechsler 

Intelligence Scale for Children-Revised to children, the 

scores would be reliable and valid, assuming the Wechsler 

accurately represents the theoretical concepts of 

intelligence.  

Measurement Error 

 In their attempt to define measurement, Carmines and 

Zeller (1979) directly introduced the concept of measurement 

error. This definition has its geneses in a definition of 
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measurement by H.M. Blalock (1968) in which he invoked the 

notion of a gap between theory and research. Blalock defined 

the gap as measurement error.  

 Measurement error is the same error that is often 

discussed in covering topics such as structural equation 

modeling. Measurement error can be broken down into two 

different components, random error and non-random error.  

 Random error refers to a particular component of error 

that has no statistical predictability. Ott (1993) defined 

random error as the component that “takes into account all 

unpredictable and unknown factors that are not included in 

the model” (p. 440). As random error increases, reliability 

decreases. An example of random error’s effect can be found 

in the arithmetic mean. It can be shown that the mean, taken 

over all possible samples, is an unbiased estimator of the 

true population value (cf. Cochran, 1977). The fact that a 

mean is an unbiased estimator of the true population value 

does not assure that a given mean is accurate. If one were to 

take a simple random sample of one out of an infinite 

sampling of means, there is a probability that the mean would 

not equal the population estimate. The difference between the 

sampled mean and the population mean is due to particular 

random error called “sampling error”, which is different from 

measurement error. Random error, however, produces no 

systematic effects, which is why a mean can be an unbiased 



   
         

 

16

estimator over a large number of samples.  

 Both random measurement error or unreliability and 

nonrandom error negatively affect validity. An example of 

systematic measurement error is a scale that consistently 

adds five pounds to each person’s weight.  

 While every measurement is, in some way, hindered by 

error, the framework of measurement does have means of 

reducing its impact. In terms of validity, systematic error 

has been an issue discussed since the beginning of science. 

In fact, there seems to be a general consensus concerning 

procedures to evaluate and reduce its effect. However, 

methods of dealing with random measurement error are less 

settled. The discussion seems to have focused on two 

competing “theories”: classical test theory and item response 

theory.  

Classical Test Theory 

 Classical test theory began as an offspring of Charles 

Spearman’s work on correlation coefficients. In his work, 

Spearman noted the existence of two types of correlations: a 

true correlation and an observed correlation (Crocker & 

Algina, 1986; Traub, 1997). 

 Spearman’s views originates in the theory of unbiased 

measurement, which states that the average value of the 

measurement, taken over all possible measurements, will equal 

the true measurement in the population (Cochran, 1977).  
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 The essence of unbiased measurement is that there are 

three components of any measure: an observed indicator, an 

hypothetical indicator that represents the true population 

value, and a hypothetical concept that represents the amount 

of disagreement between the true indicator and the observed 

indicator. Typically, the discussion of unbiased measurement 

centers on the following equation:  

T = X - E.  

This equation represents the three components as discussed 

above, with T being the hypothetical indicator, X the 

observed indicator, and E the amount of disagreement between 

T and X. Classical test theory is equivalently expressed in 

terms of the observed indicator: 

X = T + E.  

 The equation might take three different forms. For 

example, if a student can truly spell 75 of 100 words on a 

spelling test, then the hypothetical score (T) is 75. 

However, perhaps the student actually spelled 85 words 

correctly because on the multiple choice spelling test he was 

able to guess the spelling of 10 words. Therefore, the model 

would be as follows: 85 = 75 + 10.  

 The equation also can represent the amount of random 

error (E) as either an addition to or subtraction from the 

true score. The above example represents a positive error 

component in that the student was able to spell 10 words by 
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means other than his natural ability. If the student 

misspelled 10 words because he was distracted by other 

students, the error component would be negative, and the 

equation would be expressed as follows: 65 = 75 - 10.  

 Our main concern in the measurement process is the 

congruence between the true score and the observed score. 

However, we do not ever know the hypothetical true score. 

Only when the observed score is not affected by random error 

can the hypothetical true score and the observed score be 

equal. 

Observed Scores as Random Variables 

 If we use the classical test theory model, one can see 

that the observed scores change as the amount of random error 

changes. As noted earlier, as the random error component 

approaches 0, the observed score approaches the true scores. 

This indicates that random error has a negative effect on the 

congruence of the true scores and observed scores. However, 

equally important is that because the error component is 

random, the observed score is at least in part a random 

variable unless measurement error is zero. 

 In their 1986 book on test theory, Crocker and Algina 

defined a random variable as “a variable that assumes its 

values according to a set of probabilities” (p. 107). 

According to Crocker and Algina, there are two noteworthy 

points in defining a random variable, with the first being 
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the recognition of random dynamics. We must specify or 

hypothesize particular dynamics, because we could not take 

into account all the infinite on at least numerous random 

errors (such as inattention, loud talking, loud noises, 

guessing) that might affect the student’s score. Once a 

student has taken the test, he has created a quantifiable 

estimate of his partially random observed score (X). 

 The amount of random error found in the student’s score 

leads to the conclusion that his score is one of many 

possibilities, which together generate an underlying 

distribution (Crocker & Algina, 1986; Hinkle, Wiserma & Jurs, 

1998). An underlying distribution is a hypothetical 

distribution based on all the possible outcomes of a given 

event (e.g., for this case, all the possible outcomes of the 

student’s test score). The question is how a student can have 

more than one test score, with the answer lying in the 

randomness of the measurement error. As noted earlier, a true 

score is a constant. The student only knows so much about the 

civil war. Therefore, his true score is his exact ability on 

the civil war test at a given point in time. The student’s 

observed score is partially random (e.g., does not always 

equal the true score) because measurement error (E) is 

random. As error becomes a larger component of the classical 

test equation, the observed score deviates further from the 

true score. If the civil war test was administered an 



   
         

 

20

infinite number of times, we could get a frequency 

distribution that could be used to estimate the probability 

of a particular score, with the mean of the distribution 

being the student’s true score. 

 Crocker and Algina (1986) stated, “the score of each 

examinee in a testing situation represents a different random 

variable. That is, the probability of obtaining a given test 

score is independently determined from a different 

distribution for each examinee” (p. 108). To explain this one 

must remember that the total error component is based on 

measurement errors that have affected the individual test 

takers differently. For example, although two students both 

may have been inattentive, the degree of inattentiveness will 

vary.  

Classical Test Theory as Correlation 

 In Thompson’s (1992) paper on linear regression 

analysis, he presented four types of linear regression 

analysis. The first type of linear regression analysis he 

presented involves only one predictor variable. This case is 

a bivariate correlation analysis. As mentioned earlier, 

correlation analysis was developed by Spearman and his 

contemporaries and has since become an extremely valuable 

statistical tool. However, it is the use of correlation in 

measurement context that is of particular interest for our 

purposes.  
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 Because there is only one predictor variable in 

correlation analysis, the model would be as follows: 

Y = X + E. 

In this equation Y is a hypothetical variable that is defined 

by the observed variable X and the error component E. 

Although this is the traditional depiction of correlation 

analysis, there is no reason why the model could not be 

depicted as follows: 

X = Y + E. 

What is interesting about this depiction of correlation 

analysis is that the model is strikingly similar to the 

equation presented for classical test theory. Actually, 

reliability analysis is a correlational analysis. Dawson 

(1999) explained the linkages between classical test theory 

and the statistics general linear model (e.g., regression) in 

some detail. Using this understanding, one can turn to 

correlation analysis to better understand reliability. 

 Correlation is in part a function of the covariance 

between the hypothetical variable and the observed variable. 

Covariance is an unstandardized characterization of the 

amount of shared variance between two variables. Covariance 

can be depicted as: 

Cov = [Σ(X - Xbar)(Y - Ybar)]/ n-1. 

The indicates that as the joint deviations from the means 

increase, the covariance will increase (Henson, 2000). If we 
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factor out the standard deviation of each score, by dividing 

COV by (SDx[SDy]), the covariance is now a correlation 

coefficient, or a standardized covariance. 

 When recognizing the relationship between the squared 

correlation coefficient and reliability, the assumptions of 

correlation also apply for score reliability estimation. The 

assumptions for squared correlations are as follows: 

 The population mean of the error component (E) in the 

population is zero. 

 The correlation between hypothetical indicator (Y) and 

the error component (E) is zero. 

 The correlations between the two variables’ (Y and X) 

error components (Ex and Ey) are zero. 

 The error scores are normally distributed. 

Applied in a measurement context, the first assumption 

indicates that the population squared correlation coefficient 

or reliability coefficient, unlike a sample estimate, is not 

affected by random error. The second assumption indicates 

that there is no relationship between the hypothetical 

indicator (X) and the error component (E). The third 

assumption indicates that there is no relationship between T 

and X. The fourth assumption has an important impact on the 

understanding of the relationship between hypothetical 

indicators (T, Y) and observed scores. Because we expect the 
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error components to be normally distributed, the distribution 

of the observed indicator (X) will approximate the 

hypothetical indictor. Simply stated, the observed indicator 

(X) approximates the hypothetical indicator (T) (Nunnally, 

1978). 

 There is only one confusing aspect of linking classical 

test theory and the statistics general linear model (e.g., 

regression) (Dawson, 1999). Reliability coefficients are 

always in a squared metric, just like r2 or R2 values. 

However, these coefficients do not have explicit superscripts 

or "2" (e.g., rXX or α). Furthermore, reliability 

coefficients are often computed using the formula for the 

Pearson product-moment correlation coefficient (r), and not 

the formula for r2. 

 As Lord and Novick (1968) explained, 

The square of the correlation between observed 
scores and true scores is equal to the 
correlation between parallel measurements. 
Thus, assuming at least one pair of parallel 
measurements can be obtained, we have 
succeeded in expressing an unobservable 
[universe] quantity ρXT2 in terms of ρXX', a 
parameter of a (bivariate) observed-score 
distribution. (pp. 58-59) 
 

Thompson and Vacha-Haase (2000) explained, 

The variance-accounted-for universe 
reliability coefficient (ρXX, ρr in these 
various notations) is estimated by computing 
(or estimating) the unsquared correlation 
between scores on observed parallel tests, or 
on a single test administered twice... In 
other words, often the way we estimate score 



   
         

 

24

reliability is by computing unsquared r 
values. But by doing so, nevertheless what we 
are estimating is variance-accounted-for 
universe values (i.e., reliability 
coefficients). (p. 186) 
 

Reliability Coefficient 

 Formerly, we discussed reliability in a singular 

context, as if we calculate the reliability of a single 

person. This is not the case. As Stanley (1971) stated  

the concept reliability coefficient is not 
applicable to a single individual but only to a 
group of persons, because that coefficient of 
correlation involves variation among the scores 
of different examines. That is, reliability 
coefficients are measures of interindividual 
differentiation, where as the variance error of 
measurement characterizes intraindividual 
variability for a particular trait, ability, or 
characteristic. (p. 373) 
 

 The magnitude of a reliability coefficient is an 

indicator of how much of the hypothetical indicator’s 

variation is represented in the observed indicator 

variability. Therefore, when the variance of the observed 

indicator is composed primarily of error variance, the 

reliability coefficient will be near zero. However, as more 

of the observed indicator’s variance becomes composed of 

hypothetical indicator variance, the reliability coefficient 

moves toward its upper bound of 1.0.  

  

 However, how does one move from an item context to a 

test context? Nunnally (1978) provided insight into the 
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topic, noting that 

the correlation of item 1 with the sum of an 
infinite number of items in a domain would equal 
the square root of the average correlation among 
items in the domain. The same could be proved for 
item 2 or item 3 or any other item. This holds 
only under the assumption that all items have the 
same average correlation with other items. (p. 
197)  
 

Because the true test score represents the average 

correlation among items in the domain, the correlation of 

item and total test scores approaches the correlation of the 

true score and the item (Nunnally, 1978). Therefore, if we 

have randomly sampled the items for the given test, 

“correlations among different tests would tend to be the 

same. Such randomly sampled collections of items are said to 

constitute randomly parallel tests, since their means, 

standard deviations, and correlations with true scores 

differ only by chance” (Nunnally, 1978, p. 198). Therefore, 

the reliability coefficient is found by correlating scores 

from two parallel tests.  

      For tests to be strictly parallel, all parallel 

measurements “can be shown to have equal means, equal 

standard deviations, and equal variances. Furthermore, when 

there are k parallel measurements, the correlation between 

any pair of these parallel measurements will be equal to the 

correlation between any other pair” (Crocker & Algina, 1986, 

p. 118).  
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     Acknowledging the availability of parallel tests is an 

important concept in the discussion of reliability. Using 

this concept, we can ascertain the reliability of the scores 

by giving two different tests in the same population. 

Conversely, as tests depart from parallelism, the reliability 

coefficient will decrease (Nunnally, 1978). 

Methods of Assessing Reliability 

 There are four basic forms of assessing test score 

reliability: (a) test/retest, (b) alternative form, (c) 

split-half, and (d) internal consistency. In test/retest 

analysis, the same test is given to same sample over a 

designated period. The scores from the different 

administrations are then correlated. However, there are two 

problems with the test/retest method of reliability 

assessment. The first problem is that even only one 

measurement has costs, and that those double with two 

administrations, given time. This is of greater concern the 

higher the testing cost is. In addition, if the population 

being sampled has a high mortality rate, the ability to 

assess stability reliability will decrease (Crocker & Algina, 

1986). The second problem with the test/retest method is that 

it can cause what Stanley (1971) refers to as reactivity. 

Reactivity is the phenomenon whereby repeated testing itself 

causes a substantive change that would have not otherwise 

occurred. The primary example of reactivity found in testing 
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is the effect of memory. Memory of the first test 

administration may appreciably affect performance on the 

second administration. Because of these problems, alternative 

form reliability was developed.  

 Alternative form reliability is calculated by 

correlating scores from two different tests given to the same 

sample (Crocker & Algina, 1986). The alternative form method 

corrects for the reactivity problem found in the test/retest 

method. However, the alternative form method brings along its 

own set of problems. The main problem with this method is 

that there is no guarantee that each test is sampling the 

same content. Anytime we try to use two tests this problem 

will occur. This problem led to the development of a single 

test reliability coefficient. 

 Single test administration is a method of reliability 

estimations that uses one administration of a single test. 

This method is referred to as internal consistency (Crocker & 

Algina, 1996). There are two methods for performing this 

method: split-half and item covariances.  

 The split-half method calculation involves giving a 

test to the sample at the same time and then dividing the 

test into two parts and correlating the parts. This type of 

coefficient is called a coefficient of equivalence. However, 

the splitting of the test brings about a key problem in 

reliability. As the number of items on a test increase, the 
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reliability tends to increase. This is the case because as 

the covariation between items increases the amount of 

reliable variance increases. While a single test item that is 

not related to the concept will simply add variance, as an 

item becomes more related to the construct of interest, it 

adds both variance and covariance. Stanley (1971) noted, 

“test length is increased by the addition of parallel or 

approximate parallel components. True-score variance 

increases in proportion to the square of the inverse in test 

length, where as error variance increases only in proportion 

to the increase in test length” (p. 369). Therefore, as one 

subtracts items, the reliability tends to decrease. In 

response to this problem, the Spearman-Brown Formula (Brown, 

1910; Spearman, 1910) was developed to estimate the 

reliability coefficient for the scores on the whole test by 

correcting for attenuation the correlations of the two 

halves. The Spearman-Brown formula is: 

ρxx’n = 2ρAB / 1 + ρAB 

 The biggest problem with split-half reliability is that 

a test can be divided in numerous ways. Therefore, split-half 

reliability does not yield is not a unique estimate of 

reliability (Crocker & Algina, 1986).  

  

 The methods that have come to be depended on the most 

for reliability estimates are item covariance methods. The 
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main method is called coefficient alpha (Cronbach, 1951). The 

formula for coefficient alpha is: 

α = K/K-1 [1-(ΣσI2 / σx2)] 

In the formula, K equals the number of items, σI2 is the 

variance of scores on each item i, and σx2 is the total test 

score variance. There are two important notes regarding the 

equation. The first note is that the summation of the 

individual item variances tend to be greater than the total 

test score variance. The second note is that as the numbers 

of items increase the K/K-1 factor moves closer to 1, 

minimizing its impact. Coefficient alpha is a coefficient of 

precision but states nothing about stability or equilivance 

(Crocker & Algina, 1986). 

 The second analysis that falls into the item covariance 

analysis is the KR20 (Kuder & Richardson, 1937). The KR20 is 

coefficient alpha for dichotomized items:  

ΚΡ20 = K/K-1 [1-(Σpq / σx2)] 

The pq component is the variance for a dichotomized 

individual item, because σ2I = piqi. 

 Hoyt developed the final reliability coefficient in 

this category (Hoyt, 1941): 

ρxx’ = MSpersons–MSresidual/MSpersons 

 

The mean square for the persons minus the mean square 

residual divided by the mean square persons. This equation 
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honors the very definition of reliability. The subtraction of 

mean square residual component is the subtraction of random 

measurement error. This leads to a component that is the 

amount of true variance. Hoyt’s reliability coefficient, as 

are all reliability coefficients, is the proportion of true 

score variation found in the observed indicator variation 

(Crocker & Algina, 1986). Both the numerator variance and the 

denominator variance are in a squared metric, and thus so too 

the resulting reliability coefficient is in a square metric.  

 Each of the discussed methods is designed to assess 

reliability. However, just as important is the analysis of 

test content that explicitly deals with the differential 

functionality of an instrument’s constituent items, which is 

called item analysis. 
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Item Analysis 

 In discussing test score reliability coefficients, it 

was noted that as the number of items increases, the test 

score reliability coefficients tends to increase. However, 

from a practical standpoint, there is some limit to a test 

taker’s ability to answer an onslaught of test questions. 

Therefore, the goal, as in all scientific endeavors, is to 

measures the phenomenon with the fewest items that still 

allow for reasonably high test score reliability and 

validity. Item analysis is a set of statistical procedures 

that focus on the selection of items that maximizes score 

reliability. 

Item Difficulty 

 In classical test theory, we define a true score as the 

average score of a person’s distribution of infinity many 

possible scores. In essence, a true score is a person’s true 

ability. For instance, for the civil war exam, a person’s 

true score represents the amount of knowledge a person at a 

give time has about the civil war. Typically, the term “true 

score” is used in reference to a total test score. However, a 

“true score” could also represent a person’s knowledge of a 

particular item. In the initial discussion concerning 

classical test theory, it was noted that classical test 

theory parallels the theory of unbiased estimation in 

statistics. This holds special importance when discussing the 
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classical test theory item difficulty parameter. 

 In the theory of unbiased estimation, the sample mean 

is an unbiased estimator of the population value µ. The 

average value of sample means, taken over all possible 

samples, represents the true population value (Cochran, 

1977). In testing terms, a student’s test score is equal to 

the true score as long as the average value of the student 

test scores, taken over infinitely many samples, equals the 

true score. As one may see from this definition, the one 

factor that allows an estimator to be unbiased is that the 

error score are uncorrelated, which is why this is an 

assumption in classical test theory statistics. 

 While some measurement instruments are scored in an 

interval format, such as continuous attitude rating scales, 

there are many instruments where a right/wrong scoring format 

is employed. In these cases, the distribution of item 

responses would form a binomial distribution. A binomial 

distribution is labeled such because there are exactly two 

outcomes represented. For a right/wrong scoring format, those 

two outcomes are usually represented with a 1 or 0. The 

binomial distribution represents these outcomes as 

statistically independent events. Furthermore, the binomial 

distribution is used to assign the probability of these 

outcomes occurring (Hinkle, Wiersma & Jurs, 1998). Thus, 

every item on a dichotomously-scored instrument generates a 
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binomial distribution that can be used to quantify the 

proportion of responses (the probability of a response 

occurring/100) answered correctly, which is represented in 

classical test theory as item difficulty. 

 Classical test theory item difficulty is termed an item 

statistic in that it represents an aspect of item 

functionality. Actually, item difficulty is a central 

tendency statistic. As noted earlier, a binomial distribution 

is generated from two independent events. For notational 

purposes, assume that each event is represented as A0 or A1, 

with A1 representing the number of correct answers for an 

item in the population and A0 as the number of incorrect 

answers in the population. If we want to know the proportion 

of items answered correctly in the population, the formula 

would be P=A1/N, with N being the total number or responses. 

Cochran (1977) summarized this relationship when he noted 

that “the problem of estimating A and P can be regarded as 

that of estimating the total and mean of a population in 

which every yi is either 1 or 0” (p. 51). References to the 

total and mean are, for test purposes, the total number of 

correct (or incorrect) responses and the item difficulty, 

respectively. When focusing on the item level, the mean of 

the population of items represents item difficulty, while at 

the test level the mean test score represents the test 

difficulty. 
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 While measurement textbooks often discuss reliability 

as somewhat distinct from item analysis, item characteristics 

play a vital role in all the reliability coefficients. It has 

been noted that item analysis is used to help in the 

development of tests by maximizing the needed score 

reliability while minimizing the number of items. In terms of 

item difficulty, one could minimize the number of items by 

simply selecting items using an a priori level of difficulty. 

For instance, on our civil war exam, an a priori difficulty 

level of .70 (70% correct) might be selected. For the 

question: “What general in the civil war later became 

President of the United States?”, the p was .50. Therefore, 

we would have to modify or eliminate this question. Utilizing 

item difficulty in this way is not appropriate because while 

we would minimize the number of questions, we would neglect 

the reliability of the scores. To minimize the number of 

questions and maximize score reliability, we must deal with 

the issue of variance. 

 The larger the number of items the higher is the score 

reliability is a general (not a universal) axiom. An 

unfavorable scenario occurs when a item is added and the 

reliability coefficient does not change. This would be the 

case if the item added zero correlation with the other items. 

If a new item is negatively correlated with many or all of 

the initial items, the reliability coefficient can actually 
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go down. At the extreme, the addition of such items can lead 

to negative reliability coefficients (Reinhardt, 1996; 

Thompson, 2002)! This is why scores on short forms of some 

published tests actually have higher reliability coefficients 

than the scores on the corresponding long forms (Vacha-Haase, 

1998). 

 Looking at the equation for the item variance of 

dichotomously-scored items (i.e., σ2I= piqi,), the function of 

item difficulty (p) in the equation indicates this factor’s 

importance in an item’s variance. Furthermore, because we are 

dealing with a binomial distribution, we can find q as 1-p. 

Therefore, both of the components in the item variance, and 

by extension, the total test score variance, are 

representations of item difficulty. Table 1 shows item 

variances possible from the pq equation. One can see that the 

highest item variances are found when the item difficulty is 

around .50.  
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Table 1.  

Possible Combination of Item Variances  

p q Item variance 

0.00 1.00 0.00 

0.10 0.90 0.09 

0.20 0.80 0.16 

0.30 0.70 0.21 

0.40 0.60 0.24 

0.50 0.50 0.25 

0.60 0.40 0.24 

0.70 0.30 0.21 

0.80 0.20 0.16 

0.90 0.10 0.09 

1.00 0.00 0.00 

 

 Given the influence item difficulty has in score 

reliability, one might think that most measurement 

instruments have an item difficulties close to .50. However, 

Crocker and Algina (1986) stated, “for most published 

aptitude and achievement tests designed for norm-referenced 

score interpretation, item difficulties typically fall in the 

range of .60 to .80. The reason for this lies in the item 

format commonly used in such tests” (p. 312). To explain this 

phenomenon, take the civil war test, and in particular, the 

question: “What general in the Civil War later became 
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President of the United States?”. If the question format was 

open-ended, the responses would either be right or wrong, 

with the likelihood of someone guessing the correct answer 

would be remote or zero. However, if we were to change the 

format to multiple choice, then the probability of someone 

guessing correctly would increase. Under this scenario, the 

proportion of correct answers (p) would actually be comprised 

of those who knew the answer and 1/m, with m being the number 

of response choices, reflecting the proportion who did not 

know the answer but who simply guessed correctly.  

 Because we want the item difficulty to optimize the 

item score variability, for selection-format tests, such as 

multiple-choice tests, we do not target p=.5 as the ideal 

item difficulty. We know that 1/m of the proportion of 

correct answers were from guesses. Therefore, because the 

optimal level of item variation occurs at .50, we can simply 

take .50 and divide it by the number of choices for the item. 

For instance, if we had four choices on our civil war 

question, we would get .50/4 or .125. Therefore, we can 

expect 12.5% of the correct answers to our civil war 

question, assuming p=.50, to be guesses. Furthermore, our new 

item difficulty that would maximize the test/item true score 

variance can be found by the formula: 

P1 = .50 + .50/m. 

Thus, for the civil war exam, our new optimal item difficulty 
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would be .625 (.50 + .125) (Crocker & Algina, 1986; French, 

2001). 

Item Discrimination 

 Inherent in the discussion concerning item difficulty 

is the creation of two groups. For item difficulty, we create 

a group that answered the item correctly and one that did 

not. Item discrimination statistics focus not on how many 

people correctly answer an item, but on whether the correct 

people get the item right or wrong. In essence, the goal of 

an item discrimination statistics is to eliminate items that 

do not function as expected in the tested group. One of the 

easiest item discrimination statistics to apply is the index 

of discrimination. 

 The index of discrimination is used with dichotomously-

scored items. A criterion score, usually the total test 

score, is used to place test takers into an upper and lower 

group. Division of the test takers into these groups is one 

of a couple of issues leading to arguments against the index. 

A natural split would be to place 50% in the upper group and 

50% in the lower group. However, it is easier for an item to 

discriminate between very high scores and very low scores on 

the criterion of interest. Kelly (1939) suggested that 

instead of a 50-50, split a 27-27 (omitting 46% of the data 

on a give item) split would allow the item discrimination 

statistic to function in a stable and useful manner. However, 
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others have found that as sample size increases, the group 

percentages can be gradually expanded with the statistic 

becoming just as stable and useful as using 27-27 splits 

(Crocker & Algina, 1996). 

 Once the group division is decided, the index of 

discrimination (D) can be calculated as : D = pu – pl, with pu 

being the proportion of correct responses for the upper group 

and pl being the proportion of correct responses for the 

lower group. Because a proportion ranges from 0 to 1, the 

index of discrimination can range from -1 to 1. A positive 

index indicates that a higher proportion of the upper group 

answered the item correctly, while a negative item 

discrimination index (D) indicates that a larger proportion 

of the lower group answered the item correctly.  

 As noted earlier, there is some subjectivity in the 

interpretation of D. While it is easy to see that a negative 

D is not a desirable result, it is not so clear how a D of 

.20, for example, compares to a D of .29. Crocker and Algina 

(1986) noted that D “has no well-known sampling distribution. 

It is not possible to answer questions such as what D-value 

is significantly greater than zero, or how large a difference 

between D- values is statistically significant” (p. 315). 

However, Ebel (1965) issued four guidelines to the 

interpretations for D values.  

1.  If D ≥ .40: no item revision necessary; 
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2.  If .30 ≤ D ≤ .39: little to no item revision is needed; 

3.  If .20 ≤ D ≤ .29: item revision is necessary; and 

4.  If D ≥ .19: either the item should be completely 

revised or eliminated. 

     In item discrimination, the key issue is how an item 

discriminates on a certain criterion. While the index of 

discrimination provides this information, it is problematic 

that the index ignores so much data. That is, D usually (a) 

omits the data of a lot of people (e.g., 46% of the 

respondents), and (b) ignores information regarding the exact 

scores of persons in the high group and persons in the low 

group. The product-moment correlation coefficient can be used 

when the criterion score (e.g., total test score) and the 

item scores (e.g., 0 or 1) are on an interval scale. However, 

the point biserial coefficient was created as a 

computationally friendlier version of the Pearson formula. 

The point biserial in calculated as pbis = [(µt – µx)/σx]*SQRT 

p/q with µt defined as the mean criterion score for the 

proportion answering the item correctly and µx defined as the 

entire criterion score mean.  

     A counterpart to the point biserial is the biserial 

correlation. In the biserial correlation, we assume that a 

normally distributed latent variable underlies the item and 

test performance. The biserial correlation is calculated by 
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using the formula: ρbis = [(µt - µx)/σx] (p/Y). The difference 

between the two formulas is found in the (p/Y). The Y is the 

“standard normal curve at the z-score associated with the p 

value for this item” (Crocker & Algina, 1996 p. 317). As is 

noted by Crocker and Algina (1996), the Y ordinate is always 

less than SQRTpg. Because the mathematical relationship 

between ρbis and ρpbis is ρbis = (SQRT pq/Y) * ρpbis, ρpbis will 

always be larger than the ρbis. Lord and Novick (1968) 

indicated that the difference would always be at least 20%. 

Furthermore, Crocker and Algina noted that “difference in 

magnitude remains fairly moderate for items of medium 

difficulty; however as p values drop below .25 or increase 

above .75, the difference between biserial and point biserial 

increases sharply” (p. 318).  

     A problem with the formulas for both the point biserial 

and biseral correlations is that an item contribution is 

weighted twice, once in the µt component, and once in the µx 

component. This can lead to correlations that are too high 

(in the case of very good items) or too low (in the case of 

bad items). Crocker and Algina (1986) noted that this problem 

is not as prevalent as the number of items increase. If the 

problem is recognized, a “corrected” discrimination 

coefficient can be computed by simply in turn eliminating the 

item scores being correlated in turn with the total scores on 
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the k-1 items.  

Limitations to Classical Test Methods 

     While classical test statistics are still commonly used 

in test construction process, many researchers have 

questioned their utility in the modern era. Hambelton and 

Jones (1993) questioned the use of classical test theory 

estimators by saying that “classical item statistics such as 

item difficulty (i.e., proportion correct) and item 

discrimination (i.e., point biserial correlations) and test 

statistics such as test reliability are dependent on the 

examinee sample in which they are obtained” (p. 38). Fan 

(1998) summarized this problem with classical test theory 

estimators as involving circular dependency. Classical test 

statistics are sample dependent in that as the sample 

changes, the estimators would change (Cantrell, 1997; Henson, 

1999). As MacDonald and Paunonen (2002) explained:  

examinee ability scores are dependent on the 
difficulty of test items. Thus, if the test is 
composed of relatively easy items, the person 
statistics (i.e., observed test scores) will be 
relatively high, giving the impression that the 
examinees possess high level of ability. If the 
test is composed of relatively difficulty items, 
however, the person statistics will be relatively 
low, giving the impression that the examinees 
possess low levels of ability. As such, estimates 
of examinee ability are dependent on the difficulty 
of the test items. (p. 922) 
 

Therefore, the classical test theory estimators are not 

generalizable across populations.  
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 Traub and Rowley (1991) wrote that classical test 

reliability is “an indicator of the quality of a set of test 

scores; hence, reliability is dependent on characteristics of 

the group of examinees who take the test, in addition to 

being dependent on characteristics of the test and the test 

administration” (p. 41). Another limitation of classical test 

theory is that to compare the performance of different 

examinees, the examinees must be given either the same or 

parallel items. The problem is further accented by a third 

limitation of classical test theory in that parallel forms 

are difficult to achieve. A fourth problem of classical test 

theory is “that it provides no basis for determining how an 

examinee might perform when confronted with a test item” 

(Hambelton & Swaminathan, 1985, p. 3). Finally, classical 

test theory assumes that the measurement error is the same 

for all examinees (Hambelton & Swaminathan, 1985). Because of 

the criticisms heaped upon classical test theory, some test 

developers have turned to item response theory. 
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CHAPTER III 

ITEM RESPONSE THEORY 

 Item response theory (IRT) is, for some researchers, 

the answer to the limitations of classical test theory. Item 

response theory (IRT) looks at the examinee’s performance by 

using item distributions based on the examinee’s probability 

of success on a latent variable. In essence, IRT is a 

modeling technique that tries to describe the relationship 

between an examinee’s test performance and the latent trait 

underlying the performance (Cantrell, 1999; Hambleton & 

Swaminathan, 1985; Henard, 2000). 

Basic Concepts of IRT 

 In the earlier discussion of classical test theory, it 

was noted that there are two general factors in measurement, 

an observed response and an underlying unobservable 

construct. In classical test theory, we define this 

relationship as X=T+E. This is a theoretical model. In item 

response theory the models employed are mathematical 

functions. Thus, both models are fallible in that they are 

dependent on the assumptions a researcher is willing to posit 

with given data (Hambleton & Swaminathan, 1985). 

 Hambleton and Swaminathan (1985) summarized the 

characteristics of an item response model as involving four 

ideas. First, an IRT model must specify the relationship 

between the observed response and the underlying unobservable 
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construct. Secondly, the model must provide a way to estimate 

scores on the ability. Third, the examinee’s scores will be 

the basis for the estimation of the underlying unobservable 

construct. Finally, an IRT model assumes that the performance 

of an examinee can be completely predicted or explained from 

one or more abilities.  

 The most commonly used IRT models are built off a 

single ability, a parameter in the model. The ability 

parameter, θ, is very similar to the classical test theory 

total-test true score. Crocker and Algina (1986) noted that 

“the relationship between T and θ is not statistical. The 

true score is a nonlinear transformation of the latent trait. 

The relationship between the observed score (X) and latent 

trait scores (θ) is statistical” (pp. 351-352). In fact, the 

relationship between the observed score and the ability 

parameter is the same relationship as the observed score and 

true score: 

T = ΣgPg(θ), or 

X = ΣgPg(θ) + E. 

 The four characteristics of an item response model at 

first glance do not seem to set an IRT model appreciably 

apart from the classical test model. However, there are 

major differences between the two models. Item response 

models are lauded for their ability to generate invariant 

estimators. Theoretically, in item response theory, while 
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item parameter estimates (i.e., item difficulty and 

discrimination) are not dependent on the characteristics of 

the examinees, the ability estimates are also not dependent 

on the items. That is, theoretically IRT ability estimates, 

θ, are “item-free” (i.e., would not change if different 

items were used) and the item difficulty statistics are 

“person-free” (i.e., would not change if different persons 

were used). As noted earlier, a major criticism of the 

classical test theory is that estimators in that model may 

not have these proprieties. Also, each IRT ability estimate 

has a separate error estimate, while the classical test 

model assumes equal error variances across a measurement 

instrument. 

 Despite all its assumed advances, item response models 

are subject to strict assumptions. In classical test 

theory, the assumptions are relatively easy to meet because 

the assumptions do not have to be met exactly. Therefore, 

classical test theory is said to have weak assumptions.  

 Two major assumptions of item response theory are 

unidimensionality and local independence. Unidimensionality 

states that there is only one ability being measured. This 

assumption can never be strictly met. The assumption can be 

satisfied if a single dominant factor underlies responses. 

In our civil war exam, for our examinee to answer an item 

correctly he must know the particular element of history 
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under assessment. However, if the items required knowledge 

of the chronology of historical events, a new ability is 

introduced. A second assumption is local independence, 

which necessitates, that excluding ability, there is no 

relationship between the test item responses other than the 

relationship determined by ability or other model 

parameters. For example, if the responses to one item 

structurally constrain the possible answers to other items, 

then the items are not locally independent. If these 

assumptions are met, an IRT model can be successfully 

employed. 

IRT Models 

 All IRT models are derived to generate item 

characteristic curves. An item characteristic curve plots the 

probability that an examinee will respond correctly to an 

item solely as a function of the test’s latent trait (Crocker 

& Algina, 1986). Hambelton and Swaminathan (1985) noted that 

“The main difference to be found around currently popular 

item response models is in the mathematical form of Pi(θ), 

the ICC. It is up to the test developer or IRT user to choose 

one of the many mathematical functions to serve as the form 

of the ICCs” (p. 26).  

 The values on the X-axis of an ICC represent the latent 

trait, usually ranging from -3 to +3. The Y-axis represents 

the probability of an examinee’s success. As the latent trait 
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increases, the probability of the examinee responding 

correctly will increase but with diminishing returns. In 

their discussion of item characteristic curves, Crocker and 

Algina (1996) discussed two interpretations that they 

consider acceptable. The first interpretation for a correct 

response is “the probability that a randomly chosen member of 

a homogeneous subpopulation will respond correctly to an 

item” (p. 341). A second interpretation is that the 

probability represents the probability of a specific examinee 

responding correctly for a subpopulation of items. 

 The first IRT model was built off a normal ogive, which 

is a standardized form of an ogive. An ogive, or a cumulative 

frequency polygon, “is the graph of a cumulative frequency 

distribution. It is useful for determining the various 

percentile points in a distribution of scores” (Hinkle, 

Wiersma and Jurs, 1998, p. 347). A normal ogive is a 

monotonically increasing curve, increasing from left to 

right. The normal ogive has a lower and upper asymptote, 

indicating that it will never equal 0 or 1 at any point. 

Figure 1 illustrates an ogive and Figure 2 illustrates a 

normal ogive. 
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Figure 1. Ogive  
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Figure 2. Normal Ogive 
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 The focus of item response theory on item level 

information can be seen in the normal ogive equation. In 

latent trait models, the b parameter is the item difficulty 

parameter. The item difficulty parameter represents the point 

on the ability scale θ, the horizontal axis, where there is a 

50 percent probability the item is answered correctly. 

 In recent times, the use of the normal ogive IRT 

modeling has all but vanished. While theoretically 

tantalizing, the normal ogive’s calculations are tedious 

(Crocker & Algina, 1986). However, a complementary procedure 

to the normal ogive is found in the logistic item response 

models.  

 Logistic item response models are simply a form of 

logistic regression. The theory behind logistics regression 

is that when the dependent variable is a set of dichotomized 

scores, one can set the probability of a particular score. 

For a singe independent variable, one can write the 

probability equation as  

P(θ) = eB0 + B1θ / 1 + eB0 + B1θ. 

Algebraically, the above equation can be expressed in the 

equation: 

P(θ) = 1 / 1 + e-(B0 + B1θ). 

 Regardless of the equation used, the B0 is the Y 

intercept and B1 is the slope of the function produced by the 

mathematical relationship between the independent variable 
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and the dependent variable. e represents the base of the 

natural logarithm approximated at 2.178 (NORUSIS, 1990). 

Although the above equations represent one independent 

variable, the following equation represents multiple 

independent variables where θ equals B0+ B1θ1 + ... + Bpθp : 

P(θ)= 1/1 + e-θ. 

 Using the logistic equations presented above, similar 

item characteristic curves can be developed for logistic 

models. The logistic curve has the same S shape curve as the 

normal ogive and the θ parameter ranges from -3 to +3. The 

relationship between the latent ability variable (θ) and the 

probability of a particular score is a nonlinear function. 

However, one should note that the top and bottom on the S 

shaped curve have an asymptotic relationship with the 

probability values of 0 and 1. 

 In item response theory, a one-parameter model will 

have the following function: 

Pg(θ) = eDa(θ - bg) /1 + eDa(θ - bg). 

Looking at the one-parameter model, one can see its 

relationship between this model and the single parameter 

logistic regression. The D in the one-parameter item response 

model represents a constant adjustment to the model to reduce 

the differences between the logistic IRT model and the normal 

ogive model to less than .01 (Crocker & Algina, 1986). The 

value of D is usually set to 1.7 (Crocker & Algina, 1986). 
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The a parameter is the item discrimination parameter with the 

b parameter being the item difficulty parameter. However, in 

the one-parameter model the item discrimination is assumed to 

be a constant. The one-parameter model is often called in the 

Rasch model (Crocker & Algina, 1986; Hambleton & Swaminathan, 

1985; Henard, 2000). 

 The two-parameter model has the same function as 

presented for the one-parameter model. However, in the two-

parameter model, the item discrimination parameter will vary 

across items, as does the item difficulty parameter. 

 The third model of interest in this research is the 

three-parameter model. The third parameter is a psuedo-

guessing parameter especially useful for multiple choice and 

true-false testing. In the one and two parameter, the lower 

asymptote moves toward the probability value of 0 rather 

quickly. This indicates that examinees in this area have a 

lower probability of achieving success on an item than they 

really have because they can “guess” the correct answer. The 

three-parameter model is expressed as follows: 

Pg(θ) = cg + {[(1- cg ) eDa(θ - bg) ]/ 1 + eDa(θ - bg)}. 
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In each of the above equations, the latent parameter θ was 

given considerable attention. This parameter is termed the 

ability parameter. The ability parameter has the same type of 

functional relationship with test items on a given test as 

does the dependent variable have with the independent 

variable(s) in linear regression. Both the dependent variable 

and the latent variable represent a concept that 

inconceivable without the use of independent variables or 

test items. Latent ability can represent anything that the 

test represents. In fact, the latent ability parameter is 

“dependent” on the test items to define its numerical 

functionality. Item response theory, like any other form of 

reliability evaluation, cannot prove the viability of this 

relationship but must depend on construct validation.  

 Unlike classical test theory, item response theory uses 

a maximum likelihood statistical theory to estimate the 

ability parameter. This estimator, as Hambleton and 

Swaminathan (1985) noted, can be interpreted as the “value of 

the examinee’s ability that generates the greatest 

‘probability’ for the observed pattern” (p. 77). Hambelton 

and Swaminathan’s use of an “observed pattern” indicates that 

item response theory is a modeling technique that  
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requires some subjectivity. Hambleton and Swaminathan also 

noted that the maximum likelihood estimates for students who 

have prefect scores on the test or get nothing correct are 

not estimated well.  

 For test takers with zero correct responses, we can 

estimate their maximum possible ability. But we have no way 

to determine how much lower their abilities are, unless we 

give these persons a series of easier items to find the 

boundaries of their abilities. There are infinitely many 

reasonable ability estimates below the maximum ability for 

these test takers. The converse situation arises for persons 

with all items correct. We can estimate their minimum 

ability, but there are infinitely many reasonable estimates 

above this maximum.   
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CHAPTER IV 

ITEM RESPONSE THEORY VS CLASSICAL TEST THEORY 

 When the measurement community turned to item response 

theory, the item response model was heralded as “one of the 

more important methodological advances in psychological 

measurement in the past half-century” (McKinley & Mills, 

1989, p. 71). In fact, nine years earlier, Lord (1980) noted 

“nothing in this book will contradict either the assumptions 

or the basic conclusions of classical test theory. Additional 

assumptions will be made; these will allow us to answer 

questions that classical test theory cannot answer. Although 

we will supplement rather than contradict classical test 

theory, it is surprising how little we will use classical 

theory explicitly” (p. 7).  

 In analyzing the differences between item response 

theory and classical test theory, Embretson and Reise (2000) 

listed ten rules of measurement that will change due to the 

item response movement. Four are of particular interest. The 

first rule change is that the standard error of measurement 

which applies to all scores in a particular population in 

classical test theory would apply differently across response 

patterns but would generalize across populations. In 

classical test theory, the raw score transformation is linear 

(i.e., T = X + E). Thus, we must assume that the variances 

are approximately equal. Because the variances are assumed to 
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be approximately equal, an assumption known as homogeneity of 

variance, measurement errors for individual scores are 

assumed to be distributed normally and equally at each score 

level. In other words, standard errors of measurement become 

conditional on ability levels. Conversely, IRT modeling is a 

nonlinear modeling technique, which does not require the 

homogeneity assumption. Consequently, standard errors of 

measurement in the IRT framework can differ across score 

levels. However, Embretson and Reise (2000) noted that 

standard errors for the IRT framework can be averaged to 

provide a generalized standard error of measurement for the 

population.  

 A second rule change is that longer tests would no 

longer mean better reliability. The larger the number of 

items the higher the reliability is a general (not universal) 

axiom in classical test theory. The IRT framework can achieve 

maximum reliability with fewer items because ability score 

estimates, being item-free, can be based on giving different 

items to different test takers, and matching item 

difficulties to person abilities so as to obtain the most 

information form the fewest items.  

 A third change is that one no longer needs to have 

parallelism for test equating. Comparing different test forms 

often requires some form of equating to enable score 

compatibility (Embretson & Reise, 2000). In CTT, the 
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prevalent equating methods all require parallelism to some 

extent. As noted earlier, parallelism is rarely met. 

Embretson and Reise (2000) noted that “various equating 

methods can be applied when the test forms have different 

means, variances, and reliabilities; equating error is 

influenced by differences between the test forms. Equating 

error is especially influenced by differences in test 

difficulty length” (p. 21). When tests have varying 

difficulties, linear equating methods underestimate some test 

scores while overestimating others. IRT, a nonlinear method 

of equating, was shown by Embretson and Reise (2000) to be a 

better equating method when equating tests.  

 A fourth noted change is depicted in the ability of the 

IRT framework to generate item parameter estimates that are 

unbiased even across different samples. The ability of the 

IRT framework to generate unbiased item parameter estimates 

is termed invariance. Hambleton, Swaminathan and Rogers 

(1991) noted:  

The property of invariance of item and ability 
parameters is the corner stone of IRT and its major 
distinction from classical test theory. This 
property implies that the parameters that 
characterize an item do not depend on the ability 
distribution of the examinees and the parameter 
that characterize and examinee does not depend on 
the set of items. (p. 18) 
 

 The property of invariance has been considered an 

accepted benefit of the IRT framework (Drasgow & Parsons, 
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1983; Embretson, 1999; Embretson & Reise, 2000; Fan, 1998; 

Hambleton, Swaminathan & Rogers, 1991; MacDonald & Paunonen, 

2002). 

 Looking at Embretson’s (2000) rules, one might 

formulate the notion that item response theory produces tests 

that have vastly improved ability estimates. Fan (1998) noted 

that “Because IRT differs considerably from CTT in theory, 

and commands some crucial theoretical advantages over CTT, it 

is reasonable to expect that there would be appreciable 

differences between the IRT- and CTT-based item person 

statistics” (p. 360). 

 However, articles by Fan (1998), Lawson (1991), 

MacDonald and Paunonen (2002), Skaggs and Lissitz (1986, 

1988) and Stage (1998a, 1998b, 1999) have all pointed to 

little difference between item response estimates and 

classical test theory estimates. In Stage’s (2000) work with 

the SweSAT test READ, she noted that “the agreement between 

results from item-analyses performed within the two different 

frameworks IRT and CTT was very good. It is difficult to find 

greater invariance or any other obvious advantages in the IRT 

based item indices” (pp. 19-20). Furthermore, Fan’s (1998) 

research “failed to support the IRT framework for its 

ostensible superiority over CTT in producing invariant item 

statistics” (p. 378). MacDonald and Paunonen (2002) agreed 

with Fan and Stage, with an important caveat: 
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When the collection of potential test items in a 
pool possesses a narrow range of item difficulty 
values (common in personality and interest 
assessments), then item discrimination estimates 
should be largely accurate for both IRT and CTT 
measurement frameworks. In such a situation, item 
selection decisions based on either framework 
should result in the selection of roughly the same 
set of test items. On the other hand if the range 
of items difficulty statistics exceeds a narrow 
range of item difficulty values (about -0.5 to .5, 
common in achievement and ability tests), then the 
accuracy of item discrimination estimates begins to 
decrease with CTT methods. (p. 942) 
 

 However, findings of this type were first indicated by 

Nunnally in 1979 when he wrote that “when scores developed by 

ICC theory can be correlated with those obtained by the more 

usual approach to simply sum items scores, typically it is 

found that the two sets of scores correlated .90 or higher; 

thus it is really hair splitting [italics added] to argue 

about any difference between the two approaches or any marked 

departure from linearity of the measurement obtained from the 

two approaches” (p. 224). 
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 The present study is designed to replicate the work 

done by Fan (1998). However, as Fan (1998) noted, a principle 

limitation of his study is the use of criterion-referenced 

test and its inherent tendency toward items that have limited 

item difficulty ranges. This limitation is especially 

unsettling considering the results of MacDonald and Paunonen 

(2002). Considering the results of both Fan and MacDonald and 

Paunonen (2002), the present study consists of 80,000 

examinees drawn from a population of 322,460 examinees who 

took the written form of the ACT Assessment, a norm-

referenced test.  As MacDonald and Paunonen (2002) noted, 

typical item difficulty values range achievement or ability 

from -0.5 to .5. For the present study, looking across all 

subtests, the item difficulty ranges from -3.349 to 3.621.  
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 The present study focused on two central themes: (1) 

How comparable are the item and person statistics derived 

from the item response and classical test framework? (2) How 

invariant are the item statistic from each measurement 

framework across examinee samples?  

 Specifically, this study addressed the five research 

questions presented by Fan: 

1. How comparable are the CTT-based and IRT-based examinee 

ability estimates? 

2. How comparable are the CTT-based and IRT-based item 

difficulty estimates? 

3. How comparable are the CTT-based and IRT-based item 

discrimination estimates? 

4. When compared across different samples, how invariant 

are the CTT-based and IRT-based item difficulty 

estimates? 

5. When compared across different samples, how invariant 

are the CTT-based and IRT-based item discrimination 

estimates? 
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CHAPTER V 

METHOD 

 Chapter V, the method section, covers the study’s 

design. The data source section introduces information on 

the data used, the instrument, and any constraints to the 

data or instruments. The participant sampling section 

covers the three participant sampling plans employed to 

study the behavior of the examinee’s scores under the CTT and 

IRT measurement frameworks. A discussion of the 

comparability and invariance of IRT and CTT item statistics 

and a correction bias in sample correlation coefficient 

(employed for small samples) is also included. 

Data Source 

 The data used in this study are from the ACT Assessment 

Test. The ACT is typically taken by college-bound students in 

the eleventh and twelfth-grades. The ACT is taken by over one 

million students each year. Nearly 3,000 postsecondary 

institutions require or recommend that applicants submit ACT 

results. The ACT Assessment is given via written and computer 

adaptive testing formats. For the present study, only 

examinees (a) given the written format (b) in the same ACT 

administration were considered.  

 The ACT Assessment is composed of four tests: English, 

Mathematics, Reading, and Science. The English Test is a 

composed of 75 four-option multiple-choice items with a 45 
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minute time limit. The test is designed to measure the 

examinee’s understanding of the conventions of standard 

written English and rhetorical skills.  

 The Mathematics Test is composed of 60 four-option 

multiple-choice items, with a 60 minute time limit. The test 

is designed to assess the mathematical reasoning skills 

typically acquired in math courses such as pre-algebra, 

algebra/elementary algebra, intermediate algebra/coordinate 

geometry, and plane geometry/trigonometry. 

 The Reading Test is composed of 40 four-option 

multiple-choice items, with a 35-minute time limit. The test 

is designed to measure reading comprehension as defined in 

skills of referring and reasoning.  

 The Science Test is composed of 40 four-option 

multiple-choice items, with a 35-minute time limit. The test 

is designed to measure the interpretation, analysis, 

evaluation, reasoning, and problem solving sills in the 

natural sciences.  

 For the present study, a sample of 80,000 examinees was 

randomly drawn from an examinee population of the specified 

administration consisting of 322,460 test takers. The sample 

of 80,000 was composed of 40,000 males and 40,000 females. 

The male and female examinees were further subdivided into 

mutually exclusive subsamples for each test. Therefore, each 

test sample is comprised of mutually exclusive subsamples of 
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10,000 males and 10,000 females. The random sampling was 

compiled by the ACT Corporation. 

 To facilitate comparisons across the four tests, a 

random sampling of items was conducted to restrict the longer 

English and Math tests to 40 items. The 40 items were 

randomly selected. 

Participant Sampling 

 To replicate Fan’s (1998) article, three sampling plans 

were employed to study the behavior of the examinee’s scores 

under the CTT and IRT measurement frameworks. Each sampling 

plan was employed for each test. The sampling plans allow for 

the comparability of each framework across progressively less 

comparable samples.  

 According to Chang, Hanson and Harris (2001), stable 

estimates of CTT item difficulty and discrimination can be 

found with a sample size of 150 to 200. Wright and Stone 

(1979) found that sufficient sample sizes for CTT stability 

would allow for stable estimates of one-parameter IRT item 

indices. To investigate the functionality of CTT and IRT 

estimates under different conditions, two different sample 

size conditions was employed. To replicate functionality of 

the two measurement theories in large scale measurement 

situations, one set of samples were randomly selected with 

n=1,000. Conversely, to replicate clinical situations were 

tests are often constructed with small sample sizes, a second 
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set of samples were randomly selected n=100 (Skaggs & 

Lissitz, 1986). 

 One set of 400 random samples, each consisting of 1,000 

examinees, were drawn from the 80,000 examinees. The 400 

random samples represent 100 random samples for each of the 

four tests. 

 A second set of random samples was drawn to look at the 

effect of small samples. Eight hundred random samples, each 

consisting of 100 examinees, were drawn from the 80,000 

examinees. That is, 100 random samples of n=1,000 were drawn 

for each of the four tests.  

 For gender, 100 random samples of each gender group 

were drawn from the four tests, equaling 1,600 gender samples 

(4 subtests * 100 random samples * 2 gender groups * 2 

different sample size conditions = 1,600). The same process 

was employed to generate the small sample replicates. As Fan 

(1989) noted, because the gender samples are subpopulations 

of the total population, theoretically, disparity between 

statistics calculated from different samples will be larger 

than that found in random sampling plan. 

 A third sampling involved truncated high-ability and 

low ability group samples. For this sampling plan, there were 

1,600 samples. The low-ability sample was comprised of 

students whose total test score fell in the 0 to 40th 

percentile range while the high-ability group fell in the 
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60th to 100th percentile range. One-hundred samples were 

randomly drawn from both the low and high ability group for 

each test. These truncated high-ability and low-ability group 

samples should theoretically display the greatest 

dissimilarity between the CTT and IRT statistics, because 

“these two groups were defined in terms of test performance, 

not in terms of a demographic variable” (Fan, 1998, p. 363). 

Comparability of IRT and CTT Statistics 

Person Statistics 

 Correlating the two parameters will assess the 

comparability of the IRT ability score and the CTT estimated 

true score. The ability parameter was assessed using Bilog-

MG’s marginal-maximum likelihood method (Windows Version 

3.0.2327.2 for one-, two-, and three parameter IRT models). 

The CTT true score estimate is the obtained total number of 

right answers. For each sampling plan, both the CTT- and IRT-

based (one-, two- and three-parameter) ability estimates were 

obtained. Therefore, each sample generated three correlation 

coefficients: CTT-based ability estimate with the IRT-based 

ability estimates for the one- two- and three-parameter 

models.  
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Two Item Statistics 

 The compatibility of item statistics for both methods 

was obtained by correlating (a) the item difficulty and (b) 

the item discrimination methods. The IRT item difficulty 

parameter, denoted by b in IRT models but referred to as the 

threshold parameter in Bilog-MG, was compared to the item 

difficulty (p) value generated using the CTT technique. The 

CTT item discrimination technique, the corrected item-test 

point bi-serial correlation, was compared to the IRT item 

slope parameter, a. 

Degree of Invariance between IRT and CTT 

 As noted by Fan (1998), the three sample techniques 

employed here will generate progressively dissimilar samples, 

when looking across the three sample techniques. The three 

sampling frames used to evaluate invariance were: (a) random 

samples, (b) gender group sampling, and (c) truncated high-

ability and low-ability group samples. By correlating the 

item parameters from different samples, within the same 

sampling plan, within the same measurement framework (i.e., 

IRT to IRT, CTT to CTT), the degree of estimated invariance, 

a commonly cited advantage of IRT, was evaluated.  
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Transformations for CTT P Value and Item-Test Correlations 

 In CTT, the item difficulty statistic is expressed on 

an ordinal scale. In an ordinal measurement scale, one is 

able to discern whether one item is more difficult than other 

item. However, it can not tell us whether the differences in 

various item difficulties are the same across the different 

comparisons. For instance, if items 1, 2 and 3 have an item 

difficulty of .25, .20, and .15, just because the difference 

between 1 and 2 and 2 and 3 equals .05 does not indicate that 

the difference in difficulty is the same in these two 

comparisons.  

 However, if the trait being measured is normally 

distributed, the CTT item difficulty statistic can be 

expressed as equal interval normal curve units (Anastasi, 

1988). The transformation is achieved by finding the z score 

that corresponds to the proportion of examinees who answer an 

item correctly. The present study correlated both the CTT 

item difficulty (p) and the normalized CTT item difficulty 

statistics with IRT item difficulty estimates. 

 An item-test point bi-serial correlation, identified as 

the CTT item discrimination statistic, is not linearly 

scaled. As Hinkle, Wiserma and Jurs (1998) explained, “the 

sampling distribution of the correlation coefficient changes 

its shape as a function of both the magnitude and the sign of 
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the coefficients” (p. 231). R.A. Fisher developed a 

transformation that in large samples allows the transformed 

correlation coefficient to be distributed approximately 

normal (Hinkle, Wiserma & Jurs, 1998). Therefore, the 

assessment of the invariance of CTT item discrimination 

statistic is based on the correlation analysis between both 

the original and the Fisher z transformed point bi-serial for 

the differing samples of examinees.  For each test, an 

average correlation coefficient was obtained by (a) 

transforming the individual correlation coefficients to 

Fisher Zs, (b) averaging the Fisher Zs, and (c) transforming 

the average Fisher Zs back to correlation coefficients (Fan, 

1998). 

Correcting for the Bias in Sample Correlation Coefficients 

 Because the sample correlation coefficient, r, is a 

ratio, it is a biased estimator of the population correlation 

coefficient. Zimmerman, Zumbo, and Williams (2003) noted that 

r can be biased as much as .03 or .04, which, as Zimmerman et 

al. indicated, may be vital when investigating the accuracy 

of the magnitude of r in measurement studies. 
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 To correct for the bias in the sample correlation 

coefficient, R.A. Fisher developed a procedure to approximate 

the population correlation coefficient: 

E[r]= r[1+{(1-r2)/2n}] 

Later, Olkin and Pratt (1958) indicated that the following 

approximation is a more nearly unbiased estimator of r:  

E[r]= r[1+{(1-r2)/2(n-3}] 

  The bias is greatest in the .500/-.500 range and 

decreases as the sample correlation coefficient moves out of 

this range. As the sample size decreases, the effect of bias 

increases. The present study used both the Fisher and the 

Olkin and Pratt corrections to compare model parameters 

across CTT and IRT procedures. 
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CHAPTER VI 

RESULTS AND DISCUSSION 

 Chapter VI covers the results and discussion. The 

assessment of model-data fit is discussed. The results for 

both different sample size conditions are discussed under 

each research question in the first section.  

IRT Assessment of Model-Data Fit 

 Every statistical model requires assumptions about the 

data to obtain viable parameter estimates. In some instances, 

such as classical test theory, these assumptions are weak, 

meaning that most data will be able to meet these 

assumptions. Conversely, IRT models have strong assumptions. 

In fact, Hambleton and Swaminathan (1985) concluded that IRT 

assumptions are so strong that no data set will ever be able 

to meet fully the assumptions. The violation of IRT 

assumptions can not only eliminate the possible advantages of 

test score interpretation (Hambleton & Swaminthan, 1985) but 

will lead to erroneous or unstable IRT estimates.  

 Because all IRT models require a unidimensional latent 

space, unidimensionality is viewed as the most important IRT 

model assumption. Hambelton and Swaminthan (1985) noted four 

different approaches to assessing unidimensionality. For the 

present study, factor analysis was used to assess the 

unidimensionality, using the eigenvalues to identify the 

number of dominate factors that exist among the test items. 
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For the English and Math test, the analysis was conducted 

using the same 40 test items used in subsequent analysis. The 

population data consisting of 80,000 cases (20,000 cases for 

each subtest) was the basis for this data. For the English 

test, the top three eigenvalues were 6.55, 1.34, and 1.24. 

For the 40 math items, the top three eigenvalues were 7.30, 

1.69, and 1.26. The first three eigenvalues for the Reading 

items were 6.85, 1.90, and 1.20. Finally, the first three 

eigenvalues for the Science items were 5.79, 1.63, and 1.20. 

Based on these results, the unidimensionality assumption 

appeared to hold for the data. This result was expected 

considering the amount of measurement research that has been 

done in developing and maintaining the ACT Assessment.  

 To assess overall model-data fit, individual item 

misfit was assessed using population data consisting of 

80,000 cases (20,000 cases for each subtest) and the subtest 

items used in the subsequent analysis. In BILOG-MG (Windows 

Version 3.0.2327.2), a like-hood ratio chi-square test is 

supplied. Tests of statistical significance, like the 

likelihood-ratio chi-square, are heavily influenced by sample 

size. For this analysis two corrections were enlisted to 

restrict the possibility of misinterpretation due to sample 

size was used. Table 2 summarized the number of items, the 

number of misfitting items and the percentage of items that 

were misfitting.  



   
         

 

73

 

Table 2.  

Number of Misfitting Items (α = .01)  

Test Items 1P % 2P % 3P % 

English 40 6 15 0 0 0 0 

Math 40 22 55 6 15 4 10 

Reading 40 8 20 1 3 6 15 

Science 40 14 35 2 5 1 3 

Note: 40 items were randomly sampled from the larger items 

pools for the Math and English tests. “1P” = one-parameter 

IRT model; “2P” = two-parameter IRT model; “3P” = three-

parameter IRT model 

 

 The English test items fit the best of all the tests. 

Only six of the forty items (15%) were designated as 

misfitting items in the one-parameter model and none were 

labeled as such in the two and three-parameter models. 

Conversely, fifty-five percent of the Math test items were 

identified as misfitting in the one-parameter model, with a 

considerable decrease in model-data misfit when the two and 

three-parameter models were employed. A curious result was 

found in the comparison of Reading test results across the 

three models. While the results indicated a small number of 

misfitting items, the three-parameter model had more 

misfitting items than the two-parameter model. This seems to 
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run contrary to the thought that as the number of explanatory 

variables increases (in this case the inclusion of a pseudo-

guessing parameter) the expanded model will fit at least as 

well as the previous model. However, here lies one of the 

quintessential problems with interpretation based on 

statistical significance. In the two-parameter model, several 

items had probabilities ranging in the .02 to low .01 range, 

indicating that these items could have easily been classified 

as misfitting items if a different alpha were chosen, the 

sample size increased slightly, or the sample dynamics were 

changed slightly. Therefore, the question is whether or not 

these items are, indeed, misfitting items.  

 Overall, the two-parameter and three-parameter models 

seemed to fit well across tests while the one-parameter fit 

for the Math and Science items might be suspect. As Hambelton 

and Swaminthan (1985) noted, the robustness of IRT models to 

these departures is not entirely clear. Therefore, the 

results for the one-parameter model should be interpreted 

with some caution. 
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Research Question 1 

 Table 3 and 4 present the results addressing the first 

research question, “How comparable are the CTT-based and IRT-

based examinee ability estimates?”, by analyzing the 

comparability of the average correlations between the CTT- 

and IRT- based person ability estimates. Table 3 presents the 

results for the n=1000 data, Table 4 presents the results for 

the n=100 data, and Table 5 presents the results for the n-

100 data using the Fisher and Olkin and Pratt’s corrected 

sample correlations. To obtain the entries in Table 3 and 4, 

the following three steps were invoked: (a) for each of the 

100 samples, the IRT one-, two-, and three-parameter model 

estimates and the CTT estimate were obtained; (b) for each 

sample the CTT- and IRT-based ability estimates were 

correlated; (c) the correlations were averaged across the 100 

samples for the same sampling plan and test. Consequently, 

each table entry is the average of 100 correlations. The 

exception is when the IRT model did not converge. To obtain 

the average correlation for these and all subsequent tables, 

all the individual correlations coefficients were transferred 

to Fisher Zs, averaging the Fisher Zs, and then transforming 

the average Fisher Z back to the Pearson correlation 

coefficient.  
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Table 3.  

Comparability of Person Statistics from the Two Measurement Frameworks: 

Average Correlations between CTT- and IRT-Based Person Ability Estimates 

(n=1000)  

Sampling Frame Tests

Random Samples English 0.982 (.001) 0.983 (.002) 0.984 (.002)

Math 0.995 (.000) 0.984 (.001) 0.978 (.001)

Reading 0.994 (.000) 0.987 (.003) 0.981 (.002)

Science 0.994 (.000) 0.981 (.002) 0.976 (.002)

Gender group sampling

Female English 0.989 (.001) 0.982 (.001) 0.984 (.001)

Math 0.997 (.001) 0.984 (.001) 0.974 (.002)

Reading 0.994 (.001) 0.987 (.001) 0.981 (.002)

Science 0.996 (.000) 0.982 (.001) 0.973 (.002)

Male English 0.991 (.001) 0.983 (.001) 0.984 (.001)

Math 0.993 (.001) 0.982 (.001) 0.977 (.001)

Reading 0.994 (.001) 0.988 (.001) 0.981 (.002)

Science 0.991 (.001) 0.987 (.001) 0.979 (.002)

Truncated ability group sampling

High-ability English 0.999 (.000) 0.978 (.001) 0.930 (.020)

Math 0.999 (.001) 0.998 (.002) 0.947 (.005)

Reading 0.999 (.000) 0.967 (.010) 0.945 (.010)

Science 1.000 (.000) 0.969 (.008) 0.903 (.010)

Low-ability English 1.000 (.000) 0.976 (.003) NC

Math 1.000 (.000) 0.922 (.030) NC

Reading 0.999 (.000) 0.955 (.010) NC

Science 1.000 (.000) 0.938 (.020) NC

1P 2P

IRT Models

3P

 

Note: Standard deviations are presented in parentheses. “NC” are models 

where all the items did not converge. 
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Table 4.  

Comparability of Person Statistics From the Two Measurement Frameworks: 

Average Correlations Between CTT- and IRT-Based Person Ability Estimates 

(n=100)  

Sampling Frame Tests

Random Samples English 0.992 (.000) 0.981 (.004) 0.983 (.002)

Math 0.995 (.000) 0.983 (.002) 0.975 (.001)

Reading 0.994 (.002) 0.984 (.003) 0.971 (.006)

Science 0.994 (.002) 0.981 (.003) 0.965 (.007)

Gender group sampling

Female English 0.989 (.001) 0.979 (.003) 0.979 (.009)

Math 0.988 (.001) 0.979 (.001) 0.980 (.001)

Reading 0.994 (.002) 0.984 (.003) 0.971 (.005)

Science 0.997 (.003) 0.984 (.003) 0.961 (.003)

Male English 0.991 (.001) 0.982 (.001) 0.982 (.002)

Math 0.981 (.001) 0.973 (.001) 0.979 (.001)

Reading 0.985 (.002) 0.985 (.003) 0.971 (.009)

Science 0.992 (.003) 0.979 (.004) 0.970 (.007)

Truncated ability group sampling

High-ability English 1.000 (.000) 0.970 (.008) 0.915 (.020)

Math 0.998 (.000) 0.965 (.005) 0.950 (.005)

Reading NC NC NC

Science 1.000 (.000) 0.983 (.005) 0.899 (.027)

Low-ability English 1.000 (.000) 0.975 (.003) NC

Math 1.000 (.000) 0.883 (.030) NC

Reading NC NC NC

Science 1.000 (.000) 0.979 (.009) NC

IRT Models

1P 2P 3P

 

Note: Standard deviations are presented in parentheses. “NC” are models 

where all the items did not converge. 
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 Table 3 shows, as Fan (1998) also did, that the CTT- 

and IRT-based examinee ability estimates correlated highly 

across IRT models for every test. All but a few of the 

correlations ranged above .95 and all the correlations were 

above .90. The sampling plans showed a pattern of 

progressively lower correlations as the number of model 

parameter increased. The comparability worsened somewhat as 

the sampling plans became increasing dissimilar but sample 

dissimilarity had only minor effects on the estimates. 

Therefore, based on these results, we can safely answer 

research question one by concluding that the CTT-based and 

IRT-based examinee ability estimates are very comparable, 

indicating that an analysis of the ability level of 

individual examinees will lead to similar results across the 

different measurement theories. 

 The Table 4 results were strikingly similar to the 

Table 3 results, even though sample size was reduced from 

1,000 to 100. The CTT- and IRT-based examinee ability 

estimates correlated highly across IRT models for every test, 

with most correlations above .90 and the vast majority above 

.95. Again, the sampling plans indicated an increasing 

pattern of progressively lower correlations across the IRT 

models as more parameters were estimated with the condition 

worsening as the sampling plan became increasing dissimilar. 
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Overall, an analysis of the ability level of individual 

examinees, even in small sample (n=100) clinical situations, 

will lead to similar results across the different measurement 

frameworks. 

 Table 5 shows the results of Table 4 (n = 100) except 

the sample correlations from Table 4 have been corrected for 

bias using both the Fisher and Olkin and Pratt correction. 

All of the correlations generated using the Fisher correction 

matched those generated using the Olkin and Pratt correction. 

 The correlations found in Table 5 matched those found in 

Table 4 expect in 5 cases (9.80% of the correlations did not 

match). However, the largest disagreement in the five 

correlations was .001.  These results indicated that, despite 

the small sample size used to compute the Table 4 

correlations, the sample correlations are a good estimate of 

what would be found in the population. This result was 

expected because the Table 4 correlations are large 

correlations and the bias is greatest in the .500/-.500 

range. 
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Table 5.  

Comparability of Average Correlations Between CTT- and IRT-Based Person 

Ability Estimates (n=100) Using Fisher and Olkin and Pratt’s Unbiased 

Estimators  

Sampling Frame Tests 1P 2P 3P 1P 2P 3P
Random Samples

English 0.992 0.981 0.984 0.992 0.981 0.984
Math 0.995 0.983 0.975 0.995 0.983 0.975
Reading 0.994 0.984 0.971 0.994 0.984 0.971
Science 0.994 0.981 0.965 0.994 0.981 0.965

Gender group sampling
Female English 0.990 0.980 0.979 0.990 0.980 0.979

Math 0.988 0.979 0.980 0.988 0.979 0.980
Reading 0.994 0.984 0.971 0.994 0.984 0.971
Science 0.997 0.984 0.962 0.997 0.984 0.962

Male English 0.991 0.982 0.982 0.991 0.982 0.982
Math 0.981 0.973 0.979 0.981 0.973 0.979
Reading 0.985 0.985 0.971 0.985 0.985 0.971
Science 0.992 0.980 0.970 0.992 0.980 0.970

Truncated ability group sampling
High-ability English 1.000 0.970 0.915 1.000 0.970 0.915

Math 0.998 0.966 0.951 0.998 0.966 0.951
Reading NC NC NC NC NC NC
Science 1.000 0.983 0.900 1.000 0.983 0.900

Low-ability English 1.000 0.975 NC 1.000 0.975 NC
Math 1.000 0.884 NC 1.000 0.884 NC
Reading NC NC NC NC NC NC
Science 1.000 0.979 NC 1.000 0.979 NC

IRT Models
Fisher Correction Olkin and Pratt Correction

 

Note: Standard deviations are presented in parentheses. “NC” are models 

where all the items did not converge. 
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Research Question 2 

 Table 6 and 7 present the results addressing the second 

research question, “How comparable are the CTT-based and IRT-

based item difficulty estimates?”, by analyzing the 

comparability of average correlations between the CTT- and 

IRT-based item difficulty estimates. Table 6 presents the 

n=1000 data while Table 7 presents the n=100 data. To obtain 

the entries in Table 6 and 7, the following three steps were 

invoked: (a) for each of the 100 samples, the IRT one-, two, 

and three-parameter models estimates and CTT estimates were 

obtained; (b) for each sample the CTT- and IRT-based 

difficulty estimates were correlated; (c) the correlations 

were averaged across the 100 samples for the same sampling 

plan and test. Consequently, each of the table values is the 

average of 100 correlations, expect where the IRT model did 

not converge. The IRT-based item difficulty estimates were 

correlated with both the CTT-based item difficulty estimate p 

and the CTT-based normalized p values.  Because the CTT p 

values were not reversed so that the higher the value the 

more difficult the item, the correlations between the IRT-

based item difficulty estimates and the CTT-based p values 

are negative. However, these differences in scaling direction 

of the difficulty estimates are arbitrary. 
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Note: Standard deviations are presented in parentheses. “NC” are models where all the items did not 

converge. 

Table 6.  

Comparability of Item Statistics from the Two Measurement Frameworks: Average Correlations between CTT-  

and IRT-Based Item Difficulty Indexes (n=1000)  

Sampling Frame Tests
Random Samples English -0.992 (.001) -0.960 (.020) -0.937 (.020) 1.000 (.001) 0.956 (.020) 0.946 (.010)

Math -0.999 (.000) -0.975 (.008) -0.909 (.020) 1.000 (.000) 0.973 (.007) 0.909 (.020)
Reading -0.998 (.000) -0.986 (.010) -0.913 (.020) 1.000 (.001) 0.984 (.010) 0.917 (.020)
Science -0.988 (.002) -0.963 (.010) -0.948 (.010) 1.000 (.000) 0.961 (.010) 0.964 (.008)

Gender group sampling
Female English -0.992 (.001) -0.952 (.010) -0.932 (.010) 1.000 (.001) 0.949 (.010) 0.948 (.009)

Math -0.997 (.000) -0.964 (.006) -0.914 (.010) 1.000 (.000) 0.966 (.005) 0.912 (.010)
Reading -0.998 (.000) -0.984 (.003) -0.920 (.010) 1.000 (.001) 0.983 (.003) 0.923 (.010)
Science -0.989 (.001) -0.965 (.009) -0.963 (.008) 1.000 (.000) 0.958 (.001) 0.974 (.001)

Male English -0.993 (.001) -0.966 (.008) -0.938 (.010) 1.000 (.001) 0.962 (.008) 0.950 (.008)
Math -0.999 (.000) -0.978 (.004) -0.917 (.010) 1.000 (.000) 0.980 (.004) 0.920 (.010)
Reading -0.998 (.000) -0.987 (.003) -0.898 (.020) 1.000 (.001) 0.986 (.003) 0.904 (.020)
Science -0.989 (.001) -0.955 (.010) -0.953 (.010) 1.000 (.000) 0.954 (.001) 0.972 (.010)

Truncated ability group sampling
High-ability English -0.938 (.008) -0.812 (.040) -0.652 (.060) 0.998 (.001) 0.775 (.040) 0.665 (.070)

Math -0.969 (.003) -0.889 (.020) -0.612 (.050) 0.998 (.002) 0.902 (.020) 0.672 (.050)
Reading -0.978 (.002) -0.844 (.030) -0.767 (.090) 0.999 (.000) 0.834 (.030) 0.801 (.080)
Science -0.936 (.008) -0.908 (.020) -0.616 (.030) 0.997 (.001) 0.892 (.030) 0.700 (.040)

Low-ability English -0.998 (.002) -0.949 (.010) NC 1.000 (.001) 0.951 (.010) NC
Math -0.984 (.002) -0.909 (.010) NC 0.999 (.000) 0.913 (.020) NC
Reading -0.997 (.000) -0.934 (.010) NC 1.000 (.001) 0.940 (.010) NC
Science -0.997 (.000) -0.928 (.010) NC 1.000 (.000) 0.926 (.020) NC

IRT Models

1P 2P 3P
CTT P VALUES CTT NORMALIZED P VALUES

1P 2P 3P
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Table 7.  

Comparability of Item Statistics From the Two Measurement Frameworks: Average Correlations Between CTT- 

and IRT-Based Item Difficulty Indexes (n=100) 

Sampling Frame Tests
Random Samples English -0.991 (.004) -0.964 (.013) -0.894 (.095) 1.000 (.000) 0.963 (.013) 0.914 (.093)

Math -0.998 (.000) -0.980 (.006) -0.892 (.102) 1.000 (.000) 0.980 (.005) 0.896 (.102)
Reading -0.998 (.001) -0.980 (.010) -0.860 (.063) 1.000 (.000) 0.980 (.010) 0.869 (.062)
Science -0.986 (.008) -0.969 (.011) -0.878 (.150) 1.000 (.000) 0.969 (.012) 0.905 (.144)

Gender group sampling
Female English -0.989 (.006) -0.948 (.019) -0.876 (.113) 1.000 (.000) 0.945 (.020) 0.904 (.113)

Math -0.997 (.002) -0.975 (.008) -0.864 (.170) 1.000 (.000) 0.977 (.007) 0.869 (.170)
Reading -0.993 (.001) -0.979 (.008) -0.867 (.085) 1.000 (.000) 0.979 (.007) 0.876 (.083)
Science -0.987 (.006) -0.972 (.011) -0.886 (.143) 1.000 (.000) 0.969 (.013) 0.907 (.136)

Male English -0.993 (.005) -0.967 (.014) -0.889 (.100) 1.000 (.000) 0.966 (.014) 0.909 (.097)
Math -0.998 (.001) -0.979 (.009) -0.901 (.059) 1.000 (.000) 0.979 (.007) 0.905 (.057)
Reading -0.998 (.001) -0.981 (.009) -0.832 (.102) 1.000 (.000) 0.980 (.008) 0.841 (.101)
Science -0.988 (.005) -0.965 (.010) -0.890 (.128) 1.000 (.000) 0.965 (.010) 0.918 (.121)

Truncated ability group sampling
High-ability English -0.939 (.016) -0.907 (.025) -0.568 (.063) 0.998 (.000) 0.909 (.027) 0.553 (.074)

Math -0.962 (.010) -0.960 (.010) -0.638 (.096) 0.999 (.000) 0.966 (.009) 0.664 (.104)
Reading NC NC NC NC NC NC
Science -0.943 (.013) -0.996 (.014) -0.593 (.076) 0.997 (.001) 0.995 (.013) 0.591 (.085)

Low-ability English -0.998 (.001) -0.982 (.006) NC 1.000 (.000) 0.982 (.006) NC
Math -0.981 (.013) -0.971 (.008) NC 0.999 (.001) 0.973 (.011) NC
Reading NC NC NC NC NC NC
Science -0.996 (.001) -0.976 (.012) NC 1.000 (.000) 0.974 (.016) NC

CTT P VALUES CTT NORMALIZED P VALUES
IRT Models

2P 3P1P 2P 3P 1P

 

Note: Standard deviations are presented in parentheses. “NC” are models where all the items did not 

converge. 
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Table 8.  

Comparability of Item Statistics From the Two Measurement Frameworks: 

Average Correlations Between CTT (P) - and IRT-Based Item Difficulty 

Indexes Using Fisher and Olkin and Pratt’s Unbiased Estimators (n=100) 

Sampling Frame Tests 1P 2P 3P 1P 2P 3P
Random Samples

English -0.991 -0.964 -0.895 -0.991 -0.964 -0.895
Math -0.998 -0.980 -0.893 -0.998 -0.980 -0.893
Reading -0.998 -0.980 -0.861 -0.998 -0.980 -0.861
Science -0.986 -0.969 -0.879 -0.986 -0.969 -0.879

Gender group sampling
Female English -0.989 -0.949 -0.877 -0.989 -0.949 -0.877

Math -0.997 -0.975 -0.865 -0.997 -0.975 -0.865
Reading -0.993 -0.979 -0.868 -0.993 -0.979 -0.868
Science -0.987 -0.972 -0.887 -0.987 -0.972 -0.887

Male English -0.993 -0.967 -0.890 -0.993 -0.967 -0.890
Math -0.998 -0.979 -0.902 -0.998 -0.979 -0.902
Reading -0.998 -0.981 -0.833 -0.998 -0.981 -0.833
Science -0.988 -0.965 -0.891 -0.988 -0.965 -0.891

Truncated ability group sampling
High-ability English -0.940 -0.908 -0.569 -0.940 -0.908 -0.569

Math -0.963 -0.961 -0.639 -0.963 -0.961 -0.639
Reading NC NC NC NC NC NC
Science -0.943 -0.996 -0.595 -0.943 -0.996 -0.595

Low-ability English -0.998 -0.982 NC -0.998 -0.982 NC
Math -0.981 -0.971 NC -0.981 -0.971 NC
Reading NC NC NC NC NC NC
Science -0.996 -0.976 NC -0.996 -0.976 NC

IRT Models
CTT P VALUES

Fisher Correction Olkin and Pratt Correction

 

Note: Standard deviations are presented in parentheses. “NC” are models 

where all the items did not converge. 
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Table 9.  

Comparability of Item Statistics From the Two Measurement Frameworks: 

Average Correlations Between CTT (Normalized P) - and IRT-Based Item 

Difficulty Indexes Using Fisher and Olkin and Pratt’s Unbiased Estimators 

(n=100) 

Sampling Frame Tests 1P 2P 3P 1P 2P 3P
Random Samples

English 1.000 0.963 0.915 1.000 0.963 0.915
Math 1.000 0.980 0.896 1.000 0.980 0.896
Reading 1.000 0.980 0.870 1.000 0.980 0.870
Science 1.000 0.969 0.906 1.000 0.969 0.906

Gender group sampling
Female English 1.000 0.946 0.905 1.000 0.946 0.905

Math 1.000 0.977 0.870 1.000 0.977 0.870
Reading 1.000 0.979 0.877 1.000 0.979 0.877
Science 1.000 0.969 0.908 1.000 0.969 0.908

Male English 1.000 0.966 0.910 1.000 0.966 0.910
Math 1.000 0.979 0.906 1.000 0.979 0.906
Reading 1.000 0.980 0.842 1.000 0.980 0.842
Science 1.000 0.965 0.919 1.000 0.965 0.919

Truncated ability group sampling
High-ability English 0.998 0.910 0.555 0.998 0.910 0.555

Math 0.999 0.966 0.666 0.999 0.966 0.666
Reading NC NC NC NC NC NC
Science 0.997 0.995 0.593 0.997 0.995 0.593

Low-ability English 1.000 0.982 NC 1.000 0.982 NC
Math 0.999 0.973 NC 0.999 0.973 NC
Reading NC NC NC NC NC NC
Science 1.000 0.974 NC 1.000 0.974 NC

IRT Models
CTT NORMALIZED P VALUES 

Fisher Correction Olkin and Pratt Correction

Note: Standard deviations are presented in parentheses. “NC” are models 

where all the items did not converge. 
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     In Table 6, the IRT-based one-parameter item difficulty 

estimates had very high correlations with the CTT-based p 

values. Almost all the CTT-based and IRT-based one-parameter 

estimates are correlated around the -.98 range. The only 

departures are the English and Science estimates in the 60 

percentile ability group, but both are above -.90.  

 The IRT-based difficulty estimates for the two- and 

three-parameter models both had a high correlation with the 

normalized and non-normalized CTT-based difficulty estimates. 

The IRT-based two-parameter model correlations were, 

generally in the -.95 to -.96 range, with the lowest 

correlation, -.812, found in the English test 60 percentile 

group (the normalized value was .775). The IRT three-

parameter difficulty was highly correlated with the CTT-based 

difficulty estimates in the random and gender sampling plans. 

The truncated ability sampling plan indicated only moderate 

correlations (-.652 to -.612) on the Math test.  

 Table 7 shows strong correlations in the -.98 to -.99 

range between the IRT-based one-parameter and CTT-based item 

difficulty estimates for n = 100. As has been seen in 

previous tables, the two- and three-parameter IRT models 

produced lower correlations than the one-parameter Rash 

model. The two-parameter, overall, still showed quite strong 

correlations, with the large percentage of the correlations 

in the -.96 range and all the correlation above -.90. The 
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three-parameter IRT-based difficulty had a high degree of 

correlation, in the -.85 to -.89 range, with the CTT-based 

estimates.  

 Tables 8 and 9 show the results of Table 7 (n = 100) 

except the sample correlations from Table 7 have been 

corrected for bias using both the Fisher and Olkin and Pratt 

correction. All of the correlations generated using the 

Fisher correction matched those generated using the Olkin and 

Pratt correction.  The correlations found in Table 8 matched 

those found in Table 7 expect for 19 cases (37.54% of the 

correlations did not match) in the three-parameter model. 

However, the largest disagreement in the 19 correlations was 

only .002. The correlations found in Table 9 matched those 

found in Table 7 expect for 16 cases (31.37% of the 

correlations did not match) in the three-parameter model. 

However, the largest disagreement in the 16 correlations was, 

again, only .002. These results indicated that, despite the 

small sample size used to compute the Table 7 correlations, 

the sample correlations are a good estimate of what would be 

found in the population.  This result was expected because 

the Table 7 correlations are large correlations and the bias 

is greatest in the .500/-.500 range. 

 Overall, concerning the correlations between the CTT-

based item difficulty estimates and the IRT-based estimates, 

the one- and two-parameter IRT item difficulty estimate 
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provided results very similar to their CTT counterparts. 

Unless the IRT estimates show a higher degree of invariance, 

as proponents suggest, there seems to be little value to the 

IRT estimates above what CTT provides 

Research Question 3 

 Table 10 and 11 present the results addressing the 

third research question “How comparable are the CTT-based and 

IRT-based item discrimination estimates?”, by analyzing the 

comparability of average correlations between the CTT- and 

IRT- based item discrimination estimates. Table 10 presents 

the results for the n=1000 data while Table 11 presents the 

results for the n=100 data. To obtain the entries in Table 10 

and 11, the following three steps were invoked: (a) for each 

of the 100 samples the IRT one-, two-, and three-parameter 

models estimates and CTT estimates were obtained; (b) for 

each sample the CTT- and IRT-based discrimination estimates 

were correlated; (c) the correlations were averaged across 

the 100 samples for the same sampling plan and test. 

Consequently, each of the tabled values is the average of 100 

correlations, expect where the IRT model did not converge. 

Note that the one-parameter IRT model does not estimate item 

discrimination, as so results for this model are indicated to 

be “not applicable” (“N/A”). 
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Table 10.  

Comparability of Item Statistics From the Two Measurement Frameworks: Average Correlations Between CTT- 

and IRT-Based Item Discrimination Indexes (n=1000)  

Sampling Frame Tests 1P 1P
Random Samples English N/A 0.829 (.050) 0.706 (.070) N/A 0.833 (.050) 0.703 (.080)

Math N/A 0.892 (.030) 0.375 (.090) N/A 0.898 (.030) 0.385 (.090)
Reading N/A 0.913 (.020) 0.582 (.100) N/A 0.918 (.020) 0.587 (.100)
Science N/A 0.795 (.040) 0.293 (.115) N/A 0.797 (.040) 0.301 (.113)

Gender group sampling
Female English N/A 0.820 (.030) 0.749 (.080) N/A 0.823 (.030) 0.746 (.080)

Math N/A 0.907 (.010) 0.294 (.106) N/A 0.914 (.010) 0.283 (.106)
Reading N/A 0.914 (.010) 0.508 (.102) N/A 0.920 (.010) 0.512 (.102)
Science N/A 0.832 (.030) 0.229 (.127) N/A 0.833 (.030) 0.241 (.125)

Male English N/A 0.840 (.020) 0.691 (.080) N/A 0.843 (.020) 0.689 (.070)
Math N/A 0.878 (.020) 0.443 (.090) N/A 0.875 (.020) 0.449 (.090)
Reading N/A 0.919 (.010) 0.634 (.090) N/A 0.924 (.010) 0.638 (.090)
Science N/A 0.794 (.030) 0.347 (.090) N/A 0.797 (.030) 0.354 (.090)

Truncated ability group sampling
High-ability English N/A 0.487 (.070) 0.734 (.060) N/A 0.486 (.070) 0.738 (.060)

Math N/A 0.651 (.060) 0.829 (.040) N/A 0.651 (.060) 0.832 (.040)
Reading N/A 0.762 (.050) 0.838 (.050) N/A 0.762 (.050) 0.841 (.050)
Science N/A 0.579 (.080) 0.581 (.040) N/A 0.872 (.080) 0.874 (.040)

Low-ability English N/A 0.956 (.009) NC N/A 0.957 (.009) NC
Math N/A 0.892 (.164) NC N/A 0.894 (.164) NC
Reading N/A 0.895 (.030) NC N/A 0.896 (.030) NC
Science N/A 0.876 (.156) NC N/A 0.881 (.157) NC

IRT Models

Point-Biserial
Fisher Z Transformed Point-

Biserial
2P 3P 2P 3P

Note: Standard deviations are presented in parentheses. “NC” are models where all the items did not 

converge. The one-parameter IRT model does not estimate item discrimination, as so results for this model 

are indicated to be “not applicable” (“N/A”). 
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Table 11.  

Comparability of Item Statistics From the Two Measurement Frameworks: Average Correlations Between CTT- 

and IRT-Based Item Discrimination Indexes (Point-biserial and Fisher Z Transformed (n=100)  

Sampling Frame Tests 1P 1P
Random Samples English N/A 0.857 (.050) 0.726 (.098) N/A 0.828 (.052) 0.722 (.095)

Math N/A 0.879 (.050) 0.626 (.171) N/A 0.893 (.050) 0.634 (.169)
Reading N/A 0.911 (.033) 0.611 (.144) N/A 0.922 (.032) 0.613 (.143)
Science N/A 0.821 (.083) 0.647 (.155) N/A 0.832 (.085) 0.646 (.153)

Gender group sampling
Female samples English N/A 0.844 (.050) 0.783 (.090) N/A 0.853 (.050) 0.776 (.090)

Math N/A 0.888 (.030) 0.673 (.146) N/A 0.902 (.030) 0.683 (.142)
Reading N/A 0.916 (.028) 0.611 (.128) N/A 0.926 (.027) 0.613 (.125)
Science N/A 0.838 (.083) 0.684 (.147) N/A 0.847 (.084) 0.685 (.156)

Male samples English N/A 0.869 (.050) 0.715 (.104) N/A 0.880 (.046) 0.711 (.103)
Math N/A 0.868 (.040) 0.625 (.152) N/A 0.882 (.040) 0.632 (.150)
Reading N/A 0.919 (.026) 0.623 (.125) N/A 0.930 (.026) 0.628 (.125)
Science N/A 0.828 (.065) 0.631 (.121) N/A 0.840 (.067) 0.632 (.120)

Truncated ability group sampling
High-ability samples English N/A 0.653 (.080) 0.826 (.050) N/A 0.654 (.070) 0.827 (.070)

Math N/A 0.594 (.090) 0.827 (.074) N/A 0.595 (.090) 0.825 (.073)
Reading N/A NC NC N/A NC NC
Science N/A 0.534 (.112) 0.802 (.097) N/A 0.539 (.112) 0.802 (.096)

Low-ability samples English N/A 0.908 (.135) NC N/A 0.912 (.135) NC
Math N/A 0.835 (.114) NC N/A 0.839 (.115) NC
Reading N/A NC NC N/A NC NC
Science N/A 0.863 (.134) NC N/A 0.868 (.070) NC

IRT Models

2P 3P2P 3P
Point-Biserial

Fisher Z Tranformed Point-
Biserial

Note: Standard deviations are presented in parentheses. “NC” are models where all the items did not 

converge. The one-parameter IRT model does not estimate item discrimination, as so results for this model 

are indicated to be “not applicable” (“N/A”). 
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Table 12.  

Comparability of Item Statistics From the Two Measurement Frameworks: 

Average Correlations Between CTT- and IRT-Based Item Discrimination 

(Point-biserial) Indexes with Fisher and Olkin and Pratt’s corrections for 

bias (n=100)  

Sampling Frame Tests 1P 2P 3P 1P 2P 3P
Random Samples

English N/A 0.858 0.728 N/A 0.858 0.728
Math N/A 0.880 0.628 N/A 0.880 0.628
Reading N/A 0.911 0.612 N/A 0.911 0.612
Science N/A 0.822 0.649 N/A 0.822 0.649

Gender group sampling
Female English N/A 0.845 0.784 N/A 0.845 0.784

Math N/A 0.889 0.675 N/A 0.889 0.675
Reading N/A 0.917 0.613 N/A 0.917 0.613
Science N/A 0.839 0.686 N/A 0.839 0.686

Male English N/A 0.870 0.717 N/A 0.870 0.717
Math N/A 0.869 0.627 N/A 0.869 0.627
Reading N/A 0.920 0.625 N/A 0.920 0.625
Science N/A 0.829 0.633 N/A 0.829 0.633

Truncated ability group sampling
High-ability English N/A 0.655 0.827 N/A 0.655 0.827

Math N/A 0.596 0.828 N/A 0.596 0.828
Reading N/A NC NC N/A NC NC
Science N/A 0.536 0.803 N/A 0.536 0.803

Low-ability English N/A 0.909 NC N/A 0.909 NC
Math N/A 0.836 NC N/A 0.836 NC
Reading N/A NC NC N/A NC NC
Science N/A 0.864 NC N/A 0.864 NC

IRT Models
Point-biserial

Fisher Correction Olkin and Pratt Correction

 

Note: Standard deviations are presented in parentheses. “NC” are models 

where all the items did not converge. The one-parameter IRT model does not 

estimate item discrimination, as so results for this model are indicated 

to be “not applicable” (“N/A”). 
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Table 13.  

Comparability of Item Statistics From the Two Measurement Frameworks: 

Average Correlations Between CTT- and IRT-Based Item Discrimination 

(Fisher Z Transformed Point-biserial) Indexes with Fisher and Olkin and 

Pratt’s corrections for bias (n=100) 

Sampling Frame Tests 1P 2P 3P 1P 2P 3P
Random Samples

English N/A 0.830 0.723 N/A 0.830 0.723
Math N/A 0.894 0.636 N/A 0.894 0.636
Reading N/A 0.923 0.615 N/A 0.923 0.615
Science N/A 0.833 0.648 N/A 0.833 0.648

Gender group sampling
Female English N/A 0.854 0.778 N/A 0.854 0.778

Math N/A 0.903 0.685 N/A 0.903 0.685
Reading N/A 0.927 0.615 N/A 0.927 0.615
Science N/A 0.848 0.687 N/A 0.849 0.687

Male English N/A 0.881 0.713 N/A 0.881 0.713
Math N/A 0.883 0.634 N/A 0.883 0.634
Reading N/A 0.931 0.629 N/A 0.931 0.629
Science N/A 0.841 0.634 N/A 0.841 0.634

Truncated ability group sampling
High-ability English N/A 0.655 0.828 N/A 0.655 0.828

Math N/A 0.597 0.826 N/A 0.597 0.826
Reading N/A NC NC N/A NC NC
Science N/A 0.541 0.803 N/A 0.541 0.803

Low-ability English N/A 0.913 NC N/A 0.913 NC
Math N/A 0.840 NC N/A 0.840 NC
Reading N/A NC NC N/A NC NC
Science N/A 0.869 NC N/A 0.869 NC

IRT Models
Fisher Z Transformed Point-biserial

Fisher Correction Olkin and Pratt Correction

 

Note: Standard deviations are presented in parentheses. “NC” are models 

where all the items did not converge. The one-parameter IRT model does not 

estimate item discrimination, as so results for this model are indicated 

to be “not applicable” (“N/A”). 
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 Table 10 presents statistics for the n = 1,000 data 

that, barring a few exceptions, demonstrated strong 

relationships of discrimination coefficients across 

measurement models, regardless of sampling plan or test. The 

CTT- and IRT-based estimates of item discrimination were 

highly correlated for the two-parameter model. However, the 

relationships weakened for the three-parameter IRT models.  

 The different sampling frameworks also had considerable 

effect on the results for Table 10. For the random sample 

framework, across the two different IRT models in Table 10, 

the English test estimates had the greatest degree of 

stability. The Reading test estimates generated the highest 

correlations. The Math test estimates had the biggest in the 

CTT-based and IRT-based two- and three-parameter models. For 

the random sample sampling frame, the IRT-based item 

discrimination correlation with the CTT item discrimination 

statistic drop from .892 in the two-parameter model to .392 

in the three-parameter model.  

 Table 11 addressed the third research questions (“How 

comparable are the CTT-based and IRT-based item 

discrimination estimates?”) as it relates to clinical tests 

(e.g., n=100). As has been the case across the n=1,000 data, 

across every sampling plan expect the 60 percentile group, 

the two-parameter item discrimination estimates correlated 

higher, on average, with the CTT-based item discrimination 
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estimates than did the three-parameter IRT-based estimates.  

 In the random sampling plan, the average correlation 

was highest for the Reading test at .911. However, each of 

the other tests showed fairly strong correlations. The three-

parameter IRT-based item discrimination estimates, while 

weaker, were still in the .61 to .73 range. Interestingly, 

the Reading test, while having the highest average 

correlation between the two-parameter IRT-based item 

discrimination estimates and the CTT-based item 

discrimination estimates, had the lowest average correlation 

in the three-parameter IRT model.  

 Like the random sample plan, the gender samples 

produced fairly strong correlations for the average 

correlation between the CTT-based item discrimination and 

IRT-based item discrimination statistics. As was the case for 

the previous data, the average correlations between the CTT-

based item discrimination and three-parameter IRT-based item 

discrimination estimates were low. The average correlations 

for each test were stable within the gender plan and 

comparable to what was found in the random sample plan.   

 Tables 12 and 13 shows the results of Tables 11 (n = 

100) except the sample correlations from Tables 12 and 13 

have been corrected for bias using both the Fisher and Olkin 

and Pratt correction. Nearly all of the correlations 

generated using the Fisher correction matched those generated 
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using the Olkin and Pratt correction.  Most of the 

correlations found in Tables 12 and 13 did not match those 

found in Tables 11. However, the largest disagreement between 

the correlations was .001.   

 Overall, comparing the n=100 versus the n=1000 samples, 

both samples produced very strong correlations between the 

CTT-based and IRT-based two-parameter item discrimination 

estimates. But both produced lower, albeit strong 

correlations between the three-parameter IRT-based and CTT-

based item discrimination estimates. Correspondence of the 

IRT-based and the CTT-based item discrimination estimates was 

actually higher, albeit it slightly, for the n=100 samples. 

However, these results should be evaluated in the light of 

(a) the CTT item discrimination estimates and IRT item 

discrimination estimates being more invariant in the n=1,000 

than in the n=100 samples and (b) the standard deviations 

being larger in the n=100 samples.  

Research Question 4 

 Table 14 and 15 present the results addressing the 

fourth research question “When compared across different 

samples, how invariant are the CTT-based and IRT-based item 

difficulty estimates?” by analyzing the comparability of 

average correlations between item difficulty estimates from 

two different samples sizes derived from the same measurement 

framework (i.e., CTT vs CTT, or IRT vs IRT). Table 14 
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presents the n=1000 data while Table 15 presents the n=100 

data.  

 To obtain the entries in Table 14 and 15, the following 

three steps were invoked: (a) for each of the 100 samples, 

the IRT one-, two-, and three-parameter models estimates and 

CTT estimates were obtained; (b) for each sample the CTT- and 

IRT-based difficulty estimates were correlated with opposing 

estimates within the sample sampling plan (e.g., males vs 

females); (c) the correlations were averaged across the 

sampling plan for the same test. For example, the entry under 

the IRT one-parameter between the p female-male samples for 

the science test is the average of the correlations between 

the CTT p values obtained from a female sample and the CTT p 

values obtained from a male sample. Each of the 100 female 

samples was correlated with the corresponding male sample, 

generating 100 correlations. The average of these correlation 

coefficients were .987 (SD=.002). 
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Table 14.  

Invariance of Item Statistics from the Two Measurement Frameworks: Average Between-Sample Correlations of 

CTT and IRT Item Difficulty Indexes (n=1000)  

Tests
Random Samples

English 0.992 (.004) 0.990 (.004) 0.991 (.002) 0.923 (.015) 0.954 (.013)
Math 0.996 (.004) 0.995 (.004) 0.995 (.001) 0.987 (.011) 0.984 (.005)
Reading 0.989 (.004) 0.988 (.003) 0.989 (.003) 0.978 (.002) 0.959 (.012)
Science 0.996 (.030) 0.975 (.030) 0.995 (.002) 0.975 (.004) 0.980 (.007)

Female- Male samples
English 0.946 (.004) 0.973 (.004) 0.973 (.004) 0.957 (.003) 0.927 (.003)
Math 0.980 (.003) 0.975 (.004) 0.975 (.004) 0.962 (.010) 0.968 (.009)
Reading 0.939 (.009) 0.937 (.008) 0.937 (.009) 0.927 (.012) 0.911 (.018)
Science 0.987 (.002) 0.987 (.002) 0.986 (.003) 0.968 (.010) 0.965 (.011)

High-low ability samples
English 0.856 (.011) 0.887 (.011) 0.882 (.012) 0.890 (.022) NC
Math 0.814 (.008) 0.853 (.008) 0.480 (.009) 0.883 (.002) NC
Reading 0.833 (.010) 0.844 (.020) 0.842 (.014) 0.878 (.024) NC
Science 0.845 (.007) 0.912 (.008) 0.918 (.009) 0.919 (.017) NC

Sampling Frame p values
Normalized p 

values 1P

CTT Models IRT Models

2P 3P

 
Note: Standard deviations are presented in parentheses. “N/A” are models where all the items did not 

converge. “1P” = one-parameter IRT model; “2P” = two-parameter IRT model; “3P” = three-parameter IRT 

model 
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Table 15.  

Invariance of Item Statistics from the Two Measurement Frameworks: Average Between-Sample Correlations of 

CTT and IRT Item Difficulty Indexes (n=100)  

Tests
Random Samples

English 0.924 (.023) 0.920 (.023) 0.916 (.022) 0.864 (.043) 0.781 (.121)
Math 0.957 (.012) 0.953 (.012) 0.951 (.012) 0.933 (.019) 0.844 (.119)
Reading 0.904 (.022) 0.904 (.023) 0.890 (.023) 0.865 (.033) 0.768 (.079)
Science 0.959 (.031) 0.950 (.052) 0.946 (.013) 0.912 (.028) 0.705 (.177)

Female- Male samples
English 0.360 (.432) 0.314 (.458) 0.301 (.375) 0.304 (.349) 0.269 (.335)
Math 0.954 (.013) 0.935 (.014) 0.932 (.015) 0.907 (.023) 0.752 (.166)
Reading 0.853 (.039) 0.850 (.039) 0.845 (.039) 0.811 (.059) 0.676 (.145)
Science 0.953 (.011) 0.946 (.012) 0.943 (.012) 0.910 (.027) 0.748 (.151)

High-low ability samples
English 0.632 (.271) 0.622 (.338) 0.791 (.043) 0.779 (.051) NC
Math 0.756 (.087) 0.733 (.145) 0.797 (.034) 0.819 (.041) NC
Reading 0.762 (.040) 0.766 (.045) NC NC NC
Science 0.618 (.180) 0.584 (.279) 0.859 (.031) 0.829 (.028) NC

CTT Models IRT Models

Sampling Frame p values
Normalized p 

values 1P 2P 3P

 
Note: Standard deviations are presented in parentheses. “NC” are models where all the items did not 

converge. “1P” = one-parameter IRT model; “2P” = two-parameter IRT model; “3P” = three-parameter IRT 

model 
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Table 16.  

Invariance of Item Statistics from the Two Measurement Frameworks: Average Between-Sample Correlations of 

CTT and IRT Item Difficulty Indexes with Fisher and Olkin and Pratt’s Corrections for Bias (n=100) 

Tests
p 

values
Normalized 
p values

p 
values

Normalized 
p values 1P 2P 3P 1P 2P 3P

Random Samples
English 0.926 0.921 0.926 0.921 0.917 0.866 0.784 0.917 0.866 0.785
Math 0.958 0.954 0.958 0.954 0.952 0.934 0.846 0.952 0.934 0.846
Reading 0.906 0.906 0.906 0.906 0.892 0.867 0.771 0.892 0.867 0.771
Science 0.960 0.951 0.960 0.951 0.947 0.913 0.708 0.947 0.913 0.708

Female- Male samples
English 0.361 0.315 0.361 0.315 0.304 0.307 0.272 0.303 0.306 0.270
Math 0.955 0.935 0.955 0.935 0.933 0.909 0.755 0.933 0.908 0.753
Reading 0.854 0.851 0.854 0.851 0.848 0.814 0.679 0.847 0.812 0.678
Science 0.954 0.946 0.954 0.947 0.944 0.912 0.751 0.943 0.911 0.750

High-low ability samples
English 0.633 0.624 0.633 0.624 0.794 0.782 NC 0.792 0.781 NC
Math 0.757 0.735 0.757 0.735 0.799 0.821 NC 0.798 0.820 NC
Reading 0.764 0.768 0.764 0.768 NC NC NC NC NC NC
Science 0.620 0.585 0.620 0.585 0.862 0.831 NC 0.861 0.830 NC

Olkin and Pratt 
Correction Fisher Correction

Olkin and Pratt 
Correction

Sampling 
Frame

CTT Models IRT Models

Fisher Correction

 
Note: “NC” are models where all the items did not converge. “1P” = one-parameter IRT model; “2P” = two-

parameter IRT model; “3P” = three-parameter IRT model 
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 Table 14 indicates that both the transformed CTT p and 

the CTT p were strong invariant for the random sampling plan, 

with correlations ranging from .989 to .996. The IRT-based 

item difficulty estimates for the one-parameter also 

indicated strong signs of invariance, with correlations 

ranging from .989 to .995. The two-parameter IRT-based item 

difficulty estimates were lower, but still strong, with the 

correlations ranging from .923 to .987. A further drop in the 

strength of the correlations was found in the three-parameter 

IRT-based item difficulty estimates, with correlations 

ranging from .954 to .984.  

 For the gender sample plan, both the transformed CTT p 

and CTT p showed signs of strong invariance with correlations 

ranging from .939 to .987. The IRT-based item difficulty 

estimates for the one-parameter model also indicated strong 

signs of invariance, with correlations ranging from .937 to 

.986. The two-parameter IRT-based item difficulty estimates 

were lower, but still strong, with the correlations ranging 

from .927 to .968. A further drop in the strength of the 

correlations was found in the three-parameter IRT-based item 

difficulty estimates, with correlations ranging from .968 to 

.911.  

 The ability sample plan yielded results that ran 

contrary to the other sampling plans. The transformed CTT p 

and CTT p showed signs of strong invariance, with 
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correlations ranging from .845 to .856. However, these 

correlations were weaker than had been found in the previous 

sampling plans. The IRT-based item difficulty estimates, 

while still showing a decrease in invariance from the 

previous sampling plans, showed a higher degree of invariance 

than did the CTT-based item difficulty estimates. 

 Table 15 (the clinical samples n=100) indicated that, 

for the random sample plan, both the normalized and non-

normalized CTT-based item difficulty estimates produced 

strong correlations (correlations ranged from .904 to .959), 

indicating that invariance held for the CTT-based estimates. 

The results from the one-parameter IRT item difficulty 

estimates indicated that the Rash model item difficulty 

estimates are virtually identical. However, as was seen in 

Table 14, the two- and three-parameter item difficulty 

estimates demonstrated weaker correlations, especially for 

the English and Reading tests.  

 The gender sampling plan, as was the case in Table 14, 

indicated a continued degeneration of the correlations found 

in the random sample plan. Like the previous sampling plan, 

the math and science tests had greater invariance than did 

estimates for the other two tests. 

 Table 16 shows the results of Tables 15 (n = 100) 

except the sample correlations from Table 16 have been 

corrected for bias using both the Fisher and Olkin and Pratt 
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correction. Nearly all of the correlations generated using 

the Fisher correction matched those generated using the Olkin 

and Pratt correction. None of the correlations found in Table 

16 matched those found in Tables 15. However, the largest 

disagreement between the correlations was .003.   

  Overall, although the two measurement frameworks both 

produced correlations suggesting strong invariance, the CTT 

item difficulty estimates for the random sampling plan had a 

higher degree of invariance than did the IRT-based item 

difficulty estimates, especially the two- and three-parameter 

models. The large scale measurement samples (n=1,000; Table 

14) and the clinical samples (n=100; Table 15) produced very 

comparable results. Both the IRT and CTT estimates had 

stronger average correlations when the n=1000 samples were 

employed. However, the trends, such as greater invariance for 

the math and science tests, the progressive decay of strength 

of the average correlations as the sampling frameworks became 

more dissimilar, and the greater invariance for the IRT-based 

item difficulty estimates in the one- and two-parameter 

model, were more pronounced in the clinical sample results. 
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Research Question 5 

 Tables 17 and 18 present the results addressing the 

fourth research question, “When compared across different 

samples, how invariant are the CTT-based and IRT-based item 

discrimination estimates?” by analyzing the comparability of 

average correlations between item discrimination estimates 

from two different samples derived from the same measurement 

framework. Table 17 presents the n=1000 data while Table 18 

presents the n=100 data. Because the IRT one-parameter (Rash) 

model assumes fixed item discrimination for all items, no 

correlations could be produced for this model. Therefore, the 

one-parameter IRT estimates are listed as N/A in the 

following tables. 
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Table 17.  

Invariance of Item Statistics from the Two Measurement Frameworks: Average Between-Sample Correlations of 

CTT and IRT Item Discrimination Indexes (n=1000)  

Tests 1P
Random Samples

English 0.862 (.050) 0.865 (.050) N/A 0.857 (.049) 0.713 (.095)
Math 0.937 (.060) 0.938 (.060) N/A 0.927 (.062) 0.791 (.069)
Reading 0.905 (.060) 0.906 (.060) N/A 0.880 (.175) 0.782 (.064)
Science 0.856 (.090) 0.857 (.090) N/A 0.859 (.010) 0.750 (.060)

Female- Male samples N/A
English 0.836 (.040) 0.839 (.040) N/A 0.835 (.038) 0.712 (.080)
Math 0.879 (.030) 0.883 (.030) N/A 0.909 (.022) 0.756 (.064)
Reading 0.835 (.050) 0.838 (.050) N/A 0.862 (.034) 0.740 (.074)
Science 0.802 (.040) 0.803 (.040) N/A 0.824 (.047) 0.752 (.065)

High-low ability samples N/A
English -0.351 (.080) -0.351 (.080) N/A 0.346 (.095) NC
Math -0.627 (.050) -0.625 (.050) N/A -0.018 (.118) NC
Reading -0.663 (.080) -0.659 (.080) N/A 0.240 (.122) NC
Science -0.508 (.050) -0.508 (.050) N/A -0.257 (.149) NC

CTT Models IRT Models

Sampling Frame
Point-
biserial

Transformed 
Point-
biserial 2P 3P

 
Note: Standard deviations are presented in parentheses. “NC” are models where all the items did not 

converge. “1P” = one-parameter IRT model; “2P” = two-parameter IRT model; “3P” = three-parameter IRT 

model. The one-parameter IRT model does not estimate item discrimination, as so results for this model 

are indicated to be “not applicable” (“N/A”). 
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Table 18.  

Invariance of Item Statistics from the Two Measurement Frameworks: Average Between-Sample Correlations of 

CTT and IRT Item Discrimination Indexes (n=100)  

Tests 1P
Random Samples

English 0.399 (.128) 0.404 (.129) N/A 0.396 (.143) 0.387 (.133)
Math 0.593 (.088) 0.594 (.086) N/A 0.575 (.108) 0.467 (.152)
Reading 0.375 (.154) 0.378 (.154) N/A 0.393 (.161) 0.292 (.202)
Science 0.430 (.127) 0.438 (.124) N/A 0.450 (.115) 0.354 (.131)

Female- Male samples N/A
English 0.148 (.458) 0.146 (.225) N/A 0.035 (.264) 0.087 (.226)
Math 0.558 (.097) 0.563 (.096) N/A 0.589 (.099) 0.350 (.159)
Reading 0.331 (.124) 0.333 (.124) N/A 0.367 (.135) 0.300 (.154)
Science 0.473 (.119) 0.475 (.120) N/A 0.471 (.140) 0.369 (.150)

High-low ability samples N/A
English 0.130 (.151) 0.131 (.151) N/A 0.178 (.161) NC
Math 0.376 (.128) 0.376 (.127) N/A 0.158 (.095) NC
Reading 0.196 (.169) 0.197 (.169) N/A NC NC
Science 0.301 (.153) 0.301 (.153) N/A 0.259 (.159) NC

CTT Models IRT Models

Sampling Frame
Point-
biserial

Fisher 
Transformed 

Point-
biserial 2P 3P

 
Note: Standard deviations are presented in parentheses. “NC” are models where all the items did not 

converge. “1P” = one-parameter IRT model; “2P” = two-parameter IRT model; “3P” = three-parameter IRT 

model. The one-parameter IRT model does not estimate item discrimination, as so results for this model 

are indicated to be “not applicable” (“N/A”). 
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Table 19.  

Invariance of Item Statistics From the Two Measurement Frameworks: Average Between-Sample Correlations of 

CTT and IRT Item Discrimination Indexes with Fisher and Olkin and Pratt’s corrections for bias (n=100)  

Tests
Point-
biserial

Transformed 
Point-
biserial

Point-
biserial

Transformed 
Point-
biserial 1P 2P 3P 1P 2P 3P

mples
English 0.402 0.407 0.402 0.407 N/A 0.399 0.390 N/A 0.399 0.391
Math 0.597 0.598 0.597 0.598 N/A 0.579 0.471 N/A 0.579 0.471
Reading 0.378 0.381 0.378 0.381 N/A 0.397 0.294 N/A 0.397 0.295
Science 0.433 0.442 0.434 0.442 N/A 0.454 0.357 N/A 0.454 0.357
le samples N/A N/A
English 0.149 0.147 0.149 0.147 N/A 0.035 0.088 N/A 0.035 0.088
Math 0.560 0.565 0.560 0.565 N/A 0.593 0.353 N/A 0.591 0.352
Reading 0.332 0.334 0.332 0.334 N/A 0.370 0.302 N/A 0.368 0.301
Science 0.475 0.477 0.475 0.477 N/A 0.475 0.372 N/A 0.473 0.370
bility samples N/A N/A
English 0.130 0.131 0.130 0.131 N/A 0.180 NC N/A 0.179 NC
Math 0.378 0.377 0.378 0.377 N/A 0.160 NC N/A 0.159 NC
Reading 0.197 0.198 0.197 0.198 N/A NC NC N/A NC NC
Science 0.303 0.303 0.303 0.303 N/A 0.262 NC N/A 0.260 NC

CTT Models IRT Models

Fisher Correction
Olkin and Pratt 

Correction Fisher Correction
Olkin and Pratt 

Correction

Note: Standard deviations are presented in parentheses. “NC” are models where all the items did not 

converge. “1P” = one-parameter IRT model; “2P” = two-parameter IRT model; “3P” = three-parameter IRT 

model. The one-parameter IRT model does not estimate item discrimination, as so results for this model 

are indicated to be “not applicable” (“N/A”). 
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 Looking at Tables 17 and 18, the CTT-based and IRT-

based item difficulty estimates were more invariant than the 

item discrimination estimates. For the random sample plan in 

Table 17, the average correlation of CTT-based item 

discrimination estimates ranged from .856 to .937. For the 

same sampling plan, the IRT-based estimates for the two-

parameter model were very similar to the CTT-based estimates. 

However, the three-parameter model average correlations 

compared with CTT-based estimates were much lower.  

 The gender sampling plan indicated a continued 

degeneration of the correlations found in the random sample 

plan. Like the previous sampling plan, the IRT-based 

estimates for the two-parameter model were very similar to 

the CTT-based estimates. Also, as in the previous sampling 

plan, the three-parameter IRT-based correlations, ranging 

from .712 to .756, were much lower than invariance 

correlations for the CTT-based item discrimination estimates. 

 The CTT-based item discrimination estimates, for the 

ability sampling plan, were appreciably lower than the other 

sampling plans. However, the CTT-based item discrimination 

estimates were appreciably higher than the IRT-based item 

discrimination estimates. In fact, the two- and three-

parameter IRT-based item discrimination estimates invariance 

totally collapsed. 

 The clinical trial samples (n=100) showed a near total 



           

 

108

collapse of invariance across both the CTT and IRT item 

discrimination estimates. In the random sample plan, the Math 

test maintained moderate invariance (.593). The other tests 

ranged from .375 (Reading test) to .430 (Science test). The 

IRT-based item discrimination estimates were very similar for 

the IRT-based two-parameter and CTT-based estimates. However, 

as seen in other results, the three-parameter estimates were 

appreciably lower. Furthermore, the results from Table 13 

indicated, as has all the previous results, that as the 

dissimilarity between sample plans increased, the invariance 

decreased. 

 Table 19 shows the results of Tables 18 (n = 100) 

except the sample correlations from Table 19 have been 

corrected for bias using both the Fisher and Olkin and Pratt 

correction. Nearly all of the correlations generated using 

the Fisher correction matched those generated using the Olkin 

and Pratt correction. None of the correlations found in Table 

19 matched those found in Tables 18. However, the largest 

disagreement between the correlations was .003. This result 

was expected because the Table 18 correlations are large 

correlations and the bias is greatest in the .500/-.500 

range. 
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CHAPTER VII 

SUMMARY AND CONCLUSION 

 In the theory of measurement, there are two competing 

measurement frameworks, classical test theory and item 

response theory. The present study empirically examined how 

the item and person statistics behaved under the two 

competing measurement frameworks. The study was designed to 

replicate the work done by Fan (1998). This study focused on 

two central themes: (1) How comparable are the item and 

person statistics derived from the item response and 

classical test framework? and (2) How invariant are the item 

statistic from each measurement framework across examinee 

samples?  

 The data used in this study were from the ACT 

Assessment Test. The ACT Assessment is composed of four 

tests: English, Mathematics, Reading, and Science. A sample 

of 80,000 examinees, each taking the written form and in the 

same test, were randomly drawn from an examinee population of 

322,460. The sample of 80,000 was composed of 40,000 males 

and 40,000 females. Therefore, each of the four test samples 

consisted of 10,000 males and 10,000 females. The four test 

item pools each consisted of 40 items.  

 To replicate the functionality of the two measurement 

theories in large scale measurement situations, one set of 

samples were randomly selected to equal with an n=1,000. 
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Conversely, to replicate clinical situations where tests are 

often constructed with small sample sizes, a second set of 

samples were randomly selected with an n=100. Each of the 

random samples was drawn under three sampling plans, each 

progressively dissimilar, thus enabling theoretically greater 

disparity between the statistics calculated from the 

different samples. 

 The major findings were: 

1. For the clinical and large-scale samples, the CTT-based 

and IRT-based examinee ability estimates were very 

comparable, indicating that an analysis of the ability 

level of individual examinees will lead to similar 

results across the different measurement theories. 

2. The CTT-based item difficulty estimates and the one- 

and two-parameter IRT item difficulty estimate provided 

very similar results.  

3. The investigation of the item discrimination statistics 

marked a downturn in the comparability of estimates 

across the two measurement models. Both samples 

produced very strong correlations between the CTT-based 

and IRT-based two-parameter item discrimination 

estimates but produced lower, albeit strong 

correlations between the three-parameter IRT-based and 

CTT-based item discrimination estimates. The three-

parameter IRT-based and CTT-based item discrimination 
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estimates were actually higher for the n=100 samples. 

4. Although the two measurement frameworks produced 

estimates that were strongly correlated, the CTT item 

difficulty estimates, for the random sampling plan, had 

a higher degree of invariance than the IRT-based item 

difficulty estimates, especially for the two- and 

three-parameter models.  

5. For the large-scale samples, the IRT-based estimates 

for the two-parameter model were highly correlated with 

the CTT-based estimates. However, the three-parameter 

model average correlations were much lower than the 

CTT-based estimates. Conversely, the clinical trial 

samples (n=100) showed a near total collapse of 

invariance across both the CTT and IRT item 

discrimination estimates. 

6. All the statistics indicated a progressive decay in the 

average correlations as the sampling frameworks became 

more dissimilar. 

7. Across all samples, the IRT-based item and person 

estimates in the one- and two-parameter model were much 

more similar to the CTT-based item and person 

estimates. Further, IRT-based item estimates in the 

one- and two-parameter model were much more invariant 

than the three-parameter estimates. 
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Overall, the results of this study indicate that CTT-based 

and IRT-based estimates, at least for the one-parameter and 

two-parameter models, are quite similar. This result holds 

for either small sample clinical trials or large sample 

assessment situations. The findings indicate that, in a 

variety of conditions, the two measurement frameworks produce 

similar item and person statistics.  

 Proponents of item response theory have centered their 

arguments for its use on the property of invariance. CTT and 

IRT may produce very similar results in a single test 

administration. But because CTT estimates are theoretically 

sample dependent, across different samples item response 

theory should yield results that are more invariant. However, 

as has been shown, classical test theory statistics, for this 

sample, were just as invariant as their item response theory 

counterparts.  
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 These results corroborate results reported by Lawson 

(1991), Fan (1998), Stage (1998a, 1998b, 1999), and MacDonald 

and Paunonen (2002) all indicating that the two measurement 

theories often produce quite similar results. The results of 

this study are part of a growing body of literature that 

supports Nunnally‘s (1979) assertion that “when scores 

developed by ICC theory can be correlated with those obtained 

by the more usual approach to simply sum items scores, 

typically it is found that the two sets of scores correlated 

.90 or higher; thus it is really hair splitting to argue 

about any difference between the two approaches or any marked 

departure from linearity of the measurement obtained from the 

two approaches” (p. 224). 
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