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ABSTRACT

Performance Analysis of Symbol Timing Estimators

for Time-varying MIMO Channels. (August 2004)

Flaviu Gabriel Panduru, B.S.; M.S., Politehnica University, Bucharest, Romania

Chair of Advisory Committee: Dr. Erchin Serpedin

The purpose of this thesis is to derive and analyze the theoretical limits for esti-

mating the symbol timing delay of Multiple-Input Multiple-Output (MIMO) systems.

Two main N × M system models are considered, where N represents the number of

transmit antennas and M denotes the number of receive antennas, the 2 × 2 system

used by S.-A. Yang and J. Wu and the 4×4 system used by Y.-C. Wu and E. Serpedin.

The second model has been extended to take into account the symbol time-varying

fading. The theoretical estimation limits are shown by several bounds: modified

Cramer-Rao bound (MCRB), Cramer-Rao bound (CRB) and Barankin bound (BB).

BB will be exploited to obtain accurate information regarding the necessary length

of data to obtain good estimation. Two scenarios for synchronization are presented:

data-aided (DA) and non-data-aided (NDA). Two models for the fading process are

considered: block fading and symbol time-varying fading, respectively, the second

case being assumed to be Rayleigh distributed. The asymptotic Cramer-Rao bounds

for low signal-to-noise ratio (low-SNR) and for high-SNR are derived and the perfor-

mance of several estimators is presented. The performance variation of bounds and

estimators is studied by varying different parameters, such as the number of antennas,

the length of data taken into consideration during the estimation process, the SNR,

the oversampling factor, the power and the Doppler frequency shift of the fading.



iv

To my parents



v

ACKNOWLEDGMENTS

Among all the people I should express my gratitude for, my adviser deserves

particular attention and many thanks, not only for the insight in the thesis writing

process and for the excellent academic supervision, but for actually changing my life

by motivating me in doing research and writing this thesis. Dr. Serpedin helped

me overcome the difficulties and frustration encountered in the research process and

offered me guidance and support when I needed it the most. I am really grateful, and

I consider myself fortunate to have had such an adviser.

I want to thank Dr. Georghiades for his supportive and enlightening attitude

towards me and other students and for making the wireless group such a nice en-

vironment. For his generosity and integrity I consider him to be a moral example

for everyone. I admire and appreciate him also for his incredible capacity of always

having a smile and a good word for his students.

I also wish to express my appreciation and thank my other committee members,

Dr. Karsilayan, Dr. Matis and Dr. Vannucci for their kindness and supportiveness.

I thank all my colleagues and friends, especially Yik-Chung and Pradeep, for

their useful advice. Finally, many thanks to Alireza for being such a trustful friend.



vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Motivation and Problem Statement . . . . . . . . . . . . . 1

B. Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . 2

II BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . 4

A. Symbol Timing Recovery . . . . . . . . . . . . . . . . . . . 4

B. The Cramer-Rao Lower Bound . . . . . . . . . . . . . . . . 6

C. The Modified Cramer-Rao Bound . . . . . . . . . . . . . . 9

D. The Barankin Bound . . . . . . . . . . . . . . . . . . . . . 10

III MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A. Modelling the Time-Varying Fading . . . . . . . . . . . . . 13

B. Eigendecomposition-Based Model . . . . . . . . . . . . . . 15

C. Main Model . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1. Block Fading . . . . . . . . . . . . . . . . . . . . . . . 18

2. Symbol Time-Varying Fading . . . . . . . . . . . . . . 20

IV COMPUTATION OF BOUNDS . . . . . . . . . . . . . . . . . . 24

A. Block Fading Channel Model . . . . . . . . . . . . . . . . . 24

1. Modified Cramer-Rao Bound . . . . . . . . . . . . . . 24

a. Data-Aided Scenario . . . . . . . . . . . . . . . . 24

b. Non-Data-Aided Scenario . . . . . . . . . . . . . 25

2. Modified Barankin Bound . . . . . . . . . . . . . . . . 26

3. Cramer-Rao Bound . . . . . . . . . . . . . . . . . . . 28

4. Barankin Bound . . . . . . . . . . . . . . . . . . . . . 29

B. Cramer-Rao Bound for TV Fading . . . . . . . . . . . . . 31

C. Barankin Bound for TV Fading . . . . . . . . . . . . . . . 34

V ANALYSIS OF BOUNDS AND ESTIMATORS . . . . . . . . . 39

A. Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . 39

B. Optimization over the Training Data . . . . . . . . . . . . 40

C. Asymptotic Cramer-Rao Bounds (ACRB) . . . . . . . . . 43

D. The Influence of the Length of Data . . . . . . . . . . . . . 46



vii

CHAPTER Page

E. Barankin Bound Threshold Analysis . . . . . . . . . . . . 49

F. The Influence of the Oversampling Factor . . . . . . . . . . 53

G. The Influence of the Fading’s Variance . . . . . . . . . . . 54

H. Eigendecomposition Estimator . . . . . . . . . . . . . . . . 55

I. Block Fading Estimator and Influence of the Number

of Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . 56

J. Non-Linearity Based Non-Data-Aided Estimators . . . . . 58

VI CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A. Summary of the Thesis . . . . . . . . . . . . . . . . . . . . 61

B. Suggestions for Future Work . . . . . . . . . . . . . . . . . 61

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

APPENDIX C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

APPENDIX D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

APPENDIX E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



viii

LIST OF TABLES

TABLE Page

I Constants associated with the ACRB . . . . . . . . . . . . . . . . . . 44



ix

LIST OF FIGURES

FIGURE Page

1 Relative energy function of the number of eigenvalues considered . . 17

2 MBB and MCRB for block fading . . . . . . . . . . . . . . . . . . . . 27

3 Bounds for block fading . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 CRB for TV fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 BB for TV fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 BB variation with the Doppler shift . . . . . . . . . . . . . . . . . . . 36

7 BB and CRB in the NDA case . . . . . . . . . . . . . . . . . . . . . 37

8 BB and CRB for the eigendecomposition-based model . . . . . . . . 37

9 Relative cost of not knowing the nuisance parameters . . . . . . . . . 39

10 Bounds for MCRB-optimized data . . . . . . . . . . . . . . . . . . . 41

11 Comparison of CRB for different sets of data . . . . . . . . . . . . . 42

12 ACRB for the DA case with Chu training sequences . . . . . . . . . 45

13 ACRB for the DA case with optimized training sequences . . . . . . 45

14 ACRB for the NDA case . . . . . . . . . . . . . . . . . . . . . . . . . 46

15 ACRB variation with respect to the length of data . . . . . . . . . . 47

16 Variation of the ACRB associated constants with respect to the

length of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

17 Threshold variation for Chu training sequences . . . . . . . . . . . . 50

18 Threshold variation for short optimized sequences and very slow fading 51



x

FIGURE Page

19 Threshold variation for long optimized sequences and very slow fading 52

20 Threshold variation for optimized sequences and very fast fading . . 52

21 Influence of the oversampling factor Q . . . . . . . . . . . . . . . . . 53

22 Influence of the fading’s variance . . . . . . . . . . . . . . . . . . . . 54

23 Eigendecomposition estimator . . . . . . . . . . . . . . . . . . . . . . 56

24 Estimator for M = 1, 2 and 4 . . . . . . . . . . . . . . . . . . . . . . 57

25 Estimator for M = 1 and 4 . . . . . . . . . . . . . . . . . . . . . . . 58

26 Non-linearity based estimators . . . . . . . . . . . . . . . . . . . . . 59



1

CHAPTER I

INTRODUCTION

A. Motivation and Problem Statement

The estimation of the timing delay is of crucial importance for communications sys-

tems because of the need to maximize the signal-to-noise ratio and to reduce the

inter-symbol interference.

Due to the sampling at the receiver side, the transmit and the receive signals,

as well as the noise associated with the receiver, can be expressed in vectorial form.

Therefore, the propagation channel between the base station and the mobile can be

modelled as a matrix. In the case of block fading, each channel associated with a pair

of antennas is considered to be characterized by a complex constant for the whole

period of a transmission block. The elements of the channel matrix can be assumed

independent or correlated with a fixed correlation matrix. In the case of symbol-

level time-varying (TV) fading, the propagation coefficients for each pair of antennas

are characterized by time-varying processes, characterized by known or quasi-known

statistical properties. These processes are sampled with the sampling rate 1/Ts and

the received signal can be expressed in a new vectorial form.

The use of multiple antennas in a communications system is equivalent with

adding new dimensions. The spatial diversity introduced is an effective mean to

increase the system’s performance. The capacity of MIMO antenna systems has been

proven in the literature to be much higher than the one obtained in the case of single

antenna systems. The timing estimation problem becomes more complicated, but the

ability to express all signals in matrix form allows the solution to be expressed in a

The journal model is IEEE Transactions on Automatic Control.
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compact form and to evidence the gain produced by the multi-antenna diversity.

The analysis of the performance of known estimators is a first step in the process

of finding better estimators and optimizing the system parameters. To evaluate the

accuracy of a certain estimator, theoretical bounds are needed, in order to show how

far the performance of the suboptimal realizable estimator is from the optimal theo-

retical limit. The mean square error is a good indicator of performance because the

variance of the timing error is a meaningful parameter to determine. From this point

of view, the computation of bounds like the Cramer-Rao bound and the Barankin

bound becomes very justified.

Finally, identifying the parameters that influence the performance of the system,

as well as studying their individual and joint contributions to the improvement or

degradation of the accuracy of the estimation, is an important step in the design

process.

B. Outline of the Thesis

Chapter II is providing some background about the main issue of this thesis, the

timing recovery. The process of timing recovery is presented in the general frame of

synchronization for communications systems. After highlighting the importance of

the timing delay estimation, the mean square error is presented as being a good per-

formance criterion and the main bounds used in this thesis, the Cramer-Rao bound,

the modified Cramer-Rao bound, and the Barankin bound, are introduced, briefly

pointing their main individual advantages and characteristics. Chapter III describes

the propagation and system models used in this thesis. The fading variations are

assumed to respect the Jakes’ model and can be simulated by using autoregressive

methods or the eigendecomposition of the autocorrelation matrix. The main system
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model is introduced in Chapter III.C and is extended in order to account for the TV

fading. Chapter IV introduces the Cramer-Rao bound and the Barankin bound as

the main performance indicator limits used in this thesis, presents the methods of

determining them (with most of the computations detailed in Appendix A-E) and

shows the obtained results. In Chapter V a detailed analysis of the system models is

presented. A cost function is introduced, an optimization method is proven to provide

better results in certain conditions, and the asymptotic Cramer-Rao bounds are pre-

sented as auxiliary performance indicators. The variations in the estimation accuracy

are studied by modifying different channel or system parameters, the Barankin bound

is exploited to provide information about the required length of the observation and

the performance of several estimators is compared. Finally, Chapter VI summarizes

the thesis, presenting some conclusions and suggestions for future research work.
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CHAPTER II

BACKGROUND

A. Symbol Timing Recovery

For accurate recovery of the transmitted data symbols, the communication receivers

require knowledge about the channel. However, in many practical situations, this

information is not available from the beginning. Therefore, several channel param-

eters need to be estimated using the information contained in the received signal.

The main parameters required are the carrier frequency, the carrier phase and the

timing delay [1]. In a typical coherent receiver, the received signal is first coherently

demodulated and low-pass filtered to recover the modulating message signal. The

next step is the sampling of the message signal at the symbol rate and the recovery

of the transmitted data symbols. Although the receiver generally knows the symbol

rate, it does not know when to sample the signal for the best signal-to-noise ratio

(SNR) performance. The objective of the symbol timing recovery is to find the best

instants for sampling the received signal.

Generally, in communication systems, the process of synchronization follows a

certain pattern. First synchronization step is the acquisition of the carrier. In coher-

ent demodulators, the achievement of the carrier recovery consists of the generation

of a reference carrier whose phase equals the one of the transmitted signal carrier.

The discrepancy in frequency comes from the deviation of the transmitter and re-

ceiver oscillators and from the Doppler effect [1]. The carrier phase synchronization

is generally achieved by a phase-locked-loop (PLL) circuit. Throughout this thesis,

no carrier frequency error is assumed, except the frequency Doppler shift, which is

considered non-zero in the symbol level time-varying fading scenario case.
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The second synchronization step, which is the focus of this thesis, is the sym-

bol synchronization, which is a requirement for all digital communication systems

which transmit the information synchronously. Assuming a symbol period of T and a

relative delay ε, the samples at t = kT + εT are required in order to reduce the inter-

symbol interference (ISI) effects. Assuming a sampling period of Ts, only the samples

at moments kTs are available. As described in [2], for analog receivers the synchro-

nization relies on controlling the sampling instants of the received signal, whereas for

digital receivers there will always exist a small difference between Ts and T that will

produce, on long term, cycle slips. Therefore, it is necessary to obtain samples of a

matched filter output at the symbol rate 1/T from the signal samples available at the

rate 1/Ts. A second problem for synchronous sampling, due to the generally unknown

propagation delay on the communication chain between the transmitter and the re-

ceiver, is that the symbol timing must be derived from the received signal. These

two synchronization issues are generally referred to as low-level synchronization. The

so-called high-level synchronization deals with discrete parameters like words, frames,

and packets.

The errors in the estimation of ε degrade the overall performance of the sys-

tem, increasing the ISI. Ultimately, these errors increase the bit error probability and

decrease the performance of the communication system. The symbol timing synchro-

nization is generally achieved using a delay-locked-loop (DLL) circuit.

In some cases, when the data is a priori known, this knowledge can be used to

improve the estimation. There are two cases when this assumption is valid. When a

known data sequence is transmitted, such as during a preamble of a data packet, the

data-aided (DA) recovery techniques are used. Even after the initial training period,

if the SNR is sufficiently high, the estimated symbols can be used by the same DLL

circuit and the same estimation procedure can continue for the whole duration of
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transmission. This method is called decision-directed (DD).

When the SNR is low, the data is not sufficiently accurate to be used in the

timing recovery process, and non-data-aided (NDA) techniques have to be used. The

classical approaches to NDA synchronization are presented in [3]. The first method

uses the signal’s cyclostationarity, usually the second-order statistics [4, 5, 6] and the

second method relies on treating the data symbols as random variables and using

the maximum-likelihood (ML) principle. In the second case, the SNR is generally

considered to be low and most of the algorithms are derived as approximations of the

ML estimator. One of the most classical algorithms that exploits the cyclostationarity

is the one proposed by Oerder and Meyr (O&M) in [7], and one of the well known

detectors using the ML approach is the one proposed by Gardner in [8].

B. The Cramer-Rao Lower Bound

For timing estimation schemes, the variance of the timing error is a good measure

of the system performance. However, for most practical suboptimal estimators, the

variance of the estimation error cannot be determined analytically. Therefore, the

derivation of good bounds becomes helpful in the sense of showing how far a particular

suboptimal realizable estimator is from the optimal estimator in terms of its variance.

The Cramer-Rao bound (CRB) is a fundamental lower bound on the error variance

of unbiased estimators and a benchmark for many practical estimators. Under some

regularity assumptions and for a large number of observations, the CRB is generally

achievable.

When computing the Cramer-Rao bound, one of the assumptions made is the

differentiability of the likelihood function with respect to the parameter to determine.

When working with digital signals, this assumption calls for a need for oversampling,
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such that a good approximation of the continuous signal can be obtained using a

dense set of samples.

For a particular model, the CRB depends on the particular sequence of training

symbols (in the DA case), or on the statistics of the data used (in the NDA case).

For a scalar parameter, the CRB is defined as follows [9]. If the probability

density function p(r; ε) satisfies the regularity condition

E

[

∂lnp(r; ε)

∂ε

]

= 0 for all ε ,

where the expectation is taken with respect to p(r; ε), the variance of any unbiased

estimator ε̂ must satisfy

var(ε̂) ≥
1

−E
[

∂2lnp(r;ε)
∂ε2

] =
1

−
∫ ∂2lnp(r;ε)

∂ε2 p(r; ε)dr
, (2.1)

where the derivative is evaluated at the true value of ε and the expectation is taken

with respect to p(r; ε).

For a vector parameter ε = [ ε1 ε2 · · · εp ]T , assuming the estimator ε̂ is

unbiased, the CRB places a bound on the variance of each element [9]

var(ε̂i) ≥ [J−1(ε)]ii ,

where J(ε) is the p × p Fisher information matrix, defined as

[J(ε)]ij = −E

[

∂2lnp(r; ε)

∂εi∂εj

]

,

for i, j = 1, 2, · · · , p.

The matrix J is in general symmetrical and positive definite.

A lot of literature has been dedicated to the computation of the CRB for vari-

ous communications models. The CRB for DA timing recovery has been presented in

[10]. Reference [10] also reveals the connection between a particular training sequence
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and its performance limit and indicates how to compute the CRB in the time and

frequency domain, respectively. Reference [11] computes the CRB for linearly mod-

ulated signals with no ISI in the NDA case, while [12] takes into consideration the

time-selective fading for amplitude phase-modulated signals, assuming that both the

multiplicative and the additive white noise are Gaussian. For deterministic signals,

the CRB is also computed in [13], assuming the presence of both multiplicative and

additive noise. An example of extension of the CRB computation to MIMO commu-

nication channels is derived in [14] for frequency offset estimation, assuming a block

fading model.

The CRB is a valid bound for any unbiased quadratic estimator, but in many

cases the computation of the CRB becomes very difficult, because the statistics of

the observation depend not only on the vector parameter to be estimated, but also on

some nuisance parameters that normally are not estimated. These difficulties created

a need for a simpler, yet looser bound, the modified Cramer-Rao bound (MCRB),

which will be described in the next section. An unifying approach for derivation

of various bounds used in constrained optimization problems has been presented

in [15]. Reference [15] explains that even though the CRB can be asymptotically

reached by the maximum-likelihood method for high SNR and a large number of

independent snapshots, it is too optimistic under more practical estimation conditions

(low SNR, small number of snapshots). In this sense, better (tighter) bounds, like the

Battacharyya bound and the Barankin bound have been proposed. In the authors’

view, the Barankin bound is not as popular as the CRB because of the increased

computational cost and the lack of underlying assumptions in the bound derivation.
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C. The Modified Cramer-Rao Bound

The modified Cramer-Rao bound (MCRB) proves to be useful in many practical

situations where the true CRB is difficult to compute. Although the MCRB is always

looser than the true CRB, it is generally easier to obtain, and in many cases is as

tight as the true CRB at high SNR. This bound has been introduced for the scalar

case in [16] and extended to a vectorial form in [17]. A comparison between the true

CRB and the MCRB in the scalar case is presented in [18], evidencing that at high

SNR, when the scalar parameter is coupled with the nuisance parameters, the MCRB

can be quite loose compared to the true CRB. This paper further presents several

cases where the MCRB practically coincides with the asymptotic Cramer-Rao bound

(ACRB), defined as the analytical approximation of the true CRB for high SNR. An

expression of the MCRB used in the block fading case for one of the two models

analyzed in this thesis is explained in [3].

The MCRB is defined as follows [16]. Considering ε̂(r) to be an unbiased estima-

tor of ε and denoting by u the random vector of the nuisance parameters, representing

all the parameters that do not have to be estimated, including the data, with known

probability density function p(u), independent of ε, the joint probability density func-

tion (pdf) can be expressed as

p(r; ε) =
∫ ∞

−∞
p(r | u; ε)p(u)du = Eu[p(r | u; ε)] . (2.2)

Generally, p(r | u; ε) is easily available. In many cases, the computation of (2.1) is

untractable, either because the integration in (2.2) is difficult or because the expecta-

tion in (2.1) cannot be computed. By interchanging the order of the expectation and

the logarithm operators, a new bound, easier to compute, is obtained. This bound is
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named the modified Cramer-Rao bound

MCRB(ε) =
1

Eu
[

Er|u

[

−∂2ln(p(r|u;ε))
∂ε2

]] ,

where Er|u [·] denotes the expectation with respect to the pdf p(r | u; ε).

The Cramer-Rao bound (2.1) can be also expressed as

CRB(ε) =
1

E
[

[

∂lnp(r;ε)
∂ε

]2
] =

1
∫

[

∂lnp(r;ε)
∂ε

]2
p(r; ε)dr

,

and the corresponding expression for the MCRB is

MCRB(ε) =
1

Eu

[

Er|u

[

∂ln(p(r|u;ε))
∂ε

]2
] .

In general, it can be shown that MCRB(ε) ≤ CRB(ε).

D. The Barankin Bound

As described in the previous section, in certain conditions the maximum-likelihood

estimators can perform very close to the Cramer-Rao bound. Thus, the CRB is a

good bound provided that the observation time is sufficiently large and the SNR large

enough. When these conditions do not hold, a threshold effect can be noticed. Below

a critical SNR value, the optimum achievable estimator deviates radically from the

CRB. Barankin [19] proposed a class of lower bounds for unbiased estimators. The

Barankin bound (BB) is a tighter bound than the CRB and, through the threshold

effect, gives additional information about the required observation length. The most

general version of the BB is the greatest lower bound on the variance of any unbiased

estimator and can be asymptotically achieved. For most practical problems, this

version of the BB is too complex to be evaluated. Therefore, most derivations in the

literature use slightly simplified variants. Using the Schwarz inequality, the author in
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[20] derived lower bounds in the case of scalar valued parameters. Using these bounds

in the case of pulse-position-modulated (PPM) signals, it has been proven in [21] that

the threshold effect characterizes all nonlinear modulation communications schemes.

A geometric interpretation of the BB has been given in [22]. For the problem of time

delay estimation, the BB is determined in [23] using a dense set of test points and

the threshold phenomenon is analyzed in [24].

The BB is defined as follows [25]. Assume Ω a sample space of points ω and

P (ω | ε) a family of probability measures on Ω indexed by a parameter ε, taking

values in the index set π and having a density function with respect to a measure µ.

For all measurable sets E

P (E | ε) =
∫

E
p(ω | ε)dµ(ω) .

For g(·) a function defined on π and for ĝ(ε) an unbiased estimator of g(ε)

∫

ĝ(ω)p(ω | ε)dµ(ω) = g(ε) , ∀ε ∈ π .

The BB takes the form

var(ĝ) ≥ sup
εi,ai

{
∑n

i=1 ai [g(εi) − g(ε)]}2

∫

[
∑n

i=1 aiL(ω; εi, ε)]
2 p(ω | ε)dµ(ω)

,

where L(ω; εi, ε) = p(ω | εi)/p(ω | ε) and the supremum is to be taken over all finite

families of εi ∈ π and real valued a′
is.

A more general bound for a hybrid parameter vector (including some determin-

istic and some random entries) has been derived in [26]. The BB is a particular

case of the above mentioned bound for deterministic parameter estimation and the

Bobrovsky-Zakai bound is a particular case for random parameter estimation. Ref-

erences [27, 26] show that the inclusion of additional test points does not reduce the

BB. Also, [26] shows that, although there is no formal procedure for choosing the
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test points, usually these points are the ones that locally maximize the correlation

function and that in most practical examples the insertion of additional points does

not change the bound significantly, so that in many cases even one properly chosen

test point is good enough.

A simplified version of the BB, considering a single test point, is the one proposed

by Chapman and Robbins in [28]. This version is broadly used in the literature [27, 29]

and this is the version used in this thesis. For the estimation of a scalar real parameter

ε, the Chapman-Robbins version of the BB can be presented as follows [29]. Denoting

by p(r; ε) the pdf of a vector r, for a given ε, and considering η to be a real number

independent of r such that ε + η ranges over all possible values of ε, any unbiased

estimator ε̂ satisfies var(ε̂) ≥ BB, where BB is given by

BB = sup
η

η2

∫ p(r;ε+η)2

p(r;ε)
dr − 1

≥ CRB , (2.3)

and the CRB is given by

CRB = lim
η→0

η2

∫ p(r;ε+η)2

p(r;ε)
dr − 1

=
1

var
[

∂lnp(r;ε)
∂ε

] .

The following ratio measures the deviation of the BB from the CRB

BB

CRB
= sup

η

η2var
[

∂lnp(r;ε)
∂ε

]

∫ p(r;ε+η)2

p(r;ε)
dr − 1

.

When this ratio equals 1, the supremum is reached for η = 0 and the two bounds

coincide. When the ratio is larger than 1, there is a threshold effect and the supremum

is reached for η 6= 0.
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CHAPTER III

MODELS

A. Modelling the Time-Varying Fading

For an N×M MIMO system there exists a number of NM propagation channels. The

assumption considered throughout this thesis is that these channels are independent

and follow the same statistics. For each channel, the fading is modelled as a complex

Gaussian process and the statistic properties of the channel coefficients depend on

the Doppler frequency fd = vf0/c, where v is the speed of the mobile, c is the speed of

light and f0 is the carrier frequency of the communication system. The time-variance

of the system is evidenced by the autocorrelation function of the fading components.

Under some conditions (see, for example, [30]), the Jakes’ model can be assumed

and the power spectral density (PSD) associated with each fading component is given

by

S(f) =























σ2
α

πfd

√

1−

(

f
fd

)2
| f |≤ fd

0 elsewhere

. (3.1)

The corresponding continuous time autocorrelation function is

R(τ) = σ2
αJ0(2πfdτ) , (3.2)

where J0(·) denotes the Bessel function of the first kind and zero order and σ2
α denotes

the fading’s variance. The discrete version of the autocorrelation function is

R[n] = σ2
αJ0(2πfd | n | Ts) , (3.3)

which is equivalent with the normalization of the Doppler frequency by the sampling

rate of 1/Ts [30]. This is the theoretical autocorrelation model used throughout this
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thesis.

For simulation purposes, methods to generate a fading whose PSD approximates

the one given by (3.1) are needed. Some of the most effective methods include the use

of autoregressive (AR) models. As a general rule, the higher the order of the model,

the better the approximation and the bigger the complexity. Several AR models have

been presented in [31]. A powerful method is described in [30, 32]. Reference [32]

also shows how to take into account the multiple cross-correlations of the fading.

For simulation purposes, this thesis follows the method described in [32] to generate

independent realizations of the fading, considering an AR model of order 5. The

method, as presented in the above-mentioned paper, consists of generating correlated

complex Gaussian processes h[n], according to the pth order autoregressive model

h[n] = −
p
∑

k=1

A[k]h[n − k] + w[n] ,

where A[k] are V × V matrices containing the AR coefficients and

w[n] =
[

w1[n] w2[n] · · · wV [n]

]T

is the driving noise, considered to be complex white Gaussian with zero mean and

covariance matrix Q = E{w[n]w[n]H}. For an observation matrix

H[n] =
[

h[n − 1]T h[n − 2]T · · · h[n − p]T
]T

,

the model covariance matrix is defined as Rhh = E{H[n]H[n]H}.

Using the Levinson-Wiggins-Robinson (LWR) algorithm, the coefficients A[k]

can be determined by solving the following multichannel Yule-Walker system of equa-
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tions
























Rhh[0] Rhh[−1] · · · Rhh[−p + 1]

Rhh[1] Rhh[0] · · · Rhh[−p + 2]

...
...

. . .
...

Rhh[p − 1] Rhh[p − 2] · · · Rhh[0]

















































AH [1]

AH [2]

...

AH [p]

























= −

























Rhh[1]

Rhh[2]

...

Rhh[p]

























.

As indicated in [32], the V × V covariance matrix of the driving noise vector process

can be computed as

Q = Rhh[0] +
p
∑

k=1

Rhh[−k]AH [k] .

The next step is to perform the Cholesky factorization Q = GGH . Finally, the

driving process is generated as w[n] = Gz, where z is a V × 1 vector of independent

zero mean complex Gaussian elements with unit variance.

B. Eigendecomposition-Based Model

This section introduces briefly the first model used in this thesis. The approach taken

in this model, described in detail in [33], has the advantage of accommodating an ML

estimator of the time delay based on the eigendecomposition of the autocorrelation

matrix. The time-varying channels’ gains are considered multiplicative distortions

modelled as linear combinations of the eigenfunctions. Although it can be easily

extended to an arbitrary number of antennas, this model, as presented in [33], assumes

a MIMO system with N = 2 transmitting antennas and M = 2 receiving antennas.

The continuous time transmitted signals are given by

di(t) =
L0
∑

k=1

dikg(t − kT ) i = 1, 2 ,

where L0 denotes the length of the training sequence, i is the index of the correspond-
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ing antenna, T denotes the symbol time duration, dik stands for the training sequence

corresponding to the transmit antenna i, and g(t) is the square-root raised cosine pulse

with roll-off factor β. Throughout all simulations, a factor β = 0.3 has been consid-

ered. The data is considered to be generated by the orthogonal sequences of length

L0 = 12 [33]: d1k = [+−−−−+−−+++−] and d2k = [++−++−−−+−++].

Let hij(t) and nj(t) denote the multiplicative fading between the transmit an-

tenna i and receive antenna j and the cyclic symmetric complex Gaussian noise as-

sociated with receiving antenna j, respectively (i, j = 1, 2). The signal rj(t) received

at antenna j can be expressed as

rj(t) =
2
∑

i=1

di(t − ε)hij(t) + nj(t) . (3.4)

For Rayleigh fading, hij(t) is modelled as a zero-mean Gaussian random process with

the autocorrelation function

Rα(t, u) = E[hij(t)h
∗
ij(u)] = σ2

αJ0(2πfd(t − u)) ,

where ∗ represents the complex conjugate. This formula is similar to (3.2). The next

step is to find the eigenfunctions fk(t) and the eigenvalues λk that satisfy

∫ Tf

Ti

Rα(t, u)fk(u)du = λkfk(t) , (3.5)

where Ti and Tf are the limits of the observation time. Using a good resolution, (3.5)

can be approximated with its discrete version.

Next, the fading is expressed as

hij(t) = lim
S→∞

hijS(t) ,
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where

hijS(t) =
S
∑

k=1

cijkfk(t) , (3.6)

each cijk is a complex Gaussian random variable with variance λk, and S stands for

the number of eigenvalues taken into consideration during the eigen-decomposition.
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Fig. 1. Relative energy function of the number of eigenvalues considered

For simulation purposes, it is useful to decide how many eigenvalues S are needed

for each value of the Doppler shift fd in order to collect most of the fading energy. The

result in represented in Fig. 1 where, for good approximation, an oversampling factor

Q = 16 has been used in formula (3.5). Fig. 1 shows that even for very fast fading

(fd = 0.1), S = 5 assures an excellent approximation. For slow fading (fd = 0.01),

even S = 2 is enough. In future simulations S = 4 will be considered in (3.6) and

(5.1).
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C. Main Model

1. Block Fading

This section presents the main model used throughout this thesis as it has been

described in [34] and [3], and the next section extends it to accommodate the time-

varying fading. Let N denote the number of transmit antennas and M the number of

receive antennas. Let hij be the complex channel coefficient between the ith transmit

antenna and the jth receive antenna. The channel transfer function can be compactly

described by the matrix

H =

























h11 h21 · · · hN1

h12 h22 · · · hN2

...
...

. . .
...

h1M h2M · · · hNM

























. (3.7)

The complex envelope of the received signal at the jth receive antenna is

rj(t) =

√

Es

NT

N
∑

i=1

hij

∑

m

di(m)g(t − mT − εT ) + nj(t) ,

which, after sampling at a rate 1/Ts, can be expressed as

rj(kTs) =

√

Es

NT

N
∑

i=1

hij

∑

m

di(m)g(kTs − mT − εT ) + nj(kTs) ,

where k = 0, 1, · · · , L0Q − 1. In these formulas, Es/N is the normalized symbol

energy, T is the symbol duration, di(m) represents the zero-mean complex-valued

symbols transmitted from antenna i and g(t) is the square-root raised cosine pulse

with roll-off factor β. Throughout the simulations it has been considered a roll-off

factor β = 0.3. The parameter ε represents the timing offset to estimate, considered

to take values in the interval [0, 1]. The term nj(t) is the noise associated with the
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jth receive antenna and it is assumed to be a complex valued, circularly-distributed

white Gaussian process with power spectral density N0. For an oversampling factor

Q ≥ 2, the sampling rate is fs = 1/Ts = Q/T . With L0 representing the number of

symbols observed and Lg the number of symbols affected by ISI on each side of g(t),

the number of consecutive samples becomes L0Q and the sampled form of rj can be

expressed as a product of matrices

rj = ξAεZHT
j,: + nj ,

where ξ =
√

Es/NT , rj = [rj(0) rj(Ts) · · · rj((L0Q − 1)Ts)]
T ,

Aε = [a−Lg
(ε) a−Lg+1(ε) · · · aL0+Lg−1(ε)] ,

ai(ε) = [g(−iT − εT ) g(Ts − iT − εT ) · · · g((L0Q − 1)Ts − iT − εT )] ,

Z = [d1 d2 · · · dN ] , di = [di(−Lg) di(−Lg +1) · · · di(L0 +Lg −1)]T ,

nj = [nj(0) nj(1) · · · nj(L0Q − 1)]T .

For all simulations, unless otherwise stated, it has been considered that L0 = 32 and

Lg = 4.

After stacking all the received vectors rj one under another, the following general

model is obtained

r = ξ(IM ⊗Aε)vec(ZHT ) + n , (3.8)

where r =
[

rT
1 rT

2 · · · rT
M

]T

and n =
[

nT
1 nT

2 · · · nT
M

]T

. Notation ⊗

denotes the Kronecker product and vec(·) is the operator that stacks the columns of

a matrix one under another.

After some straightforward processing, formula (3.8) can be adapted to a partic-

ular model, corresponding to the data-aided (DA) case

r = ξ(IM ⊗AεZ)vec(HT ) + n . (3.9)
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2. Symbol Time-Varying Fading

The model introduced in this section will be used for all simulations in this thesis,

unless otherwise stated. Since there are L0Q observation samples, in the symbol

time-varying case the matrix H needs to be redefined, extending its number of rows

by L0Q. Considering between each pair of antennas different values of the fading at

different instants of time, correlated according to (3.3), the channel transfer function

can be described in this case by the N × ML0Q size matrix

HT =

























h11(0) · · · h11((L0Q − 1)Ts) h12(0) · · · h1M((L0Q − 1)T )

h21(0)
. . .

... h22(0)
. . .

...

...
. . .

...
...

. . .
...

hN1(0) · · · hN1((L0Q − 1)Ts) hN2(0) · · · hNM((L0Q − 1)T )

























.

(3.10)

By creating a repetition of Aε

Tε = 1M×1 ⊗ Aε ,

where 1M×1 represents a matrix of size M × 1 whose elements are all equal to 1, a

new form for equation (3.8) is obtained

r = diag{ξTεZHT} + n ,

where diag{·} represents the operator that retains only the diagonal elements of a

matrix. Introducing a new operator named sampleς{·} that keeps only the lines of

index kς th + 1 of a matrix, r can also be expressed as

r = sample(ML0Q+1)

{

vec(ξTεZHT )
}

+ n .
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Using twice the fact that vec(AYB) = (BT ⊗ A)vec(Y) on vec(TεZHT ), the above

equation becomes successively

r = ξsample(ML0Q+1)

{

(IML0Q ⊗ Tε)vec(ZHT )
}

+ n , (3.11)

r = ξsample(ML0Q+1)

{

(IML0Q ⊗ Tε)(IML0Q ⊗ Z)vec(HT )
}

+ n .

Using the fact that (A⊗B)(C⊗D) = (AC)⊗ (BD), the previous equation becomes

r = ξsample(ML0Q+1)

{

(IML0Q ⊗ TεZ)vec(HT )
}

+ n .

Property

For any matrices A and B of size P ×MN and M×N respectively, the following

property of the sampleς{·} operator is true

sampleς{Avec(B)} = sampleς{A}vec(B) .

Using this property, r can be expressed as

r = ξsample(ML0Q+1) {(IML0Q ⊗ TεZ)} vec(HT ) + n .

Because the “sampling” rate of the sampleς{·} operator is ML0Q + 1 and the

size of the identity matrix is (ML0Q) × (ML0Q), the following model for the DA

time-varying channel case is obtained

r = ξΨεvec(H
T ) + n , (3.12)
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where Ψε is a matrix having the following block diagonal structure

Ψε =

























[TεZ]1,: 0 · · · 0

0 [TεZ]2,: · · · 0

...
...

. . .
...

0 0 · · · [TεZ]ML0Q,:

























. (3.13)

A similar form can be obtained for the NDA case, following the same steps

between equations (3.11) and (3.12), with the only difference that the matrix Z is left

inside the vec operator in equation (3.11). Thus, the following model for the NDA

time-varying case is obtained

r = ξΨεvec(ZHT ) + n , (3.14)

where

Ψε =

























[Tε]1,: 0 · · · 0

0 [Tε]2,: · · · 0

...
...

. . .
...

0 0 · · · [Tε]ML0Q,:

























. (3.15)

Expressions (3.13) and (3.15) can be further simplified noticing the structure of the

matrix Tε. Because Tε = 1M×1⊗Aε, the final forms of (3.13) and (3.15) are as follow

• for DA case

Ψε = IM ⊗

























[AεZ]1,: 0 · · · 0

0 [AεZ]2,: · · · 0

...
...

. . .
...

0 0 · · · [AεZ]L0Q,:

























. (3.16)
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• for NDA case

Ψε = IM ⊗

























[Aε]1,: 0 · · · 0

0 [Aε]2,: · · · 0

... · · ·
. . .

...

0 0 · · · [Aε]L0Q,:

























. (3.17)

Equations (3.12) and (3.14) can be written in the following general form

r = ξΨεh + n , (3.18)

where Ψε has been defined in (3.16) and (3.17) and

h =















vec(HT ) in the DA case

vec(ZHT ) in the NDA case
. (3.19)
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CHAPTER IV

COMPUTATION OF BOUNDS

A. Block Fading Channel Model

1. Modified Cramer-Rao Bound

a. Data-Aided Scenario

In the DA block fading case, the MCRB has been found to be [34]

MCRB =
NQ

2M
·
(

Es

N0

)−1

·
1

tr(ZHDH
ε DεZ)

, (4.1)

where tr(·) denotes the trace of a matrix, Dε represents the derivative of the matrix

Aε with respect to the time delay ε, Dε = dAε/dε and all the other parameters have

been defined in Chapter III.C.

An equivalent form for the extended model can be derived by observing the

similarity between the equations (3.12) and (3.9). Thus

MCRB =
NQ

2M
·
(

Es

N0

)−1

·
1

tr(ΥH
ε Υε)

,

where, similarly to (3.16)

Υε = IM ⊗

























[DεZ]1,: 0 · · · 0

0 [DεZ]2,: · · · 0

...
...

. . .
...

0 0 · · · [DεZ]L0Q,:

























. (4.2)

Due to the tr(·) operator, both forms of MCRB produce the same result.

The data is generated as in [35]. The first step is the construction of a Chu
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sequence of length L0

s =
[

s(0) s(1) ... s(L0 − 1)

]

.

Using the sequence s, a second sequence is constructed as

s′ =
[

s(0) s(1) ... s(L0 − 1) s(0) s(1) ... s(2NLg − 1)

]

.

Finally, the training sequences are given by

di =
[

s′((2i − 1)Lg) ... s′((2i − 1)Lg + L0 − 1)

]

.

b. Non-Data-Aided Scenario

In the NDA block fading case, for a particular half-rate orthogonal space-time block

code, described by the matrix

























































d1 d2 d3 d4

−d2 d1 −d4 d3

−d3 d4 d1 −d2

−d4 −d3 d2 d1

d∗
1 d∗

2 d∗
3 d∗

4

−d∗
2 d∗

1 −d∗
4 d∗

3

−d∗
3 d∗

4 d∗
1 −d∗

2

−d∗
4 −d∗

3 d∗
2 d∗

1

























































, (4.3)

the MCRB has been found to be [34]

MCRB =
NQ

2M
·
(

Es

N0

)−1

·
1

tr(DH
ε Dε)

.
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As in the DA case, an equivalent form for the extended model can be derived by

observing the similarity between the equations (3.14) and (3.8). Thus

MCRB =
NQ

2M
·
(

Es

N0

)−1

·
1

tr(ΥH
ε Υε)

,

where, similarly to (3.17)

Υε = IM ⊗

























[Dε]1,: 0 · · · 0

0 [Dε]2,: · · · 0

...
...

. . .
...

0 0 · · · [Dε]L0Q,:

























. (4.4)

2. Modified Barankin Bound

For its relative ease of computation, a modified version of the BB is introduced in this

section. This version is obtained by replacing the pdf-s by their fading-conditioned

versions using the same procedure that distinguishes the MCRB from the true CRB.

Therefore, the name of this bound will be the Modified Barankin Bound (MBB)

throughout this thesis.

In its Chapman-Robbins form (see (2.3)), the MBB is

MBB = sup
η

η2

∫

[

∫ p(r|h;ε+η)2

p(r|h;ε)
p(h)dh

]

dr− 1
≥ MCRB . (4.5)

Using the Cauchy-Schwarz inequality it can be proven (see Appendix A) that

this bound is always looser than the true BB. Also, this bound is always larger than

or equal to the MCRB, and thus it is a valid bound for timing estimation. The

derivation of the MBB is presented in Appendix A. The general formula (A.2) can

be particularized by taking into account two small observations. First, a change of
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variables is needed

σ2 → N0Q
T

ξ2 → Es

NT

and thus, 2ξ2/σ2 → 2Es/N0QN .

The second observation regards the particular structure taken by the matrix Ψε in

(A.2). In the NDA case, Ψε = IM ⊗Aε (see (3.8)) and in the DA case Ψε = IM ⊗AεZ

(see (3.9)). Therefore, it is possible to generally express Ψε as Ψε = IM ⊗ Ξε, and

the products ΨH
α Ψβ take a simpler form

tr(ΨH
α Ψβ) = tr((IM ⊗ ΞH

α )(IM ⊗ Ξβ)) = tr(IM ⊗ (ΞH
α Ξβ) = Mtr(ΞH

α Ξβ) .

In the block fading DA case the MBB takes the form

MBB = sup
η

η2

exp
{

Es

N0
· 2M

QN
· tr(ZH(Aε+η − Aε)H(Aε+η − Aε)Z)

}

− 1
.
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Fig. 2. MBB and MCRB for block fading
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Fig. 2 compares the MBB and the MCRB in the DA case. The threshold effect

is visible, but at very low SNR (-27 dB). The same value is obtained in the NDA

case. For the MCRB-optimized data sequences that will be introduced in Chapter

V.B, the threshold appears at -29 dB. The conclusion is that, although it is a valid

bound, the MBB is too close to the MCRB to be of any practical use as a tighter

bound. The threshold can give some information regarding the required length of the

training data, but more accurate results can be obtained using the true BB.

For the block fading NDA case the MBB takes the form

MBB = sup
η

η2

exp
{

Es

N0
· 2M

QN
· tr((Aε+η − Aε)H(Aε+η −Aε))

}

− 1
.

3. Cramer-Rao Bound

In the block fading case the Fisher Information Matrix (FIM) has the following form









A BT

B C









,

where

A =









Jσ2
ασ2

α
Jσ2

αN0

Jσ2
αN0

JN0N0









,

B =
[

Jσ2
αε JN0ε

]

,

and

C =
[

Jεε

]

,

where (see (B.13))

Jαβ = E

[

−
∂2Λ

∂α∂β

]

= tr

(

R̃
−1∂R̃

∂α
R̃

−1∂R̃

∂β

)

.
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After computing the elements of the matrices A,B and C, the CRB is found using

the formula

CRB =
1

C − BA−1BT
≥

1

C
= J−1

εε (4.6)

The details of the computation are given in Appendix B. In the above inequality,

the left hand side represents the CRB computed in the presence of nuisance parame-

ters, and the right hand side denotes the CRB computed when the timing delay is the

only unknown. The significance of this inequality is that the presence of additional

unknown parameters increases the bound. Introducing a cost function, Chapter V.A

presents the relative difference between the CRB computed in the two scenarios and

its dependence on fd.

4. Barankin Bound

For the eigendecomposition-based model introduced in Chapter III.B the covariance

matrix R̃ of the received signal has been determined in (B.2) and the associated

pdf pr̄(r̄) in (B.4). The matrix R̃ depends on ε through the combination of terms

involving d̄1 and d̄2. To highlight this dependence, R̃ε will denote the matrix R̃

corresponding to the time delay ε and R̃ε+η the matrix R̃ corresponding to the time

delay ε + η.

Similarly, for the main model, the general form of the covariance matrix R̃ of

the received signal has been presented in (B.9). The particular forms taken in the

DA and the NDA case have been presented in (B.10) and (B.11) and the associated

pdf pr(r) in (B.12). The matrix R̃ depends on ε through Aε. In order to stress out

this dependence the notations R̃ε and R̃ε+η will be used. The details of computing

the BB are presented in Appendix C.

Fig. 3 presents all the bounds introduced for the block fading case.
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It is important to notice that the MCRB has a slope of -10 dB/decade because

this slope is approximately the slope of the true CRB at medium SNR values even in

the symbol-level time-varying fading case, as described in the next section.

B. Cramer-Rao Bound for TV Fading

The Fisher Information Matrix (FIM) has the following form









A BT

B C









,

where

A =

















Jσ2
ασ2

α
Jσ2

αfd
Jσ2

αN0

Jσ2
αfd

Jfdfd
JfdN0

Jσ2
αN0

JfdN0
JN0N0

















, (4.7)

B =
[

Jσ2
αε Jfdε JN0ε

]

, (4.8)

and

C =
[

Jεε

]

, (4.9)

where (see (D.6))

Jαβ = E

[

−
∂2Λ

∂α∂β

]

= tr

(

R̃
−1∂R̃

∂α
R̃

−1∂R̃

∂β

)

.

After computing the elements of the matrices A,B and C, the CRB is found using

the formula

CRB =
1

C − BA−1BT
≥

1

C
= J−1

εε . (4.10)

The same comments made for (4.6) apply for the above inequality.

Fig. 4 presents the variations with the Doppler shift of the true CRB, in both

the DA and NDA scenarios. For reference, the MCRB in the block fading case
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is also included in this figure. For the DA case, the training sequence based on

Chu sequences, introduced in Section A, has been chosen in a suboptimal way, in

the sense that the MCRB in the DA case almost coincides with the MCRB for the

NDA case. This suboptimal training sequence will be used in order to highlight the

differences between the DA and the NDA case. However, Chapter V.B will show how

to optimize the training sequence in order to minimize the MCRB. The advantages

of DA estimation will become even more obvious at that time but for the moment all

simulations are restricted to the suboptimal training sequences. Because the larger

the fd the larger the bound, as seen in Fig. 4, the best estimators perform worse when

the fading is fast varying and this rule remains valid for the BB, as it will be presented

in Section C. Also, Fig. 4 shows that the true CRB generally consists of three parts.

The first part is the region of low SNR, characterized by a slope of -20 dB/decade.

In this region the performance of any unbiased estimator decreases drastically with

the noise power. At very high SNR the curves flatten and a floor effect appears.

This effect appears in Fig. 4 b. The floor effect also appears in the DA case, but at

higher SNR. The intermediate region from -20 dB/decade slope to 0 dB/decade slope

is the region of medium SNR. Since most systems operate at such values of SNR,

in this region the MCRB, which has a slope of -10 dB/decade, is generally a good

approximation for the true CRB. For the considered model, the intermediate region

extends approximately from 0 dB to 30 dB for block fading. It is visible in Fig. 4 that

at very slow fading (fd = 0.001) the CRB for both DA and NDA case almost coincide

in the intermediate SNR region with the MCRB obtained in the block fading case.

A comparison of the DA and NDA bounds evidences that, except for the inter-

mediate region, at slow fading the DA CRB (Fig. 4 a) outperforms the NDA CRB

(Fig. 4 b). When the fading becomes very fast varying (fd = 0.1), at low SNR the DA

algorithms perform worse but, due to the floor effect, at medium and high SNR they
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perform much better than their NDA equivalents. In Fig. 4 the NDA CRB displays

less sensitivity to the Doppler shift at very low SNR. Therefore, the conclusion is that

in this region there should exist robust estimators.

C. Barankin Bound for TV Fading

For the eigendecomposition-based model introduced in Chapter III.B the covariance

matrix R̃ of the received signal has been determined in (D.2) and the associated pdf

pr̄(r̄) in (B.4). The matrix R̃ depends on ε through d̄1 and d̄2. To highlight this

dependence, R̃ε will denote the matrix R̃ corresponding to the time delay ε and R̃ε+η

the matrix R̃ corresponding to the time delay ε + η.

Similarly, for the main model, the general form of the covariance matrix R̃ of the

received signal has been presented in (D.4) and the associated pdf pr(r) in (D.5). The

matrix R̃ depends on ε through Ψε, which is a function of Aε through the particular

forms (3.16) for the DA case and (3.17) for the NDA case. In order to highlight this

dependence the notations R̃ε and R̃ε+η will be used. The details of computing the

BB are presented in Appendix C.

For the main model, the BB has been found to have the form

BB = sup
η

η2| R̃ε+ηR̃
−1

ε || 2I − R̃ε+ηR̃
−1

ε |

1 − | R̃ε+ηR̃
−1

ε || 2I− R̃ε+ηR̃
−1

ε |
. (4.11)

Expressions (C.5) and (C.8) are basically the same formula, since in (C.8) each co-

variance matrix can be expressed as the Kronecker product between IM and a more

fundamental matrix. This is valid for DA and NDA case, for block and for TV fading.

Using the standard determinant properties | IM ⊗∆ |=| ∆ |M , and in the particular

case M = 2, (C.8) takes a form similar to (C.5).

Fig. 5 presents the variations with the Doppler shift of the BB in the DA case.
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It can be noticed that the remark about the variation of the CRB with the Doppler

shift remains valid for the BB and the bound increases with fd. For clarity, the

corresponding CRBs have not been plotted, but the threshold points are obvious.

The SNR associated with the threshold is an increasing function of fd.

Fig. 6 a and b compare the BB and the CRB obtained for a certain Doppler

shift. In these comparative plots, the threshold behavior is clearly depicted. This

Doppler-dependent threshold will be analyzed further in Chapter V.E in order to get

an in-depth view over the required length of training data.
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For comparison purposes, Fig. 7 presents the BB and the CRB for the NDA case,

and Fig. 8 presents the BB and the CRB associated with the eigendecomposition-

based model introduced in Chapter III.B. From these figures it can be inferred that

the SNR threshold and the bounds are increasing functions of fd. Not only the CRB,

but also the BB in the NDA case is very little dependent on fd at low SNR. Also,

by comparing Fig. 5 and Fig. 7, it appears that the threshold phenomenon occurs at

higher SNR in the NDA case, meaning that, in general, a higher length of data is

needed in the NDA case. Also, although by comparing the CRB in the DA and NDA

case it can be concluded that at very low SNR the NDA algorithms are superior, the

BB proves that even in that SNR region the DA estimators are preferable.
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CHAPTER V

ANALYSIS OF BOUNDS AND ESTIMATORS

A. Cost Function

In the timing estimation process it is useful to define a cost function that determines

the price paid for not knowing the nuisance parameters (σ2
α, fd, N0). The absolute

cost is the difference between the CRBs computed assuming unknown and known

nuisance parameters, respectively. Referring to (4.10), the absolute cost is found to
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Fig. 9. Relative cost of not knowing the nuisance parameters

be the difference between the left hand side and the right hand side terms. The

relative cost is defined as the ratio between this difference and the CRB determined
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assuming unknown nuisance parameters and is mathematically expressed as

Cost =
BA−1BT

C
.

Fig. 9 presents the dependence of the average relative cost, defined as the relative cost

averaged over all values of SNR in the range of interest (−30, 50) dB, with respect

to fd, in the NDA case. The relative cost is quite small, being of the order of 10−4

and 10−5 in the NDA and DA case, respectively. Therefore, the knowledge upon the

nuisance parameters (σ2
α, fd, N0) can not improve substantially the performance of

the timing delay estimation. From Fig. 9 it turns out that the cost is an increasing

function with respect to fd.

B. Optimization over the Training Data

It has been found that the data matrix Z that minimizes the MCRB is formed by

the N scaled eigenvectors corresponding to the N largest eigenvalues of the matrix

DH
ε Dε, where Dε has been described in (4.1). Fig. 10 a shows the improvement in

the MCRB obtained by using this optimized data matrix. The gain turns out to be

approximately 5 dB. Fig. 10 b shows the BB and the CRB for the MCRB-optimized

training sequence. At low SNR, the CRB and the BB are less dependent on fd than

their equivalents from the non-optimized case. The BB threshold effect occurs at

higher SNR in the optimized case. From these regards, the CRB and the BB for the

MCRB-optimized data behave similarly with their equivalents from the NDA case.
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Fig. 11 compares the CRB for the initial set of data with the one for the optimized

data set, assuming different Doppler shifts. It turns out that, although for slow fading

the MCRB-optimized CRB is below the initial CRB for the whole region of interest,

for very fast fading it is below only for SNR < 28 dB. A comparative analysis of the

BB between Fig. 10 b and Fig. 5 reveals that for low SNR the BB is lower for the

initial set of data. Therefore, it can be concluded that the optimization described is

useful for any fd only for the average SNR region, which extends approximately from

0 dB to 30 dB.

C. Asymptotic Cramer-Rao Bounds (ACRB)

This section presents the asymptotic CRB (ACRB) for low and high SNR, respec-

tively, assuming both the DA and NDA scenarios. The details of computation are

presented in Appendix E. The asymptotic bounds for low SNR, as well as the ones

for high SNR, are characterized by a Doppler dependent multiplicative constant. The

low-SNR ACRB has a slope of 20 dB/decade (varies inversely proportional with the

second power of the SNR). With increasing SNR each CRB reduces up to its asymp-

totic value for high SNR. This high-SNR asymptotic CRB has a slope of 0 dB/decade

(does not depend on the SNR) and therefore is characterized by a constant. The

floor is due to the multiplicative noise, because at high SNR the additive noise can

be neglected.

For different Doppler shifts, Table I presents the constants associated with the

low-SNR ACRB (LACRB) and the high-SNR ACRB (HACRB) in three scenarios:

data-aided considering the Chu training sequence (DA1), data-aided considering the

MCRB-optimized sequences (DA2) and non-data-aided (NDA). The LACRB and the

HACRB turn out to be increasing functions with respect to fd in all three scenarios.
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This fact was expected, because the CRB and the BB are also increasing functions

with respect to fd.

Table I. Constants associated with the ACRB

fd DA1 DA2 NDA

LACRB HACRB LACRB HACRB LACRB HACRB

0.1 9.78E-4 2.9E-12 4.18E-5 5.5E-11 3.28E-4 5.45E-4

0.09 8.61E-4 1.1E-12 3.88E-5 5.24E-11 3.11E-4 4.43E-4

0.08 6.87E-4 2.41E-13 3.57E-5 4E-11 2.94E-4 3.85E-4

0.07 5.24E-4 9.2E-14 3.26E-5 2.37E-11 2.79E-4 2.58E-4

0.06 4.51E-4 2E-14 2.95E-5 8.55E-12 2.66E-4 2.35E-4

0.05 3.61E-4 6.67E-15 2.67E-5 1.66E-12 2.54E-4 1.62E-4

0.04 2.64E-4 3E-15 2.44E-5 4E-13 2.45E-4 9.96E-5

0.03 2.05E-4 3E-15 2.24E-5 4E-13 2.37E-4 5.85E-5

0.02 1.53E-4 3E-15 2.07E-5 4E-13 2.32E-4 2.2E-5

0.01 9.73E-5 3E-15 1.93E-5 4E-13 2.28E-4 6.6E-6

0.001 7.25E-5 3E-15 1.86E-5 4E-13 2.27E-4 7.62E-8

For the two DA scenarios, Fig. 12 and Fig. 13 present the LACRB and HACRB

for several f ′
ds together with the true CRB for the corresponding fd, and Fig. 14

depicts the same curves in the NDA scenario.
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Fig. 12. ACRB for the DA case with Chu training sequences
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Fig. 13. ACRB for the DA case with optimized training sequences
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Fig. 14. ACRB for the NDA case

D. The Influence of the Length of Data

This section presents the variation of the ACRB at low and high SNR, respectively,

with respect to the length of training data L0. For the MCRB-optimized training

sequences case, Fig. 15 and Fig. 16 are showing the evolution of these bounds and

the ACRB associated constants, respectively, with respect to the length of data L0,

assuming very fast fading conditions (fd = 0.1). The ACRB associated constants have

been defined in Section C and the MCRB-optimized training sequences have been

introduced in Section B. Intuitively, the LACRB and the HACRB are expected to

decrease with L0, because an increase in the length of training data should improve the

accuracy of the estimation. Fig. 16 shows that these improvements have a tendency

to saturate. Therefore, there is no reason to increase the length of the training data

beyond a certain Doppler shift dependent limit.
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Fig. 15. ACRB variation with respect to the length of data
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Fig. 16. Variation of the ACRB associated constants with respect to the length of data
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E. Barankin Bound Threshold Analysis

For all DA communications systems it is important to minimize the length of the

training sequences in order to maximize the transmission rate and to avoid the waste

of energy, because the training symbols do not contain any information. MIMO

systems generally need more training than the single antenna systems and therefore

the issue of minimizing the length of the training data is even more critical. Also,

in TV fading channels very long training sequences are unacceptable because the

propagation parameters change in time and the estimation efficiency degrades. On

the other hand, the training data should be long enough to assure a good quality of

the transmission, described by the bit error rate (BER). For all the considerations

above mentioned, it is important to establish the appropriate length that meets all

the requirements.

The BB can give a more accurate estimate of the needed length than the CRB

because it is a tighter bound. Due to the sudden depart of the BB from the CRB,

the quality of the estimation is sharply decreasing. Therefore, the threshold SNR,

defined as the SNR where this departure occurs, should be at most the lower limit

of the range in which a particular communications system is designed to function.

This threshold SNR can be exploited in the design process as follows. For a certain

SNR, denoted in this thesis by “target SNR”, a certain MSE is established as the

highest acceptable value and is denoted by “target MSE”. The threshold SNR of

a properly designed communications system should be lower than the target SNR.

Also, the MSE corresponding to the threshold SNR should be at most equal to the

target MSE.

The length of the data should be chosen such that the SNR and the MSE asso-

ciated to the threshold are, within the required limits, as close to the target values
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as possible. Fig. 17 shows an example of design, assuming Chu training sequences

and very fast fading (fd = 0.1). The variation of the threshold are shown for training

sequences having a length L0 between 4 and 128 symbols. Both the MSE and the

SNR thresholds are decreasing functions with respect to L0. Therefore, for any L0

beyond a certain value, the design requirements are met. For example, considering

a target MSE of 10−1 and a target SNR of -12 dB, any L0 ≥ 32 satisfies the re-

quirements. Although sequences with L0 = 64 or L0 = 128 are acceptable, they are

overdesigned. Taking into consideration the arguments from the beginning of this

section, such systems could prove to be suboptimal.
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Fig. 17. Threshold variation for Chu training sequences

Fig. 18 shows that similar threshold variations are found in the case of MCRB-

optimized sequences, for slow fading and low L0.

For long sequences in slow fading and for fast fading, due to the design based

on eigendecomposition and due to the increasing size of the matrix involved, these
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Fig. 18. Threshold variation for short optimized sequences and very slow fading

sequences exhibit a different behavior, presented in Fig. 19 and Fig. 20. To exemplify,

in the case of fast fading, for a target MSE of 10−2 and a target SNR of 0 dB, the

acceptable training length has to be between 8 and 16. For L0 < 8 the CRB at

the target SNR becomes larger than the target MSE, and for L0 > 16, although the

CRB is still inside the design limits, due to the increasing threshold SNR and to the

increasing distance between the BB and the CRB, the BB becomes larger than the

target MSE.

The design of a training sequence exhibiting a different behavior for short and

long L0, respectively, as it is the case depicted in Fig. 18 and Fig. 19, is more restrictive

than the case presented in Fig. 17 and generally less prohibitive than the case depicted

in Fig. 20. Starting from low values of L0, if the increase of L0 for the first region does

not provide the required results, the search continues in the second region similarly

to the case presented in Fig. 20.
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Fig. 19. Threshold variation for long optimized sequences and very slow fading
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F. The Influence of the Oversampling Factor

Fig. 21 represents the CRB computed under slow fading conditions for the eigen-

decomposition-based model introduced in Chapter III.B at different values of the

oversampling factor Q. The improvement due to the increasing resolution becomes

smaller and smaller. From Q = 2 to Q = 4 there is a gain of approximately 2 dB. The

additional gain becomes approximately 0.4 dB when the oversampling factor increases

from Q = 4 to Q = 8 and becomes almost insignificant when Q changes from 8 to 16.

Under very fast fading conditions the gains observed are 1.6 dB, respectively 0.3 dB,

when Q changes from 2 to 4 and 4 to 8, respectively.
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Fig. 21. Influence of the oversampling factor Q

This dependence on Q is valid only for the model above mentioned and is due

to the limited precision of the eigendecomposition process. In other words, for low

oversampling factors Q, the resolution is not good enough and (3.5) can not be ap-
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proximated by its discrete version. The performance of the main model introduced

in Chapter III.C does not depend on Q.

G. The Influence of the Fading’s Variance

As expected, considering the forms taken by the covariance matrix (see (D.1), (D.2),

(D.3) and (D.4)) for the models introduced in Chapter III.B and C, in the Rayleigh

case any increase in the variance of the fading is equivalent with an increase in the

signal’s energy. Therefore, changing σ2
α is the same as changing the system’s SNR

and an equivalent SNR can be defined as

SNReq = SNRσ2
α

Fig. 22 shows the variation of the CRB with respect to the fading’s variance for the
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eigendecomposition-based model introduced in Chapter III.B, assuming the fading is

very slow varying (fd = 0.001). All the plots in this thesis, except Fig. 22, consider

the equivalent SNR or, in other words, assume σ2
α = 1.

H. Eigendecomposition Estimator

For the eigendecomposition-based model introduced in Chapter III.B, the authors in

[33] found an ML estimate of the timing delay ε based on the eigenvalue decomposition

of the autocorrelation matrix. The expression is proved to be

εML = arg max
ε



 lim
S→∞

2
∑

j=1

VH
jS(ε)(R + N0Λ

−1
S2 )−1VjS(ε)



 , (5.1)

where N0 is the PSD of the noise, R is a 2S × 2S matrix with elements rmn given by

rmn =
∫ Tf

Ti

di1(t)fk1(t)d
∗
i (t)f

∗
k (t)dt ,

with m = (i − 1)S + k, n = (i1 − 1)S + k1, i, i1 = 1, 2, k, k1 = 1, 2, · · · , S,

VjS(ε) =
[

vj11 vj12 · · · vj1S vj21 vj22 · · · vj2S

]T

, vjik =
∫ Tf

Ti
rj(t)d

∗
i (t)f

∗
k (t)dt

ΛS2 = diag[ΛS ΛS ] and ΛS = diag(λ1, λ2, · · · , λS). As explained in Chapter III.B, S

is the number of eigenvalues considered in the eigendecomposition process, di(t) is the

training data transmitted by antenna i, and fk(t) and λk stand for the eigenfunctions

and the eigenvalues of the autocorrelation matrix, respectively.

This estimator’s performance is presented in Fig. 23 together with the CRB,

both computed for different values of fd.

Although its performance turns out to be quite far from the theoretical CRB, this

estimator has the merit of being robust, in the sense that the errors in the estimation

of fd do not influence much the estimation accuracy of ε. For considerations explained

in Section F, an oversampling factor Q = 16 has been used for simulations.
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Fig. 23. Eigendecomposition estimator

I. Block Fading Estimator and Influence of the Number of Antennas

In the block fading scenario, the following estimator has been found [34] for the main

model introduced in Chapter III.C

ε̂ = arg max
ε

(Λ(ε)) (5.2)

where

• for DA case

Λ(ε) =
M
∑

j=1

rH
j AεZ(ZHAH

ε AεZ)−1ZHAH
ε rj
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• for NDA case

Λ(ε) =
M
∑

j=1

rH
j Aε(A

H
ε Aε)

−1AH
ε rj

The performance of this estimator is presented in Fig. 24 and Fig. 25 for the DA case

and for the number of receive antennas varying between 1 and 4. The corresponding

MCRBs are also depicted in these figures. Fig. 24 shows that the MCRB becomes

smaller when the number M of receive antennas increases. Also, the performance of

the estimator is improving with M. Fig. 25 shows also that the performance of the

estimator becomes closer to the theoretical limit for larger M. It has been found that

the number of transmit antennas does not influence the performance of the system.

Referring to Fig. 3, it is noticed that for the considered range ((0 - 30) dB), the CRB

and the BB coincide with the MCRB. The estimator performs very well, but it is

very complex, as Λ(ε) should theoretically be computed for all possible values of (ε).
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J. Non-Linearity Based Non-Data-Aided Estimators

In practice, the complexity of the estimators should be as low as possible. Therefore,

estimators based on exhaustive searching algorithms, like the one presented in Section

I, are not used in practice. In the NDA scenario, there exists a family of estimators

that extract the information about the timing delay from the phase of a spectral

line, obtained after passing the received signal, filtered and sampled, through a non-

linear device. In the continuous case, the useful spectral component at 1/Ts could

be extracted by a PLL and a narrow-band filter. In the discrete case, the same

component is obtained by computing the complex Fourier coefficient at the symbol

rate. The general form of such an estimator, with the notations used in this thesis, is

ε̂ = −
1

2π
arg







L0Q−1
∑

k=0

F (rj(kTs)) exp
−j2πk

Q







(5.3)
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where F (·) stands for the non-linearity. The most used non-linearities are the square-

law (SL), the absolute value (AV), the fourth-law (FL) and the logarithmic non-

linearities (LOG). The most popular in the literature is the square-law non-linearity

and the estimator is also known as the Oerder&Meyr estimator [7]. The performance
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Fig. 26. Non-linearity based estimators

of the NDA estimators is depicted in Fig. 26, for all the non-linearities mentioned.

The forms taken by the function F (·) are as follows

F (rj (kTs)) =

• | rj(kTs) |
2 for SL

• | rj(kTs) | for AV



60

• | rj(kTs) |
4 for FL

• log(1 + SNR2 | rj(kTs) |
2) for LOG

At the output of the non-linearity the bandwidth is increased. For example, con-

sidering an excess bandwidth factor β and the SL non-linearity, in order to avoid

the aliasing effect for frequencies below 1/Ts, the sampling rate needs to be at least

(2 + β)/Ts. In practical applications, the oversampling factor is chosen in general to

be Q = 4, and this is the factor used for the simulations depicted in Fig. 26. Besides

the estimators above mentioned and the MCRB, presented as a reference, there ap-

pears one more curve on Fig. 26, denoted by the name “the improved SL estimator”.

This is a generalization of the Oerder&Meyr estimator, is easier to compute, does not

require an oversampling factor larger than 2 and is defined as follows [36].

ε̂ = −
1

2π
arg

{

K−1
∑

k=0

Λ(k) exp
−j2πk

K

}

, (5.4)

where Λ(ε) =
∑M

j=1 rH
j Aε(A

H
ε Aε)

−1AH
ε rj is computed over a set of K uniformly

spaced values from 0 to (K − 1)/K. Besides the better performance compared to

the classical SL estimator, visible on Fig. 26, the improved SL estimator is easier to

implement, because the factors Aε(A
H
ε Aε)

−1AH
ε can be pre-computed and K = 4 is

enough to obtain good performance. In all the simulations above, the overall estimate

ε̂ has been computed as the average between the individual estimates of the M receive

antennas.
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CHAPTER VI

CONCLUSIONS

A. Summary of the Thesis

To summarize, the work in this thesis focused on the issue of timing delay syn-

chronization. The mean square error has been presented as a good indicator of the

performance of estimators. Bounds like the Cramer-Rao bound and the Barankin

bound have been used to analyze the quality of estimation. An extended model for

time varying MIMO systems has been found to provide compact expressions for these

bounds. The fading has been assumed to be time-varying, independent from one pair

of antennas to another, and Rayleigh distributed, and to respect the Jakes’ model.

Autoregressive methods can be used to generate the fading time-varying coefficients.

A detailed analysis of the system models has been presented, pointing out the influ-

ence of different parameters, like the length of the training data, the oversampling

factor and the fading’s variance, upon the bounds. A cost function has been intro-

duced in order to highlight the price paid for not knowing the nuisance parameters,

the threshold effect in the Barankin bound has been exploited in order to provide in-

formation about the required length of the observation and the performance of several

estimators has been compared.

B. Suggestions for Future Work

In Fig. 16 it has been shown that the coefficients of the low- and high-SNR ACRB,

respectively, have a tendency to reach a saturation floor when the length of obser-

vation increases over a certain limit. Due to the limited precision of the simulation

process, this floor cannot be determined precisely, especially at high SNR. Therefore,
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developing an analytical expression for the evolution of these coefficients with respect

to the observation length could be useful.

The model introduced in Chapter III.C assumes independent realizations of the

fading from one pair of antennas to another. Expressing a model for the symbol-level

time-varying correlated fading case and studying the influence that the correlation

has upon the bounds and estimators presented could be of great importance. In the

block fading case, a model that accounts for correlated coefficients between pairs of

antennas has been presented in [34], where the transmit and the receive correlation

matrix, respectively, are based on measurements performed by Nokia.

Some additional interesting problems to explore would be to optimize the band-

width and to consider a spectral approach in expressing the asymptotic bounds. Also,

the performance of the NDA estimators depicted in Fig. 26 depends on the roll-off

factor. In this thesis, it was assumed that β = 0.3, but a study could be done by

varying it from 0 to 1.

A detailed analysis for all bounds and estimators presented in this thesis could

be done for other types of fading. In-depth analysis of the Rice fading could be done

in a manner similar to the one used in this thesis.
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APPENDIX A

DERIVATION OF THE MBB

The inequality MBB ≤ BB can be proven using the Cauchy-Schwarz inequality

(

∫ b

a
f(h)g(h)dh

)2

≤
∫ b

a
f 2(h)dh

∫ b

a
g2(h)dh .

With f 2(h) = p2(r,h,ε+η)

p(r,h,ε)
and g2(h) = p(r,h, ε), the Cauchy-Schwarz inequality re-

sumes to

(
∫

p(r,h, ε + η)dh)2
∫

p(r,h, ε)dh
≤
∫

p2(r,h, ε + η)

p(r,h, ε)
dh ,

p2(r; ε + η)

p(r; ε)
≤
∫

p2(r | h; ε + η)

p(r | h; ε)
p(h)dh ,

from which it is obvious that

sup
η

η2

∫ p2(r;ε+η)
p(r;ε)

dr− 1
≥ sup

η

η2

∫

[

∫ p2(r|h;ε+η)

p(r|h;ε)
p(h)dh

]

dr − 1
.

Thus, it has been proven that the MBB given by expression (4.5) is always looser

than the BB given by expression (2.3). To determine the forms of the MBB for the

model used in this thesis, the first step is to note that, in general, for circular white

Gaussian noise

r = ξΨεh + n , (A.1)

and

p(r | h; ε) =
1

(πσ2)L0Q
exp

[

−
(r − ξΨεh)H(r − ξΨεh)

σ2

]

.

Therefore

∫

Eh

[

p2(r|h;ε+η)

p(r|h;ε)

]

dr =
∫

Eh

[

exp
{

2ξ2((Ψε+η−Ψε)h)H((Ψε+η−Ψε)h)
σ2

}
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· 1
(πσ2)L0Q exp

{

(r−ξ(2Ψε+η−Ψε)h)H (r−ξ(2Ψε+η−Ψε)h)
σ2

}]

dr

= Eh

[

exp
{

2ξ2((Ψε+η−Ψε)h)H((Ψε+η−Ψε)h)
σ2

}]

·
∫

Eh

[

1
(πσ2)L0Q exp

{

(r−ξ(2Ψε+η−Ψε)h)H(r−ξ(2Ψε+η−Ψε)h)
σ2

}]

dr

= Eh

[

exp
{

2ξ2((Ψε+η−Ψε)h)H((Ψε+η−Ψε)h)
σ2

}]

,

because the integral part in the last equality corresponds to a Gaussian distribution.

Because h is a column vector, a tr(·) operator can be introduced. Thus,

∫

Eh

[

p2(r|h;ε+η)

p(r|h;ε)

]

dr

= Eh

[

exp
{

2ξ2

σ2 tr
(

hH(Ψε+η −Ψε)
H(Ψε+η − Ψε)h

)}]

= Eh

[

exp
{

2ξ2

σ2 tr
(

(Ψε+η − Ψε)
H(Ψε+η − Ψε)hhH

)}]

= exp
{

2ξ2

σ2 tr
(

(Ψε+η −Ψε)
H(Ψε+η − Ψε)Eh

[

hhH
])}

.

In the DA case h = vec(HT ) (see (3.9)), where H has been defined in (3.7).

Assuming independent fading coefficients, Eh

[

hhH
]

is an identity matrix multiplied

by σ2
α. In the NDA case, h = vec(ZHT ) (see (3.8)) and for the code described by

the matrix (4.3), it has been shown [34] that Eh

[

hhH
]

is also an identity matrix

multiplied by σ2
α. Therefore, assuming σ2

α = 1

∫

Eh

[

p2(r | h; ε + η)

p(r | h; ε)

]

dr = exp

{

2ξ2

σ2
tr
(

(Ψε+η −Ψε)
H(Ψε+η − Ψε)

)

}

,

where Ψε has been defined in (3.16) and (3.17). Plugging this into (4.5)

MBB = sup
η

η2

exp
{

2ξ2

σ2 tr ((Ψε+η − Ψε)H(Ψε+η −Ψε))
}

− 1
. (A.2)
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APPENDIX B

DERIVATION OF THE CRB FOR BLOCK FADING

For the eigendecomposition-based model introduced in Chapter III.B the signal

received by antenna j (j = 1, 2) can be expressed in vectorial form. Because the

oversampling factor is Q and the number of symbols considered for processing is

L0, all vectors have length L0Q. The fading coefficients hij are assumed constant

for a block interval and independent from one pair of antennas to another, and are

assumed to be identically and circularly distributed complex Gaussian variables, with

zero-mean and variance σ2
α. In vectorial form, expression (3.4) can be written as

r̄j = d̄1h1j + d̄2h2j + n̄j , (B.1)

where d̄i =
[

di(0) di(Ts) · · · di((L0Q − 1)Ts)

]

, (i = 1, 2) , hij ∼ N(0, σ2
α) and

n̄j ∼ N(0, N0IL0Q). Therefore, r̄j is also a Gaussian vector with zero-mean and

covariance matrix

E
[

r̄H
j r̄j

]

= E
[

(d̄1h1j + d̄2h2j + n̄j)
H(d̄1h1j + d̄2h2j + n̄j)

]

.

Because E [hijhkl] = 0 for i 6= k or j 6= l the above equation becomes

R̃ = E
[

r̄H
j r̄j

]

= σ2
α

[

d̄
H

1 d̄1 + d̄
H

2 d̄2

]

+ N0IL0Q . (B.2)

Therefore

pr̄j
(r̄j) =

1

πL0Q| R̃ |
exp

[

−r̄jR̃
−1

r̄H
j

]

. (B.3)

Using the assumption of independence between the signals received by the two an-

tennas

pr̄(r̄) =
2
∏

j=1

pr̄j
(r̄j) , (B.4)
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the log-likelihood function becomes

Λ = lnpr̄(r̄) = −2L0Qln(π) − 2ln | R̃ | −
2
∑

j=1

r̄jR̃
−1

r̄H
j .

The second term’s partial derivative w.r.t. β is

∂ln | R̃ |

∂β
=

∂tr(lnR̃)

∂β
= tr

(

∂lnR̃

∂β

)

= tr

(

R̃
−1∂R̃

∂β

)

,

where β = σ2
α, N0, ε .

The third term’s partial derivative w.r.t. β is

∂(r̄jR̃
−1

r̄H
j )

∂β
= r̄j

∂R̃
−1

∂β
r̄H

j = −r̄jR̃
−1 ∂R̃

∂β
R̃

−1
r̄H

j .

Adding all terms, the general form of the derivative of the log-likelihood function

w.r.t. β becomes

∂Λ

∂β
= −2tr

(

R̃
−1∂R̃

∂β

)

+
2
∑

j=1

r̄jR̃
−1 ∂R̃

∂β
R̃

−1
r̄H

j . (B.5)

The partial derivatives of R̃ w.r.t. β are computed as follows

∂R̃

∂σ2
α

=
[

d̄
H

1 d̄1 + d̄
H

2 d̄2

]

,

∂R̃

∂N0
= IL0Q ,

∂R̃

∂ε
= σ2

α

[

∂

∂ε

[

d̄
H

1 d̄1 + d̄
H

2 d̄2

]

]

.

For β = σ2
α, (B.5) becomes

∂Λ

∂σ2
α

= 2tr
(

R̃
−1 [

d̄
H

1 d̄1 + d̄
H

2 d̄2

]

)

−
2
∑

j=1

r̄jR̃
−1 [

d̄
H

1 d̄1 + d̄
H

2 d̄2

]

R̃
−1

r̄H
j . (B.6)

To prove that the regularity condition is respected for this partial derivative, first the
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expected value of the second term in (B.6) is computed as follows

E





2
∑

j=1

r̄jR̃
−1 [

d̄
H

1 d̄1 + d̄
H

2 d̄2

]

R̃
−1

r̄H
j



 = E





2
∑

j=1

tr
(

R̃
−1 [

d̄
H

1 d̄1 + d̄
H

2 d̄2

]

R̃
−1

r̄H
j r̄j

)





=
2
∑

j=1

tr
(

R̃
−1 [

d̄
H

1 d̄1 + d̄
H

2 d̄2

]

R̃
−1

E
[

r̄H
j r̄j

]

)

=
2
∑

j=1

tr
(

R̃
−1 [

d̄
H

1 d̄1 + d̄
H

2 d̄2

]

R̃
−1

R̃

)

= 2tr
(

R̃
−1 [

d̄
H

1 d̄1 + d̄
H

2 d̄2

]

)

.

Introducing this in (B.6) proves that E [∂Λ/∂σ2
α] = 0. The same procedure could

be used to prove that the regularity condition is respected for all first order partial

derivatives. For brevity, these derivations will be skipped. Starting from (B.5), the

second order mix derivatives are computed in the general form

E

[

−
∂2Λ

∂α∂β

]

= 2
∂

∂α
tr

(

R̃
−1 ∂R̃

∂β

)

−
2
∑

j=1

tr





∂R̃
−1

∂α

∂R̃

∂β
R̃

−1
E
[

r̄H
j r̄j

]





−
2
∑

j=1

tr

(

R̃
−1 ∂2R̃

∂α∂β
R̃

−1
E
[

r̄H
j r̄j

]

)

−
2
∑

j=1

tr



R̃
−1∂R̃

∂β

∂R̃
−1

∂α
E
[

r̄H
j r̄j

]





= 2tr





∂R̃
−1

∂α

∂R̃

∂β
+ R̃

−1 ∂2R̃

∂α∂β
−

∂R̃
−1

∂α

∂R̃

∂β
− R̃

−1 ∂2R̃

∂α∂β
−

∂R̃

∂β

∂R̃
−1

∂α





Because the first four terms cancel each other

E

[

−
∂2Λ

∂α∂β

]

= −2tr





∂R̃

∂β

∂R̃
−1

∂α



 = 2tr

(

∂R̃

∂β
R̃

−1∂R̃

∂α
R̃

−1
)

.

Thus, the following general form is obtained

Jαβ = E

[

−
∂2Λ

∂α∂β

]

= 2tr

(

R̃
−1∂R̃

∂α
R̃

−1∂R̃

∂β

)

. (B.7)

The derivation of the block fading CRB for the main model introduced in Chapter

III.C starts with the general model (A.1), where h is defined as in (3.19) for an

associated matrix H defined by (3.7). By comparing (3.8), (3.9) and (A.1), it is
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obtained that

Ψε =















IM ⊗ AεZ DA case

IM ⊗ Aε NDA case
. (B.8)

As explained in Appendix A, Eh[hhH ] is the identity matrix multiplied by σ2
α in the

DA and NDA cases considered. Under the same Gaussian assumptions as for the

previous model, r is a Gaussian vector with zero-mean and covariance matrix

E[rrH ] = E[(ξΨεh + n)(ξhHΨH
ε + nH)] = ξ2E[ΨεhhHΨH

ε ] + E[nnH ] ,

R̃ = E[rrH ] = ξ2ΨεE[hhH ]ΨH
ε + N0IML0Q = ξ2σ2

αΨεΨ
H
ε + N0IML0Q . (B.9)

Taking (B.8) into account, the particular versions of R̃ become

R̃ = IM ⊗
(

ξ2σ2
αAεZZHAH

ε + N0IL0Q

)

DA case , (B.10)

R̃ = IM ⊗
(

ξ2σ2
αAεA

H
ε + N0IL0Q

)

NDA case . (B.11)

The pdf of the Gaussian vector r, having mean zero and a covariance matrix

given by (B.9), has the form

pr(r) =
1

πML0Q| R̃ |
exp

[

−rHR̃
−1

r

]

, (B.12)

and the log-likelihood function becomes

Λ = lnpr(r) = −ML0Qln(π) − ln | R̃ | −rHR̃
−1

r .

Similarly to the computations for the previous model, it is obtained that

Jαβ = E

[

−
∂2Λ

∂α∂β

]

= tr

(

R̃
−1∂R̃

∂α
R̃

−1∂R̃

∂β

)

. (B.13)

The partial derivatives of R̃ w.r.t. β are computed as follows

∂R̃

∂σ2
α

= ξ2ΨεΨ
H
ε ,
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∂R̃

∂N0
= IML0Q ,

∂R̃

∂ε
= ξ2σ2

α

[

ΥεΨ
H
ε + ΨεΥ

H
ε

]

,

where

Υε =
∂Ψε

∂ε
=















IM ⊗ DεZ DA case

IM ⊗ Dε NDA case
.
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APPENDIX C

DERIVATION OF THE BB

In this Appendix, a general form for the BB, valid for both the block and the TV

fading will be derived. The BB has been defined in (2.3) as

BB = sup
η

η2

∫ p(r;ε+η)2

p(r;ε)
dr− 1

. (C.1)

For the eigendecomposition-based model introduced in Chapter III.B, (B.3) and (B.4)

lead to the following pdf

pr̄(r̄) =
1

π2L0Q| R̃ |
2 exp

[

−r̄1R̃
−1

r̄H
1 − r̄2R̃

−1
r̄H
2

]

.

The dependence on the time delay is stressed out as

p(r̄; ε) =
1

π2L0Q| R̃ε |
2 exp

[

−r̄1R̃
−1

ε r̄H
1 − r̄2R̃

−1

ε r̄H
2

]

, (C.2)

p(r̄; ε + η) =
1

π2L0Q| R̃ε+η |
2 exp

[

−r̄1R̃
−1

ε+ηr̄
H
1 − r̄2R̃

−1

ε+ηr̄
H
2

]

. (C.3)

Squaring (C.3) leads to

p2(r̄; ε + η) =
1

π4L0Q| R̃ε+η |
4 exp

[

−2r̄1R̃
−1

ε+ηr̄
H
1 − 2r̄2R̃

−1

ε+ηr̄
H
2

]

. (C.4)

The integral part in (C.1) can be computed by plugging (C.2) and (C.4)

∫ p2(r;ε+η)
p(r;ε)

dr

=
∫ |

˜Rε|2

|
˜Rε+η|4

1
π2L0Q exp

[

−r̄1(2R̃
−1

ε+η − R̃
−1

ε )r̄H
1 − r̄2(2R̃

−1

ε+η − R̃
−1

ε )r̄H
2

]

dr

=
∫ ∫ |

˜Rε|2

|
˜Rε+η|4

1
π2L0Q exp

[

−r̄1(2R̃
−1

ε+η − R̃
−1

ε )r̄H
1 − r̄2(2R̃

−1

ε+η − R̃
−1

ε )r̄H
2

]

dr1dr2
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= |
˜Rε|2

|
˜Rε+η |4|2

˜R
−1

ε+η−
˜R

−1

ε |2
= 1

|
˜Rε+η

˜R
−1

ε |2|2I− ˜Rε+η
˜R

−1

ε |2
,

where the last equality has been obtained using standard determinant properties.

Plugging this integral into (C.1), the form of the BB for the eigen-decomposition

model becomes

BB = sup
η

η2

1

|
˜Rε+η

˜R
−1

ε |2|2I− ˜Rε+η
˜R

−1

ε |2
− 1

= sup
η

η2 | R̃ε+ηR̃
−1

ε |2| 2I − R̃ε+ηR̃
−1

ε |2

1− | R̃ε+ηR̃
−1

ε |2| 2I − R̃ε+ηR̃
−1

ε |2

(C.5)

In order to be able to apply this formula directly, the matrix R̃ε has to be invertible.

The nondetermination obtained in the case η → 0 can be solved with the l’Hopital

rule. In limit towards zero, the BB becomes the CRB. The same method is used to

determine the BB for the main model defined in Chapter III.C. The pdf pr(r) is

given by (D.5)

pr(r) =
1

πML0Q| R̃ |
exp

[

−rHR̃
−1

r

]

.

Expressing the dependence on the time delay

p(r; ε) =
1

πML0Q| R̃ε |
exp

[

−rHR̃
−1

ε r

]

, (C.6)

p(r; ε + η) =
1

πML0Q| R̃ε+η |
exp

[

−rHR̃
−1

ε+ηr

]

. (C.7)

After squaring (C.7) and introducing it, together with (C.6), in the integral from

(C.1), following the same procedure as for the previous model, it is obtained

∫

p2(r; ε + η)

p(r; ε)
dr =

| R̃ε |

| R̃ε+η |2 | 2R̃
−1

ε+η − R̃
−1

ε |
.

Then, the BB for the main model becomes

BB = sup
η

η2| R̃ε+ηR̃
−1

ε || 2I − R̃ε+ηR̃
−1

ε |

1 − | R̃ε+ηR̃
−1

ε || 2I− R̃ε+ηR̃
−1

ε |
. (C.8)
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APPENDIX D

DERIVATION OF THE CRB FOR TV FADING

With a few changes, the procedure to compute the CRB for TV fading follows

the same guidelines presented in Appendix B. For the eigendecomposition-based

model introduced in Chapter III.B, the fading coefficients hij can be expressed as

L0Q-length vectors, independent from one pair of antennas to another, following a

circularly complex Gaussian distribution, with zero-mean and a covariance matrix

Rα, whose elements are given by (see (3.3))

(Rα)ij = σ2
αJ0(2πfd | i − j | Ts) . (D.1)

An expression similar to (B.1) can be derived

r̄j = d̄1 ∗ h̄1j + d̄2 ∗ h̄2j + n̄j ,

where d̄i =
[

di(0) di(Ts) · · · di((L0Q − 1)Ts)

]

, n̄j ∼ N(0, N0IL0Q), (i, j = 1, 2),

h̄ij ∼ N(0,Rα), and ∗ denotes the point-to-point vectors multiplication. Therefore,

r̄j is also a Gaussian vector with zero-mean and covariance

R̃ = E
[

r̄H
j r̄j

]

= Rα

[

d̄
H

1 d̄1 + d̄
H

2 d̄2

]

+ N0IL0Q . (D.2)

The first term of the sumation in (D.2) has been obtained assuming independence

between the vectors d̄i and h̄ij . The derivations from (B.3) to (B.5) remain valid.

The partial derivatives ∂R̃/∂β, where β = σ2
α, fd, N0, ε, can be determined as

∂R̃

∂σ2
α

=
∂Rα

∂σ2
α

[

d̄
H

1 d̄1 + d̄
H

2 d̄2

]

,

∂R̃

∂fd

=
∂Rα

∂fd

[

d̄
H

1 d̄1 + d̄
H

2 d̄2

]

,
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∂R̃

∂N0
= IL0Q ,

∂R̃

∂ε
= Rα

[

∂

∂ε

[

d̄
H

1 d̄1 + d̄
H

2 d̄2

]

]

.

Introducing the partial derivatives of R̃ in (B.5), it is obtained that (B.7) is still

formally valid in the TV case.

The derivation of the CRB for the main model introduced in Chapter III.C starts

with the general model (3.18), where h is defined as in (3.19) for an associated matrix

H defined by (3.10). Matrix Ψε has been defined by (3.16) in the DA case and by

(3.17) in the NDA case.

Vector h is a concatenation of Gaussian vectors in both cases. After studying

the structure of the extended matrix H defined by (3.10), the covariance matrix of h

turns out to be

Γh = E[hhH ] =















IM ⊗Rα ⊗ IN DA case

IM ⊗ Rα ⊗ IL0+2Lg
NDA case

, (D.3)

where Rα is the L0Q × L0Q autocorrelation matrix of the signal samples, defined

according to (D.1). Under Gaussian assumptions, r is also a Gaussian vector with

zero-mean and covariance matrix

E[rrH ] = E[(ξΨεh + n)(ξhHΨH
ε + nH)] = ξ2E[ΨεhhHΨH

ε ] + E[nnH ] ,

R̃ = E[rrH ] = ξ2ΨεΓhΨH
ε + N0IML0Q . (D.4)

Similarly with the block fading case, it is determined

pr(r) =
1

πML0Q| R̃ |
exp

[

−rHR̃
−1

r

]

, (D.5)

Λ = lnpr(r) = −ML0Qln(π) − ln | R̃ | −rHR̃
−1

r ,
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Jαβ = E

[

−
∂2Λ

∂α∂β

]

= tr

(

R̃
−1∂R̃

∂α
R̃

−1∂R̃

∂β

)

. (D.6)

The partial derivatives ∂R̃/∂β can be determined as

∂R̃

∂σ2
α

= ξ2Ψε

∂Γh
∂σ2

α

ΨH
ε , (D.7)

∂R̃

∂fd

= ξ2Ψε

∂Γh
∂fd

ΨH
ε , (D.8)

∂R̃

∂N0

= IML0Q , (D.9)

∂R̃

∂ε
= ξ2

[

ΥεΓhΨH
ε + ΨεΓhΥH

ε

]

, (D.10)

where Υε has been defined by (4.2) in the DA case and by (4.4) in the NDA case.

Using (D.3), the partial derivatives of Γh are determined to be

∂Γh
∂σ2

α

=















IM ⊗ ∂Rα

∂σ2
α
⊗ IN DA case

IM ⊗ ∂Rα

∂σ2
α
⊗ IL0+2Lg

NDA case
, (D.11)

∂Γh
∂fd

=















IM ⊗ ∂Rα

∂fd
⊗ IN DA case

IM ⊗ ∂Rα

∂fd
⊗ IL0+2Lg

NDA case
. (D.12)
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APPENDIX E

DERIVATION OF THE ACRB FOR TV FADING

The derivation of the ACRB for low-SNR starts with the general autocorrela-

tion matrix introduced as (D.4) and with the general formula for the FIM elements,

introduced as (D.6)

R̃ = E[rrH ] = ξ2ΨεΓhΨH
ε + N0IML0Q , (E.1)

Jαβ = E

[

−
∂2Λ

∂α∂β

]

= tr

(

R̃
−1∂R̃

∂α
R̃

−1∂R̃

∂β

)

. (E.2)

The partial first order derivatives have been computed in (D.7)-(D.10) and they do

not depend on N0.

Formula (E.1) can be re-expressed as

R̃ = N0

(

IML0Q +
ξ2ΨεΓhΨH

ε

N0

)

.

For a high constant ρ and an arbitrary matrix K the following approximation

can be used [37]
(

I +
K

ρ

)−1

≃ I −
K

ρ
.

Therefore, at low-SNR

R̃
−1

≃ (N0)
−1

(

IML0Q −
ξ2ΨεΓhΨH

ε

N0

)

. (E.3)

Because the partial derivatives do not depend on N0, the following general form

is obtained by introducing (E.3) in (E.2)
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Jαβ = tr

(

(N0)
−2

(

IML0Q −
ξ2ΨεΓhΨH

ε

N0

)

∂R̃

∂α

(

IML0Q −
ξ2ΨεΓhΨH

ε

N0

)

∂R̃

∂β

)

.

(E.4)

When N0 is large, (E.4) can be approximated with

Jαβ = tr

(

(N0)
−2 ∂R̃

∂α

∂R̃

∂β

)

= (N0)
−2 tr

(

∂R̃

∂α

∂R̃

∂β

)

.

All the elements of the FIM are obtained as the product between a term indepen-

dent on N0 and a term dependent on the second power of N0. Therefore the low-SNR

ACRB can be also expressed as the product between a term independent on SNR

and N2
0 .

The independent part of the elements of the FIM is computed as follows.

The elements of the sub-matrix A in the FIM (see (4.7)) are

Jσ2
ασ2

α
= ξ4tr

(

Ψε

∂Γ
h

∂σ2
α
ΨH

ε Ψε

∂Γ
h

∂σ2
α
ΨH

ε

)

,

Jσ2
αfd

= ξ4tr
(

Ψε

∂Γ
h

∂σ2
α
ΨH

ε Ψε

∂Γ
h

∂fd
ΨH

ε

)

,

Jσ2
αN0

= ξ2tr
(

Ψε

∂Γ
h

∂σ2
α
ΨH

ε

)

,

Jfdfd
= ξ4tr

(

Ψε

∂Γ
h

∂fd
ΨH

ε Ψε

∂Γ
h

∂fd
ΨH

ε

)

,

JfdN0
= ξ2tr

(

Ψε

∂Γ
h

∂fd
ΨH

ε

)

,

JN0N0
= ML0Q .

The elements of the sub-matrix B (see (4.8)) are

Jσ2
αε = ξ4tr

((

Ψε

∂Γ
h

∂σ2
α
ΨH

ε

)

[

ΥεΓhΨH
ε + ΨεΓhΥH

ε

]

)

,

Jfdε = ξ4tr
((

Ψε

∂Γ
h

∂fd
ΨH

ε

)

[

ΥεΓhΨH
ε + ΨεΓhΥH

ε

]

)

,



82

JN0ε = ξ2tr
([

ΥεΓhΨH
ε + ΨεΓhΥH

ε

])

.

Finally, the element of the sub-matrix C (see (4.9)) is

Jεε = ξ4tr
([

ΥεΓhΨH
ε + ΨεΓhΥH

ε

] [

ΥεΓhΨH
ε + ΨεΓhΥH

ε

])

.

The derivation of the ACRB for high-SNR starts with the same general auto-

correlation matrix introduced as (D.4) and with the general formula for the FIM

elements, introduced as (D.6).

R̃ = E[rrH ] = ξ2ΨεΓhΨH
ε + N0IML0Q ,

Jαβ = E

[

−
∂2Λ

∂α∂β

]

= tr

(

R̃
−1∂R̃

∂α
R̃

−1∂R̃

∂β

)

.

The partial first order derivatives have been computed in (D.7)-(D.10). At high SNR

the inverse of the matrix R̃ can be computed by ignoring the noise [38]

R̃
−1

=
1

ξ2

(

ΨεΓhΨH
ε

)−1
.

The elements of the sub-matrix A in the FIM (see (4.7)) are

Jσ2
ασ2

α
= 1

(σ2
α)2

ML0Q ,

Jσ2
αfd

= 1
σ2

α
tr
(

(

ΨεΓhΨH
ε

)−1
(

Ψε

∂Γ
h

∂fd
ΨH

ε

))

,

Jσ2
αN0

= 1
σ2

α

1
ξ2 tr

(

(

ΨεΓhΨH
ε

)−1
)

,

Jfdfd
= tr

(

(

ΨεΓhΨH
ε

)−1
(

Ψε

∂Γ
h

∂fd
ΨH

ε

)

(

ΨεΓhΨH
ε

)−1
(

Ψε

∂Γ
h

∂fd
ΨH

ε

))

,

JfdN0
= 1

ξ2 tr
(

(

ΨεΓhΨH
ε

)−1
(

Ψε

∂Γ
h

∂fd
ΨH

ε

)

(

ΨεΓhΨH
ε

)−1
)

,

JN0N0
= 1

ξ4 tr
(

(

ΨεΓhΨH
ε

)−1 (

ΨεΓhΨH
ε

)−1
)

.

The elements of the sub-matrix B (see (4.8)) are
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Jσ2
αε = 1

σ2
α
tr
(

(

ΨεΓhΨH
ε

)−1 (

ΥεΓhΨH
ε + ΨεΓhΥH

ε

)

)

,

Jfdε = tr
(

(

ΨεΓhΨH
ε

)−1
(

Ψε

∂Γ
h

∂fd
ΨH

ε

)

(

ΨεΓhΨH
ε

)−1 (

ΥεΓhΨH
ε + ΨεΓhΥH

ε

)

)

,

JN0ε = 1
ξ2 tr

(

(

ΨεΓhΨH
ε

)−1 (

ΨεΓhΨH
ε

)−1 (

ΥεΓhΨH
ε + ΨεΓhΥH

ε

)

)

.

Finally, the element of the sub-matrix C (see (4.9)) is

Jεε =

tr
(

(

ΨεΓhΨH
ε

)−1 (

ΥεΓhΨH
ε + ΨεΓhΥH

ε

) (

ΨεΓhΨH
ε

)−1 (

ΥεΓhΨH
ε + ΨεΓhΥH

ε

)

)

.

None of these elements depend on N0 and therefore the ACRB is independent of

SNR.
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