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ABSTRACT 

 

Prospective Mathematics Teachers‘ Knowledge for Teaching Algebra  

in China and the U.S.  

(December  2010) 

Rongjin Huang, B.S.,  Zhejing Normal University, China; 

M.A.,  East China Normal University, China; 

Ph.D.,  The University of Hong Kong, Hong Kong SAR, China 

Co-Chairs of Advisory Committee:  Dr. Yeping Li 
                                                               Dr. Gerald Kulm 

 

This study examined teachers‘ knowledge for teaching algebra, with a particular 

focus on teaching the concept of function and quadratic relations in China and the 

United States. An embedded mixed methods design was adapted, a design in which the 

main data set consists of written answers to a questionnaire, while the supportive data set 

is comprised of the written answers to open-ended questions and follow-up interviews. A 

structural equation model was adopted to analyze the status and structure of teacher 

knowledge for teaching algebra in China and the U.S. A qualitative analysis of the 

answers to the open-ended questions and follow-up interviews is aimed to further 

illustrate and interpret the quantitative findings. 

Three hundred and seventy six Chinese and 115 U.S. prospective middle and high 

school mathematics teachers participated in this survey. Based on an extensively 

quantitative and qualitative data analysis, the following conclusions were made. First, 
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the Chinese participants demonstrated a stronger knowledge for teaching algebra when 

compared with their U.S. counterparts. Second, the structure of knowledge for teaching 

algebra of the Chinese participants is much more interconnected than that of their U.S. 

counterparts. Third, the Chinese participants showed flexibility in choosing appropriate 

perspectives of function concept and in selecting multiple representations in contrast to 

their U.S. counterparts. Fourth, this flexibility is found to be closely related to school 

math and teaching math. Finally, the number of college math and math education 

courses taken impacts teachers‘ knowledge for teaching algebra.   

The findings of this study hold several implications for mathematics teacher 

preparation in general and studies on mathematics teachers‘ knowledge in particular. 

Theoretically, the complexity of understanding and measuring mathematics teachers‘ 

knowledge for teaching was examined and discussed. This study also enriches the 

understanding of mathematics teachers‘ knowledge for teaching at middle and high 

schools in China and the United States. Specifically, the Chinese practice of developing 

teachers‘ basic knowledge, skills, and flexibility provides an alternative for U.S. 

mathematics teacher educators to reflect on their practice.  Practically, what we can learn 

from this study to improve mathematics teacher preparation in China and the U.S. is 

discussed. Finally, the limitations of this study are discussed and further studies are 

suggested.  
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CHAPTER I 

INTRODUCTION 

Preparing future mathematics teachers with the appropriate mathematics 

knowledge needed for teaching is crucial for high quality teaching, eventually resulting 

in student learning (National Mathematics Advisory Panel [NMAP], 2008; RAND 

Mathematics Study Panel, 2003). Researchers have focused on understanding and 

measuring mathematics knowledge for teaching (denoted as MKT) in the past few 

decades (e.g., Ball, Hill, & Bass, 2005; Ferrini-Mundy, McCrory, & Senk, 2006; Hill, 

Ball, & Schilling, 2008; Kulm, 2008). For example, drawing on Shulman‘s (1986) 

seminal work on teacher knowledge, Ball and her colleagues have developed a refined 

framework and relevant instruments for measuring elementary mathematics knowledge 

for teaching (Ball et al., 2005; Ball, Thames, & Phelps, 2008). Moreover, researchers 

found that mathematics knowledge for teaching has a close relationship with classroom 

instruction (Hill, Blunk et al., 2008) and student achievement (Hill, Rowan, & Ball, 

2005).  

As mathematics literacy - particularly algebra - became an extension of the civil 

rights movement (Moses, 1995; Moses & Cobb, 2001), teaching algebra to all students 

became an important and challenging issue in the United States (Blume & Heckman, 

2000; Creenes & Rubenstein, 2008; National Council of Teachers of Mathematics 

[NCTM], 2009; NMAP, 2008). Although many studies have focused on  
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students‘ learning of algebra ( e.g., Kaput, Blanton,& Moreno, 2008; Katz, 2007; Kieran, 

2004, 2007), less attention was paid to studying teachers‘ knowledge for teaching 

algebra ( e.g., Doerr, 2004; Even, 1993; Even& Tirosh, 1995, 2008). In order to 

understand and develop teacher  Knowledge for Teaching Algebra (denoted as KTA), a 

research team at Michigan State University (Ferrini-Mundy et al., 2006) has worked on 

developing an instrument measuring KTA. They proposed a framework of KTA, 

including School Algebra Knowledge (i.e., algebra in secondary school, denoted as SA), 

Advanced Mathematical Knowledge (i.e., related college math such as calculus and 

abstract algebra, denoted as AM), and Teaching Mathematics Knowledge (i.e., 

knowledge of typical errors, canonical uses of school math, curriculum trajectories, etc., 

denoted as TM). An instrument grounded in this model has been developed and tested in 

the U.S. with an internal consistency Cronbach‘s alpha .8  (Floden & McCrory, 2007; 

Floden, McCrory, Reckase, & Senk, 2009).  

Efforts to pursue high quality classroom teaching and student learning in 

mathematics have led researchers to explore the practices in high-achieving countries, 

such as China. Quite a number of comparative studies of mathematics education between 

China and the United States have covered a broad range of topics in mathematics 

education. These studies include student learning (i.e., Cai,1995, 2000, 2004), classroom 

teaching ( i.e., Huang & Cai, 2010; Huang & Li, 2011; Stevenson, Chen, & Lee, 1993; 

Stevenson & Lee, 1995; Stigler & Hiebert, 1999), teachers‘ knowledge (i.e., An, Kulm, 

& Wu, 2004; Ma, 1999) and beliefs (i.e., An, Kulm, Ma, & Wang , 2006; Cai, 2000, 

2006; Cai, Perry, Wong, &Wang, 2009), and curriculum (i.e., Fan & Zhu, 2007; Kulm & 
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Li, 2009; Li, Chen, & An, 2009).  

With regard to teachers‘ knowledge and teacher preparation, Ma (1999) found that 

Chinese elementary mathematics teachers demonstrated a profound understanding of 

fundamental knowledge for teaching in contrast to their U.S. counterparts. A recent 

study on mathematics teacher preparation at the middle school level in Chinese Taiwan, 

South Korea, Bulgaria, Germany, Mexico and the United States, found that ―in Chinese 

Taiwan and Korea, the level of mathematics preparation was very strong and in both 

countries, the amount of emphasis given to the practical issues of mathematics pedagogy 

was also extensive‖ (Schmidt et al., 2007, p. 1). Moreover, Li, Huang, and Shin (2008) 

revealed that the secondary teacher (including middle and high school levels) 

preparation programs in the Chinese Mainland and Korea emphasize teachers‘ learning 

of mathematics subject matter knowledge.  In addition, a study comparing pedagogical 

content knowledge of middle school mathematics teachers between the U.S. and China 

(An et al., 2004) has found that the Chinese mathematics teachers emphasized gaining 

correct conceptual knowledge by relying on more rigid development of procedures. The 

U.S. teachers emphasized a variety of activities designed to promote creativity and 

inquiry to develop concept mastery, with a lack of connection between manipulative and 

abstract thinking, and between understanding and procedural development. Although 

these studies described some features of mathematics teacher knowledge for teaching in 

China and the U.S. in general, the characteristics of mathematics teachers‘ knowledge 

for teaching algebra in these two nations have not been explored empirically.  

The practice in China attempts to prepare secondary mathematics teachers 
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(including middle and high school levels ) with a solid mathematics foundation and 

broad mathematics background, with less attention paid towards pedagogical knowledge 

preparation (Li et al., 2008). Compared to middle school mathematics teacher 

preparation in East Asia, the practice in the U.S. seems to place less emphasis on 

mathematics content knowledge and pedagogical content knowledge, but spend more 

time on learning pedagogical knowledge in general (Babcock et al., 2010; Schmidt et al., 

2007). The differences between the teacher preparation systems in the U.S. and China 

may result in differences of teachers‘ knowledge for teaching. In this study, I aim to 

examine the status and characteristics of mathematics teachers‘ knowledge by focusing 

on their knowledge for teaching algebra and further examine the relationship between 

teachers‘ knowledge and relevant factors such as course taking.  

Adapting an instrument cross-culturally is a challenging and important issue in 

comparative studies (Delaney, Ball, Hill, Schilling, & Zopf, 2008). In this study, I 

developed a questionnaire measuring mathematics knowledge for teaching algebra (KTA) 

based on an existing instrument developed by Michigan State University (Floden et al., 

2009), and used it to collect prospective teachers‘ data in China and the U.S. Comparing 

the features of KTA between the United States and China could broaden and deepen our 

understanding of mathematics knowledge for teaching algebra. In addition, this study 

could contribute to developing and validating a survey instrument of KTA cross-

culturally. Thus, this study holds implications for deepening the understanding of 

mathematic knowledge for teaching algebra, and improving mathematics teacher 

preparation in China and the U.S.  
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Although teaching algebra for all has been a slogan of mathematics education 

reformers (Edwards, 1990) for two decades, it is still a very challenging task for the 

current mathematics education reform (Katz, 2007; Kieran, 2004, 2007; NCTM, 2000, 

2009). As described previously, there are salient differences between the U.S. and 

Chinese mathematics teacher preparation programs at secondary schools in terms of their 

emphasis of subject matter knowledge and pedagogical content knowledge (Li et al., 

2008; Schmidt et al., 2007).  It is expected that there are differences in the status and 

characteristics of teachers‘ mathematics knowledge for teaching particular contents in 

the U.S. and China.  However, we do not know to what extent teachers are equipped 

with mathematics knowledge for teaching the core content, algebra.  Thus, the current 

study is aimed to address the following questions: ―What are the differences and 

similarities of secondary (i.e., grades 6-12) prospective teachers‘ knowledge for teaching 

algebra (KTA) between the U.S. and China?  What are the relationships among different 

components of KTA within each country?  With regard to the specific content of 

function, what are the differences and similarities of pre-service teachers‘ knowledge for 

teaching the concept of function?  How do the courses that the pre-service teachers have 

taken relate to their performance in KTA?‖ In order to better describe this study, we use 

the following definitions and abbreviations.   

Knowledge for teaching algebra (KTA) includes three types of knowledge for 

teaching, i.e., school algebra knowledge, advanced mathematical knowledge and 

teaching algebra knowledge.  School algebra knowledge (SA) refers to the algebra 

covered in the curriculum from K-12.    Advanced mathematics knowledge (AM) 
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includes calculus, and abstract algebra which is related to the school algebra; and 

teaching algebra knowledge (TA) means typical errors, canonical uses of school math, 

and curriculum trajectories and so on. Knowledge for teaching the concept of function 

(KTCF) refers to the particular knowledge needed for teaching the concept, including the 

definition, representation, translation, operation of function and so on.  

In addition, Secondary School in this study includes middle and high schools (i.e., 

grades 6 to 12). A more detailed explanation of the above definitions can be found in 

Chapter II.  

Statement of Purpose 

The purpose of this study is to examine pre-service teachers‘ Knowledge for 

Teaching Algebra (KTA) in China and the United States by using a mixed research 

method.   In particular, I will compare teachers‘ KTA between these two countries at an 

item level and a structure level.  At the item level, I mainly focused on mean differences. 

At the structure level, a SEM model (Structural Equation Model) was used to conduct a 

path model and measurement model analysis cross-culturally.  In addition, teachers‘ 

Knowledge for Teaching the Concept of Function (KTCF) was investigated qualitatively.  

Research Questions 

The main purpose is to explore the characteristics of pre-service teacher knowledge 

for teaching algebra in China and the U.S.  However, I also realize that the features of 

programs participants attended should have an impact on their performance of KTA. 
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Thus, the number of courses taken is selected as a key factor which may have direct 

effect on teachers‘ KTA.  In particular, the study is aimed to answer the following 

research questions: 

1. What are the differences and similarities of KTA between Chinese and U.S. 

pre-service teachers?  

2. What are the relationships among different components of KTA within and 

between China and the U.S.?  

3. What are the differences and similarities between Chinese and U.S. pre-service 

teachers‘ KTCF?    

4. What are the relationships between pre-service teachers‘ status of KTA and 

their course- taking?  

Delimitation 

This study only examines pre-service teachers‘ knowledge for teaching algebra. 

Since algebra topics are mainly included in secondary (i.e., middle and high school) 

mathematics, I only focus on the population of pre-service secondary school teachers, 

not on elementary teachers.   

 

 



 8 

CHAPTER II 

LITERATURE REVIEW 

It is a recent effort to measure mathematics teachers‘ knowledge needed for 

teaching, although there is more than 20 years of history in studying teachers‘ 

knowledge. Shulman‘s (1986) classification of subject matter knowledge, pedagogical 

knowledge, and curriculum knowledge laid the foundation for the study of teacher 

knowledge. Drawing on Shulman‘s framework, researchers have further refined and 

developed models to better describe and measure teacher knowledge needed for teaching 

(e.g., Ball et al., 2005; Krauss et al., 2008; Schmidt et al., 2007). This literature review 

consists of two sessions: teacher knowledge needed for teaching, and mathematics 

preparation of teachers in China and the U.S. In the first session, I reviewed the 

conceptualization of teacher knowledge for teaching in general and discussed the models 

for describing teacher knowledge for teaching mathematics. Then, I discussed relevant 

studies on teachers‘ knowledge needed for teaching algebra.  In the second session, I 

analyzed the mathematics education systems and mathematics teacher preparation in 

China and the U.S., and summarized relevant studies on teachers‘ knowledge in 

mathematics in China and the U.S. Finally, grounded in the literature review, a 

framework for this study was proposed. 

Knowledge Needed for Teaching 

Great efforts have been made to seek what kind of knowledge a teacher needs to 

know in order to teach students effectively.  In Shulman‘s (1986) seminal work on 
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teacher‘s knowledge, he identified three categories, namely, content knowledge, 

curriculum knowledge and pedagogical knowledge. The first, content knowledge 

includes knowledge of the subject and its organizing structures.  The teacher needs not 

only to understand that something is so; the teacher must further understand why it is so. 

The second category, curricular knowledge, is ―represented by the full range of 

programs designed for the teaching of particular subjects and topics at a given level, the 

variety of instructional materials available in relation to those programs, and the set of 

characteristics that serve as both the indications and contraindications for the use of 

particular curriculum or program materials in particular circumstances‖ (p. 10). The third, 

pedagogical content knowledge (PCK) is described as follows: 

The most useful forms of representation of those ideas, the most powerful 

analogies, illustrations, examples, explanations, and demonstrations—in a word, 

the most useful ways of representing and formulating the subject that makes it 

comprehensible to others. Pedagogical content knowledge also includes an 

understanding of what makes the learning of specific topics easy or difficult: the 

conceptions and preconceptions that students of different ages and backgrounds 

bring with them to the learning of those most frequently taught topics and lessons. 

(p. 9) 

Since Shulman(1986) coined the term PCK, many researchers have attempted to 

illustrate and clarify the nature of PCK and its implications for teacher education (e.g., 

Gess-Newsome, 1999). However, pedagogical content knowledge is often not clearly 

distinguished from other forms of teacher knowledge. For example, pedagogical content 
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knowledge has been defined as ―the intersection of knowledge of the subject with 

knowledge of teaching and learning‖ (Niess, 2005, p. 510) or as ―that domain of 

teachers‘ knowledge that combines subject matter knowledge and knowledge of 

pedagogy‖ (Lowery, 2002, p. 69). Even a more careful description of PCK is still 

unclear as follows: 

Pedagogical content knowledge is a teacher‘s understandings of how to help 

students understand specific subject matter. It includes knowledge of how 

particular subject matter topics, problems, and issues can be organized, 

represented and adapted to the diverse interests and abilities of learners, and 

then presented for instruction. . The defining feature of pedagogical content 

knowledge is its conceptualization as the result of a transformation of 

knowledge from other domains (Magnusson, Krajcik, & Borko, 1999, p. 96). 

According to the above definitions, PCK includes everything a teacher may need to 

know when teaching a particular topic, obscuring the differences between teacher action, 

belief, reasoning and knowledge.  

Mathematics Teachers’ Knowledge for Teaching 

There is a widespread agreement that mathematics teachers need to have a deep 

understanding of mathematics (Ball, 1993; Grossman, Wilson, & Shulman, 1989; Ma, 

1999). However, teachers‘ knowledge of mathematics alone is insufficient to support 

their attempts to teach mathematics effectively. In addition, in mathematics education, 

many studies defined PCK from different aspects. From example, Ball (1990) 
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differentiated two dimensions of teachers‘ content knowledge: teachers‘ ability to 

execute an operation (division by a fraction) and their ability to represent that operation 

accurately for students. More recently, Ma (1999) described ―profound understanding of 

fundamental mathematics‖ in terms of the connectedness, multiple perspectives, 

fundamental ideas, and longitudinal coherence. In addition, National Research Council 

[NRC] suggested that mathematics teachers need specialized knowledge that ―includes 

an integrated knowledge of mathematics, knowledge of the development of students‘ 

mathematical understanding, and a repertoire of pedagogical practices that take into 

account the mathematics being taught and the students learning it.‖(Kilpatrick, Swafford, 

& Findell, 2001, p.428). 

However, only in recent years, have researchers made efforts to conceptualize and 

measure particular mathematical knowledge that was considered pertinent and important 

for teaching (Ball & Bass, 2000; Ball et al., 2005). Furthermore, Hill and her colleagues 

further explored the relationship between mathematics knowledge needed for teaching 

and students‘ achievement (Hill et al., 2004), and classroom instruction (Hill et al., 

2008). Growing attention was given to capture characteristics of teacher‘s knowledge 

needed for teaching specific content areas (e.g., Ball et al., 2005; Even, 1990, 1993; 

Ferrini-Mundy et al., 2006; Ma, 1999) which will be discussed in the following sections. 

Researchers have attempted to understand what mathematical knowledge is 

entailed in teaching, how to assess it (Ball & Bass, 2000; Ball et al., 2005; Hill, Schilling, 

& Ball, 2004), and how to develop and refine ways to effectively promote mathematical 

knowledge for teaching (MKT) in teacher education and teacher professional 
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development programs (NMAP, 2008; Stylianides & Stylianides, 2006). Ball and her 

colleagues have developed a specific framework describing mathematics knowledge for 

teaching (Ball et al., 2005). According to this model, subject matter knowledge is 

divided into two categories: Common Content Knowledge (CCK), which can be 

developed in anyone who has had school mathematics education, and Specialized 

Content Knowledge (SCK), which is used mainly by teachers. Meanwhile, the model 

makes a distinction between two main categories in pedagogical content knowledge: 

Knowledge of Content and Students (KCS) and Knowledge of Content and Teaching 

(KCT). This model highlights the kind of mathematical content knowledge that is the 

specialty of teachers, and recognizes that knowledge of mathematics for teaching is 

partially the product of content knowledge interacting with students in their learning 

processes and with teachers in their teaching practices.  

Grounded in the concept of mathematics proficiency (Kilpatrick et al., 2001), 

Kilpatrick, Blume, and Allen (2006) proposed a framework for Mathematical 

Proficiency for Teaching. It suggests that mathematical proficiency with content (MPC) 

and mathematical proficiency in teaching (MPT) should be the main components for 

teachers to teach for mathematics proficiency. The mathematical proficiency with 

content (MPC) includes conceptual understanding, procedural fluency, strategic 

competence, adaptive reasoning, productive disposition, cultural and historical 

knowledge, knowledge of structure and conventions, and knowledge of connections 

within and outside the subject. The mathematical proficiency in teaching (MPT) consists 

of knowing students as learners, assessing one‘s teaching, selecting or constructing 
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examples and tasks, understanding and translating across representations, understanding 

and using classroom discourse, knowing and using the curriculum, and knowing and 

using instructional tools and materials. This model basically illustrates Shulman‘s (1986) 

subject matter knowledge and pedagogical knowledge with a focus on mathematics 

proficiency.  

Simon (2006) adopted the idea of a Key Developmental Understanding (KDU) in 

mathematics, namely, understanding a topic from multiple perspectives, building a well-

structured knowledge web surrounding the topic as a way to think about understandings. 

KDUs are regarded as powerful springboards for learning and useful goals of 

mathematics instruction. Silverman and Thompson (2008) argued that developing MKT 

involves transforming these personal KDUs of a particular mathematical concept to an 

understanding of: (1) how this KDU could empower their students‘ learning of related 

ideas; (2) actions a teacher might take to support students‘ development of KDU and 

reasons why those actions might work. They further suggested a framework of  

mathematical knowledge for teaching as follows:  A teacher has developed knowledge 

that supports conceptual understanding of a particular mathematical topic when he or she 

(1) has developed a KDU within which that topic exists, (2) has constructed models of 

the variety of ways students may understand the content, (3) has an image of how 

someone else might come to think of the mathematical idea in a similar way, (4) has an 

image of the kinds of activities and conversations about those activities that might 

support another person‘s development of a similar understanding of the mathematical 

idea, and  (5) has an image of how students who have come to think about the 
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mathematical idea in the specified way are empowered to learn related mathematical 

ideas. This framework opens up the possibility for the goal of mathematics teacher 

education to shift from positioning prospective teachers to develop particular MKT to 

developing professional practices that would support teachers‘ ability to continually 

develop MKT. 

The previously described models enrich and/or extend Shulman‘s taxonomy with a 

focus on the mathematics subject. The third model even extends to include mathematics 

teachers‘ knowledge for professional development. In the next section, some specific 

research on teacher‘s knowledge needed for teaching algebra will be analyzed. 

Teachers’ Knowledge for Teaching Algebra 

Algebra is an important part of school mathematics and is challenging for students 

to learn (NCTM, 2000; NMAP, 2008). Several researchers have proposed models of 

teachers‘ knowledge for teaching algebra (Artigue, Assude, Grugeon, & Lenfant, 2001; 

Even, 1990, 1993; Ferrini-Mundy et al., 2006; Li, 2007). Artigue and colleagues 

differentiated three dimensions of knowledge for teaching algebra as follows:  (1) 

epistemological dimension; (2) cognitive dimension; and (3) didactic dimension. The 

epistemological dimension includes:  (a) the complexity of the algebraic symbolic 

system and the difficulties of its historical development, and (b) how to flexibly use 

algebraic tools in solving different kinds of problems that are internal or external to the 

field of mathematics.  The cognitive dimension deals with knowledge about learning 

processes in algebra, which includes knowing (a) the development of the student‘s 
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algebraic thinking, and (b) students‘ interpretations of algebraic concepts and notations. 

The didactic dimension involves knowledge of (a) the algebra curriculum, and (b) the 

specific goals of algebraic teaching at a given grade, and so on.   

Even (1990) identified and illustrated seven dimensions of subject matter 

knowledge based on an in-depth examination of function concept: (1) essential features, 

(2) different representations, (3) alternative ways of approaching, (4) the strength of the 

concept, (5) basic repertoire, (6) knowledge and understanding of a concept, and (7) 

knowledge about mathematics. Essential features refer to concept image by Vinner 

(1983) as the mental pictures of this concept, together with the set of properties 

associated with the concept (in the person's mind). It is crucial for teachers to judge if an 

instance belongs to a concept family by using an analytical judgment as opposed to a 

mere use of a prototypical judgment. It is necessary that teachers are able to correctly 

distinguish between concept examples and non-examples. Different representations give 

different insights which allow a better, deeper, more powerful and more complete 

understanding of a concept. When dealing with a mathematical concept in different 

representations, one may abstract the concept by grasping the common properties of the 

concept while ignoring the irrelevant characteristics that are imposed by the specific 

representation at hand. Alternative ways of approaching the same concept are used to 

deal with complex concepts in various forms, representations, labels and notations. The 

strength of the concept means the importance or power to open new possibilities, 

understand new concepts and capture the essence of the definition, as well as a more 

sophisticated formally mathematical knowledge. Basic repertoire includes powerful 
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examples that illustrate important principles, properties, and theorems. The basic 

repertoire should be well known and familiar in order to be readily available for use. 

Knowledge and understanding of a concept means to achieve procedural proficiency and 

conceptual knowledge. The learning of a new concept or relationship implies the 

addition of a node or link to the existing cognition structure; thus making the whole 

more stable than before. Knowledge about mathematics includes knowledge about the 

nature of mathematics. This is a more general knowledge about a discipline which 

guides the construction and use of conceptual and procedural knowledge.  

Comparing Artigue et al. (2001) and Evens‘ (1990) models, categories (1), (4), (6) 

and (7) of Even‘s category belong to the epistemological dimension while the others 

belong to the didactic dimension.  

Ferrini-Mundy and her colleagues (2006) have developed a two-dimensional 

framework that describes mathematics knowledge for teaching algebra. In their model, 

the horizontal dimension indicates the fundamental categories of knowledge involved in 

teaching algebra, and the vertical dimension identifies several tasks of teaching in which 

teachers may apply their mathematical knowledge. The three overarching categories, 

decompressing, trimming, and bridging, are more sophisticated mathematical practices 

that utilize multiple elements of knowledge for teaching algebra and involve multiple 

tasks of teaching. Categories of knowledge include core content knowledge, 

representation, content trajectory, application and context, language and convention, and 

mathematical reasoning and proof.  Tasks of teaching consist of analyzing students‘ 

work and thinking, designing, modifying and selecting mathematical tasks; establishing 
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and revising mathematical goals for students; accessing and using tools and resources for 

teaching; explaining mathematical ideas and solving mathematical problems; building 

and supporting mathematical community and discourse. The framework illustrates the 

overall landscape of knowledge for teaching algebra: the major types of knowledge that 

may be used and contexts in which they may be used.  

Flodden and McCrery (2007) have created a three dimensional construct, as 

illustrated in Figure 2.1 below, to guide the development of a measure of teachers‘ 

knowledge for teaching algebra. 

 
 
 
 

 
 

 

 

 

 

 

 

 

Figure 2.1. A framework for assessing knowledge for teaching algebra. 
 
 
 

In this framework, the base of the matrix consists of three types of algebra 

knowledge for teaching including knowledge of school algebra, advanced algebra 
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knowledge and teaching knowledge.  School Algebra Knowledge refers to the algebra 

covered in the curriculum from K-12.  Advanced Algebra Knowledge includes calculus, 

abstract algebra which is related to the school algebra.  Teaching Knowledge refers to 

typical errors, canonical uses of school math, and curriculum trajectories and so on.  

There are four domains of mathematical knowledge or aspects of algebra teaching and 

learning (core concepts and procedures, representations, applications and contexts, and 

reasoning and proof on the Y-axis). The Z-axis contains two major themes in school 

algebra content: expressions, equations and inequalities, and functions and their 

properties. Assessment items can be specifically written for each cell in the matrix; for 

instance, knowledge of school algebra that is related to a core procedure for solving 

equations. Each assessment item would be uniquely located in Figure 2.1. as a 

coordinated system.  

Based on the existing frameworks, Li (2007) reported a refined framework for 

investigating teachers‘ mathematical knowledge for teaching algebraic equation solving. 

His framework consists of three domains of knowledge: knowledge of the subject matter, 

knowledge of learners‘ conceptions and knowledge of didactic representations.  

Knowledge of the subject matter refers to mathematics subject matter as systems of 

established definitions, properties, facts, relations and connections; use of notations and 

representations;  and methods for reasoning and problem solving.  Knowledge of 

learners’ conceptions includes the subject matter as understood by learners, including 

typical pre-conceptions, misconceptions, mistakes, questions, difficulties, strategies, 

reasoning, and factors that make a particular concept or procedure easy or hard.  
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Knowledge of didactic representations means that the subject matter is unpacked, linked, 

organized, and tailored through purposeful sequencing of topics and choices of examples, 

models, explanations, tasks, metaphors, and technological presentations.  

Knowledge for Teaching Some Key Concepts in Algebra 

Recent research has examined teachers‘ knowledge needed for teaching several 

important concepts in school algebra, such as function, expressions, and equations. 

Teaching and Learning the Concept of Function 

There have been different approaches to developing meaningful algebra (i.e., 

Bednarz, Kieran, & Lee, 1996; Hart, 1981; Usiskin, 1988). Usiskin summarized the 

following four approaches: (1) algebra as generalized arithmetic, (2) algebra as a study 

of procedures for solving certain kinds of problems, (3) algebra as the study of 

relationships among quantities, and (4) algebra as the study of structures. Learning 

algebra should include the following three core activities: generational, transformational 

and global/meta-level (Kieran, 2004).  Function concept is one of the most important but 

difficult concepts across middle and high school levels (NCTM, 2000, 2006). Based on 

the theory of process-object duality of mathematics concept development (Sfard, 1991, 

1992), a model of developing function concept is described as four stages:  pre-function, 

action, process and object (Briedenbach, Dubinsky, Hawks, & Nichols, 1992). 

According to this mode, for pre-function, it means that the subject really does not 

display very much of a function concept.  An action, is repeatable mental or physical 
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manipulation of object, such a conception of function would involve, for example, the 

ability to plug numbers into an algebraic expression and calculate. A process involves a 

dynamic transformation of quantities according to some repeatable means that, given the 

same original quantity, will always produce the same transformed quantity. A function is 

conceived as of an object, if it is possible to perform action on it, in general actions that 

transform it. 

In general, three representations are used for presenting functions:  (1) geometrical 

representations including chart, graph, and histogram and so on; (2) numerical 

representations including numbers, table, and ordered number pairs and so on; and (3) 

algebraic representations including letter, formula, and mapping and so on (Verstappen, 

1982). However, different representations play different roles in helping students 

understand the concept of function (Schwartz & Yerushalmy, 1992). For example, the 

algebraic representations benefit the understanding of function as a process; while the 

graphical representations help understand a function as an object. Moreover, some 

manipulations such as composition function performed on algebraic representations are 

easy to understand, while other manipulations transformations performed on graphical 

representations will be much easy to understand. Thus, it is critical to select appropriate 

representations with regard to different contexts. 

There are quite a number of studies on teachers‘ knowledge for teaching the 

concept of function (e.g., Even, 1990, 1992, 1993, 1998; Norman, 1992, 1993 ). For 

example, based on a study on 10 secondary teachers‘ knowledge of the function concept, 

Norman (1992) found that the secondary teachers tended to have inflexible images of the 
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concept of function that restricted their abilities to identify functions in unusual contexts 

and to shift among representations of functions. The sampled teachers were able to give 

formal definitions of function, distinguish functions from relations, and correctly 

identify whether or not a given situation was functional. However, the teachers did not 

show strong connections between their informal notions of function and formal 

definitions, and were not comfortable with generating contexts for functions. Hitt (1994) 

investigated 117 mathematics teachers‘ ideas on function and found that the teachers had 

difficulty in constructing functions that were not continuous or were defined by different 

algebraic rules on different parts of the domain. Consistent with Norman‘s findings, 

Chinnappan and Thomas (2001) found that all four pre-service secondary teachers in 

their study had a preference of thinking about function graphically, had a weak 

understanding of representational connections, and a limited ability to describe 

applications of functions. 

Based on a survey of teachers‘ knowledge about function with 152 prospective 

secondary teachers, Even (1993) found that many prospective secondary teachers did not 

hold a modern conception of a function as univalent correspondence between two sets. 

These teachers tended to believe that functions are always represented by equations and 

that their graphs are well-behaved. None of the teachers had a reasonable explanation of 

the need for functions to be univalent and over-emphasized the procedure of the ―vertical 

line test‖ without concern for understanding. Given the often weak and fragile 

understanding of secondary mathematics teachers about the concept of function, it is not 

surprising to find that the knowledge of an experienced 5th grade teacher was missing 
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several key ideas (such as univalence and unclear notions of dependency) and lacked a 

notion of the connectivity among representations (Leinhardt, Zaslavsky, &Stein, 1990; 

Stein, Baxter, & Leinhardt, 1990). 

In sum, teachers have difficulties in understanding the concept of functions as 

univalent correspondence between two sets (sometimes, it is not presented by a formula, 

or it is not of a discontinuous graph), (2) shifting different representations flexibly, and 

(3) relating formal function notion to contextual situation which produce the function.  

Teaching and Learning  Expressions and Equations  

Expressions. An algebraic expression can be seen as a string of symbols, a 

computational process, or as a representation of a number. An expression can also 

become a function representing change if the context changes (Sfard & Linchevski, 

1994). Sfard and Linchevski also clarify a potential issue in understanding algebraic 

expressions when they note ―…the difficulty lies … in the necessity to imbue the 

symbolic formulae with the double meanings: that of computational procedures and that 

of the objects produced….  To those who are well versed in algebraic manipulation 

(teachers among them), it may soon become totally imperceptible‖ (pp.198-199). The 

duality (procedure vs. structure) of algebraic expression results in students‘ learning 

difficulty. For example, when knowing x=3, y=2，find out the value of 3x+y, a 

procedure perspective is adopted. While simplifying the expression of 3x+y+8x, it is 

necessary to adopt an object (structure) perspective.  In addition, it was found that 

extrapolating some manipulation rules to some contexts inappropriately is a common 
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mistake (Matz, 1982). For example, applying distribution law o(AnB)=oAnoB to an 

inappropriate situation: )sin()sin()sin(    or  applying ― X
A

AX
 ‖ to  

― BA
YX

BYAX





‖ are common mistakes. For another example, applying an known 

rule (such as if ab=0 then a=0 or b=0) to an unfamiliar situation: (X-A)(X-B)=K  (X-

A)=K or (X-B)=K is also a common mistake.   

Equation. An equation is a combination of letters, operations and an equal sign 

such that if numbers are substituted for the letters, either a true or false proposition 

results.  Aspects of student difficulty within this topic are well documented in the 

literature on students‘ algebra knowledge (Booth, 1984; Kieran, 1992; Wagner, Rachlin, 

& Jensen, 1984; Wagner & Kieran, 1989).  

First of all, it is not easy to understand the meaning of the sign ―=‖.  In algebra, 

equal sign ―=‖ means equivalence of two algebraic expressions (equation), or presents 

one expression by another one (computation). Alibali, Knuth, Hattikudur, Mcneil and 

Stephens (2007) investigated 81 students at grades 6, 7 and 8 about their understanding 

of equal sign and equation for three years. They found that overall the students increased 

their understanding of the two concepts, but some students at grade 8 still did not 

understand the equal sign deeply.  

Second, when solving equations, students face two challenges: the meaning of 

equal sign and the reverse computation relationship between addition and subtraction 

(Booth, 1984; Sfard & Linchevski, 1994). For example, Sfard and Linchevski (1994) 
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found that students at the age of 14 and 15 were able to solve the equation of 

7x+157=248, but failed to solve equation of 112＝12x+247.  They attribute the students‘ 

difficulty to two issues: the position and meaning of equal sign ―=‖, and the subtraction 

of a larger number from a smaller number.  Moreover, even though students understood 

the reverse computation relationship between addition and subtraction, they still did not 

understand that the order of computation cannot be changed arbitrarily. For them, it is 

still a big challenge to solve equations including combination computation (Piaget & 

Moreau, 2001; Ronbing, Ninowski, & Gray, 2006).  

Two Perspectives about the Concept of Function: A Case Study of Quadratic Function  

Process-product dichotomy is a widely accepted theory of mathematics concept 

development (Briedenbach et al., 1992; Schwartz &Yerushalmy, 1992; Sfard, 1992). 

With regard to the development of the function concept, according to the process 

perspective, a function is perceived of as linking x and y values: for each value of x, the 

function has only one corresponding y value. On the other hand, the object perspective 

regards functions or relations and any of its representation as entities. For example, 

functions could be regarded algebraically as members of parameterized classes, or in the 

plane graphs could be thought of as being rotated or translated (Moschkovich, 

Schoenfeld, & Arcavi, 1993).  

Researchers further gave more detailed descriptions and illustrations of these two 

perspectives (Breidenback et al., 1992; Even, 1990; Moschkovick et al., 1993; Schwartz 
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&Yerushalmy, 1992; Sfard, 1992). For example, Schwartz and Yerushalmy (1992) 

illustrated the process-product distinction as follows:  

Consider the two functions: x+3 and 4+x-1. 

From the point of view of the process that is carried out with the recipe, these are 

two different recipes. If, however, one was to plot the output of each of these 

recipes again its input on a Cartesian plane then the two recipes would be 

indistinguishable.  We see that the symbolic representation of function makes its 

process nature salient, while the graphical representation suppresses the process 

nature of the function and thus helps to make the function more entity-like. A 

proper understanding of algebra requires that students be comfortable with both of 

these aspects of function ( p.265). 

Furthermore Moschkovick et al. (1993) not only extensively illustrated the 

distinction between the process and object perspectives, but also emphasized the 

importance of connection between these two perspectives, and flexibility in switching 

from different perspectives. They discussed multiple methods of solving the following 

question:   

Why is the graph of y=3x steeper than the graph of y=2x? What about y=4x, y=5x, 

y=10x?  (p.83). 

In one method, by considering the equation of line L: bmxy   and two points 

P ),( 11 yx and Q ),( 22 yx ,  an algebraic formula was resulted in:  
21

22

xx

yy
m




 . If taking 

any two points on L whose x coordinates differ by 1, then myy  12 . If m is positive, 
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the graph of L raises m units for each unit change in x. Thus, large (positive) m 

corresponds to steeper slope. This method basically adopted a process perspective.   

In another method, letting L1: xmy 1 , and L2: xmy 2   pass respectively through 

the points (1, m1), and (1, m2),  hence m2>m1, L2 rise more steeply. In this solution, two 

aspects of both the process and object perspective were adopted in the algebraic and 

graphical representations. From the object perspective, the individual equations and lines 

are considered as members of the parametric family  Rmmxy  : . But using points on 

the graphs and determining their coordinates using the equations of the lines, employs 

the process perspective. 

Flexibility in Learning the Concept of Function: A Case Study of Quadratic Function. 

In this part, I review the meanings of flexibility in using representations, and 

summarized the studies on teachers‘ knowledge for teaching algebra with regard to the 

flexibility in using representations.   

Flexibility in using representations. Learning algebra with understanding require 

students to ―understand the meaning of equivalent forms of expressions, equations, 

inequalities, and relations‘ (NCTM, 2000, p. 296). In order to make that understanding 

occur, teachers have to organize a classroom discussion to open questions about the 

equivalence. For example, with regard to quadratic equations or function, students need 

opportunities to discuss questions across equations, expression and functions as follows: 

When solving 0333 2  xx , I can think of the task as finding the zeros of the 

function y= 333 2  xx .In the context of finding zeros, I can divide 3 in the 
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equation. However, when working with the function of y= 333 2  xx , we cannot 

divide all coefficients by 3.  Why is that?  (Chazan & Yerushalemy, 2003, p.124)  

In the Focal Points from pre-K to Grade 8 (NCTM, 2006), students (grade 8)  are 

suggested to use  linear functions, linear equations, and systems of linear equations to 

represent, analyze, and solve a variety of problems. Students are expected to  

1. Recognize a proportion (y/x = k, or y = kx) as a special case of a linear equation 

of the form y = mx + b, understanding that the constant of proportionality (m) is 

the slope and the resulting graph is a line through the origin. 

2. Understand that the slope (m) of a line is a constant rate of change, so if the 

input, or x-coordinate, changes by a specific amount, a, the output, or y-

coordinate, changes by the amount ma.  

3. Translate among verbal, tabular, graphical, and algebraic representations of 

functions (recognizing that tabular and graphical representations are usually 

only partial representations). 

4. Describe how such aspects of a function as slope and y-intercept appear in 

different representations. (p.20). 

In the Focus of High School Mathematics (NCTM, 2009), making sense and 

reasoning is the core value of learning mathematics in general, and algebra in particular.  

It was suggested that key elements of reasoning and sense making with algebraic 

symbols should include the following: 
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1. Meaningful use of symbols. Choosing variables and constructing expressions 

and equations in context; interpreting the form of expressions and equations; 

manipulating expression so that interesting interpretations can be made. 

2. Mindful manipulation. Connecting manipulation with the laws of arithmetic; 

anticipating the results of manipulations; choosing procedures purposefully in 

context; picturing calculations mentally. 

3. Reasoned solving. Seeing solution steps as logical deductions about equality; 

interpreting solutions in context. 

4. Connecting algebra with geometry. Representing geometric situations 

algebraically and algebraic situations geometrically; using connections in 

solving problems. 

5. Linking expressions and functions. Using multiple algebraic representations 

to understand functions; working with function notation. 

In order to develop algebra fluency, attention should be paid to interpret 

expressions both at formal level and as statements about real-world situations. At the 

outset, the reasons and justifications for forming and manipulating expressions should be 

major emphasis of instruction (Kaput et al., 2008). As comfort with expressions grows, 

constructing and interpreting them require less and less effort and gradually become 

almost subconscious. For example, students should know which is most useful for 

finding the maximum value of the quadratic function: 
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Although multiple representations of functions—symbolic, graphical, numerical, 

and verbal—are commonly seen, the idea of multiple algebraic representations of 

functions is less commonly made explicit. Different but equivalent ways of writing the 

same function may reveal different properties of the function (as illustrated by the above 

example). Building fluency in working with algebraic notation that is grounded in 

reasoning and sense making will ensure ―that students can flexibly apply the powerful 

tools of algebra in a variety of contexts both within and outside mathematics‖ (NCTM, 

2009, p.37). 

Function is one of the most important tools for helping students make sense of the 

world around them and prepare them for further study in mathematics as well. Students‘ 

continuing development of the concept of function must be rooted in reasoning, and 

likewise functions are an important tool for reasoning. Key elements of reasoning and 

sense making with functions include the following (NCTM, 2009, p.41): 

1. Using multiple representations of functions. Representing functions in various 

ways, including tabular, graphic, symbolic (explicit and recursive), visual, and 

verbal; making decisions about which representations are most helpful in 

problem-solving circumstances; and moving flexibly among those 

representations. 

2. Modeling by using families of functions. Working to develop a reasonable 

mathematical model for a particular contextual situation by applying 

knowledge of the characteristic behaviors of different families of functions. 
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3. Analyzing the effects of parameters. Using a general representation of a 

function in a given family (e.g., the vertex form of a quadratic, f (x) = 

khxa  2)( to analyze the effects of varying coefficients or other parameters; 

converting between different forms of functions (e.g., the standard form of a 

quadratic and its factored form) according to the requirements of the problem-

solving situation (e.g., finding the vertex of a quadratic or finding its zeros). 

In summary, these documents suggested that the following aspects are important in 

algebra learning, particular with the learning of function: (1) building the connection 

among expressions, equations/inequality, and functions; (2) flexible use of multiple 

representations of a function and shift among different representations, and (3) flexible 

use of multiple expressions of a function. As Star and Rittle-Johnson (2009) argued, 

―understanding in algebra can be considered to consist of two complementary capacities, 

which we refer to as between and within representation fluency. The first concerns the 

ability to operate fluently between and cross multiple representations, while the second 

is about facility within each individual representation‖ (p.11). Thus, it is critical to have 

a flexible and adaptive use of representations and expressions.  

The representation flexibility should include the following abilities: (1) Having the 

necessary diagrammatic knowledge to interact with the representations (de Jong et al., 

1998; Roth & Bowen, 2001); (2) Being able to coordinate the translation and switching 

between representations within the same domain (de Jong et al., 1998; Gagatsis & 

Shiakalli, 2004; Lesh, Post, & Behr, 1987); and (3) Having the necessary strategic 
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knowledge and skills to choose the most appropriate representation for each occasion 

(Uesaka & Manalo, 2006). 

With regard to the specification of the concept of function, it is necessary to 

consider flexibility in two aspects.  One is the flexibility in selecting perspectives of 

function: process and object, and shifting between these two perspectives (Breidenbach 

et al., 1992; Dubinsky & Harel, 1992; Sfard, 1991).  Another is the flexibility in using 

appropriate representations of functions: tabular, graphic, symbolic, and verbal 

representations, and shifts between them (Even, 1998; Moschkovick et al., 1993).  

Teachers’ knowledge of representational flexibility.  Some studies found that 

teachers do not have the appropriate knowledge of using representation flexibly.  To 

investigate prospective mathematics teachers‘ subject knowledge, Even (1998) reported 

her finding on teachers‘ knowledge of using representations.   For example, she 

presented the following questions: 

If you substitute 1 for x in expression cbxax 2  (a, b and c are real numbers), 

you get a positive number, while substituting 6 gives a negative number.   How 

many real solutions does the equation 02  cbxax have?   Explain. 

Only 14% of the 152 subject correctly solved the problem.  These subjects 

considered the function corresponding to y= cbxax 2 , switched representations, and 

either referred to a graph mentally or actually sketched a graph. Most of the subjects 

(about 80%) did not show any attempt to look at another representation of the problem, 

and did not solve the problem.  A large number of subjects were stuck with manipulation 
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of inequalities: 0 cba    0636  cba . They were not able to find correct 

answers.  

In addition, she also found that the subjects who used a point-wise approach (e.g., 

process perspective) were more successful in solving problems that involved different 

representations of function than subjects who used a global approach (e.g., object). For 

example, in the following question: 

This is the graph (Figure 2.2) of the function f(x)= cbxax 2 . State whether a, b, 

and c are positive, negative or zero. Explain your decision.   

 
 
 

 

Figure 2.2. Graph of quadratic function 
 

 

 

Only subjects who used a point-wise approach and looked at the y-intercept found 

correctly the sign of ―c‖. They explained as follows: c->positive (when x=0, f(x)=c is 

positive).  

In Black‘s (2007) study, he asked in-service high school mathematics teachers to 

explain their choice to following question to students.  22% of 67 participants got correct 

answers.  
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 Mr. Seng‘s algebra class is studying the graph of cbxaxy  2  and how 

changing the parameters a, b, and c will cause different translations of the 

original graph (Figure 2.3). 

 
 
 

 

Figure 2.3. Graphs of original and translated quadratic functions  
 
 
 

Which of the following is an appropriate explanation of the translation of the 

original graph cbxaxy  2  to the translated graph? 

          A. Only the a value changed.    B. Only the c value changed.  

          C. Only the b value changed.     D. At least two of the parameters hanged. 

          E. You cannot generate the translated graph by changing any of the parameters. 

He concluded that the participant had ―a lot of difficulty in both their answer 

selection, as well as in the explanations provided for those answers‖ (p.134). 19% the 

participants did not even attempt to answer the problem, and many more did not explain 
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their answers.  The finding seemed to suggest those mathematics teachers had difficulty 

in performing on function as an object (i.e., translation of graph) and shift between 

different representations (Using algebraic representation to explain graphic changes).  

As argued by Moschkovick et al. (1993), ―competence in the domain (i.e., line 

equation) consists of being able to move flexibly across representations and 

perspectives, where warranted: to be able to ‗see‘ lines in the plane, in their algebraic 

form, or in tabular form, as objects when any of those perspective is useful, but also to 

switch to the process perspective, where that perspective is appropriate‖. (p.97) 

Given the importance of developing students‘ flexibility in learning the concept of 

function, and the weakness of teachers‘ knowledge for teaching function promoting this 

flexibility, I focus on teachers‘ flexibility in shifting different perspectives (process vs. 

object), and selecting multiple representations (verbal, tabular, symbolic, and graphic).  I 

will further illustrate the concept of flexibility in solving problems related to quadratic 

function in methodology part.  

Mathematics Teacher Education in China and the U.S. 

In this section, I briefly introduce teacher preparation systems in China and the U.S. 

providing a background for understanding teacher knowledge growth.   

Mathematics Teacher Education in China 

Since adopting the ―nine-year compulsory education system‖ in 1986, teacher 

education has become a daunting task. Through approximately 20 years of effort, a 
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three-staged process of ―normal‖ education has been established and has made 

significant contribution to educating teachers from elementary to secondary levels in 

China. It means: (1) primary school teachers are trained in secondary normal schools; (2) 

junior high school teachers are trained in three-year teacher colleges; and (3) senior high 

school teachers are trained in four-year teacher colleges and normal universities. 

However, with the rapid development of the economy and technology in China, it has 

been an urgent agenda to upgrade and foster teachers‘ quality. In order to meet this 

challenge, the Ministry of Education (1998) documented an action plan for revitalizing 

education in the 21st century. Two projects were launched; one is referred to as the 

―Gardener Project‖ and aims to establish continuing teacher education systems for 

practicing teachers. Meanwhile, the Ministry of Education (1999) enacted a decision on 

deepening education reform and whole advancing quality education in which 

comprehensive universities and Non-normal Universities were encouraged to engage in 

educating elementary and secondary teachers. This meant that the privilege of normal 

universities for teacher education changed. The Ministry of Education (2001a) put 

forward a process to improve an open teacher education system based on the existing 

Normal universities and supported by other universities, and to integrate prospective 

teacher preparation and practicing teachers‘ professional development. 

Through five years of development and research, teacher education has shown 

some changes: 

1. Integration of education of prospective and practicing teachers; 



 36 

2. Opening of teacher education in all qualified universities rather than just 

Normal universities; 

3. Forming a new three-staged teacher education: where primary school 

teachers are trained in the three-year teacher colleges or four-year teacher 

colleges; the junior and senior high school teachers are trained in four-year 

teacher colleges and Normal universities, and some of the senior high school 

teachers are required to attain postgraduate level studies(Gu, 2006). 

In 2004, there were more than 400 institutes conducting teacher education program 

and about 280 of them were teacher education universities or colleges. It was also found 

that one third of graduates who became teachers were from non-teacher education 

institutes (Yuan, 2004). This proportion has steadily increased in recent years. 

According to the Educational Statistics Yearbook of China 2008 (Ministry of Education, 

2009), there are only 188 normal institutions where preparing teachers at different levels 

is main purpose. In addition, there is now a flexible and encouraging accreditation 

system for teacher recruitment in China. University degree holders who wish to become 

school teachers and can pass some related examinations, usually pedagogy, psychology 

and subject didactics, in order to be a secondary school teacher. 

Middle and high school mathematics typical were educated in mathematics 

department.  Through analysis of the course design of mathematics department at a 

normal university; Li, Huang and Shin (2008) concluded that the secondary mathematics 

preparation program exhibits the following characteristics: 
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1. Providing prospective teachers with a foundation in profound mathematics 

knowledge and high advanced mathematics literacy 

2. Emphasizing review and study of primary mathematics. It was believed that a 

profound understanding of primary mathematics and strong ability of solving 

problems in primary mathematics were crucial to being a qualified mathematics 

teacher at secondary schools. Due to the tradition of examination oriented 

teaching, a high level of problem solving ability is necessary for a qualified 

teacher; 

3. Teaching practicum is limited. A six-week teaching practicum can only provide 

prospective teachers with a preliminary experience of teaching in secondary 

schools. 

This reflects a belief that a solid mathematics base is vital for teacher preparation. 

Furthermore, higher mathematics courses are taken as a priority and privilege since 

prospective teachers will have less chance to learn them in their career lives. It is a main 

aim to foster prospective teachers with a bird‘s eye view of understanding elementary 

mathematics deeply rather than immediately connecting to what they will teach in 

schools; though there are special courses such as Modern Mathematics and School 

Mathematics, and Elementary Mathematics in Depth which connect higher mathematics 

to elementary mathematics. In contrast with the rigid requirement of mathematics, it is 

hoped that graduates learn teaching skills from their own practical teaching when they 

become teachers.  
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Mathematics Teacher Education in the U.S. 

In the United States, there are three levels of pre-college education: elementary 

school( Grades K-5 or K-6); middle school or junior high school (grades 6-8 or 7-8); and 

high school (Grades 9-12). In 2007, forty-states had either a middle school or junior high 

school certification or endorsement requirement (National Middle School Association, 

2007). Many of these states have special mathematics requirements for that certification 

or endorsements by the teachers‘ selected area of content expertise.  In mathematics, 

these special requirements range from passing a test to completing the equivalent of an 

undergraduate minor in mathematics. The Conference Board of Mathematical Science 

[CBMS] (2001) recommendations call for the teaching of mathematics in middle school 

(grades 5-8) to be conducted by mathematics specialists; teachers specially educated to 

teach mathematic to the students of the grade levels they instruct. These teachers should 

have at least twenty-one semester hours in mathematics, including at least twelve 

semesters hours of fundamental ideas of mathematics appropriate for middles school 

teachers.  

Middle school math teachers. Based on National NAEP survey (Smith, Arbaugh, 

& Fi, 2007), 85% of the nation‘s eight graders are taught by teachers who were certified 

by their state.  When examined by teachers‘ degrees, 30% of the nation‘s eighth graders 

had teachers with an undergraduate degree in mathematics; 26 % had teachers with an 

undergraduate degree in mathematics education; and the remaining students were taught 

by a teacher with a degree in some other discipline. Thus, at least one-third of the 

nation‘s eighth-grade students were being taught mathematics by teachers without 
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substantial mathematics training.  According to National Report Card 2009 (National 

Assessment of Education Progress [NAEP], 2009), the situation gets worse:  27% of the 

nation‘s eighth graders had teachers with an undergraduate degree in mathematics; 30 % 

had teachers with an undergraduate degree in mathematics education. This is a major 

concern of the U.S. mathematics teacher education.  

High school mathematics teachers. For high school mathematics teacher 

certification, states require from eighteen (in South Dakota) to forty-five (in California) 

semester hours of mathematics, equivalent to six to fifteen semester courses, or they 

require a major in the subject. When a number of credit hours of mathematics are 

specified for the certificate, almost half require thirty credit hours. The specific courses 

mentioned include three courses in calculus (two single-variable and on multivariable), 

linear algebra, geometry, and abstract algebra, plus a host of various electives.  

The 2000 National Survey of Science and Mathematics Education (Whittington, 

2002) was designed to identify trends in the areas of teacher background and experience, 

curriculum and instruction, and the availability and use of instructional resources. A total 

of 5,728 science and mathematics teachers in schools (1,367 of them were high school 

mathematics teachers) across the United States participated in this survey.  According to 

this survey, 58% of mathematics teachers in grades 9-12 in their sample had an 

undergraduate major in mathematics, 22% had a degree in mathematics education, 10% 

had a degree in some other education field, and 10% had a degree in a field other than 

education or mathematics.  In this sample, 96% of teachers had completed a course in 

calculus, 86 in probability and statistics, 83% in geometry, 82 % in linear algebra, 70 in 
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advanced calculus, and 65% in differential equations and so on. The details are shown in 

Table 2.1.  

 
 

Table 2.1 
 High School Mathematics Teachers Completing Various College Courses  

Course  Percent of teachers  

General methods of teaching 90 
Methods of teaching mathematics 77 
Supervised student teaching in mathematics 70 
Instructional uses of computers/other technologies 43 
Mathematics for middle school teachers 26 
Geometry for elementary/middle school teachers 17 
Calculus 96 
Probability and statistics 86 
Geometry 83 
Linear algebra 82 
College algebra/trigonometry/ elementary functions 80 
Advanced calculus 70 
Computer science course  68 
Differential equations  65 
Abstract algebra  65 
Computer programming 62 
Other upper division mathematics  60 
Number theory  56 
History of mathematics  41 
Real analysis  38 
Discrete mathematics  38 
Applications of mathematics/ problem solving  37  

 
 
 

The CBMS report (2001) recommends that high school teachers of mathematics 

have a major in mathematics; that includes a six-hour capstone course connecting their 

college mathematics course with high school mathematics.  This recommendation stems 

from the view that teachers need to know the subject they will teach, they need to 

understand the broad range of the mathematical sciences their students will encounter in 
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their careers, and they need to develop the habits of mind and dispositions towards doing 

mathematics that characterize effective workers in the field.  

Studies on Teachers’ Knowledge for Teaching in China and the U.S. 

Thanks to Ma‘s (1999) work that revealed Chinese elementary teachers had a 

profound understanding of fundamental mathematics concepts in four areas: subtraction 

with regrouping, multi-digit multiplication, division by fractions, and the relationship 

between perimeter and area in contrast to  U.S. counterparts, several studies have 

focused on mathematics teacher knowledge in China and the U.S.(An et al.,  2004; Cai, 

2005; Cai &Wang, 2006; Zhou, Peverly, & Xin, 2006). By comparing pedagogical 

content knowledge of middle mathematics teachers between the U.S. and China, An et 

al. (2004) found that the Chinese mathematics teachers emphasized gaining correct 

conceptual knowledge by relying on a more rigid development of procedures, while the 

United States teachers emphasized a variety of activities designed to promote creativity 

and inquiry in order to develop a concept mastery. In addition, a study comparing 162 

U.S. and Chinese third grade mathematics teachers‘ expertise in teaching fractions (Zhou 

et al., 2006) found that Chinese teachers significantly outperformed their U.S. 

counterparts in subject matter knowledge, but they performed poorly in comparison to 

their U.S. counterparts on a test designed to measure general pedagogical knowledge. 

However, in pedagogical content knowledge there are no determinative patterns found.   

 Cai and his colleagues (Cai, 2000, 2005; Cai & Wang, 2006) have conducted a 

series of comparative studies on students‘ problem solving and teachers‘ construction of 
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representations between China and the U.S. It was found that Chinese students preferred 

using symbolic representations while U.S. students tended to use pictorial 

representations (Cai, 1995, 2000). In addition, both Chinese and U.S. teachers used 

concrete representations for developing the concepts of ratio and average, but Chinese 

teachers tended to use symbolic representations for solving problem while U.S. teachers 

still preferred to use concrete representations when solving problems (Cai, 2005; Cai & 

Wang, 2006). Furthermore, Huang and Cai (2007) found that the U.S teachers tended to 

develop multiple representations simultaneously while the Chinese teachers tend to 

selectively use representations hierarchically.  

These studies seem to suggest Chinese elementary mathematics teacher have a 

stronger subject matter knowledge, probably pedagogical content knowledge, compared 

with their U.S. counterparts. Meanwhile, Chinese mathematics teachers value symbolic 

representation more than U.S. mathematics teachers when solving problem.   

However, there are no due comparative studies on teachers‘ knowledge needed for 

teaching special areas at middle and high school levels between China and the U.S.  Also, 

teachers‘ representational flexibility which is closely related to teachers‘ beliefs and 

teaching has not been explored appropriately. Thus, in this study, we examined pre-

service secondary school teachers‘ knowledge for teaching algebra with a focus on the 

concept of function and representation flexibility in China and the U.S.  Therefore, the 

current study will contribute to our understanding of mathematics teacher‘s knowledge 

for teaching algebra in China and U.S. at middle and high schools and shed light on 

improvement of teacher preparations in China and the U.S. 
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Conclusion 

This chapter provided a review of relevant literature, laying a theoretical 

foundation for this study. First of all, the development of the notion of teacher 

knowledge in general, and ways of defining and measuring mathematics teacher 

knowledge needed for teaching in particular were summarized. Second, the specific 

frameworks for studying mathematics knowledge for teaching algebra were analyzed 

and compared. Third, relevant studies on algebra teaching and learning, and teacher 

knowledge needed for teaching algebra were summarized. Fourth, the literature review 

focused on teacher knowledge for teaching the concept of function promoting flexibility 

in adapting appropriate perspectives and representations of function. Fifth, a brief 

summary of mathematics teacher preparation in China and the U.S. was presented. 

Finally, some comparative studies on teachers‘ knowledge for teaching between China 

and the U.S. are summarized.  
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      CHAPTER III 

METHODOLOGY 

This study compared the characteristics of mathematics knowledge needed for 

teaching algebra between China and the United States.  An embedded mixed methods 

design was adapted (Creswell & Clark, 2007).  A design in which the main data set 

consists of written answers to a questionnaire which includes multiple choice items and 

open-ended items, while the supportive data set is comprised of the written answers to 

the open-ended items and follow up interviews. Its primary purpose was to compare the 

status and structure of teacher knowledge for teaching algebra through quantitatively 

analyzing the participants‘ performance in the KTA survey between the two countries. 

The second purpose was to further illustrate the similarities and differences in KTA 

through qualitatively analyzing the answers to the open-ended questions and follow up 

interviews which focus on the core concept of function. Based on the questionnaire of 

KTA by Floden and McCrory (2007), I developed an instrument for measuring teachers‘ 

knowledge needed for teaching algebra, with a focus on the concept of function. Then, 

completed questionnaires were collected from 376 pre-service Chinese mathematics 

teachers from five purposefully selected teachers‘ training institutions.  At the same time, 

I also collected data from 115 U.S. pre-service teachers who were preparing to be 

mathematics and science teachers at the middle school level from a well respected 

university in the south of the United States. All the Chinese and U.S. data were scored 

and quantified as SPPS data set, and then the data set was analyzed through techniques 

including multiple comparisons and SEM model to answer the research questions. A 
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qualitative analysis of the answers to the open-ended items was conducted to identify the 

strategies used and the flexibility in solving these problems. This chapter is organized 

into three parts. First, the process of developing a Chinese instrument based on the 

existing U.S. questionnaire is described in detail. Next, the ways of data collection are 

described. Finally, the methods of data analysis are depicted.  

Instrumentation 

The translation equivalence and cultural adaptation of instruments in international 

comparative studies is an issue which has to be dealt with carefully and appropriately. 

For example, the TIMSS technical report (Chrostowski & Malak, 2004) suggested that 

translators should consider the following aspects when translating instruments: (1) 

identifying and minimizing cultural differences, (2) finding equivalent words and 

phrases, (3) ensuring that the reading level was the same in the target language as in the 

original international version, (4) ensuring that the essential meaning of the text did not 

change, (5) ensuring that the difficulty level of achievement items did not change, and (6) 

making changes in the instrument layout required due to translation. Both TIMSS and 

PISA (Organization for Economic Co-operation and Development [OECD], 2006) 

suggested adopting a double translation procedure (i.e. two independent translations 

from the source language, with reconciliation by a third person). This strategy offers two 

significant advantages when compared with the back translation procedure: (1) 

Equivalence of the source and target languages is obtained by using three different 

people (two translators and a reconciler) who all work on the source and the target 
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versions; and (2) Discrepancies are recorded directly in the target language (OECD, 

2006). 

With regard to the adaptation of instruments of mathematics knowledge for 

teaching to different cultures, Delaney et al. (2008) highlighted several critical issues. 

These points include:  (1) what teachers do during mathematics lessons, (2) teachers‘ 

conceptions about mathematics and about mathematics teaching, (3) the classroom 

contexts in which the knowledge is used, (4) differences in the types and sophistication 

of the explanations of students mistakes, (5) responding to student errors, (6) the 

presence and prevalence of specific mathematical topics, (7) the mathematical language 

used in the school, and (8) the content of the textbooks.  They further suggested making 

relevant changes in the following four categories: the general cultural context related, the 

school cultural context related, mathematical substance related, and others. 

In this study, I dealt with these issues using the following strategies: (1) content 

appropriateness in different cultures, and (2) equivalence of the instrument translation.   

Content Appropriateness  

A research team at Michigan State University has developed an instrument for 

measuring mathematics knowledge for teaching algebra for several years. The validity 

and reliability of the instrument has been tested in the United States context (Floden et 

al., 2009). In order to adapt this U.S. instrument into Chinese context, I first translated it 

into Chinese and invited three Chinese mathematicians and mathematics educators who 

are bilingual scholars to scrutinize the instrument and provide supplementary items if 
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needed. Since the function concept is one of core concepts in  algebra and  is difficult for 

students to learn and for teachers to teach (Kieran, 2007; Even, 1990, 1993), I decided to 

include some open-ended items related to teacher knowledge needed for teaching the 

concept. Based on the study of the mathematics curriculum standards in China and the 

U.S., an extensive literature review on mathematics knowledge for teaching the concept 

of function, and consideration of the Chinese mathematicians and mathematics 

educators‘ suggestions, five open-ended questions were adapted or designed. These 

open-ended items were reviewed by two mathematics educators and one mathematician 

at the sample U.S. University. One of the mathematics educators has had extensive 

teaching experience at secondary schools (including middle and high schools) and 

universities in the U.S. While the other has had secondary mathematics teaching 

experience in China and several years of experience as a faculty member in math 

education programs in China and the United States. These items were judged 

appropriately for secondary (i.e., middle and high) mathematics teachers.  Both of them 

examined these items carefully and improved the wording of some items. The 

mathematician also gave very detailed comments and corrections.   Based on the 

feedback from them, I made a final English version. 

Translation Equivalence 

The English instrument was translated into Chinese by the researcher and another 

Ph.D. candidate in mathematics education from China. A third bilingual mathematics 
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educator at the sample university compared these two Chinese versions and made a final 

version through discussions with the researcher.  

Appropriateness of the Survey from Teachers’ Perspectives 

In order to understand teachers‘ perceptions of the questionnaire, we invited ten 

pre-service teachers in the last year of their four year bachelor degree program in 

secondary mathematics education from an eastern city of China and four in-service 

teachers from a secondary school in a northern city of China (two middle school 

teachers, and two high school teachers) to complete this survey within 45 minutes. Based 

on their written answer sheets, I identified several items which were answered 

incorrectly by some teachers for further interview inquiry.   

I interviewed three of the four in-service teachers who completed this survey 

through a video conference system. One of them is a high school teacher with a senior 

position (Equivalent to an associate professor at universities in the U.S.). The others are 

middle school mathematics teachers. Both of them had more than six years of teaching 

experience. The interview was aimed at understanding participants‘ opinions about the 

overall difficulty, the appropriateness of items, and their interpretation of the identified 

mistakes. 

These teachers expressed the following opinions in the interviews. First, overall the 

questionnaire is relatively easy, but the items were flexible, contextual, and covered 

broad topics.  Second, they felt that the questions that were closely related to the 

advanced mathematics topics were the most difficult ones.  Third, in general, the 
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expression and background of problems were clear and easily understandable, but 

sometimes the problems were so novel that they had to be cautious in order to ensure 

that they correctly understood them. Fourth, the questionnaire was a little long to 

complete within 45 minutes. In addition, they believed the questionnaire could measure 

a teachers‘ knowledge for teaching algebra. Finally, they provided some suggestions for 

improving the questionnaire, including adding an introduction to the purpose of the 

questionnaire and refining the format of the questionnaire.  

Based on the interview results, I have made a relevant improvement in the Chinese 

questionnaire which includes 25 items. 20 items, including 17 multiple choice items and 

3 open ended items, were translated from the original English questionnaire, and an extra 

5 open-ended items were created by the researcher. The format of the questionnaire was 

compacted from the original 14 pages to 8 pages. This includes the introductory 

information and 25 items. In addition, some specific terms which are easily 

misunderstood were highlighted with bold font. For instance, in item 10, large and bold 

words were used to emphasize consider ―All lines in the Coordinate Plane‖. In Item 11, 

large and bold words were used to highlight to select the ―NOT appropriate‖ one.  

Finally, a questionnaire booklet was developed in this study. It includes two parts. 

The first part includes 17 multiple choice items and 8 open-ended items (items 18 to 25) 

with a focus on teachers‘ knowledge for teaching the concept of function. The second 

part is an answer booklet, including participants‘ backgrounds such as current grade and 

courses taking, a multiple choice answer table, and open-ended question answer sheets.  
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Three U.S. students who were studying in a Ph.D program in math education  were 

invited to complete this survey within 45 minutes. This small pilot showed that the time 

for completing the survey was appropriate and the participants were able to understand 

and answer these questions. Thus, no further revision of the questionnaire appeared 

necessary. In the next section, justification of adaptation of the open-end questions will 

be given.  

Measuring Knowledge for Teaching the Concept of Function 

Based on an extensive literature review of teachers‘ knowledge for teaching the 

concept of function, we focused on two aspects of the concept of function: fluency and 

flexibility of knowledge for teaching function in general and for teaching quadratic 

functions in particular. With regard to the first aspect, I focused on the understanding of 

the concept of function in terms of shifting between two perspectives (process vs. object) 

appropriately. In addition to an original item 18 that required a process perspective to 

effectively answer the questions, I created two items. One item (item 24) that required 

using an object perspective in order to effectively complete the proof, and another (item 

25), in which it is necessary to adopt the connection of the two perspectives in order to 

appropriately answer the item.  

In order to measure teachers‘ knowledge for teaching quadratic functions, I 

focused on the fluency and flexibility of using different representations. Four items are 

used to gauge teacher knowledge for teaching the particular content field. Item 19 from 

the original questionnaire is used to measure knowledge of solving quadratic inequality 
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by using algebraic and graphic representations. Item 21 is used to measure teacher 

knowledge in flexible use of algebraic and graphic representations and the connection of 

function, equation and inequality.  Item 22 is used to measure the flexible use of multiple 

representations quadratic function (graphic and algebraic) and translation of graphs. Item 

23 is designed to use multiple forms of algebraic representations and translations 

between different representations.  These items are shown as follows:  

18. a) On a test a student marked both of the following as non-functions  

(i) f: R R, f(x) = 4, where R is the set of all the real numbers.  

(ii) g(x) = x if x is a rational number, and g(x) = 0 if x is an irrational number.  

For each of (i) and (ii) above, decide whether the relation is a function, and write 

your answer in the Answer Booklet.  

b) If you think the student was wrong to mark (i) or (ii) as a non-function, decide 

what he or she might have been thinking that could cause the mistake(s).  

            Write your answer in the Answer Booklet.  

(Adapted from Even (1993)) 

19. Solve the inequality (x – 3)(x + 4) > 0 in two essentially different ways. Show your 

work in the Answer Booklet. 

21.  If you substitute 1 for x in expression cbxax 2  (a, b and c are real numbers), you 

get a positive number, while substituting 6 gives a negative number.   How many real 

solutions does the equation 02  cbxax have?   

           One student gives the following answer:    

           According to the given conditions, we can obtain the following in-equations: 
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           0 cba , and  0636  cba . 

          Since it is impossible to find fixed values of a, b and c based on previous 

inequality, the original question is not solvable. 

   What do you think may be the reason for the students‘ answers? What are your 

suggestions to the student?  

         Write down your answers in as much detail as possible on your Answer Booklet. 

(Adapted from Even (1998)) 

22. This item is adapted from Black (2007)) (See p. 33) 

23.  Given quadratic function cbxaxy  2  intersects x-axis at (-1, 0) and (3, 0), 

and its y-intercept is 6.   Find the maximum of the quadratic function.  

  Show your work in as much detail as possible in the Answer Booklet. 

(Adapted from NCTM (2009) 

24. Prove the following statement:  

If the graphs of linear functions f(x) = ax + b and g(x) = cx + d intersect 

at a point P on the x-axis, the graph of their sum function (f + g) (x) must 

also go through P.  

Show your work in the Answer Booklet. 

25. When introducing the functions and the graphs in a middle school class (14-15 year-

olds), tasks were used which consist of drawing graphs based on a set of pairs of 

numbers contextualized in a situation and from equations? One day, when starting 

the class, the following graph (Figure 3.1) was drawn on the blackboard and the 

pupils were asked to find a situation to which it might possibly correspond.  
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Figure 3.1. A graph presenting a daily life situation. 
 
 
 
 One student answered: ‗it may be the path of an excursion during which we had to 

climb up a hillside, the walk along a flat stretch and then climb down a slope and finally 

go across another flat stretch before finishing.‘   

How could you answer this student‘s comments? What do you think may be the 

cause of this comment?  Can you give any other explanations of this graph?  

Write down your answers in as much detail as possible on your Answer Booklet. 

(Adapted from Llinares (2000) ) 

In sum, all the items and corresponding content areas, and types of knowledge 

are listed in Table 3.1. 
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Table 3.1 
Items and Corresponding Content Areas and Knowledge Types 

Item  Content area  Knowledge type  

1 Expression School mathematics  
2 Equation  Teaching  
3 Function  School mathematics 
4 Function Advanced mathematics  
5 Equation  Teaching  
6 Equation and expression  School Math 
7 Function  Teaching  
8 Function  Advanced math 
9 Equation and expression  Advanced math 
10 Function  Teaching  
11 Function  Teaching  
12 Equation and expression  Advanced math  
13 Equation and expression  Advanced math 
14 Equation  School math  
15 Equation  Teaching  
16 Function  Advanced math  
17 Function  School math 
18 Function  Teaching  
19 Function  School math 
20 Function  Advanced math 
21 Equation and expression  Teaching  
22 Function  Teaching  
23 Function and equation  School math  
24 Function and equation  Advanced math 
25 Function  Teaching  

 

 

 

Data Collection 

In the following sections, I describe the process of the subject recruitment and data 

collection.  
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Chinese Data Collection  

In China, there is only one type of secondary mathematics teacher preparation 

programs (including middle and high school teachers). There is no specific program for 

preparing middle school math teachers. These programs either are provided by normal 

universities or comprehensive universities. Usually, these programs are housed in a 

mathematics department (Li et al., 2008).  

First, I discussed the selection of representative universities in China with a 

professor in a leading teacher education university in China. This professor was the 

former president of National Higher Teacher Education University Association. I raised 

two criteria: (1) the score of university entrance examination, and (2) the 

representativeness of different existing programs.   With the help of the professor (and 

my personal connections with teacher education universities), I contacted math educators 

from seven Universities (Based on the educational institution list league in China in 

2009, two belong Rank 1 (top 10),  two belong Rank 2 (top 20), three belong Rank 3 

(after 30) ) through e-mails and phone contact. I explained the research purposes and the 

requirement of administrating the survey to them. First, participating students were 

required to have 45 minutes to complete a questionnaire. Second, ideally, about 60 

junior and 60 senior students needed to be recruited to complete the survey. All target 

coordinators promised to help collect the data from their respective universities. I sent 

the questionnaire to respective coordinators from the seven universities (with written 

instructions of conducting the survey) in early spring 2010. I asked them to explain the 
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survey to their students as part of their course work and request that the students 

complete the survey seriously and honestly within 45 minutes.  

However, due to some physical difficulties (for example, in some universities, 

senior students were in the process of teaching practice, while in other universities, 

junior students were in the process of teaching practice), not all of them met the deadline 

and requirement. Two universities were not able to collect their data in time (one is rank 

1 and the other is rank 3). One university only collected junior students‘ data while 

another university only collected senior students‘ data. All the completed questionnaires 

were sent to a professor in Shanghai, and the professor helped to scan the completed 

questionnaires into PDF files and e-mail them to me. I printed the questionnaires in 

March, 2010. Finally, 376 completed questionnaires were used for data analysis after 

excluding 8 copies from universities 3 and 4, and copies from university 5 due to lack of 

background information. The distribution of the competed questions is shown in Table 

3.2. 

 
 
 
Table 3. 2.  
Demographic Information of the Chinese Participants  

University  Code   Junior  Senior  
Rank 1 University  1 59 50 
Rank 2 University  2 71  
Rank 3 University  3 33 15 
Rank 3 University 4 48 52 
Rank 2 University  5  48 

Note. According to the teacher education institution in China in 2009, teacher education 
institutions are ranked into different status; rank 1 (top 10) is the highest, followed by rank 2 
(around top 20), and rank 3 (after top 30). 
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U.S. Data Collection  

In the U.S., usually, high school mathematics teachers need to earn a bachelor‘s 

degree in math, with certain required credits in math education. However, there are 

different routes for training middle school math teachers.  The first one is preparing 

middle school teachers as a part of the preparation of secondary school teachers. The 

second one is specifically preparing middle school teachers (i.e., math and science inter-

discipline approach). The third is preparing middle school teachers as an extension of the 

preparation of elementary teacher (Dossey, Halvorsen, & McCrone, 2008; Schmidt et al., 

2007).  

I contacted three instructors who taught the mathematics education courses for 

junior and senior students at a large public school in the Southern United States. I 

explained the research project and requested their assistance to administrate my survey 

during part of their class duration (around 45 minutes).  All of them allowed me to 

conduct the survey using their class.  

Students were told that their participation in the survey is fully voluntary. 

Instructors introduced me to their students and allowed me to briefly introduce my 

research project. After briefing my research purpose and appreciating students‘ 

participation in this survey, I delivered the questionnaires to students and then collected 

the completed questionnaires after 45 minutes. All of the students who attended those 

classes completed the questionnaires. Finally, I collected 115 copies of questionnaires 

from the three classes. The demographic information of the U.S. sample is displayed in 

Table 3.3  
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Table 3.3 
Demographic Information of the U.S. Participants  

Program Soph.  Junior  Senior Total  

Gr.4-8  11 48 31 90 

Gr.6-12 0 5 4 9 

Other  3 11 2 16 

Total  14 64 37 115 

Note.  Gr. 4-8 presents the program prepared for science and mathematics teachers from 

grade 4 to 8. Gr.6-12 presents the program prepared for science and mathematics 

teachers from grade 6 to 12. Other refers certificate for teaching math and science at 

middle school.  

 
 
 

The Table showed that the majority (79%) of the participants registered in the 

interdisciplinary program of math and science teachers at grades 4 to 8, while very few 

(7%) studied for programs of math and science teachers at grades 6 to 12. The remaining 

small part (14%) just took some courses for a certificate in teaching math or science at 

middle school. Among the participants, the majority (87%) was junior and senior 

students; only small proportions were sophomore students.  

Interview of the Selected U.S. Participants  

Originally, I intended to interview some participants from China and the U.S. to 

clarify participants‘ answers and probe their thoughts.  In addition to their free 

explanations, the interviewees were intended to be also probed uniformly and non-

uniformly. The uniform probes were presented to all subjects and were based on the 

analysis of pilot study and corresponding survey with in-service teachers. These probes 
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represented themes that appeared in many of the written answers (such as mistakes in 

solving inequality, mistakes in explaining graphs). The non-uniform probing was based 

on the specific answers each subject gave to the questionnaire and was meant to clarify 

ambiguous answers and discover specific dimensions that seemed important. 

However, based on a preliminary analysis of completed questionnaires from the 

U.S. and China, I found that Chinese participants provided very detailed and rich 

responses to the open-ended questions for us to analyze their thoughts and strategies. On 

the other hand, the U.S. participants provided relatively short and simple responses to 

the open-ended questions. So, I decided only conduct an interview with purposely 

selected U.S. participants.  

Based on a detailed analysis of the answers of the participants from a class, I 

identified eight potential interviewees in terms of their performance such as typical 

correct answers and mistakes.  Five of them agreed to attend an interview.  The 

interview was conducted individually during the week after completing the survey.  Each 

interview lasted about 20 minutes, and was audio recorded.  

These interviewees were studying in the interdisciplinary program of middle 

school mathematics and science teacher preparation. We also collected information 

about the high school mathematics course taking (5 courses include: (i) Algebra I, 

(ii)Algebra II, (iii) Geometry, (iv)Pre-Calculus, and (v) Calculus) and college 

mathematics and mathematics education course taking. Except for one (Kerri, all names 

in the dissertation are fictitious) who took four high school mathematics courses, the 

others took five courses.  The college courses included the following 17 courses: 
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(1)Structure of mathematics I , (2) Structure of mathematics II,  (3)Basic concept of 

geometry, (4) Introduction to abstract mathematics,  (5)Integration of  mathematics and 

technology, (6)Problem solving in mathematics , (7)Integrated math , (8)Mathematics 

methods in middle, (9)Student teaching, (10)Freshman mathematics laboratory, (11) 

Analytic geometry and calculus, (12) Calculus, (13)Foundation of  discrete mathematics, 

(14)Several variable calculus, (15)Liner algebra I , (16)Differential equations , and (17) 

Advanced calculus I. The courses taken are summarized in Table 3.4. 

 
 
 
Table 3.4 
Courses Taken by the U.S. Interviewees 

Name  High school 
course taking  

College courses 
taken  

College courses being 
taking  in the semester  

Larry (i)-(v) (1)-(3),(6),(11),(12) (4)-(7) 
Jenny (i)-(v) (1)-(3),(6) (4),(5),(7) 
Kerri (i)-(iv) (1)-(3),(6),(10)-(12) (4),(5),(7) 
Alisa (i)-(v) (1)-(6) (7) 
Stacy (i)-(v) (1)-(4),(6),(10)-(12) (5),(7) 
 
 
 

Thus, all of the interviewees took at least four mathematics courses at high school 

and averaged 9 courses taken in college. 

I designed some particular questions for each of the open-ended items. For 

example, in Item 18, I designed the following prompt questions: (1) How do you judge 

whether a relationship is a function or not?  (2) What is the vertical line test?   (3) What 

would you teach to your students? Can you give me an example? 
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For Item 19, I found some common mistakes, then I not only asked some general 

questions such as (1) When reading solving the inequality, what knowledge, skills and 

methods come to your mind?   (2) What‘s your understanding about two essentially 

different ways? (Algebraic or Geometric methods?) (3) What do you think about the 

following operations? 

 A.   (x-3)(x+4)>0- x-3>0, x+4>0, then x>3 and x>-4.  

 B. 0122  xx ; 12)1( xx ; x>12, x+1>12; 

 C.     122  xx ; 122  xx ;  12 xx ; 

In addition, I also probed whether participants can recall graphing method in 

solving quadratic equation or inequality. 

For Item 20, I asked the following questions:  Someone answers ―Yes‖ and gives 

proof as follow:  

                 When A= 
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                  What do you think about this ―proof?‖ 

                   

 For Item 21, I asked the following questions: (1) What are the reasons for the 

student to make his/her judgment? ; (2) To find solutions, are there other methods you 

can suggest to the student?  

The prompt questions for Item 22 included:  (1) What are the effects of change 

of parameters of a, b, c on the graph?  (2) What algebraic manipulations may help 

you identify the key parameter(s)? 
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The prompt questions for Item 23 included (1) Which formula of quadratic 

function did you choose for finding the function? ;(2) How can you find the maximum of 

a given quadratic function?  

The prompt questions for question 24 included:  (1) What does it mean by 

intersecting at a point on x-axis? (2) What is the meaning of (f+g)(x)?  

The probing questions for Item 25 were: (1) What are the missing parts of students‘ 

comment (two variables, X vs. Y); (2) How can you explain other real life situations by 

using this graph? 

Data Analysis 

The data analysis includes three phases: (1) quantifying the data: developing five 

level rubrics for quantifying the open-ended items; (2) analyzing KTA at item and 

structure levels; and (3) analyzing open-ended item qualitatively: focusing on problem 

solving methods or mistakes, and flexibility of using representations. 

Quantifying the Data 

For each multiple choice item (items 1 to 17), the correct choice was scored as 1, 

while wrong choice was scored as 0. For each open-ended item, I developed a five level 

rubric for scoring the answers from 0 to 4. For items 18, 19, 20 and 24, I adapted the 

rubrics from the original rubrics developed by Michigan State University with some 

modifications (treating blank and missing answer as 0) and specifications (adding some 

details).  For example, for item 18, I developed the follow rubric:  
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Table 3. 5  
Rubric for Coding Item 18 

Score  Description  
0 Blank or total wrong answers in (i) and (ii) 
1 (I): (a)  answer  (i) is function, (ii) is not or inverse  

      (b) explanation is missing or wrong       
 OR (II): (a) answer (i) and (ii) are not function, but (b) give some relevant 

explanations. 
2 (I): (i) (a) is correct:  (i) and (ii) are function. 

(b) without explanation or giving wrong explanation 
Or (II): (a) one of (i) and (ii) is function, (b) give an correct explanation 

3 To give the answers with the following elements: (a) Point out (i) and (ii) are 
functions ;(b) The explanations do not relate to the key element (multiple to one or one 
to one), rather some superficial features such as:  the function (i) with constant value, 
and the function (ii) is not continuous or expressed by two expressions or there are 
many holes. 

4 To give answers with the following elements:    
(a)Point out (i) and (ii) are functions ; 
(b)Point out that there is only one unique value corresponding to each value from 
domain value (such as one x value corresponds one y value, multiple x values 
correspond to one y value, but does not include one x value corresponds multiple y 
values). Or point out the use of the vertical line test.  

 
 
 

Based on the study of existing rubrics, I developed a general criterion for scoring 

all open ended items as follows: 

0-Blank or providing useless statements; 

1-Providing several useful statements without a chain of reasoning for the correct 

answers; 

2-Giving a correct answer but the explanations or procedures with major 

conceptual mistakes; 

3-Giving a correct answer and appropriate explanations or procedures, with some 

minor mistakes; 



 64 

4- Giving a correct answer with appropriate explanations and procedures.  

Furthermore, based on the specification of each open-ended item, I further 

developed different rubrics for all of the open-ended items (See Appendix A). For 

example, the rubric for item 22 is described in Table 3. 6. 

 
 
 
Table 3.6 
Rubric for Coding Item 22 

Score  Examples 
0 Blank or useless statements 
1 Gives  partly features of graph when changing  a, b, or  c. 
2  Selects C or D and gives some explanations, with some serious mistakes, such 

as if a is changed then the graph is moved up or down. 
3 Gives answer C. However, reasons is not appropriately explained such as only 

mentioning  the invariance of a or c.  
4  Selects C and provides correct explanations such as:  

 Since change of a leads change of the openness, thus a is not changed; 
since y-intercept is not changed, so c is not changed. Thus, it is only 
possible to change b. 

 The translated graph is the symmetrical graph of original graph with 

regard to y-axis.  So, symmetrical line 
a

b
x

2
  should be changed. 

However, the openness of the graph is not changed, so a should be 
invariant. Thus, only b is changed to –b.  

 If f(x) and g(x) are symmetrical with regard to y-axis, then g(x)=f(-x),  
thus b is changed to –b.  

 
 

 

 

 

 

 

 



 65 

Inter-Rater Reliability 

Based on a preliminary examination of the open-items of 20 copies of U.S. 

questionnaires and 20 copies of Chinese questionnaires, I developed and tested the 

appropriateness of the rubrics. Then, I fully applied the finalized rubrics to the coding of 

the U.S. questionnaire. 

After that, I and another secondary mathematics teacher scored the open-ended 

items of 109 copies of Chinese questionnaires from a high reputation institution 

separately.  The inter-reliabilities of the items are 97% for item 18, 94% for item 19, 

97% for item 20, 95% for item 21, 93% for item 22, 98 % for item 23, 86% for item 24, 

and 93 % for item 25. The disagreements were solved through discussing between raters 

and specifying the rubrics. The second mathematics teacher scored all of the remaining 

questionnaires. I double checked the codes of U.S. questionnaires, and 100 copies from 

the remaining Chinese questionnaires. The agreement was higher than 95%, and I made 

relevant corrections.  

Developing Categories of Different Strategies of Solving Open-ended Items 

There are a total of eight open-ended items. One of them is related to metric and 

logical inference (Item 20); Three of the items are related to function concepts in general 

(Items 18, 24, 25), while four of them are related to quadratic functions /equations 

/inequalities (Items 19, 21, 22, 23) in particular.  For the metric item, the analysis was 

focused on the logical equivalence and metric operations. 
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A two dimensional framework was developed (see Table 3.7) for analyzing 

knowledge for teaching function concept. One aspect presents the perspectives of 

function concept (process vs. object), and the other presents different representations 

(verbal, tabular, algebraic, and graphical).  

 
 
 
Table 3.7 
A Framework for Investigating Alternative Perspectives of Function in Typical 

Representations 

Perspective  Verbal  Tabular  Algebraic  Graphical  

Process      

Object      

 
 
 
At the beginning, I tried to apply this two dimension framework to analyze all of 

the open-ended items. However, that attempt was found to be too complicated to 

implement. Then, I applied dimension of perspective of function to analyze items 18, 24, 

and 25 and the dimension of representations to analyze items 19, 21, 22, and 23.  

With regard to Items 18, 24, and 25, the analysis centered on the perspectives 

adopted. The categories and relevant explanations are shown in Table 3.8. 
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Table 3. 8  
Categories and Explanations with Regard to Function Concept in General  

Item  Process  Object 
18  Pointing out corresponding relationship between 

domain and range 
(one-to-one; multiple-to-one) 
[18P] 

Point out the features of function 
expressions and graphs (a constant value 
or two expressions or one line, many 
holes /un-continuous curve ) [18O] 

24 Let  f(x) and  g(x) intersect at x-axis (p, 0), then, the 
following  statements are true:  
(1) f(p) = 0  ap + b = 0  p = -b/a; 
(2) g(p) = 0  cp + d = 0  p = -d/c; 
(3) f(p) = g(p)  b/a = d/c  ad = bc; 
(4) f(p) = g(p)  ap + b = cp + d  p = -(b + d)/(a 
+ c); 
According to (f+g)(p) = f(p) + g(p), and above 
statements, the student shows  (f+g) (p) = 0.[24 P] 

Let f(x) and g(x) intersect at x-axis (p, 0), 
then, f(p) = 0, g(p) = 0. 
So, (f+g)(p) = f(p) + g(p) = 0 + 0 = 0. 
Thus,  (f+g) (p)=0. 
[24O] 

25 It is necessary for students have a connection between two perspectives and a shift between 
graphical representation and verbal representation.  
The diagram could be interpreted as the following relations: 

(1) Height/distance  vs. time [25C1]) 
(2) Velocity vs. time [25C2] 
(3) Housing/stock  price vs. time [25C3] 
(4) Temperature vs. time [25C4] 

 
 
 

However, with regard to the items related to the quadratic functions /equations 

/inequalities (Items 19, 21, 22, & 23), the analysis was focused on the representations 

used and the shift between different presentations (which will be further illustrated in 

results). 

Moreover, we defined the concept of flexibility in adopting different perspectives 

and different representations.  Each shift between representations is coded as an event of 

flexibility if the participant is successful in solving the problem through this shift (e.g., 

score 3 or 4).  For example, in item 22, the participants‘ responses can be categorized as 

three types, and each type presents a flexible event (See Table 3.9). 
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Table 3.9. 
 Categories and Flexibility with Regard to Item 22 

Solutions /Mistakes  Flexibility  
Solution   
The effects of changing of a, b and c on the changes of the 
graphs of quadratic function. 

Yes (graph 
vs. algebra) 

Symmetrical line 
a

b
x

2
 ,a is not changed, then only b need to 

changed. 

Yes (graph 
vs. algebra) 

Based on the algebraic relationship g(x)=f(-x), finding the 
coefficients of g(x) (a1=a, b1=-b, and c1=c). 

Yes (graph 
vs. algebra ) 

Mistakes   
Based on g(x)= chxbhxa  )()( 2 , make a statement that at 
least two of three (a, b, and c ) need to be changed  

No 

According to
a

b
x

2
 ,

a

bac
y

4

4 2
 , make a statement that at 

least two of three (a, b, and c) need to be changed.  

No 

 
 
 

For another example, the problem in item 23 could be solved in two steps: finding 

out the quadratic function and finding out the maximum. First of all, three forms of 

quadratic formula methods: cbxaxy  2  (FM1); ))(( 21 xxxxay   (FM2); and 

khxay  2)( (FM3) can be used for finding a quadratic function expression. Then, 

three methods were used for finding out the maximum value: (1) transforming 

into khxay  2)( , then finding the maximum (MM1); (2) using 

formula
a

b
x

2
 ,

a

bac
y imum

4

4 2

max


  (MM2); and (3) taking the derivative: y‘=0, x=1, 

then, )1(max fy imum   (MM3).  

All the methods of solving the question are the combinations of above methods as 

follows: 
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1. FM1(step 1) and MM1 (step 2);  

2. FM1 (step 1) and MM2(step 2);  

3. FM2/FM3(step 1) and MM1(step 2);  

4. M2/FM3(step 1) and MM2(step 2);  

5. FM1/FM2/FM3 (step 1) and MM3 (step 2).  

 As far as the shifts between representations are concerned, I coded one event of 

demonstrating flexibility for each methods 1 to 4, but not method 5.  It is because in 

the first four methods, it is necessary to shift from a different quadratic formula.  

 Quantitative Analysis  

I analyzed the quantitative data from three aspects.  First, I analyzed the item mean 

and performed a t-test detecting mean differences between China and the U.S. Then, I 

analyzed the relationships between different variables (including latent variables) by 

path model analysis and the fitness of the theoretical model of KTA by estimating 

instrument models.  Third, I analyzed the correlation between the flexibility and other 

variables.  

Interview Data Analysis 

The U.S. interview data was analyzed to further illustrate pre-service teachers‘ 

responses (their thoughts) to open-ended items. It is aimed at providing a more detailed 

interpretation of participants‘ answers.  
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Framework for Data Analysis 

The quantitative data analysis results were further illustrated and interpreted by the 

qualitative findings. The whole process of data analysis is described by Figure 3.2. 

According to this diagram, first, the items were quantified into quantitative data for item 

and construct analysis. With regard to item analysis, the item mean was analyzed and 

compared by using SPSS 16.0. and the path analysis and instrument model estimation 

were conducted by AMOS 16. In addition, a correlation analysis was used to investigate 

the relationship between flexibility and other variables, such as different knowledge 

components.  

 

 

 

 

 

  

 

 

 
 

 

 

Figure 3.2. Process of data analysis. 
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 With regard to the eight open-ended questions on teacher‘s knowledge for 

teaching algebra, a qualitative analysis was performed. The purpose was to identify the 

characteristics of teachers‘ knowledge for teaching the concept of function cross-

culturally. A particular focus was put on the strategies used and flexibility in adapting 

perspectives of function concept and selecting representations. The follow up interview 

data analysis was used for further clarifying participants‘ knowledge for teaching the 

concept of function. Finally, the qualitative results were further used for interpreting 

quantitative findings and the conclusions of the study were made. 

Conclusion 

In this chapter, I describe the design of study which is a mixed method by using a 

questionnaire. The process of development of the instrument for this study was described 

and discussed. Next, the data collection procedures in China and the U.S. were described. 

After that, the methods of data analysis were illustrated in detail.  Finally, I summarized 

the strategies to integrate the findings based on quantitative and qualitative analyses to 

make conclusion of the study.  
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CHAPTER IV 

RESULTS 

The findings of this study are organized into four sections. First, I report 

comparative results of KTA at item and structure levels between China and the U.S. 

Second, I present the relationship among background variables and components of KTA 

in China and the U.S. Third, I compare the similarities and differences of KTCF between 

China and the U.S. Fourth, I present an analysis of correlation between flexibility and 

other variables.  Finally, I summarize the findings of the study with regard to the four 

research questions.  

Comparison of KTA between China and the U.S. 

Reliability of the Instrument 

The questionnaire is designed to measure three types of knowledge:  school 

mathematics, advanced mathematics and teaching mathematics. Each item belongs to 

one of the three categories.  The distribution of items to different categories is shown in 

Table 4.1.  

Thus, there are 7 items (1, 3, 6, 14, 17, 19, & 23) in school mathematics, 8 items (4, 

8, 9, 12, 13, 16, 20, & 24) in advanced mathematics, and 10 items (2, 4, 7, 10, 11, 15, 18, 

21, 22, & 25) in teaching mathematics. The reliabilities (Cronbach's Alpha) of the 

instrument are .877 (N=491, the whole sample), 0.613 (N=115, the U.S. sample), and .73 

(N=376, the Chinese sample).  
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Table 4. 1.  
Category of Knowledge for Teaching Algebra  

Items  Types of knowledge  Items Types of knowledge 

1 1 14 1 

2 3 15 3 

3 1 16 2 

4 2 17 1 

5 3 18 3 

6 1 19 1 

7 3 20 2 

8 2 21 3 

9 2 22 3 

10 3 23 1 

11 3 24 2 

12 2 25 3 

13 2   

 Note. 1-school mathematics; 2-advanced mathematics; and 3- teaching mathematics. 

 
 
 

The Mean Differences of Items and Components between China and the U.S. 

First, I compared the mean differences of multiple choice items. The mean and t-

test values are listed in Table 4.2. 
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Table 4. 2. 
Mean Differences of Multiple Choices between China and the U.S. 

Item 

Mean T-Test 

China U.S. 

1 .90  .85 1.42 

2 .96  .57  8.38**  

3 .96  .89  2.43**  

4 .78  .15  16.06**  

5 .95  .18  20.70**  

6 .38  .30 1.66 

7 .83  .57  5.20**  

8 .90  .16  19.95**  

9 .47  .20  5.90**  

10 .68  .66 .45 

11 .62  .78 -3.43** 

12 .47  .27  4.01**  

13 .64  .23  8.56**  

14 .87  .40  9.64**  

15 .66  .22  9.73**  

16 .92  .29  14.19**  

17 .96  .52  9.23**  

 
 
 
This Table showed that Chinese participants performed better than the U.S. 

counterparts, except for on four items (1, 6, 10, and 11). On one item (11), the U.S. 

participants achieved a significant higher mean score than Chinese counterparts (Mean 

difference=0.16, t=3.43, p<0.001). On items 1, 6, & 10, although the Chinese 
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participants scored higher than their U.S. counterparts, there was no significant 

difference. In all remaining items, Chinese participants‘ mean scores were significantly 

higher than the U.S. counterparts (p<.001). In addition to above mentioned items 1, 6, 10, 

and 11, other five items 4, 5, 8, 15, and 16, with significant differences between China 

and the U.S. are further discussed in detail in the next section.  

With regard to the open-ended items and components of KTA, the means and tests 

of significance are displayed in Table 4.3. 

 
 
 
Table 4.3. 
Mean Differences of Open-ended Items and Components of KTA between China and the 

U.S. 

Item 

Mean t-Test 

China U.S. 

18 2.91 1.51 10.21** 
19 3.66 .76 34.62** 
20 3.47 .79 21.29** 
21 2.97 .18 31.60** 
22 2.64 1.40 8.44** 
23 3.29 .29 33.01** 
24 3.25 .02  46.63** 
25 2.23 1.43 5.53** 
SM 11.03 4.00 39.19** 
AM 10.89 2.1 42.36** 
TM 15.45 7.50 21.04** 
KTA 37.37 13.60 39.40**  

Note. SM-School mathematics; AM -Advanced mathematics; TM -Teaching 
mathematics; and KTA - Knowledge for teaching algebra.  
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In all the open-ended items, there are significant mean differences between China 

and the U.S.  Chinese participants achieved significantly higher means in school 

mathematics (mean difference=7.03, t=39.19, p<.001), advanced mathematics (MD=8.78, 

t=42.36, p<.001), and teaching mathematics (MD=7.95, t=21.04, p<.001) than U.S. 

counterparts.  Consequently, Chinese participants achieved significantly higher mean of 

KTA (MD=24.77, t=39.40, p<.001) than their U.S. counterparts. 

Since the Chinese sample is relatively large, I did a multiple comparison of KTA 

with regard to different institutions. All the participating universities were classified into 

three ranks based on 2009 university league list in China. One high achieving university 

(rank 1) , two intermediate achieving universities (rank 2), and two low achieving 

universities (rank 3) (See Table 3.2 in Chapter III for details). It was found that there 

was no significant mean difference  between rank 1 and rank 2 university but rank 1 and 

rank 2 universities had significantly higher mean score of KTA  than rank 3 universities. 

Moreover, given the fact that only juniors or seniors in-service teachers came from rank 

2 universities, I excluded participants from rank 2 universities for qualitative analysis. 

Thus, in this study, the high-achieving group consists of participants from rank 1 (N=109) 

and the low-achieving group consists of participants from rank 3 universities (N=147). 

Analysis of Selected Multiple Choice Items  

In this part, I examined several special multiple choice items in detail. These items 

include: item 11, in which U.S. participants outperformed Chinese counterparts; three 

items 1, 6, & 10, in which there are no significant mean difference between China and 
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the U.S., and five items 4,5,8, 15 & 16, in which  the means of participants from China 

were significantly higher than the U.S. I made a comparison between China high-

achieving group (N=109), China low-achieving group (N=147), and the U.S. (N=115) in 

order to better understand how the participants answered these questions. 

Item 11, in a first year algebra class, which of the following is NOT an appropriate 

way to introduce the concept of slope of a line?  

A. Talk about the rate of change of a graph of a line on an interval.  

B. Talk about speed as distance divided by time.  

C. Toss a ball in the air and use a motion detector to graph its trajectory.  

D. Apply the formula slope 
run

rise
  to several points in the plane.  

E. Discuss the meaning of m in the graphs of several equations of the form  

     y = mx + b.  

The distribution of different choices of this item is displayed for China (high 

achieving vs. low achieving groups) and the U.S. sample in Table 4. 4. (C is the correct 

choice). 

 
 
 
Table 4.4 
The Choice Distribution of Item 11 in China and the U.S 

 China U.S. 
(%) High (%) Low (%) 

A 11 8 8 
B 11 11 5 
C 64 61 78 
D 12 20 5 
E 2 1 6 
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More than 60% of Chinese participants can identify the correct choice and the 

Chinese participants also made a variety of wrong choices. These results may imply the 

Chinese participants are not familiar with different learning situations (particular 

contextual situations) for introducing the concept of slope. It may reflect that the 

Chinese participants‘ learning experience was limited in mathematical context. It may 

also reflect that they may memorize the formula of slope but do not understand the 

geometrical meaning of the formula (12% from high achieving group and 20 % for low-

achieving group were not able to use the formula in China). On the other hand, the U.S. 

participants had a high rate of correct choice (78%). This may imply that the U.S. 

participants had a better understanding of the concept and were exposed to multiple 

application situations.  

 

Item 1, at a storewide sale, shirts cost $8 each and pants cost $12 each. If S is the 

number of shirts and P is the number of pants bought, which of the following 

describes the expression 8S + 12P? 

A. The number of shirts and pants bought    B. The cost of 8 shirts and 12 pants  
C. The cost of P shirts and S pants               D. The cost of S shirts and P pants 

 
The different choices of the item 1 are displayed in Table 4.5 (Correct choice is C) 
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Table 4.5 
The Choice Distribution of Item 1 in China and the U.S 

 China U.S. 
(%) High (%) Low (%) 

A 0 2 1 
B 4 6 9 
C 3 3 4 
D 92 89 86 

 
 
 

The Table showed both Chinese and U.S. participants made a high rate of correct 

choice D (greater than 86%). Only a small part of them made a wrong choice of B or C. 

The result may imply both Chinese and U.S. participants are familiar with presenting 

quantitative relationship by using algebra expressions.  

Item 6, which of the following can be represented by areas of rectangles?  

i. The equivalence of fractions and percents, e.g. 60
5

3
 %  

ii. The distributive property of multiplication over addition:  

       For all real numbers a, b, and c, we have a(b + c) = ab + ac  

iii. The expansion of the square of a binomial: (a + b)
2 

= a
2 

+ 2ab + b
2 
 

A. ii only                     B. i and ii only         C. i and iii only      

D. ii and iii only          E. i, ii, and iii  

The different choices of the item 6 are displayed in Table 4.6 (Correct choice is E) 
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Table 4.6 
The Choice Distribution of Item 6 in China and the U.S. 

 China US 
(%) High (%) Low (%) 

A  3   3   7  
B  3   15   16  
C  4   14   26  
D  56   35   22  
E  35   34   30   

 
 
 

This Table showed that both Chinese and U.S. participants achieved very low 

correct rate (between 30% to 35%), and no significant mean difference between China 

and the U.S.  Interestingly, more than half (56%) Chinese participants from high-

achieving group made choice D. That means they believed that the equation 60
5

3
 % 

can‘t be represented by the area of rectangle (Choice D). More than one third of 

participants from low achieving group and about one fourth of U.S. participants made 

the same choice (Choice D). In addition, about one fourth U.S. participants believed 

acabcba  )( can‘t represented by the area of a rectangle (Choice C).  In summary, 

both Chinese and U.S. participants were low-scoring in using geometrical representation 

to present fraction/percentage and algebraic formula.  That means the participants from 

both countries are not well prepared to link algebraic (arithmetic) and geometrical 

representations.  
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Item 10. A textbook includes the following theorem:  
If line

1l  has slope m1
 
and line

2l  has slope m2
 
then l

1 
⊥ l

2 
if and only if  

121 mm  (i.e. “slopes are negative reciprocals”).  

(McDougal Littell, Algebra 2)  

Three teachers were discussing whether or not this statement generalizes to all lines 

in the Cartesian plane.  

Mrs. Allen: The statement of the theorem is incomplete: it doesn‘t provide for 

the pair of lines where one is horizontal and one is vertical. Such 

lines are perpendicular.  

Mr. Brown: The statement is fine: a horizontal line has slope 0 and a vertical 

line has slope ∞ and it‘s okay to think of 0 times ∞ as –1.  

Ms. Corelli: The statement is fine; horizontal and vertical lines are not 

perpendicular.  

Whose comments are correct?  

A. Mrs. Allen only                        B. Mr. Brown only        C. Ms. Corelli only  

D.  Mr. Brown and Ms. Corelli     E. None are correct.  

 

The different choices of the item 6 are displayed in Table 4.7 (Correct choice is A) 
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Table 4.7 
The Choice Distribution of Item 10 in China and the U.S. 

 China U.S. 
(%) High (%) Low (%) 

A  70   63   66  
B  7   4   10  
C 1  3   4  
D 1  3   4  
E  21   28   16  

 
 
 

Both Chinese and U.S. participants had a similar rate of correct choice (about 

67%). It is interesting that about one quarter of participants in the two countries did 

not agree with that given explanation (Choice E). Also, there was a small part of 

participants agreed ―0 times -∞ as –1‖ by choosing B. This result alerts that it is in 

need to introduce a theorem more rigorously.  

Since items 4, 5, & 16 are related to irrational function, irrational equation and 

derivative of polynomial, Chinese participants outperformed U.S. counterparts 

significantly. That means Chinese participants achieved high-scoring in advanced 

algebra computation. I further examined two other items 8 & 15, on which Chinese 

participants performed very well.  

Item 8. The given graph represents speed vs. time for two cars (Figure 4.1). 

(Assume the cars start from the same position and are traveling in the same 

direction.) Use this information and the graph below to answer.  

What is the relationship between the position of car A and car B at t = 1 hour? 
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Figure 4.1.  Diagram of the relationship between speed and time. 

  
 
 

A. The cars are at the same position         B. Car A is ahead of car B 

          C. Car B is passing car A                          D. Car A and car B are colliding      

          E. The cars are at the same position and car B is passing car A.  

The different choices of the item 8 are displayed in Table 4.8 (Correct one is B) 
 
 
 
Table 4.8 
The Choice Distribution of Item 8 in China and the U.S. 

 China U.S. 
(%) High (%) Low (%) 

A 0  2   19  
B  96   88   16  
C  1   2   13  
D  1    2   4  
E  2   5   48  

 
 
 

The Chinese participants did extremely well in this item. The average correct rate 

is 90%. Even participants from the low-achieving group have about 88% correct rate. In 

Car A 

Car B 

Time 1 Hour 

Speed  
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order to get a correct answer, it is required to have a logical reasoning based on speed 

and time relationship and the graph. Only small part of the participants from the low-

achieving group made their judgment based on the visual information without having an 

appropriate understanding of the meaning of speed vs. time graph (Choice A & E).  

In the U.S. participants, only 16 % of them made a correct choice based on logical 

reasoning and graphical representation. About half of them (48%) made a wrong choice 

based on visual information only: intersection point and high over (Choice E) or partially 

using the visual information: intersection point (Choice A) or high over (Choice B). It 

may be that many U.S. participants used visual judgment rather than logical reasoning.  

Item 15. Which of the following (taken by itself) would give substantial help to 

a student who wants to expand    (x+ y + z)
 2 

?  

                  i. See what happens in an example, such as (3 + 4 + 5)
2. 

 

ii. Use (x + y + z)
2 
= ((x+ y) + z)

2 
and the expansion of (a + b)

2 
.  

      iii. Use the geometric model shown below (Figure 4.2).  
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Figure 4. 2.  Diagram of expansion of (x+ y + z)
 2 

 

 

 

      A. ii only     B. iii only         C. i and ii only    D. ii and iii only     E. i, ii and iii  

The different choices of the item 15 are displayed in Table 4.9 (Correct choice is D) 
 
 
 
Table 4.9 
The Choice Distribution of Item 15 in China and the U.S. 

 China U.S. 
(%) High (%) Low (%) 

A  6   11   2  
B  6   5   57  
C  3   3   1  
D  73   72   22  
E  13   19   15  
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The Table showed that about 72 % Chinese participants made the correct choice. 

They realized that using algebraic computation and geometrical model can help students 

to understand the algebraic expansion. About 15% of the Chinese participants believed 

the numerical computation can also be helpful.  However, more than half of U.S. 

participants believed only the geometry mode is helpful, while only 35 % of the 

participants recognized the usefulness of exploring algebraic expression. About 16% of 

U.S. participants believed the usefulness of numerical computation. Thus, the U.S. 

participants relied on the geometrical model to reason while the Chinese counterparts 

make their reason based on the geometrical model and algebraic computation. 

In summary, the analysis of these purposely selected items show that both Chinese 

and U.S. participants scored high in expressing contextual situations using algebraic 

expressions (item 1) , and revealed a weakness in linking multiple representations such 

as numerical, algebraic and geometrical ones (item 6). Compared with the Chinese 

participants, the U.S. counterparts demonstrated strengths in understanding a concept 

from different aspects (item 11). However, when making reasoning or judgment, the U.S. 

participants often preferred to rely on visual or geometrical information, while the 

Chinese counterparts tended to make logical reasoning with the support of algebraic and 

geometrical representation and computation (item 8 & 15).  
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Relationship among Different Components of KTA 

This session, I report path models in China and the U.S., and a measurement model 

in China. The relationships among background variables and different components of 

KTA are analyzed based on these models. 

Path Model Analysis  

In this part, I examined the relationship between background variables (course 

taking and grade) and components of KTA, and relationships between components of 

KTA.  Researchers (e.g., Monk, 1994) suggested the number of courses taken by 

teachers is positively related to how much their students learn in mathematics at the 

secondary level. Thus, in this study, I created a conceptual frame for examining the 

relationship between background variables, including number of mathematics and 

mathematics education courses taken, and the components of KTA as shown in Figure. 

4.3.  
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Figure 4. 3. Theoretical model relating background variables and components of KTA. 
 
 
 
As outlined in Figure 4.3., the relationship between background variables (the 

number of math courses taken in high school, the number of courses taken in college, 

and the grade), and components of KTA (SM, AM and TM) were modeled using a series 

of path models (See Figure 4.4). It was assumed that SM and AM interact with each 

other and both of them impact TM. Furthermore, the KTA (including SM, AM and TM) 

is hypothesized to be a function of background variables. SM, AM and TM are 

considered as endogenous variables in the model. The aim of the path analysis is to 

include the entire variables which may contribute to the explanation of the variance in 

the endogenous variables.  As it is impossible to include everything that may impact 

these variables, an error term is included in the model to be estimated for each 

endogenous variable (e.g., res, rea, and ret are the error terms for SM, AM, and TM 

Background 
variables 

School 
math 

Advanced 
math 

Teaching 
math 
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respectively, see Figure 4.4). The errors reflect all those unobserved predictors that were 

not measured in this study nor included in this model.  

In addition, this system of variables was hypothesized to be influenced by 

participants‘ background characteristics; including the number of high math courses 

taken, the number of college math education courses taken and grade level. These 

variables are considered to be exogenous (i.g., independent variables that are not 

dependent on or predicted by any other variables in the model). The variables are 

covaried to influence on KTA.  

I estimated this mode by using AMOS 16. Initially, all the parameters for the 

background variables on the system of variables were estimated. Consequently, to 

achieve a good fit, some paths were deleted that were not significant. The final mode is 

presented in Figure 4.4. In this diagram, the bold arrow lines represent a significant 

effect while the dashed lines represent a non-significant effect. Estimates are in raw 

score form. 
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Figure. 4.4 . Final path model of the course taking, grade level, and KTA in the U.S.  
 
 
 

In this model, the chi-square test for lack of fit was not significant, 08.0)2(2  , 

p=0.96. This means the data has a good fit (Hu & Bentler, 1999). Moreover, other fit 

indices showed there was a good fit. The comparative fit index CFI equals 1. This index 

can take on a value from 0 to 1 with values closer to 1 showing a better fit and value 

greater than .90 usually indicating a relatively good fit (Kline, 2005). The root mean 

square error of approximation (RMSEA) was 0.00. This index takes into account the 

complexity of the model, and it can range from 0 to 1 with less than 0.05 of presenting a 

good fit.  

The parameters shown in Figure 4.4, school mathematics was found to have direct 

and significant effects on teaching mathematics (β=0.77, p<0.05) and advanced math 
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(β=0.25, p<0.05). Number of college math courses was found to have a significant effect 

on school math (β=0.14, p<0.05) and teaching math (β=0.25, p<0.05) while advanced 

math was found to have a direct and significant effect on teaching math (β=0.42, p<0.05). 

However, the number of high school math courses and grade level were not found to 

have significant effects on school math (β=0.28) and teaching math (β=0.19), and 

number of college math courses was not found to have significant effect on advanced 

math (β=0.07). 

Similarly, a final path model of the course taking, grade level, and KTA in China 

was created as Figure 4.5. The dashed lines represent non-significant effects while the 

bold lines represent significant effects.  Since there was no number of courses taken in 

high school in China, we just focused on the number of courses taken in college.  

 

Figure 4.5 .Final path model of the course taking, grade level, and KTA in the China.  
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In this model, the chi-square test of lack of fit was not significant, 583.0)1(2  , 

p=0.45. This means the data has a good fit. Moreover, other fit indices shown the model 

fit is good (CFI=1, RMSEA=0.000). The parameter estimates are shown for  the Chinese 

model (see Figure 4.5) , the number of college math education courses was found to 

have a direct and significant positive effect on advanced math (β=0.10, p<0.05) while 

the grade level was found to have a direct and significant negative effect on school 

mathematics and advanced math (β=-0.92, p<0.05). School mathematics was found to 

have significant positive effects on advanced math (β=0.58, p<0.05) and teaching math 

(β=0.81, p<0.05). However, grade levels were not found to have an effect on advanced 

math (β=0.42) or teaching math (β=-.49). Number of college math courses was not found 

to have an effect on school math (β=0.07), nor was advanced math found to have an 

effect on teaching math (β=0.44).  

Comparing the Chinese model and the U.S. model, the number of college math 

courses was not found to have an effect on advanced math (β=0.07) in the U.S., while in 

the effect was significant (β=0.10, p<0.05) in China. In addition, in the U.S. sample, 

number of college math courses taken was found to have a significant effect on teaching 

mathematics (β=0.25, p<0.05), while in the Chinese sample, the effect was not 

significant (β=0.07). This result may indicate that the Chinese teacher preparation 

emphasizes content knowledge while the U.S. teacher preparation emphasizes 

pedagogical knowledge. When considering the size of effect between different 

components in China and the U.S., it was found that there were stronger correlations in 

China than those in the U.S. (For example, the effect of school mathematics on teaching 
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math is 0.81 in China while the corresponding effect is 0.77 in the U.S.; the effect school 

mathematics on advanced math is 0.58 in China while the corresponding effect is 0.25 in 

the U.S.). However, the differences of correlations (See Table 4.10) are not significant 

between China and the U.S. based on the Fisher‘s Z test.  

 
 
 
Table 4.10   
 The Correlations of Different Components of KTA 
 U.S. (N=115) China (N=376) 

SM AM TM SM AM TM 
SM 1 .242**  .449**  1 0.423**  .522**  
AM .242**  1 .336**  .423**  1 .449**  
TM .449**  .336**  1 .522**  .449**  1 
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Figure 4.6. Final measurement model of KTA in China. 
 
 
 

The bidirectional relationships between different observed variables are modeled 

(Figure 4.6)  by allowing the error terms for each of these variables to covary (for 

example, labeled er 21 and er 23). Corvariance of error terms essentially reflects the 

correlation between two variables. 

Estimates of measurement model parameters were obtained using AMOS 16 

(Byrne, 2010). Initially, all parameters of the theoretical model were estimated. 

Consequently, based on the inspection of weight load (larger than .02) and model fit 
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indexes, the model was re-estimated.  The final measurement model with all parameter 

estimates is presented in Figure 4.6. 

In this model, the chi-square test of lack of fit was significant, 34.245)174(2  , 

p<0.001. This showed the data (p<0.05) did not have a good fit to the model. However, 

other fit indices shown a relatively good fit. The Comparative Fit Indices (CFI) equaled 

0.914 (>0.90) and the Root Mean Square Error of Approximation (RMSEA) was 0.03 

(0.02-0.04) (<0.05). These two indexes indicate the Chinese data fit the model relatively 

well.  

The standardized regression weights (larger than 0.10) of all the observed variables 

in the final model were displayed in Table 4.11.  

This Table showed that except for four items (MKT13, MKT9, MKT7, MKT3), 

the others had weights greater than 0.20. Among these items, the open-ended items had 

relatively greater weights ranging from 0.420 to 0.677. 
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Table 4.11.  
Standardized Regression Weights Estimate 

Standardized regression weight  Estimate 

MKT3 <--- SM .147 
MKT6 <--- SM .215 
MKT14 <--- SM .211 
MKT19 <--- SM .677 
MKT23 <--- SM .530 
MKT17 <--- SM .243 
MKT10 <--- TM .206 
MKT7 <--- TM .196 
MKT25 <--- TM .522 
MKT18 <--- TM .544 
MKT21 <--- TM .579 
MKT22 <--- TM .420 
MKT2 <--- TM .211 
MKT9 <--- AM .185 
MKT12 <--- AM .237 
MKT13 <--- AM .163 
MKT16 <--- AM .474 
MKT20 <--- AM .374 
MKT4 <--- AM .323 
MKT24 <--- AM .488 

 
 
 

In addition, the correlations between latent variables (components of KTA) are 

shown in the following Table 4.12.  The correlations of these latent variables were 

relatively high (.75 to .91).  
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Table 4.12 
The Correlation and Co-variance of Different Variables 

 Correlations Estimates  

SM <--> TM .91 

SM <--> AM .75 

TM <--> AM .83 

 
 
 

This Table shows that there was a high correlation between school mathematics 

and teaching mathematics (r=0.91). Compared with the correlation between school 

mathematics and advanced mathematics (r=0.74), the correlation between teaching 

mathematics and advanced mathematics (r=0.83) was relatively higher. 

The final Chinese model of KTA showed that there are many links between errors, 

within the same component or across components. These links imply that these observed 

variables are not able to be used to measure different components of KTA exclusively, 

rather they are used to jointly measure an interconnected structure of knowledge for 

teaching algebra. When examining the linked items themselves, some of them are 

essentially related. For example, item 7 is about linear function and its graph while Item 

8 is about using a graph of speed vs. time to interpret a daily life situation. For another 

example, item 3 is about polynomial function computation while the item 14 is about 

irrational equation solution. However, in some cases, two items are not obviously related.  

For example, item 19 is about solving quadratic inequality while item 20 is about matrix 

computation. For another example, item 23 is about finding quadratic function and its 

maximum while item 24 is about proving a proposition of sum of two linear functions. 
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The model seems to suggest that the theoretically and artificially exclusive components 

of KTA are essentially interconnected. That means that knowledge for teaching should 

be treated as a comprehensive and interconnected entity and construct.  

However, with the U.S. data, the model is not admissible. It may be due to the 

small sample size (N=115 does not meet the minimum requirement of 10 × 25=250 

cases required for a full estimation). 

Comparisons of KTCF between China and the U.S. 

In this part, I presented a detailed analysis on the participants‘ responses to the 

open-ended items in terms of their overall performance, typical strategies/methods, and 

misconceptions/mistakes. With the U.S. case, I complemented relevant analysis with the 

interview data. Rather than analyzing items one by one in order, I grouped these items 

into three categories: One item is related to matrix and logical inference (Item 20); Three 

items are related to function concept in general (Items 18, 24,& 25), and the remaining 

four open-ended items are related to quadratic functions/ equations/ inequalities (Items 

19, 21, 22, & 23) in particular.  

For the matrix item, the analysis was focused on the logical equivalence, and 

matrix computations. For the items related to the concept of function, the analysis was 

focused on the perspectives of function concept (process vs. object); for the items related 

to quadratic functions/equations/inequalities, a two dimension framework consists of the 

perspective of function, and the flexibility in using representations guides the data 

analysis. The framework is aimed to capture the understanding of the function concept 
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and the flexibility in using representation (using verbal, tabular, algebraic, and graphical 

representations, translation between different representations and transformation within a 

representation) (see Table 3.8). 

In the sessions that follow, I will present relevant findings in these three areas.  

Logical Reasoning in Matrix System 

Item 20 is an open-ended item used for measuring advanced knowledge.  As Table 

4.3 showed that there was a significant mean difference between China and the U.S. 

(Mean difference=2.68, t=21.29, p<0.001). Moreover, the score distribution is displayed 

in Figure 4.7. 
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Figure 4.7. Score distribution of item 20. 

 
 
 

This Figure shows that more than 80% of Chinese participants provided correct 

proofs while only about 10% of their U.S. counterparts did the same. Less than 6 % of 
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Chinese participants did not provide any useful information while more than half (57.4%) 

of the U.S. participants did the same. 

The item 20 is as follows: 

       Let A= 




r

p
 




s

q
    and 






v

t
B   





w

u
，Then BA  is defined to be 





rv

pt
  





sw

qu
. Is it 

true that if OBA  ，then either A = O or B = O (where O represents the zero 

matrix) ？Justify your answer and show your work in the Answer Booklet.  

In fact, the participants are required to provide a counterexample to disprove the 

statement.  However, common misconception the U.S. participants made is to use a 

wrong logical reasoning as follows: pqqp  , namely, using the following logic 

―if A=0, then A∆B=0 or if B=0, then A∆B=0‖ to prove: ―if A∆B=0, then A=0, or 

B=0‖ .More than a quarter of the U.S. participants made this mistake, while only a few 

of the Chinese counterparts made the same mistakes. 

A few of the U.S. participants inappropriately generalized the same proposition 

from real number systems, namely 0;0.  xyx , .0y  (x, y are real numbers) to 

matrix system. No Chinese participants made this overgeneralization.  

U.S. participants’ interpretation. The interviews with U.S. participants further 

confirmed their difficulties in providing a correct proof.  Two of the five interviewees 

(Jenny and Stacy) gave the correct answer with an appropriate counterexample. For 

example, Stacy explained why she tried to disprove the statement as follows:― if 

someone wants to prove a proposition, s/he has to provide the whole process of proving. 
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However, if someone just wants to disprove a proposition, s/he only provides a 

counterexample, so, I considered to find a counterexample‖. The others gave a wrong 

judgment by providing examples such as ―A=0, then OBA  ‖ or ―B=0, then OBA  ‖ 

by ―guess and check‖. However, when the researcher asked them ―whether it is possible 

that if A 0, B 0, but OBA  ‖, two of them (Larry and Alisa) took a second thought, 

and found a counterexample to disprove the statement. For example, Alisa gave a 

counterexample, A= 




1

0
  





0

2
, 






0

3
B   





4

0
. However, Kerri was still struggling with 

finding a counterexample by saying ―it is a trick‖. 

In summary, more than three-fourths (85%) of the U.S. participants were not able 

to provide any relevant information, and about one fourth were confused with the logical 

proposition relationship between "" qp   and "" pq  .  

Flexibility in Adopting Perspectives of Function Concept  

The items 18, 24 and 25 are particularly used for measuring the knowledge of 

understanding and applying function concept from different perspectives (process and 

object). It is crucial for participants to provide correct answers and explanations if they 

select an appropriate perspective. Item 18 is in favor of using process perspective; item 

24 is easily proved if adopting an object perspective. It is necessary to connect those two 

perspectives when solving item 25. 
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Responses to Item 18. There was a significant mean difference of item 18 between 

China and the U.S. (mean difference=1.4, t=10.21, p<0.001, see Table 4.3). The score 

distribution of the item is shown in Figure 4.8. 
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Figure 4.8. Score distribution of item 18. 

 
 
 

The Table showed that about 23 % of U.S. participants got a correct answer (10.4 %) 

or almost correct answer with minor mistakes (12.2%), while there are about 70 % of the 

Chinese counterparts did the same. The following are correct examples in China and the 

U.S. (Figure 4. 9)  

 
 
 

   

 Figure 4.9. Examples of answers to item 18 in China and the U.S. 
 
 
 

The Chinese participant directly used the definition of function: Let two real 

number sets A, B, if for any a x belongs to set A, there is only one b in the set B 
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corresponding to a, then this corresponding relationship f from A to B is a function. 

According to this definition, (i) and (ii) are functions. However, the U.S. pre-service 

teacher used a diagram to visualize the function relationship and then make a judgment 

of these two given relations  

Conversely, 32% of the U.S. participants‘ provided nothing or meaningless 

information about the solution of the item 18; only about 5% Chinese did the same. 

About 28% of U.S. participants and 19% of Chinese participants just gave correct 

answers without any interpretations or give one correct answer and relevant explanations.   

Perspectives adopted in Item 18. In addition, the perspectives used in participants‘ 

interpretation are listed in Table 4.13. 

 
 
 
Table 4.13 
 Perspectives Adopted in Item 18 
Perspective     Description  Frequency 

China U.S. 
(%) 

High (%) Low (%) 
Process  Corresponding relationship 

between domain and range 
(one-to-one/multiple-to-one) 

 51   31   6  

Object  Algebraic expressions 
(constant value; two 
expressions)  
Graphic features (one line, 
many holes/un-continuous) 

 12   10   9  
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With regard to this item, it is more appropriate to adopt a process perspective. In 

China, in the high achieving group, more than half (51%) adopted the process 

perspective and in the low achieving group, more than one-third of the participants (31%) 

adopted this perspective. However, the U.S. participants preferred using object 

perspective (9%), namely, basing on function expressions and graphic features to using 

essentially corresponding relationship features (6%).   

U.S. participants’ interpretation in item 18. In responding to how they made their 

judgments, except for Jenny, the others reported they used the vertical line test (Larry, 

Alisa, and Stacy) or diagrams presenting corresponding relationship between two sets 

(Kerri).  Jenny made her wrong judgment based on visual graphical images. Since she 

had a difficulty in drawing the graph of the second relation, she believed it is not a 

function. However, when asked whether she heard of the vertical line test, she clearly 

stated that ―one x value can only have one corresponding y value; one x value cannot be 

corresponded to two y-values.‖ Kerri said she ―is a visual learner, and likes using 

diagrams representing the relationship between two sets (one-to-one or multiple-to-one, 

but not one-to-multiple)‖. Larry not only explained the vertical line test rule, but also 

showed an example (x=y2) which cannot pass the vertical line test. Alisa and Stacy 

explained the rule by emphasizing ―each input [value] should have only one 

[corresponding] value, but that does not mean that different [input] values cannot have 

same [corresponding] value‖  
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With regard to students‘ mistakes, they attributed them to students‘ superficial 

understanding of the vertical line test rule (missing multiple x values correspond one y-

value) or the confusion with ―many holes‖, or the repeating output.  

Four of them showed an accurate understanding of how to judge whether a 

relationship is a function or not based on corresponding relationship by using either 

vertical line test or diagrams to present the features of function relationship: one to one 

or multiple to one. They also realized that the ―unusual‖ graphs of the function such as 

including constant value, many holes or in-continuality may confuse students‘ judgment.  

Summary of item 18. More Chinese participants than U.S. counterparts adopted 

process perspective which protected them from the distraction of the unusual  

―appearances‖ of the function expressions or function graphs. These participants, who 

adopted a process perspective, can not only make a correct judgment, but also explain 

the reasons of making those mistakes.  

Response to item 24. There was a significant mean difference of item 24 between 

China and the U.S. (MD=3.23, t=46.63, p<0.001). The score distribution of the item is 

shown in Figure 4.10.  

 
 
 



 106 

0

20

40

60

80

100

120

0 1 2 3 4

U.S.

China 

 
Figure 4.10. Score distribution of item 24. 

 
 
 

 Essentially, there were two proofs as follows:  

Method 1: Let )(xf and )(xg  intersect at x-axis (p, 0), then, the following 

statements are true:  

(1) 0)( pf  0bap 

a

b
p  ; 

(2) 0)( pg  0 dcp 

c

d
p  ; 

(3) )()( pgpf  

c

d

a

b
  bcad  ; 

(4) )()( pgpf   dcpbap  

ca

db
p




  

According to the equation )()())(( pgpfpgf  , and above statements, the 

participants could deduce 0))((  pgf . Thus, ))(( xgf   passes at point (p, 0). 

Method 2. Let )(xf  and )(xg intersect at x-axis (p, 0), then, 0)( pf , 0)( pg  

So, 00)()())((  pgpfpgf  Thus, 0))((  pgf . 
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In method 1, the underlying thinking method is to find the coordinate of the 

intersection point p and check whether 0))((  pgf , while the strategy in method 2 is 

based on the definition of equation root and the definition of the sum of functions. Thus, 

the method 1 is mainly guided by the process perspective, while the method 2 is 

essentially guided by the object perspective.  

The Figure showed that almost all U.S. participants gave up the effort to find a 

proof or provided some irrelevant statement. Only two of them gave some statements 

which were useful for developing a proof. On the other hand, in China, more than one-

third of the participants provided a correct proof and other one-third provided a rough 

correct proof with minor mistakes. About 5 % of the Chinese participants left it blank, 

and another 6% just gave some related statements but failed to create a proof.  

Perspective adopted in item 24. When looking at the perspectives or the strategies 

used in attempting to find a proof, the distribution of using different perspectives is 

shown in Table 4. 14. The Table showed that more than half of the participants (80% in 

high achieving group and 60% in low-achieving group) in China adopted the object 

perspective so that they can perform with functions themselves and provide a proof 

effectively.  

 

 

 

 

 

 

 

 

 

 



 108 

Table 4. 14 
Perspectives Adopted in Item 24 

Perspective  Description  Frequency 
China US(%) 

High (%) Low (%) 
Process  Method 1 11 8 2 
Process  Method 1 80 62 0 

 

 

 

U.S. participants’ explanations to item 24. Larry is the one who gave two concrete 

examples to explore the intersection points. However, in the interview, she used a 

general form of linear function, 
11)( bxaxf   and

22)( bxaxg  , and got a correct 

proof. Jenny just gave two concrete examples to explore, and then got stuck. The other 

three gave up their efforts to explain because they do not like proving. 

Summary of item 24. More than 60% Chinese participants could prove roughly 

correct proofs (half of them with some minor mistakes). More importantly, they could 

adopt an appropriate perspective of function, namely, object perspective. Thus, they can 

operate function as an object, so that they avoid the difficulty in finding the function 

expression itself. However, the U.S. participants simply gave up their attempts to find a 

proof. 

Response to item 25. There was a significant mean difference of item 25 between 

China and the U.S. (MD=0.80, t=5.53, p<0.001; See Table 4.3). The score distribution of 

the item is shown in Figure 4.11.  
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Figure 4.11.  Score distribution of item 25. 

 
 
 

This Figure showed that 45% of Chinese participants and about one-fifth (18%) of 

U.S. counterparts gave roughly correct answer and interpretation (3 or 4 scores). And 

about one-third (28.4%) of Chinese participants and more than one-third (33%) of U.S. 

counterparts either gave correct explanations or gave an appropriate interpretation. One-

fifth (19%) of Chinese participants and one-third (31%) of U.S. counterparts gave 

useless information. For example, the Chinese participants gave correct answers as 

follows: 

―The student‘s explanation is correct. He/she links the life situation with the graph, 

if the x-axis represents time and the y-axis represents the vertical height. The graph 

can also be explained as a car driving. At the beginning, the driver speeds up, then 

drives it at a constant velocity, after that slows down, and finally drives at a 

constant velocity.‖  

 

―If the graph is seen as a height above sea level (h) and the time (t), then the 

students‘ opinion is right. They just understand function at a visualization level; 
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This graph can also be used to present the changes of the stock market. In the 

morning, the price of the stock is increasing, and keeps the same during the 

recession at noon. In the afternoon, the price of the stock goes down, and finally 

stops at the price the same as the price at the beginning of the market.‖ 

16 U.S. participants (14%) pointed out that the student‘s interpretation could be 

improved by denoting x-axis as time while the y-axis as height above sea level. For 

example, one participant described it as follows: 

―That is a very creative answer, but [he/she] was not looking at the graph as a 

physical representation; we need to utilize it as a representation of data. The x-axis 

represents time while the y- axis represents height.‖ 

Thirty one U.S. participants (31%) gave the situation of speed over time to 

illustrate the same diagram. For example, one participant gave ―The graph could be 

showing speed vs. time where somebody is accelerating at an exponential rate, then 

goes a steady for period of time, and then slows at a constant rate, then stops.‖ 

Perspective adopted in item 25.  It is necessary to have a connection of these two 

perspectives of function in order to get roughly correct answers. The different ways of 

explaining or interpreting the graph are displayed in Table 4.15 
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Table 4.15 
  Different Ways of Interpreting  the Graph  

Types of interpretation  Frequency 
China U.S. 

(%) High (%) Low (%) 
Height vs. Time   20   12   4  
Velocity vs. Time  51   39   31  
Housing/Stock Price vs. 
Time  

 2  0 0 

Temperature vs. time    2   3  0 
Distance vs. Time   6   5   4  

 
 
 
The Table showed that the majority of the participants explain, or interpret the 

graph as the graph of the relationship between velocity and time. It seemed that the 

participants who achieved a high score of KTA were in favor of a graph of velocity and 

time (51% in high achieving group in China, 39% in low achieving group in China and 

31% in U.S. participants). The second frequent interpretation is the relationship of height 

and time. Again, the high score of KTA indicates the high frequency of interpretation 

with the relation of height and time (20 % in high achieving group in China, 12 % in low 

achieving group in China, and 4 % in U.S. participants).  

U.S. participants’ interpretation to item 25. Three of five interviewees (Larry, 

Alisa, and Stacy) realized that the original interpretation should be improved by pointing 

out the x-axis presenting time while y-axis presenting position (or height). All of them 

gave other examples of describing the diagram as the graph of speed over time, and two 

of them (Larry and Stacy) also mentioned about the graph of temperature over time. Two 

of them also mentioned they leaned the graph of distance over time in one course called 

math and technology using CBR. (The CBR 2 is TI's answer to an easy, affordable data 
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collection device! Designed for teachers who want their students to collect and analyze 

real-world motion data, such as distance, velocity and acceleration).  

Summary of item 25. The above analysis has shown that compared with the U.S. 

participants, the Chinese participants were more likely to give correct interpretations, as 

well as give more diverse interpretations. For those who gave correct interpretations, it is 

necessary to have flexibility in shifting ideas between process perspective and object 

perspective. Interview information further confirmed that U.S. participants generally 

demonstrated the appropriate knowledge about how to interpret the graph by using 

certain daily-life situations.  

Summary of flexibility in selecting perspectives. The analysis of participants‘ 

responses to the three items suggests that compared with the U.S. participants, the 

Chinese participants demonstrated a flexibility in selecting appropriate perspectives of 

function concept, namely, process and object. Moreover, Chinese participants provided 

more diverse interpretations than the U.S. interpretations.  

Flexibility in Using and Shifting Different Representations  

The items 19, 21, 22, and 23 are deliberately designed and used for measuring 

knowledge for understanding and applying quadratic functions/equations/inequalities 

through flexibly using multiple representations. It is crucial for participants to flexibly 

use appropriate presentations and shift between different representations in order to 

solve them effectively. Regarding item 19, it is expected to have algebraic and graphic 

representations of equation and inequality. With regard to item 21, it is necessary to shift 
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between algebraic and graphic representations in order to solve the problem. To solve 

the problem of item 22, it is necessary to have ability in translating graphic 

representations to algebraic representations. To solve the problem of item 23, it is 

required to use appropriate forms of algebraic expressions and transformations of 

different algebraic expressions, and translation between graphic and algebraic 

representations.  

Response to Item 19. There was significant mean difference of this item between 

China and the U.S. (MD=2.90, t=34.62, p<.001). The score distribution of the item is 

displayed in Figure 4.12 
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Figure 4.12. Score distribution of item 19. 

 
 
 

The Figure showed that 82 % Chinese participants gave two essentially different 

solutions to the inequality, while only one U.S. participant gave two essentially different 

solutions. Moreover, about 6% of Chinese participants gave two correct algebraic 

solutions while only one U.S. participant did the same. In addition, one-third (31.3%) of 
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U.S. participants left it blank or gave some useless statements, while only 2.1% of 

Chinese participants did the same. 

Strategies used in item 19.  The different strategies or methods used to solve the 

inequality were displayed in Table 4.16. The Chinese participants demonstrated a high 

fluency and flexibility in solving the inequality. About 80% of participants from the 

high-achieving group and 51% of participants from low-achieving group gave two 

essentially different methods of solving the inequality. In addition, about 5% of the 

participants from each group gave two algebraic methods to solve the inequality. In 

contrast, the U.S. participants were struggling with solving the quadratic inequality (only 

two participants gave two methods correctly).  

 
 
 

Table 4.16.  
Different Methods of Solving Inequality in Item 19 

Types of explanations  Frequency 
China U.S. 

(%) High (%) Low (%) 
Two algebraic methods  5   6  0 
Algebraic and  interval sign   4  1 0 
Algebraic and  linear 
equation   

1 1 1 

Algebraic  and quadratic 
function  

 80   51 1 

 

 

 

Misconception Made by the U.S. Participants in item 19. The U.S. participants 
 
revealed numerous misconceptions and mistakes as displayed in Table 4. 17.   
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Table 4. 17 
 Misconceptions or Mistakes in Solving Inequality in Item 19 

Types 
mistakes  

Explanation  Examples Frequency 
(%)  

1 Misconception: if 
ab>0, then a>0, b>0 

(x-3)(x+4)>0 x-3>0, x+4>0, 
then x>3, x>-4.  

37 

2 Only Transforming 
into standard form  

0122  xx  or 122  xx  21 

3 Transforming  into 
standard form and 
getting stuck 

0122  xx or x(x+1)>12 or  
x(x+1)=12 

7.6 

4 Working on the 
standard form with 
guess and check   

0122  xx  12)1( xx ; 
x>12, x+1>12x>12, x>11 

12 

122  xx  
122  xx  12 xx  

2.5 

0122  xx , or (x-3)(x+4)>0 
x1=3, x2=-4.  

15 

5 Drawing number 
line  

Find partial answer: x>3 or x<-4 4 

6 Using a table   x>3 (x=1, 2, 3, 4... or 0, -1, -2, -
3,…). 

4 

7 ab>0a>0/b or 
b>0/a 

(x-3)(x+4)>0  
x-3>0/(x+4),   then x>3 

1.6 

 
 
 

The Table showed that 44% of the U.S. participants adopted the inference: if ab>0, 

then a>0, b>0. None of them realized that a and b are possibly negative. In addition, 

none of them cared about the logical operations ―or‖ or ―and‖ between two logical 

propositions (such as a>0 and b>0 or a>0 or b>0).  They also were satisfied with the 

solution ― 4,3  xx ‖ without any intention to further intersect or combine.  
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 In order to find another method of solving the in-equation, an automatic 

alternative is to transform the factor form into standard form: 0122  xx . 21% of 

them stopped with the standard form. 7.6 % of them were stuck with further algebraic 

operation: 12)1( xx  or 12)1( xx . Some of the participants went further with 

―guess and check strategies‖:  

Mistake 1 (12%): 0122  xx  12)1( xx ; x>12, x+1>12x>12, x>11. 

Mistake 2 (15%): 0122  xx ,or (x-3)(x+4)>0 x1=3, x2=-4. 

Mistake 3 (2.5%): 122  xx  122  xx  12 xx  

In addition, there were some unexpected mistakes as follows:  

―(x-3)(x+4)>0 x-3>0, X+4>0, then X>3 & X>-4: -4<x<3‖; 

― 122  xx  1212,122  xxx ‖; 

―Solve by guess and check, x>3 because x=3 makes it zero, (x-3) =(x+4), 3 4 , 

so x >3‖; 

―(x-3)(x+4)>0, if x=3, then ―(x-3)(x+4)=0, not greater than 0, so (3,  )‖; 

― 0122  xx ,  122  xx , x(x+1)>12, x>12 or x>11‖; 

 ― 0122  xx ,  122  xx ,  2x> 12 .x> 12 /2  ‖; and  

― 0122  xx , x3
>12.‖ 

Even though they were not able to find the correct answers, they took the risk of 

using different representations such as number line, or tabulation to explore the solution 

as follows(Figure 4.13): 
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Figure 4.13. Different representations in solving inequality in the U.S. 
 
 
 
In summary, it is encouraging that the U.S. participants tried to use different 

representations to explore different ways of solving the inequality, and take the risk of 

―guess and check‖. However, it is disappointing that nobody had attempted to use the 

graphic method, and almost all (except for one) were not able to provide a correct 

solution. Moreover, numerous misconceptions and mistakes were revealed when using 

the strategy of guess and check.  

U.S. participants’ explanations to item 19. One of the interviewees (Larry) just 

simplified the factored form into standard form ( 0122  xx ) and then got stuck on 

handling the solution. She moved forward by ―guess and check‖ such as ― 122  xx , 

and then 12 xx ‖. She just square rooted them, even though it did not work (she 

knows that dividing something in inequality, the in-equal sign may be changed, but she 

did not memorize the exact rules).  

By analogizing the property of equation: (x-3)(x+4)=0x-3=0, or x+4=0, the 

remaining four interviewees made an inference as follows:  

04)(x  ,0)3(0)4)(3(  xxx 4,3  xx . 
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In order to find a second method, Kerri took a risk by guess and check: 

0)4)(3(  xx  0122  xx  312)1(  xxx , while Stacy used root 

formula 
2

)12)(1(411
2,1


x =3 or -4, and got the same solution x>3, x>-4.  

Nobody intended to work on ―x>3, x>-4‖ further, such as the logical operations 

―and‖ or ―or‖ and the operations of intersection and combination of sets. They seemed to 

be satisfied with the ―solution‖.  

When asked ―if ab>0, what result can you deduce?‖ they realized that ―if ab>0, 

then  a,b both are positive, a, b both are negative‖. Then they realized that there are other 

solutions of the inequality. Kerri used a number line to find a correct solution x>3 and 

x<-4. Other two (Alisa and Stacy) guessed that x<-4 should be part of solutions.  

However, they still worked with algebraic representation to solve this inequality.  

When asked if they can use a graphic method to solve equation or inequality, they 

recalled the graphs of quadratic equation. Aside from Jenny (she drew one without 

intersection with x-axis), the others drew a correct sketch and found the correct solutions 

with the support of the researcher. Moreover, Kerri not only presented the solutions by 

number line, but also drew two lines y=x-3 and y=x+4 to show how to use the graph of a 

linear equation to find the solutions of (x-3)(x+4)>0. 

All the interviewees explained that they did not know how to use the quadratic 

function graph to solve inequality, although they knew the graphing method of solving 

linear equation. They learned quadratic function first (probably later at middle school or 

early at high school) and then inequality later at high school. These contents were taught 
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separately. They were not taught how to use graphic representation to solve algebraic 

problems. They appreciated the method of integration of algebraic and graphic 

representations. Stacy said ―it will be better to teach students with two methods, because 

some students are visual learners while others are algebraic learners.‖ 

In summary, in the U.S. sample, only one participant provided two correct 

algebraic solutions. Almost all of the U.S. participants were struggling with algebraic 

computation of inequality, with numerous mistakes when guessing and checking.    

However, the interviews showed that participants may have relevant content knowledge 

(such as quadratic function and its graph, quadratic equation, and inequality), but they 

did not have an interconnected knowledge network; they do not have problem solving 

experience in flexibly using different kinds of knowledge and relevant representations.   

However, when appropriately enlightened, they were able to build the connection 

between different types of relevant knowledge and find an appropriate solution. In 

addition, as pointed by the interviewees, the placement and presentation of the contents 

in textbooks and the ways of teaching the contents in classroom did not support them to 

build the connection between algebraic and graphic representations. This raises an 

important issues related to teachers‘ knowledge development.  

Chinese participants’ strategies used in item 19. On the other hand, the Chinese 

participants provided multiple methods to solve the inequality. Four- fifths of the 

participants provided two essentially different solutions (one is using algebraic 

manipulation and the other is using a graphing method). They provided correct 
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procedural steps. There are no basic mistakes such as those made by the U.S. 

participants. For example, one participant gave the following two typical solutions: 

Method 1:  since (x-3)(x+4)>0, them (x-3)>0 and (x+4)>0 ,x>3 and x>-4 or x-

3<0 and x+4<0,    x<3 and x<-4. So the solution is 

 -4or x 3| xx ; 

Method 2 (graphing method): According to the graph of function   

f(x)= 12)4)(3( 2  xxxx  , when .0)(),3,4(  xfx when 

.0)(),,3()4,(  xfx  Thus, the solution of the inequality is 

).,3()4,(    

One student gave a graphing method as follows: Sketch two lines: y=x-3 and 

y=x+4, then find the common regions where both lines are positive (above the x-axis) or 

negative (below the x-axis). The x-coordinate ranges of those regions are the solutions.    

Summary of item 19. The above analysis showed that Chinese participants had 

sound knowledge in solving the inequality both algebraically and graphically. However, 

the U.S. participants were lack of this knowledge and skills in solving inequalities by 

using graphic methods, and made a lot of basic mistakes when trying to finding solutions. 

They did not realize that they can solve the inequality by quadratic function graphs.  

Response to Item 21. Item 21 is used to measure teaching and students knowledge 

of solving quadratic equation. It is necessary to link algebraic and graphic 

representations. There was a significant mean difference of this item between Chinese 

and the U.S. participants (mean difference=2.79, t=31.60, p<.001). The score 

distribution of this item is displayed in Figure 4.14.  
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Figure 4.14. Score distribution of item 21 

 
 
 

In the U.S. participants, only one gave correct explanations and useful suggestions 

as showed below. 

(a) The student believes that he needs to know the values of a,b,c. He can‘t find 

these values because there are three variables in two equations. 

(b) The student needs to think graphically. Since at x=1, the value is positive, 

then the graph is above the x-axis. The opposite is true when x=6. Therefore, 

the graph has to cross the x-axis and since it has degree two. It must have 2 

solutions.  

About 84% of them agreed with this student‘s explanation (actually, it is wrong), 

and they were stuck with the algebraic operation to find a,b and c, and had no idea about 

how to help the student get out of their difficulties. 15 % of the participants suggested 

plugging different values of a, b, and c (such as a=-10, b=-9, and c= 20) to see whether 

some patterns can be found. It is disappointing that when facing difficulty in using 

algebraic representation, they have no idea on how to think with graphic or geometrical 

representations.  
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In the Chinese participants, about three-fifths (58.2%) of the participants gave 

appropriate explanations of students‘ mistakes and provided a correct answer. For 

example, one participant gave detailed explanations of the student‘s reasons for 

his/her solution: 

 ―Reasons:  First, although the student masters some methods of solving problems, 

she/he directly applies that knowledge without considering the specific conditions 

of the problem. He/she was constrained by routine thinking methods; second, the 

student did not recall the method of judging zero points of function. The method 

can be used flexibly. 

 Suggestions:  

(1) if you are not able to find a,b, and c, by using the given conditions (when x=1, 

the value is positive while x=6, the value is negative ), why not try other 

methods ? Are there any ways which do not require to find a, b and c?  

(2) Although we are not able to find accurate values (of roots) by using algebraic 

methods, then, why not use graphing method to make estimations? It should 

be helpful to guide students to draw a figure (similar to the Figure 4.13)  

(3) Through observing this Figure, are there any intersection points of the 

function at x-axis?  

(4) How many intersection points are there? According to the features of 

quadratic function, students could solve this question? 
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(5) Connecting zero points of a function to the roots of an equation lets students 

understand that learned knowledge can be flexibly applied to solve this 

problem. ‖ 

For another example, one participant gave a solution (See the Figure 4.15).  
 
 
 

 

Figure 4. 15. An example of Chinese answers to item 22. 
 
 
 

The participant believed that ―the student did not fully understand the hidden 

condition of the problem and mistreated it as a problem of finding solution of a quadratic 

inequality‖. S/he further suggested the student is to consider the problem by integration 

of algebra and geometry from a perspective of quadratic function. Then s/he drafted two 

sketches of the quadratic function ( cbxaxxf  2)( , a>0 or a<0) according to the 

given conditions 0)6(,0)1(  ff , and concluded that there are two roots of the 

quadratic equation.  

Another 13% of the participants identified students‘ problems and gave correct 

answers with minor computational or notational errors. Other 7 % of the participants 

realized students mistakes and suggested using graphing method, but without any details. 
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About 10 % of them made more efforts to find a,b and c or judge the sign of 

discriminates. The remaining 10% left the item blank or wrote something not useful for 

solving the problem.  

However, some participants tried to judge the numbers of roots based on the sign 

of acb 42  , then they got stuck to some inappropriate algebraic manipulations. For 

example, one participant gave the following explanation:   

Solution:  if x=1, a+b+c>0; if x=6, 36a+6b+c<0, so 35a+5b<0; 7a+b<0, b<-7a. 

(1) If b>0, c>0, then, a<0, then 042  acb , then the equation has two roots. 

(2) If b>0, c<0, then, a<0… 

It is important to learn how to discuss and solve a problem according to different 

parameters, based on the sign of 0  (two different roots, no real roots, and two 

equal roots) .Since there are several parameters, usually, we fix the values of some 

parameters, then adjust other parameters. Thus, the discussion will be very clear. 

(SC04-28). 

Strategies used in item 21.  The interpretations used in solving item 21 are 

displayed in Table 4.18 
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Table 4.18 
Interpretations Used in Item 21  

Interpretations  Frequency 
China  U.S. 

(%) High (%) Low (%) 
Correct explanations and correct 
graphing solutions 

76 65 1 

Using graphing method in general 
without providing solutions in detail 

4 8 0 

 
 
 

As analyzed above, the Chinese participants demonstrated an ability to use graphic 

methods to solve the algebraic equation. Moreover, compared with the low-achieving 

group, the high-achieving group seems to provide more complete and detailed solutions 

using graphing method.  

In Even‘s (1998) study, it was found that only 14% of the 152 pre-service 

secondary mathematics teachers in the U.S. correctly solved this problem, and about 

80% of them did not show any attempt to look at another representation of the problem. 

In the current study, only 1% of the 115 U. S. gave a correct answer while around 58% 

of 376 Chinese counterparts gave fully correct answers. The U. S. subjects in this study 

performed very poorly, and it may be due to the 80% of the U. S. participants prepared 

to be middle school math and science teachers. The correct rate of the Chinese pre-

service teachers is higher than that (14%) of pre-service mathematics teachers in Even‘s 

(1998) study. Thus, the Chinese participants demonstrate strong knowledge and skills in 

shifting between symbolic and graphic representations.  

U.S. participants’ explanations to item 21.  Three of the participants (Larry, Kerri, 

and Alisa) fully agreed with the student‘s statement. Namely, ―Since it is impossible to 
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find out fixed values of a, b and c based on the previously given inequalities, the original 

question is not solvable‖. They tried to find out a,b, and c through algebraic 

transformation but it did not work. They had no idea on how to help the student find a 

solution. 

The other two interviewees (Jenny and Stacy) felt the problem may be solved, but 

they did not have any concrete ideas on how to solve it. What they could suggest to the 

student is to ―try different ways, such as plugging more numbers between 1 and 

6.‖(Jenny) or ―explore in different ways such as plugging more numbers to see whether 

they can find certain patterns, rather than being stuck‖ (Stacy). 

When asked whether they can try other methods such as graphical methods to 

solve, they tried to sketch the graphs and find the possible roots. Except for Larry, others 

were successful in finding the number of roots by examining the intersection points of 

the quadratic function.  All of them said they had not thought in this way, they had not 

gotten these kinds of experiences in solving problems, but they realized the usefulness of 

graphing method in algebra.  

Summary of item 21. The Chinese participants (more than 60%) demonstrated 

flexibility in using graphic representations to solve this problem, and only a small part of 

them (20%)  were stuck with algebraic operations. However, in the U.S. counterparts, 

the majority of them (85%) struggled with algebraic manipulations, and failed to find 

correct answers and explain the students‘ mistakes. Less flexibility in using graphic 

representations was revealed when finding the number of roots of the quadratic 

equations.  
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Response to Item 22. This item is used to measure knowledge for understanding of 

the effects of changes of parameters of quadratic function on the changes of quadratic 

graphs. There was a significant mean difference between China and the U.S. (MD=1.42, 

t=-8.44, p<0.01). The score distribution of the item is displayed in Figure 4.16. 

 
 
 

0

10

20

30

40

50

0 1 2 3 4

U.S.

China 

 
Figure 4.16.  Score distribution of item 22. 

 
 
 

About 10% of U.S. participants gave correct answers and appropriate explanations 

and 17% of them gave correct answers but failed to explain. Fifteen percent of the 

participants gave partially correct answers and explanations. Twenty three percent of 

them gave sporadic information about the effect of a, b and c changes. About 35% of 

them got lost, either leaving it blank or providing some wrong statements. In summary, 

one-third of U.S. participants had no ideas on solving and explaining this problem while 

about one-fourth of them gave roughly correct answers.  

The graph also showed that 46.5% of Chinese participants gave the correct choice 

and appropriate explanations. They either explained by analyzing the effects of changes 
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of a,b, and d  on the changes of the graphs or analyzing the symmetrical features. For 

example, the following are some excerpts: 

―Because the change a results in changes of graph in the openness and wideness, 

however, the translated graph does not change the shape, so a is not changed. Since 

c represents the y-intercept, because the two graphs intersect y- axis at the same 

point. So c is not changed. So, only b can be changed.‖ (Method 1, SC04019) 

 ―According to the graphs, a>0, the two graphs are symmetrical with regard to y-

axis, thus, the symmetry line is also symmetrical with regard to y-axis. The 

symmetrical line of the left graph is
a

b
x

2
 , so the symmetrical line of the right 

graph should be
a

b
x

2
 . Thus, only the b changed as –b‖ ( Method 2, SC409). 

 ―Let original form: cbxaxy  2 , and the translated one: 11

2

11 cxbxay  . 

Sine y-intercepts are the same, namely, x=0, y=c=
11 cy  , so, c=

1c . Since the graph 

y1 and y are symmetrical with regard to y- axis, so : 

cbxaxy  2 = 11

2

11 )()( cxbxay   

 xbxabxax 1

2

1

2  
11, bbaa  . Thus, it is only needed to change b 

value.‖ [Method 3, SC411] 

Another 9 % of the participants gave a correct choice, but their explanations had 

minor errors. About 18% of the participants made correct choices and their explanations 

had serious mistakes.   
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Another 15% gave wrong choices but provide some useful explanations, and the 

remaining 11.7% just gave up any efforts to answer the item. 

The strategies used or mistakes made in item 22.  The following Table (Table 4.19) 

showed the different interpretations used.  

 
 
 
Table 4.19. 
 Interpretations Used in Item 22  

Interpretations   Frequency 
China  U.S. 

(%) High (%) Low (%) 
The effects of changes of a, b and c on 
the changes of graphs of quadratic 
functions. (Method 1) 

 7   14   11  

Symmetrical line is
a

b
x

2
 , a is 

invariant, then b can be changed only 
(Method 2). 

 31   27   2  

According to g(x) =f(-x), find the 
coefficients  of g(x) 
( ,1 aa  bb 1 , cc 1 ). (Method 3) 

 11   14  0 

 
 
 

The Table showed that the Chinese participants used more ways (see previous 

explanation for details of the three methods) to interpret their answers than their U.S. 

participants did (two methods). Chinese participants not only used the general results of 

the effects of change of parameters on the changes of graphs (method 1), but also use the 

properties of symmetry both geometrically (method 2) and algebraically (method 3). 
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However, the U.S. participants mainly used the method 1 which was taught in typical 

texts. 

Meanwhile, since the Chinese participants used more sophisticated algebraic 

multiplication, they made some errors. For example, one participant tried to transform 

the function expression as follows:  

Because the translated function should be:  

)()( kxfxg  = )()2()()( 222 cbkakxakbkaxckxbkxa  . 

Thus ccbkak 2 , 02 bkak , k=0 or 
a

b
k  . So at least two of these 

parameters of a,b, c should be changed.(SC04-22) 

Similarly, another participant tried to find the vertex point: 
a

b
x

2
1  , 

a

bac
y

4

4 2

1


 , 

and explained that ― since the y1 is the same[at the two vertex points of the two graphs], 

so only x1 could be changed.  Thus, at least two parameters need to be changed. ‖ (SC-

04-24). 

 In Black‘s (2008) study, 20% of 76 U. S. high school mathematics teachers gave 

correct answers and relevant explanations to this problem. In the current study, 25% of 

115 U. S. participants gave correct answers and explanations while 55% of 376 Chinese 

counterparts did the same. In this item, the U. S. participants in this study performed 

better than the subjects in Black‘s study. The Chinese participants in this study 

outperformed the U. S. counterparts remarkably.  
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U.S. interview participants’ explanations to item 22. In the interview, two 

participants (Larry, and Kerri) clearly explained the effects of changing a, b, and c on 

the graphs of quadratic function, even though Kerri made a wrong choice in the 

survey. 

Alisa and Stacy were able to explain the effect of changing a and c on the graph 

of quadratic function, but they were not sure about the effect of changes in b. Alisa 

made mistakes in drawing graph )( hxf  . Stacy knew how changes of a and c 

impact the changes of the graph but she was not clear about how changing b  can 

impact the changes of graphs although she got a correct choice.  

 Jenny found the correct answer by explaining that changing b to negative b, the 

graph of quadratic function would reflect it over the y-axis because she ―did a lot of 

exercises of translation of graphs in high school‖. However, she could not remember 

the details of the effect of changing a,b and c on the graph. 

 In summary, two of the participants were quite clear about how the changes of 

a, b impact on the changes of the graphs of quadratic function. Others were not quite 

sure how changes of these parameters impact on the changes of the graphs of 

quadratic function. One participant got the correct answer by relating the symmetric 

property, although she was not clear about the details of the effects of changing a, b 

and c on the graph.  

Summary of item 22.  More than half of the Chinese participants provided the 

correct choice and roughly appropriate explanations (46.5%+8.8%=55.3%) while only 

about one fourth (10%+17%=27%) of the U.S. counterparts did the same. In contrast, 



 132 

about one tenth (11%) of Chinese participants gave up any attempts to solve the problem, 

while more than one-third (35%) of the U.S. participants gave up. In addition, Chinese 

participants adopted more diverse ways to interpret by using the connections between 

geometrical symmetry property and algebraic function features, while their U.S. 

counterparts mainly used a routine way to interpret.  

Response to item 23. There was a significant mean difference of item 23 between 

China and the U.S. (MD=3.00, t=33.01, p<.001).  The score distribution of the item is 

displayed in Figure 4.17.  
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Figure 4.17.  Score Distribution of Item 23. 

 
 
 

Only three U.S. participants found the quadratic equation by solving a system of 

linear equations and found the maximum correctly. One participant found the quadratic 

equation but failed to find the maximum. About 20 % of the participants just drew a 

graph or list equations based on the given three points. Four-fifths of them left the item 

blank or wrote some useless statement. 
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The Figure showed that 67.8% of the Chinese participants correctly solved this 

problem. Usually, they used standard quadratic formula (i.e., cbxaxy  2 ) to find the 

function expressions, and then transformed it into a form of the vertex point 

(i.e., khxay  2)( ) to find out the maximum. However, multiple strategies were used 

to find the solutions (see Figure 4.18). In one method, the special quadratic formula: 

))(( 21 xxxxay   was used, while in the other methods the standard quadratic 

formula cbxaxy  2  and Vièta theorem: 
a

c
xx 21. , 

a

b
xx  21 (a=-2) were used.  

 
 
 

   
Figure 4. 18 .Two methods used in item 23 in China. 

 
 
 

About 6 % of the Chinese participants found the correct quadratic expressions and 

tried to find the maximum by forming a perfect square format, however, they made 

mistakes in computation. Another 16.8% of the Chinese participants correctly found the 

quadratic expression, without further action to find maximum. About 5% of the Chinese 

participants can only find part of a,b and c, but failed to find the expression ,and the 

remaining 4% just left the item blank. 

Strategies used in item 23.  With regard to the strategies used to solve this problem, 

there are several methods. First of all, three forms of quadratic formula methods: 



 134 

cbxaxy  2  (FM1); ))(( 21 xxxxay   (FM2); and khxay  2)( (FM3) could 

be used for finding the quadratic function expression.  Then, three methods could be 

used for finding the maximum value: (1) transforming into khxay  2)( , then 

finding the maximum (MM1); (2) using formula
a

b
x

2
 ,

a

bac
y imum

4

4 2

max


  (MM2); 

and (3) taking derivative: y‘=0, x=1, then, )1(max fy imum   (MM3). The strategies used 

are shown in Table 4.20. 

 
 
 
Table 4.20 
Different Strategies in Using Representations in Item 23  

Strategies   Frequency 

China U.S.  

(%) High (%) Low (%) 

1.FM1+MM1  22   18   3  

2.FM1+MM2  28   32  0 

3.FM2/FM3+MM1  12   1  0 

4.FM2/FM3+MM2  8   10  0 

5.FM1/FM2/FM3+MM3  4   1  0 

 
 
 

The Table showed that the Chinese participants provided various strategies to solve 

the problems. The high achieving group showed more variability in adapting strategies 

(five methods) than did the low achieving group (essentially including three methods).  

Moreover, some participants (20% in high achieving group and 11% in low achieving 

group) demonstrate an ability to select the most appropriate formulas (strategies 3 or 4).  
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The following are some examples of flexibly using formula and properties of quadratic 

functions.  For example, a Chinese participant from the high achieving group gave two 

methods: 

Method 1: using standard formula to find the quadratic function and make a 

completing the square formula and find the maximum (i.e. strategy 1).  

Method 2: according to the given condition, the symmetrical line is x=1. 

Let hxaxf  2)1()( . 

Because f (-1)=0, f(0)=6. 

So, 4a+h=0 and a+h=6








6

04

ha

ha
;








8

2

h

a
, thus, 8)1(2)( 2  xxf . Thus 

the maximum is 8.(i.e. strategy 3)  (SC04-15) 

Another participant from the low-achieving group also gave two methods as 

follows: 

―Solution:  c=6.  

Method 1:  let 02  cbxax . 3,1 21  xx  are two roots, then, 

a

c
xx 21. , a=-2; 

a

b
xx  21 ,  b=4 

Thus, f(x)=-2 642  xx , and symmetrical line is x= 1
2

21 
 xx , 

F(x) 8)1(max  f . 

Method 2:  let y=a )4)(3(  xx , plugging x=0, y=6, find a =-2, plugging the 

symmetrical line x-coordinate (x=1) and find the maximum.‖ (LN4-02) 
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It is impressive that the participants flexibly used the Vièta theorem in method 1 

and wisely chose an appropriate formula of the quadratic function in method 2.  

The U.S. participants revealed a lack of basic skills of algebraic computation.  In 

the following section, we try to get a better understanding of U.S. participants‘ thoughts 

about solving this problem.  

U.S.  participants’ explanations of their solution. Two of the participants (Larry 

and Stacy) knew the process of solving the problem: finding the expression of quadratic 

equations by plugging given points, and then finding the maximum by taking derivative. 

Two of them (Larry and Alisa) realized that the maximum should be at x=1 due to its 

symmetry although they were not able to find correct expression of quadratic equations. 

Two of them (Kerri and Jenny) supposed that y-intercept is the maximum. They had 

difficulties finding the expression by plugging in the given points.  

When asked whether they can use other formulas of quadratic equations to find 

the expression more effectively, they had no ideas about these formulas. Even when I 

showed them some formulas (such as ))(( 21 xxxxay  or khxay  2)( ), they 

did not know about them.  

In summary, the teachers tried to find expressions of quadratic equations by 

using the standard formula, and then found the maximum by taking derivative and 

plugging x=1. However, they had difficulty in finding the correct expression due to 

the complexity of algebraic manipulation.   Some of them tried to use the symmetry 

to find maximum.  In addition, nobody was aware of using other appropriate formulas 
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to find the expressions as Chinese counterparts did.  It seems that the standard 

formula of quadratic equation is the only one they were familiar with.  

Summary of item 23.  The analysis of the responses to the item 23 showed that 

Chinese participants demonstrated a sound and flexible knowledge for solving this 

problem. They not only could shift from process perspective (point-wise) to object 

perspective (graphic and algebraic representations) but also and flexibly selected 

most appropriate formula (algebraic representations) to solve this problem. On the 

other hand, the U.S. participants revealed a shortage of using relevant knowledge to 

solve the problem.  

Summary of the representational flexibility in China and the U.S. The analysis of 

the responses to the four items which focused on solving and interpreting quadratic 

functions/equations/inequalities provides a consistent picture of teacher knowledge for 

teaching the concept of quadratic relation. Overall, the Chinese participants not only 

demonstrated a sound knowledge needed for teaching the concept, but also showed the 

flexibility in using representations appropriately. In contrast, the U.S. counterparts 

revealed their shortage of basic knowledge for teaching the concept and flexibility in 

using representations.  

An Analysis of Correlation between Flexibility and Other Variables 

Due to the importance of developing teachers‘ flexibility in using appropriate 

representations, I developed an indicator of flexibility. Flexibility in this study is defined 
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as a shift between different representations or a transformation between different forms 

within a representation.  

For example, in item 22, if a participant explained as follows: ―since the 

symmetrical line is 
a

b
x

2
  while the openness of the graph is not changed so the 

parameter a will not be changed, thus, only b can be changed‖, I coded the response as 

flexibility (shift from graphic representation to algebraic representation).  So, each of the 

three strategies used (see Table 4.19) can be coded as a flexibility.  

In another example, in item 23, if a participant adopted standard form of quadratic 

function (i.e., cbxaxy  2 ) to find the expressions and then reorganize it as a form of 

khxay  2)(  in order to find out the maximum, I coded a flexibility (transformation 

within algebraic representation). Thus, each of the strategies 1-4 used for solving item 23 

(see Table 4.20) can be coded as a flexibility. 

The number of times that flexibility occurred in items 19, 21, 22, & 23 were 

counted as the value of a variable denoted as flexibility, ranging from 0 to 4.  The 

indicator of flexibility was examined through two aspects: (1) multiple group 

comparison; and (2) regression analysis with regard to SM, AM, and TM as independent 

variables in different groups.  

Mean difference across different groups. The means scores and standard deviation 

of flexibility are displayed in Table 4.21 
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Table 4. 21 
Mean Scores and Standard Deviation of Flexibility 

 Mean St. Deviation 
1.China High-achieving 3.09 1.050 
2.China Low-achieving 2.76 1.190 
3.U. S. .29 .491 

 
 
 

Multiple group comparison showed that the mean difference between China high-

achieving and low-achieving group is significant (mean difference=.33, p=0.008). The 

mean difference between China low-achieving group and the U.S. group is also 

significant (mean difference=2.47, p=0.000). Thus, there are significant differences of 

flexibility between different groups of participants. The higher the  KTA score the 

participants have, the more flexible they are in selecting representations. 

Prediction of different components of KTA.  Using flexibility as the dependent 

variable and three components of KTA as independent variables, I did a regression 

analysis in different groups.  (let y=Flexibility, x1=School mathematics, x2=Teaching 

mathematics, x3=Advanced mathematics) 

In China high-achieving group, the regression equation is as follows:  

21 17.012.009.1 xxy   

Knowledge of school mathematics and teaching mathematics explains 56% of the 

variance in flexibility ( 56.02 R , F(2)=67.16, p<0.001).  

In China low-achieving group, the regression equation is as follows:  

21 12.026.069.1 xxy   
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Knowledge of school mathematics and teaching mathematics explain 74% of 

variance in flexibility ( 74.02 R , F(2)=200.9, p<0.001). 

 In the United States, the regression equation is as follows:  

21 09.003.050. xxy   

Knowledge of school mathematics and teaching mathematics explain 42% of 

variance in flexibility ( 42.02 R , F(2)=40.80, p.<0.001). 

However, in the whole sample (including Chinese and the U.S. participants 

N=371), the regression equation is as follows: 

321 03.012.019.041.1 xxxy  . 

Knowledge of school mathematics, teaching mathematics and advanced 

mathematics explain 84% of variance in flexibility ( 84.02 R , F(3)= 663.84,  p.<0.001). 

At the same time, flexibility is highly correlated to each of school 

mathematics(r=.87, p<.001), teaching mathematics (r=.86, p<.001) and advanced 

mathematics (r=.81, p<.001). 

In summary, overall, the higher KTA scores the participants achieve, the higher 

flexibility they have. Meanwhile, the flexibility can be significantly predicted by KTA 

and it is highly correlated to all the components of KTA.  

Summary of the Findings 

The findings of this study can be summarized in line with four research questions: 

(1) the differences and similarities of KTA in Chinese and U.S. pre-service teachers, (2) 

the relationship between different components of KTA, (3) the difference and 
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similarities of knowledge for teaching the concept of functions, and (4) the relationship 

between pre-service teachers‘ status of KTA and their courses taken.  

The Differences and Similarities of KTA in Chinese and U.S. Pre-service Teachers 

In all 17 multiple choice items, except for four items, the Chinese participants had 

significantly higher mean scores than their U.S. counterparts. In all 8 open-ended items, 

the Chinese participants significantly outperformed their U.S. counterparts. Based on 

detailed examination of individual items, I found that: (1) the U. S. participants showed a 

better understanding of introducing the slope concept from multiple perspectives than 

the Chinese counterparts; (2) both the U. S. and Chinese participants revealed 

weaknesses in presenting numerical relations and algebraic equations using geometrical 

representations; (3)the Chinese participants tended to make their judgments based on 

visual and graphical information and underlying conceptual understanding and logical 

reasoning while their U. S. counterparts tended to make their judgments mainly based on 

visual information without paying close attention to underlying concepts and logical 

reasoning; and (4) the Chinese participants demonstrated strong knowledge and skills in 

algebraic manipulation and quadratic functions/equations/inequalities. 

The Relationship between Different Components of KTA 

With regard to the U.S. sample, school mathematics was found to have significant 

effects on teaching mathematics and advanced math. Advanced math was found to have 

a direct and significant effect on teaching math. Regarding the Chinese sample, school 
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mathematics was found to have direct and significant effects on advanced math and 

teaching math.  

Difference and Similarities of Knowledge for Teaching the Concept of functions 

The analysis on the items of measuring teachers‘ knowledge for teaching  the 

concept of function revealed the following results: (1) the Chinese participants 

demonstrated sound knowledge and skills needed for solving the problems and 

interpreting their solutions, while their U.S. counterparts revealed their limitations in 

basic knowledge and skills; (2) the Chinese participants showed flexibility in selecting 

appropriate perspectives of function concept while the U.S. counterparts showed 

disadvantages in adopting appropriate perspectives; and (3) the Chinese participants 

demonstrated flexibility in using multiple representations while the U.S. counterparts 

revealed limited knowledge and ability in adopting multiple representations 

appropriately.  In addition, the Chinese participants were willing to provide more diverse 

interpretations than their U.S. counterparts. 

There are significant differences of flexibility between China and the U.S. The 

Chinese participants demonstrated greater flexibility in using representations and 

perspectives than their U.S. counterparts. Overall, the KTA scores are highly correlated 

to the flexibility and the flexibility can be significantly predicted by KTA.  
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The Relationship between KTA and Courses Taken  

In China, the number of math courses taken was found to have a significant effect 

on advanced mathematics, but the effects of the number of courses taken on school 

mathematics and teaching mathematics were found not significant. In the U.S., the 

number of math courses taken was found to have significant effects on school 

mathematics and teaching mathematics, but it did not have significant effect on 

advanced mathematics. These findings imply that the Chinese teacher preparation 

programs may emphasize content knowledge while the U.S. teacher preparation 

programs may emphasize pedagogical knowledge.  
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CHAPTER IV 

CONCLUSIONS AND DISCUSSIONS  

Before discussing my findings, I would like to point out the disparity of sampling 

and courses taken between China and the U.S. First, the U.S. sample was a convenience 

sample taken from an interdisciplinary middle grade math and science program in a large 

public university. The U.S. participants came primarily from one of three routes of 

preparing middle grade mathematics teachers: a program designed exclusively for 

middle grade teachers‘ preparation. The Chinese participants were sampled from a pre-

service preparation program (there is only one type of mathematics teacher preparation 

program for middle and high schools in China although there are variations regarding 

course design and arrangement) from purposely selected universities (high, normal, and 

low reputation universities). On average, the U.S. participants had taken seven 

mathematics content and mathematics education courses, while the Chinese participants 

had taken 14 such courses. So caution should be taken in interpreting the findings of this 

study in which comparisons are made between Chinese and U.S. participants due to the 

disparity of the sample. 

In this chapter, I first summarized and discussed the main findings of this study in 

line with the research questions. Then, I discussed the limitation of this study and 

proposed some topics for further studies. 
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Conclusions 

Knowledge for Teaching Algebra in China and the U.S. 

Based on our survey, overall the Chinese participants had a much greater 

knowledge for teaching algebra than their U.S. counterparts. When looking at the items 

in detail, several interesting results were found as follows: (1) the U.S. participants 

showed a better understanding of introducing the concept of slope from multiple 

perspectives than the Chinese counterparts; (2) both the U.S. and Chinese participants 

revealed weaknesses in presenting numerical relations and algebraic equations using 

geometrical representations; (3) the Chinese participants tended to make their judgments 

based on visual information and underlying conceptual understanding and logical 

reasoning while the U. S. participants tended to make their judgments mainly based on 

visual information without paying close attention to underlying concepts and logical 

reasoning; and (4) Chinese participants demonstrated strong knowledge and skills in 

algebraic manipulation and quadratic functions/equations/inequalities. 

These findings are parallel to Ma‘s (1999) findings that Chinese elementary 

mathematics teachers had a profound understanding of fundamental mathematics 

knowledge, and An et al.‘s (2004) observation that Chinese middle grade mathematics 

teachers emphasized developing students‘ understanding and mastering knowledge 

through rigorous and traditional methods, when compared with their U.S. counterparts. 

Moreover, Li and his colleagues (2008) found that the secondary (including middle 

grade) mathematics preparation program in China put great efforts to develop students‘ 



 146 

sound and broad content knowledge and mathematics education knowledge. Thus, it is 

reasonable to expect that Chinese pre-service teachers may have sound mathematics 

content knowledge. On the other hand, it is a publicly acknowledged observation that 

many U.S. mathematics teachers do not have the adequate mathematics knowledge that 

they need to teach (e.g., Ball & Bass, 2000; CBMS, 2001). The study further alerted that 

the U.S. pre-service middle grade teachers need to make great efforts to meet the 

recommendations by influential documents (CBMS, 2001; Kilpatrick et al., 2001; 

NMAP, 2008). The weaknesses of the U.S. middle grade mathematics preparation 

programs were identified by international comparative studies (Babcock et al., 2010; 

Schmidt et al., 2007). The teacher preparation programs in East Asia including Korea, 

Chinese Taiwan demonstrated their strengths in mathematics content knowledge and 

pedagogical content knowledge compared with the U.S. ones. This study seems to 

suggest that the middle mathematics teacher preparation programs in China shares some 

features with other East Asian teacher preparation systems such as emphasizing 

mathematics content knowledge and pedagogical content knowledge, rather than 

pedagogical knowledge in general.  

The weakness in presenting numerical relations and algebraic equations using 

geometrical representations in China and the U.S. calls for preparing teachers with 

connections of different brand of knowledge and flexibility in using different 

representations if we want to implement mathematics curriculum as recommended by 

NCTM (2000, 2009).   It was recommended that students should understand the meaning 

of equivalent forms of expressions, equations, inequalities, and relations (NCTM, 2000), 
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the connection between algebra and geometry, the link of expressions and function, and 

the flexible use of representations (NCTM, 2009).  Thus pre-service teachers should be 

equipped with relevant knowledge and skills so that they may be able to organize their 

classroom instruction with the necessary learning opportunities.  

The observation that Chinese participants tended to make their judgments based on 

underlying conceptual understanding and logical reasoning while the U. S. tended to 

make their judgments mainly based on visual information may partially echo Cai (2005) 

finding that Chinese teachers put more value on abstract representation than U.S. 

counterparts. Pre-service teachers may be able to bring their learning experience in pre-

university into their reasoning and decision making (Ball, 1990). Some studies found 

that Chinese students preferred to use abstract representations (Cai, 1995), and 

performed better in tasks required no-visual representations (Brenner, Herman, Ho, & 

Zimmer, 1999), compared with U.S. counterparts. Moreover, comparing the ways to 

prove Pythagoras‘s theorem, Mainland Chinese teachers‘ preferred to use mathematical 

proofs with algebraic manipulation rather than using visual verification as Hong Kong 

teachers did (Huang & Leung, 2004). Furthermore, Chinese mathematics teaching is 

well known by its emphasis on mastering mathematics knowledge and skills and 

rigorous mathematics reasoning (Huang & Li, 2009; Leung, 1995, 2005). So, it is 

plausible that Chinese pre-service teachers preferred to make their judgments based on 

underlying concepts and logical reasoning, rather than visual information provided only. 

On the other hand, mathematics teaching in the U.S. classroom has always been 

described as emphasizing low-level, rather than high-level cognitive processes (i.e., 
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memorizing and recalling facts and procedures rather than reasoning about and 

connecting ideas or solving complex problems) (Hiebert et al., 2005; Silver, Mesa, 

Moriss, Star, & Benken, 2009; Wood, Shin, & Doan, 2006). If taken the U.S. students‘ 

preference in using visual representations and lack of ability in mathematical reasoning 

together, then it may be understandable why U.S. pre-service teachers tended to make 

their justification based on visual information given, without paying close attention to 

underlying concepts. 

 The Relationship between Different Components of KTA 

The path analysis revealed that components of KTA in the Chinese sample are 

much more highly correlated than those in U.S. sample. That means that Chinese 

participants have a more interconnected KTA structure than U. S. counterparts. 

Measurement model analysis also confirms that Chinese participants have a highly 

correlated KTA structure.  

Pre-service teachers‘ knowledge structure mainly is impacted by their learning 

experience in pre-university and university. Cai and Wang (2010) found that Chinese 

expert teachers put more emphasis on coherence of delivering a good lesson than their 

U.S. counterparts. Moreover, Huang, Li, and He (2010) revealed that both novice and 

expert teachers in China viewed coherently developing a lesson as one salient feature of 

effective teaching.  When examining classroom instruction, coherence and connection of 

lessons are essential features of teaching in China (Chen &Li, 2010; Wang & Murphy, 

2004). Lesson coherence could be carried out through organizing systematic and varying 
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classroom activities by sticking to mandatorily well-designed textbooks (Huang, Li, & 

Ma, 2010; Huang, Rowntree, Yetkiner, & Li, 2010). At the university level, lecture is the 

dominating teaching method (Li, Zhao et al., 2008), which may be conducive to 

transmitting knowledge systematically. Possibly, pre-service teachers develop their well-

structured and interconnected knowledge bases through their learning experience in pre-

university and university.  

The Difference and Similarities of Knowledge for Teaching the Concept of Functions 

The open-ended items were used to measure teachers‘ knowledge for teaching the 

concept of function in terms of the perspectives adopted and representations used.  In 

general, a function concept should be developed from process to object perspective 

(Briedenbach et al., 1992; Sfard, 1990, 1993). A deep understanding a function concept 

could be partially reflected by taking an appropriate perspective or shifts between these 

two perspectives flexibly.  Moreover, using multiple representations and shifting 

between different representations are the manifestations of understanding a function 

concept and relevant skills.  The analysis of the open-ended items from multiple aspects 

showed that, the Chinese counterparts seemed to have:  

(1) Strong algebraic and graphic transformational skills and procedural fluency; 

(2) Multiple strategies of solving algebraic problems by integrating algebraic and 

geometrical representations; 

(3) Appropriately taking perspectives and shifting between different perspectives 

of function; and   
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(4) Appropriate use of representations and flexible shifts between different 

representations. 

On the other hand, the U.S. participants struggled with basic algebra manipulation 

and had limited knowledge in flexible use of perspectives and representations. Both 

qualitative and quantitative analyses showed that Chinese participants seemed to be 

more flexible than U. S. counterparts in terms of shifting between different perspectives 

and selecting appropriate representations of function.  

It was found that the scores of KTA predict flexibility significantly, and the scores 

of KTA can explain more than four-fifths of the variance of flexibility. Meanwhile, the 

number of college math courses taken and grade level were not found to have significant 

prediction of the growth of flexibility. These results imply that developing flexibility is 

not a methodology and/or maturation issue, rather a comprehensive issue with the 

development of knowledge for teaching. That means we have to equip pre-service 

teachers with a well-structured knowledge base in order to develop their flexibility.  

How can Chinese pre-service middle grade teachers develop their flexibility while 

developing their procedural fluency and conceptual understanding?   Many studies 

explored how Chinese in-service teachers develop their professional knowledge and 

expertise (Huang & Bao, 2006; Huang & Li, 2009; Li, 2004; Li &Li, 2009; Li, Huang, 

& Yang, 2011; Ma, 1999; Yang, 2009).  However, little research on pre-service teacher 

learning in China has been done. Based on the characteristics of secondary mathematics 

teacher preparation programs, Chinese pre-service teachers are exposed to broad 

advanced mathematics content knowledge, some math education theories, and an 
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extensive study on school mathematics, with little chance of student teaching (only 

around 4-6 weeks) (Li et al., 2008). So, they mainly obtain mathematics knowledge for 

teaching from their learning experience at pre-university and university.  

With regard to mathematics classroom (pre-university) teaching in China, based on 

an extensive literature review, Huang and Li (2009)  summarized the following features:  

(1) setting and achieving comprehensive and feasible teaching objectives; (2) having a 

detailed and well designed lesson plan that not only covers sufficient content to teach but 

also offers alternatives to develop the content coherently; (3) emphasizing the formation 

and development of knowledge and mathematics reasoning; (4) emphasizing knowledge 

connection and instruction coherence; (5) practicing new knowledge with systematic 

variation problems; (6) making a balance between the teacher‘s guidance and students‘ 

self explorations; and (7) summarizing key points in due course and assigning 

homework (p.99). 

Considering content coverage and presentation in high school (Li, Zhang, & Ma, 

2009), university teacher preparation programs, the ways Chinese pre-service teachers 

taught as described above,  the Chinese pre-service teachers are able to develop sound 

subject content knowledge and a well-structured knowledge base.  Based on this 

assumption, we argued that it is possible for Chinese pre-service teachers to develop 

their fluency and flexibility simultaneously.  

First, the teachers‘ sound content knowledge reduce cognitive load and leave space 

for developing strategies in solving problems (Richland, Zur, & Holyoak, 2007 ). 

Second, the solid and interconnected knowledge base provides the foundations for 
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developing flexibility. That means that pre-service teachers have a rich recipe of 

strategies for solving individual problems, and different representations for presenting 

mathematics concepts and mathematics problems. Third, it is a traditional and common 

practice to develop multiple approaches to solving a problem and developing multiple 

problems derived from the same problem or the same problem solving strategy in 

Chinese mathematics classroom (Cai & Nie, 2007; Huang, Mok, & Leung, 2006). 

Implementing this approach of teaching requires learners to compare different strategies 

and select the most appropriate one for a particular type of problems. This comparison is 

an effective way to develop learners‘ flexibility in solving problems (Star & Seifert, 

2006; Star & Rittle-Johnson, 2009). 

In summary, the teacher preparation practice in China seems to provide the 

opportunities for pre-service teachers to develop their sound knowledge for teaching, 

and flexibility in selecting appropriate strategies and using appropriate representations of 

function.  However, more empirical studies need to be done to explore relevant factors 

and mechanisms.  

The Relationship between Pre-service Teachers’ KTA and Their Course Taking 

This study revealed that the courses taken do have an effect on KTA although the 

patterns in China and the U.S. differ.  Chinese teacher preparation programs seem to 

emphasize content knowledge while the U.S. teacher preparation programs put more 

emphasis on pedagogical knowledge. Meanwhile, the Chinese participants seem to have 

a more interconnected KTA structure than U.S. counterparts.  
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With regard to the number of courses taken, there was a big difference between 

China and the U.S. The number of courses taken in mathematics content and 

mathematics education, on average, the U.S. participants had 7 while the Chinese 

participants had 14. Thus, results of this study may be influenced by the difference of 

courses taken.  

It is not surprising that there was such a big difference in the number of courses 

taken between China and the U.S.; in China, mathematics teachers for middle and high 

schools are required to major in mathematics. There was no distinction in preparing 

mathematics teachers for middle and high schools. Whether graduates work in high 

school or middle school depends on job market and reputation of university where they 

graduated.  However, in the U.S., There was substantial difference between middle and 

high mathematics teachers in terms of programs attended. In this study, the U.S. 

participants were from an interdisciplinary program of middle grade mathematics and 

science teachers. It was suggested that it will be beneficial for middle and high school 

teachers to specialize in the subject field that they will be teaching (CBMS, 2001; 

National Commission of Mathematics and Science Teaching [NCMST], 2000). In 

particular, CBMS (2001) recommended middle grade mathematics teacher preparation 

program should include at least 21 semester-hours of mathematics including two types 

of courses (as the participants in this study did). One focuses on developing a deep 

understanding of the mathematics they will be teaching. The other aims at strengthening 

and broadening understanding of mathematical connections between one educational 
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level and the next, connections between elementary and middle grades as well as 

between middle grades and high schools.  

As far as the algebra is concerned, the CBMS (2001) recommended developing a 

deep understanding of variables and functions as follows: (1) relate tabular, symbolic, 

and graphical representations to functions; (2) relate proportional reasoning to linear 

functions; (3) recognize change patterns associated with linear, quadratic, and 

exponential functions and their inverses; and (4) draw and use ―qualitative graphs‖ to 

explore meaning of graphs of functions. Meanwhile, students need to demonstrate the 

following skills: (1) represent physical situations symbolically; (2) graph linear, 

quadratic, exponential functions and their inverses and understand physical situations 

calling for each; (3) solve linear and quadratic equations and inequalities; and (4)exhibit 

fluency in working with symbols. (pp.108-109) 

Comparing with these recommendations in the U.S. and the practice in China,  in 

order to implement curriculum standards (NCTM, 2000, 2006), the middle grade 

mathematics teacher preparation programs in the U.S. not only need to add more 

mathematics and mathematics education course, but also need to improve the quality of 

courses and the quality of teaching.  

Discussions 

In the sections that follow, I discussed relevant issues needed to be further 

explored.  These issues include measure knowledge for teaching mathematics cross-
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culturally, comparison of KTM in different content areas, developing basic knowledge 

and skills and flexibility simultaneously, and what we can learn from this study. 

Can Knowledge for Teaching Mathematics be Measured across Cultures?  

Different models have been developed to define and measure mathematics 

knowledge for teaching. Although great efforts have been made to develop reliable 

instruments for measuring MKT, There was not any a well-developed instrument 

available so far. Even the most popular one, developed by University of Michigan, the 

low reliability of KCS (knowledge for content and student) (Schilling, Blunk, & Hill, 

2007) prevents it being used in study relating teacher knowledge to student achievement 

(Hill et al., 2004). With regard to KTA instrument, although Floden et al. (2009) 

reported a high inter reliability (Cronbach alpha (α) .80 for whole instrument), the 

present study showed a relatively low reliability (α= 0.613 for the U.S. sample (N=115) 

and α=.73 for the Chinese sample (N=376).  

In addition, the Chinese measurement model of KTA indicates that three 

components of KTA are highly correlated, and there are many links between different 

observed variables (items). It seems to suggest the complexity of mathematics 

knowledge for teaching: multiple venues for success and multiple solutions drawn on 

various knowledge and skills (Floden et al., 2009) results in the difficulty in measuring 

teacher knowledge for teaching by several isolated items.  Ball, Thames, and Phelps 

(2008) realized that ―it is not always easy to discern where one of our categories divides 

from the next, and this affects the precision (or lack thereof) of our definitions‖ (p.403), 
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and they also recognized that formulation of mathematical knowledge for teaching is 

culturally specific or dependent on teaching styles (Delaney et al., 2008). Based on 

specifying the relationship between Shulman‘s (1986, 1987) theorizations of 

―pedagogical content knowledge‖ and ―the knowledge base for teaching,‖ and Ball et 

al.‘s (2008) notions of ―specialized content knowledge‖ (SCK) and ―mathematical 

knowledge for teaching,‖ Lawrence (2010) concluded that Ball‘s model of 

―mathematical knowledge for teaching‖ would perhaps be made more useful for 

analyses of the kinds of knowledge-practice breakdown. However, if teacher knowledge 

is emphasized   teachers‘ professional judgment as Shulman‘s, then the bridge-building, 

namely ―the wisdom of practice‖ is crucial. Furthermore, a shift in focus from 

mathematics teachers‘ knowledge to their knowledgeable practices might facilitate 

Ball‘s efforts to bridge professional knowledge and teaching practice (Lawrence, 2010). 

Moreover, when developing an instrument for cross-culturally comparative studies 

of mathematical knowledge for teaching, the equivalence of coverage of items becomes 

a challenging issue.  As pointed by Delaney et al. (2008), factors such as the teaching 

strategies, teacher beliefs, classroom contexts, the presence and prevalence of specific 

mathematical topics and the content of the textbooks should be considered. It was found 

that teaching strategies and emphases across different grades should be important factors 

influencing teachers‘ knowledge for teaching. For example, in the current study, when 

U.S. participants were asked why they did not connect algebra and graphic 

representations when solving quadratic inequality, they said they were taught separately 

by different teachers in different grades and they did not realize that these different types 
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of knowledge are interconnected.  Thus, it is important to consider teaching strategies 

across different grades.  

In addition, the content placement across pre-college and college should be 

considered. For example, some contents taught at college in the U.S. are the contents in 

high school in China. In other contents, a reverse situation occurs. In order to achieve 

common classifications of three components of KTA (school math, advanced math and 

teaching math), this content equivalence should be considered.  

Do Chinese Teachers Have a Sound Knowledge for Teaching?  

This study showed that Chinese middle and high school pre-service teachers 

demonstrated solid knowledge for teaching algebra, with certain flexibility in taking 

perspectives of function and selecting multiple representations of functions.  Overall, 

Chinese pre-service secondary mathematics teachers have a deep understanding of 

mathematics knowledge for teaching algebra.  

 This study extends Ma‘s (1999) investigation on elementary mathematics 

teachers‘ knowledge in China and the United States in some ways. The findings suggest 

that Chinese secondary mathematics teachers have a profound understanding of 

mathematical knowledge for teaching algebra.  In Ma‘s study, the focus was on the 

connection of relevant concepts, while this study focused on connection of different 

perspectives and representations of function, and also the flexibility in selection of 

representations. This study also enriched and extended An et al. (2004) observations of 

pedagogical content knowledge of middle school mathematics teachers in China. An et 
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al. found that the Chinese mathematics teachers emphasized gaining the correct 

conceptual knowledge by reliance on traditional, more rigid development of procedures.  

This study provides some interpretations on why Chinese pre-service teachers could 

emphasize on gaining correct conceptual knowledge by reliance on ―rigid development 

of procedures.‖   

When considering the findings by Even (1998) and Black (2007), the strengths of 

Chinese mathematics teachers‘ knowledge for teaching algebra are even more 

prominent. For example, 20% of 76 U. S. high school mathematics teachers in Blacks‘ 

(2007) study got correct answers, while 55% of 376 Chinese participants in the current 

study got correct answers.  

The finding that the Chinese secondary pre-service mathematics teachers have 

sound mathematical knowledge for teaching algebra echoes the observation that 

secondary mathematics teacher preparation programs in China emphasizes mathematics 

content courses and mathematics education courses (Li et al., 2008).  

Basic Knowledge and Skills and Flexibility in Problem Solving  

If the core value of algebra learning is to develop students flexibility in translations 

between different representations and transformations between different forms within a 

presentation (Star & Rittle-Johnson, 2009) and to make sense of algebra through 

building connections between different brands of knowledge and different 

representations (NCTM, 2000, 2009), then, it is the key to equip pre-service teachers 

with relevant knowledge for teaching promoting these values.  
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Although math education in China has a long tradition to pursue basic knowledge 

and basic skills of mathematics, mathematical thinking and rigorous logical reasoning 

(Zhang, Li, & Tan, 2004), great efforts have been made since 2001 to develop students‘ 

exploratory, collaborative learning, creative thinking, mathematical communication 

(Ministry of Education, 2001, 2003).  A study on comparing 10 novice and 10 expert 

teachers‘ views of effective mathematics (Huang, Li, & He, 2010)  found that all the 

participating teachers valued students‘ mastering of mathematical knowledge and skills, 

and their development in mathematical thinking methods and abilities. Compared with 

novice teachers, expert teachers emphasized more on the development of students‘ 

mathematical thinking and higher order thinking abilities. These findings seem to 

suggest that the mathematics teachers in the context of curriculum reform in China have 

been making a balance between mastering knowledge and skills and developing 

mathematics thinking and creative thinking.  

The survey revealed that Chinese pre-service teachers demonstrated sound 

knowledge and skills and fluency in algebra computation. In particular, the analysis of 

the open-ended items showed the Chinese pre-service teachers not only have high 

fluency in algebraic computation, but also have flexibility in selecting appropriate 

function perspectives and using multiple representations. Moreover, the Chinese 

participants not only performed well, but also used various methods. 

Thus, the Chinese participants demonstrated high procedural fluency and a deep 

understanding of the concepts. It seems that the Chinese teachers develop their 
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procedural fluency, conceptual understanding, and flexibility in adopting appropriate 

perspectives and selecting appropriate representations simultaneously.  

What Can We Learn from the Study?  

In the United States, it is a publicly recognized problem that teachers do not have 

adequate knowledge of what they will be teaching. In this study, compared with Chinese 

counterparts, the weakness of the U.S. pre-service teacher‘s knowledge for teaching 

algebra is evident. Thus, I consider what U.S. mathematics educators may learn from 

Chinese practice in teacher preparation programs.  

First, adding more mathematics content courses to the existing teacher preparation 

programs may be necessary. Since the number of courses taken impact on KTM and the 

U.S. participants took fewer courses than the Chinese participants, it is necessary to add 

more compulsory courses in mathematics and mathematics education in the U.S. middle 

grade mathematics teacher preparation program. Second, teaching approaches to 

mathematics education courses may also need to be improved. In China, the dominated 

teaching method is lecture with frequent probing questions which may be conducive to 

developing pre-service teachers‘ systematic and interconnected knowledge, but may 

constrain their opportunities to develop creativity and inquiry.  On the other hand, in the 

U.S., there are a lot of individual/on-line learning, students‘ presentations, and projects 

in math education courses. These kinds of activities may be beneficial to developing 

individual exploration, team cooperation, presentation and communication skills. 
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However, pre-service teachers may not be able to acquire necessary knowledge and 

skills systematically.  

It may be important to ensure our pre-service teachers to have a deep 

understanding of core concepts and build an interconnected knowledge base through 

multiple approaches including direct instruction, problem-based teaching and learning, 

cases studies and inquiry project. Moreover, it is also crucial to develop pre-service 

teachers‘ ability to transfer school math to be more easily accessible and meaningful to 

their students, and to learn from their lesson designing and teaching. Some programs 

focusing on designing, teaching and reflecting on lessons of teaching core concepts have 

demonstrated promising future in mathematics teacher preparation programs (e.g., 

Hiebert & Morris, 2009).  

In China, the Chinese pre-service teachers in this study demonstrated their 

strengths in mathematical knowledge for teaching algebra and their flexibility in using 

appropriate representations. However, they need to learn more about how to develop 

students‘ creativity, discovery learning, and collaborative learning which are advocated 

in the new curriculum standards in China. Moreover, they may need to learn how to 

develop a concept from multiple perspectives, how to build the connections between 

arithmetic, algebra and geometry.  

Limitation 

There are several limitations in this study. Even though, the researcher considered 

the representativeness of the Chinese sample such as university entrance scores, 
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programs and regions, the number of teacher education institutions in China is too large 

to be sampled by an individual research effort. In China, There was only one approach 

for preparing secondary school mathematics teachers (including middle school teachers) 

housed in mathematics department.  In the U.S., there are three approaches for preparing 

middle mathematics teachers. The first prepares teachers to teach all secondary 

mathematics, including lower secondary/middle grades. The second focuses on 

specifically and exclusively on preparing teachers for lower secondary/middle school 

grades. The third approach prepares lower secondary/middle school teachers as an 

extension of elementary teacher preparation. In this study, the researcher mainly selected 

the participants from the second type of program in a respected university (only very 

small part of the participants from the first approach program). Because of this disparity, 

the sample at most reflects a low level of secondary math teacher preparation program in 

the U.S.  Cautions should be taken when interpreting the differences between China and 

the U.S.  In order to make an appropriate comparison, more wide samples from the 

different approaches in the U.S. should be included. Since the essential differences of 

programs between China and the U.S., the numbers of courses taken are different. The 

number of courses taken in mathematics content and mathematics education, on average, 

the U.S. participants had 7 while the Chinese participants had 14. So caution should be 

taken in interpreting the findings of this study in which comparisons are made between 

U.S. and Chinese participants due to the disparity of the sample. 
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Second, the small size of the U.S. sample prohibited building a measurement 

model. If the U.S. sample size can be increased large enough to build structure equation 

models, then, we can conduct more sophisticated and extensive comparisons.     

Moreover, although the reliability (α=0.88) for the whole sample (N=491) is high, 

and the reliability (α=0 .73) for the Chinese sample (N=376) is acceptable, but the 

reliability (α=0.613) for the U.S. sample (N=115) is relatively low. So, the results based 

on this instrument should be interpreted cautiously.  

Recommendation  

With regard to pre-service teachers‘ mathematics knowledge for teaching, more 

questions need to be further explored. For example, what is meant by mathematics 

knowledge for teaching algebra and other secondary mathematics topics?  How can it be 

measured?  Do Chinese pre-service teachers have sound mathematics knowledge for 

teaching in all areas of school mathematics?  What strategies are effective in developing 

pre-service teachers‘ basic knowledge and skills, and flexibility through teacher 

preparation program in the U.S.?  

Study on the Meaning of Mathematics Knowledge Needed for Teaching  

Concerning with the first question, many studies found the weaknesses of the 

existing instruments, such as the KTA in this study. This calls for researching into the 

nature of mathematical knowledge for teaching, and to what extent, it can be measured.  

Building bridges between knowledge and practice toward a knowledgeable practice or 



 164 

wisdom of practice (Lawrence, 2010) shed light on defining and measuring teachers‘ 

knowledge needed for teaching.   

Teachers’ Knowledge for Teaching Other Topics in China and the U.S.  

The second research question concerns specialty of topics investigated. 

Mathematics education in China has a tradition of emphasizing basic knowledge and 

skills (Zhang et al., 2004). Due to the core position of algebra in school mathematics, the 

teaching of algebra both at secondary schools and universities are emphasized. A great 

deal of time was spent on learning and practicing algebraic computation in high school 

and university.  So, pre-service teachers in China may have strength in KTA, but it does 

not mean they should have strong knowledge for teaching other content areas, particular 

in some newly added contents such as probability and statistics. So, it will be interesting 

and meaningful to compare MKT in other content areas.  

Are There Some Teaching Strategies Effective for Developing Flexibility?   

Studies suggest that some strategies in China are effective for students learning 

with procedural fluency and conceptual understanding, such as problem-based teaching, 

practicing with varying problems. Can these strategies be applied to teaching pre-service 

teacher preparation courses in the U.S.?  What are the effective teaching strategies for 

equipping pre-service teachers with sound basic knowledge and skills, and flexibility in 

problem solving?  It should be interesting to explore how U.S. mathematics educators 
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can adopt some Chinese strategies to the teacher preparation programs in the U.S. to 

develop teachers‘ knowledge needed for teaching. 

Coda 

It is the desire to find the similarities and difference of KTM and provide 

implications for improving mathematics teacher preparation in China and the U.S. that 

led me to do this comparative study. Finally, the findings illustrated many more 

differences than similarities, and a sampling effect on Chinese participants‘ superiority 

in knowledge for teaching algebra. Although, the findings may not be generalized due to 

the limitation of the sample, the detailed description and analysis should provide 

referents for international mathematics educators, particularly the Chinese and U.S. 

mathematics educators to reflect what they can learn from this study.  Moreover, it 

should be exciting to derive more meaningful research questions based on this study.  



 166 

REFERENCES  

 

Alibali, M., Knuth, E., Hattikudur, S., Mcneil, N., & Stephens, A. (2007). A longitudinal 

examination of middle school students‘ understanding of the equal sign and 

equivalent Equations. Mathematical Thinking and Learning, 9, 221 – 247. 

An, S., Kulm, G., & Wu, Z. (2004). The pedagogical content knowledge of middle 

school mathematics teachers in China and the U.S. Journal of Mathematics 

Teacher Education, 7, 145-172. 

An, S., Kulm, G., Wu, Z., Ma, F., & Wang, L. (2006). The impact of cultural differenece 

on middle school mathematics teachers‘ beliefs in the U.S. and China. In F. K. S. 

Leung, K. D., Graf, & F. J. Lopz-Real (Eds.), Mathematics education in different 

cultural traditions: A comparative study of East Asia and the West (pp.449-464). 

New York: Springer 

Artigue, M., Assude, T., Grugeon, B., & Lenfant, A. (2001). Teaching and learning 

algebra: Approaching complexity through complementary perspectives. In H. 

Chick, K. Stacey, & J. Vincent (Eds.), The future of the teaching and learning of 

algebra (Proceedings of the 12th ICMI Study Conference, pp. 21-32). Melbourne, 

Australia: The University of Melbourne. 

Babcock, J., Babcock, P., Buhler, J., Cady, J. Cogan, L., Houang, R., et al. (2010). 

Breaking the cycle: An international comparison of U.S. mathematics teacher 

preparations. Michigan State University: The center for research in math and 

science education, Michigan State University.  



 167 

Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to 

teacher education. The Elementary School Journal, 90, 449-466.  

Ball, D. L. (1993). With an eye on the mathematical horizon: Dilemmas of teaching 

elementary school mathematics. The Elementary School Journal, 93, 373-397  

Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and 

learning to teach: Knowing and using mathematics. In J. Boaler (Ed.), Multiple 

perspectives on the teaching and learning of mathematics (pp. 83-104). London: 

Ablex Publishing. 

Ball, D. L., Hill, H. C., & Bass, H. (2005, Fall). Knowing mathematics for teaching: 

Who knows mathematics well enough to teach third grade, and how can we decide? 

American Educator, 29(3), 14-17, 20-22, 43-46. 

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What 

makes it special? Journal of Teacher Education, 59, 389-407 

Bednarz, N., Kieran C., & Lee, L. (Eds.) (1996). Approaches to algebra: Perspectives 

for research on teaching. Dordrecht, The Netherlands: Kluwer. 

Black, D. J. W. (2007). The relationship of teachers’ content knowledge and 

pedagogical content knowledge in algebra and changes in both types of knowledge 

as a result of professional development. Unpublished dissertation Auburn 

University, AL. 

Blume, G. W., & Heckman, D. S. (2000). Algebra and functions. In E. A. Silver & P. A. 

Kenney (Eds.), Results from the seventh mathematics assessment of the national 

http://www.jstor.org/stable/1002018
http://www.jstor.org/stable/1002018
http://www.jstor.org/action/showPublication?journalCode=elemschoj


 168 

assessment of educational progress (pp. 269-306). Reston, VA: National Council 

of Teachers of Mathematics. 

Booth, L. R. (1984). Algebra: Children's strategies and errors. Windsor, UK: NFER-

Nelson. 

Brenner, M. E., Herman, S., Ho, H. Z., & Zimmer, J. M. (1999). Cross-national 

comparison of representational competence. Journal for Research in Mathematics 

Education, 30, 541–557. 

Briedenbach, D. E., Dubinsky, E., Hawks, J., & Nichols, D. (1992).  Development of the 

process conception of function. Educational Studies in Mathematics, 23, 247–285. 

Byrne, B. (2010). Structural equation modeling with AMOS: Basic concepts, 

applications, and programming (2nd ed.). New York: Routledge. 

Cai, J. (1995). A cognitive analysis of U.S. and Chinese students' mathematical 

performance on tasks involving computation, simple problem solving, and complex 

problem solving. Reston, VA: National Council of Teachers of Mathematics. 

Cai, J. (2000). Mathematical thinking involved in U.S. and Chinese students‘ solving of 

process-constrained and process-open problems. Mathematical Thinking and 

Learning, 2, 309–340. 

Cai, J. (2004). Why do U.S. and Chinese students think differently in mathematical 

problem solving? Impact of early algebra learning and teachers‘ beliefs 

The Journal of Mathematical Behavior, 23, 135-167. 

https://libcat.tamu.edu/cgi-bin/Pwebrecon.cgi?SC=Author&SEQ=20100215112710&PID=SQ53PWjDvz67nlO9GvsUa2Jl1l&SA=Byrne,+Barbara+M.


 169 

Cai, J. (2005). U.S. and Chinese teachers‘ constructing, knowing and evaluating 

representations to teach mathematics. Mathematical Thinking and Learning, 7, 

135–169. 

Cai, J. (2006). U.S. and Chinese teachers‘ cultural values of representations in 

mathematics education. In F. K. S. Leung, K. D., Graf, & F. J. Lopz-Real(Eds.), 

Mathematics education in different cultural traditions: A comparative study of East 

Asia and the West (pp.465-482). New York: Springer. 

Cai, J., & Nie, B. (2007). Problem solving in Chinese mathematics education: Research 

and practice. ZDM - The International Journal on Mathematics Education, 39, 

459-473. 

Cai, J., & Wang, T. (2006). U.S. and Chinese teachers‘ conceptions and constructions of 

representations: A case of teaching ratio concept.  International Journal of 

Mathematics and Science Education, 4, 145-186. 

Cai, J., & Wang, T. (2010). Conceptions of effective mathematics teaching within a 

cultural context: Perspectives of teachers from China and the United States. 

Journal of Mathematics Teacher Education, 13, 265–287. 

Cai, J., Perry, B., Wong, N. Y., &Wang, T. (2009). What is effective teaching?  Study of 

experienced mathematics teachers from Australia, the Mainland China, Hong 

Kong-China, and the United States.  In J. Cai, G. Kaiser, B. Perry, & N. Wong 

(Eds.), Effective mathematics teaching from teachers’ perspectives: National and 

international studies (pp.1-36). Rotterdam, The Netherlands: Sense.  



 170 

Chazan, D., & Yerushalmy, M. (2003).  On appreciating the cognitive complexity of 

school algebra: Research on algebra learning and directions of curricular change. 

In J. Kilpatrick, W. G. Martin, & D. Shifter (Eds.), A research companion to 

principles and standards for school mathematics (p.123-136). Reston, VA: 

National Council of Teachers of Mathematics. 

Chen, X., & Li, Y. (2010). Instructional coherence in Chinese mathematics classroom – 

a case study of lessons on fraction division. International Journal of Science and 

Mathematics Education, 8, 711-735  

Chinnappan, M., & Thomas, M. (2001). Prospective teachers‘ perspectives on function 

representation. In J. Bobis, B. Perry, & M. Mitchelmore (Eds.), Numeracy and 

beyond  (pp. 155-162). Sydney: MERGA.  

Chrostowski,  S. J., & Malak, B. (2004). Translation and cultural adaptation of the 

TIMSS 2003 instruments. In M. O. Martin, I. V. S. Mullis, & S. J. Chrostowski 

(Eds.), TIMSS 2003 technical report (pp.92-107) Chestnut Hill, MA: TIMSS & 

PIRLS International Study Center.  

Conference Board of the Mathematical Sciences. (2001). The mathematical education 

teachers (Vol. 4). Washington DC: American Mathematical Society and 

Mathematical Association of America. Retrieved February 26, 2009, from 

http://www.cbmsweb.org/MET_Document/index.htm 

Creenes, C. E., & Rubenstein, R. (2008). Algebra and algebraic thinking in school 

mathematics: Seventeenth yearbook. Reston, VA: The National Council of 

Teachers of Mathematics.  



 171 

Creswell, J. W., & Clark, V. L. P. (2007). Designing and conducting mixed methods 

research. Thousand Oaks: Sage.  

de Jong, T., Ainsworth, S., Dobson, M., van der Hulst, A., Levonen, J., Reimann, P., et 

al. (1998). Acquiring knowledge in science and mathematics: The use of multiple 

representations in technology-based learning environments. In M. W. van 

Someren, P. Reimann, H. P. A. Boshuizen & T. de Jong (Eds.), Learning with 

Multiple Representations (pp. 9-40). Oxford: Elsevier Science Ltd.. 

Delaney, S., Ball, D. L., Hill, H., Schilling, S. G., & Zopf, D. (2008). Mathematical 

knowledge for teaching: adapting U.S. measures for use in Ireland. Journal of 

Mathematics Teachers Education, 11, 171–197. 

Doerr, H. M. (2004). Teachers‘ knowledge and the teaching of algebra. In K. Stacey, C. 

Helen, & K. Margaret (Eds.), The future of the teaching and learning of algebra, 

The 12
th

 ICM Study (pp.267-290). Boston: Kluwer. 

Dossey, J., Halvorsen, K., & McCrone, S. (2008). Mathematics education in the United 

States 2008: A capsule summary fact book. Reston, VA: National council of 

Teachers of Mathematics.  

Dubinsky, E., & Harel, G. (1992). The nature of the process conceptions of function. In 

G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology 

and pedagogy (MAA Notes, Vol, 25, pp.85-106). Washington, DC: Mathematical 

Association of America. 

Edwards, E. L. (Ed.). (1990). Algebra for everyone. Reston, VA: National Council of 

Teachers of Mathematics. 



 172 

Even, R. (1990). Subject matter knowledge for teaching and the case of functions. 

Educational Studies in Mathematics, 21, 521-544. 

Even, R. (1992). The inverse function: Prospective teachers' use of "undoing". 

International Journal of Mathematics Education in Science and Technology, 23, 

557-562. 

Even, R. (1993). Subject-matter knowledge and pedagogical content knowledge: 

Prospective secondary teachers and the function concept. Journal for Research in 

Mathematics, 24, 94-116.  

Even, R. (1998). Factors involved in linking representations of functions. Journal of 

Mathematical Behavior, 17, 105-121  

Even, R., & Tirosh, D. (1995). Subject-matter knowledge about students as sources of 

teacher presentations of the subject-matter, Educational Studies in Mathematics, 29, 

1-20. 

Even, R., & Tirosh, D. (2008).Teacher knowledge and understanding of students‘ 

mathematical learning and thinking. In L. England (Ed.), Handbook of 

international research in mathematics education (p.202-222).  New York: 

Routledge, Taylor& Francis.  

Fan, L., & Zhu, Y. (2007). Representation of problem-solving procedures: A 

comparative look at China, Singapore, and U.S. mathematics textbooks. 

Educational Studies in Mathematics, 66, 61-75. 



 173 

Ferrini-Mundy, J., McCrory, R., & Senk, S. (2006, April). Knowledge of algebra 

teaching: Framework, item development, and pilot results. Research symposium at 

the research presession of NCTM annual meeting. St. Louis, MO.  

Floden, R. E., & McCrory, R. (2007, January). Mathematical knowledge for teaching 

algebra: Validating an assessment of teacher knowledge. Paper presented at 11th 

AMTE Annual Conference, Irvine, CA.  

Floden, R. R., McCrory, R., Reckase, M. D., & Senk, S. (2009, April). Knowledge of 

algebra for teaching: Validity studies of a new measure. Paper presented at annual 

conference American Education Research Association, San Diego, CA. 

Gagatsis, A., & Shiakalli, M. (2004). Ability to translate from one representation of the 

concept of function to another and mathematical problem solving. Educational 

Psychology, 24, 645–657. 

Gess-Newsome, J. (1999). Introduction and orientation to examining pedagogical 

content knowledge. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining 

pedagogical content knowledge (pp. 3–20). Dordrecht, The Netherlands: Kluwer. 

Grossman, P. L., Wilson, S., & Shulman, L. (1989). Teachers of substance: Subject 

matter knowledge for teaching. In M. Renolds (Ed.), Knowledge base for 

beginning teachers (pp.23-36). New York: Pergamon Press 

Gu, M. (2006). The reform and development in teacher education in China. Keynote 

speech at the First International Forum on Teacher Education. Shanghai, China. 

Retrieved February, 4, 2008 from 

http://www.icte.ecnu.edu.cn/EN/show.asp?id=547 



 174 

Hart, K. (Ed.) (1981). Children’s understanding of mathematics 11-16. London: Murray. 

Hiebert J., & Morris, A. K. (2009). Building a knowledge base for teacher education: An 

experience in K–8 mathematics teacher preparation. The Elementary School 

Journal, 109, 475-490.  

Hiebert, J., Stigler, J., Jacobs, J., Givvin, K., Garnier, H., Smith, M., et al. 

(2005).Mathematics teaching in the United States today (and tomorrow): Results 

from the TIMSS 1999 Video Study. Educational Evaluation and Policy Analysis, 

27,111–132. 

Hill, H. C., Ball, D. L., & Schilling, S. G. (2004). Developing measures of teachers‘ 

mathematics knowledge for teaching. The Elementary School Journal, 105(1), 11-

30.  

Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content 

knowledge: Conceptualizing and measuring teachers‘ topic-specific knowledge of 

student. Journal for Research in Mathematics Education, 39, 372-400. 

Hill, H. C., Blunk, M. L., Charalambous, C. Y., Lewis, J. M., Phelps, G. C., Sleep, L., & 

Ball, D. L. (2008). Mathematical knowledge for teaching and the mathematical 

quality of instruction: An exploratory study. Cognition and Instruction, 26, 430-

511. 

Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers‘ mathematical 

knowledge for teaching on student achievement. American Education Research 

Journal, 42, 371-406.  



 175 

Hill, H. C., Schilling, S. G., & Ball, D. L. (2004). Developing measures of teachers‟ 

mathematics knowledge for teaching. The Elementary School Journal, 105, 12-30.  

Hitt, F. (1994). Teachers‘ difficulties with the construction of continuous and 

discontinuous functions. Focus on Learning Problems in Mathematics, 16(4), 10-

20. 

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure 

analysis: Conventional criteria versus new alternatives. Structural Equation 

Modeling, 6 (1), 1-55. 

Huang, R, & Bao, J. (2006). Towards a model for teacher‘s professional development in 

China: Introducing keli. Journal of Mathematics Teacher Education, 9, 279-298.  

Huang, R., & Cai, J. (2007, July). Constructing pedagogical representations to teach 

linear relations in Chinese and U.S. classrooms (Research Report). In J. H., Woo, 

H. C., Lew, K. S., Park & D. Y., Seo(Eds.), Proceeding of International Group for 

the 31st Psychology of Mathematics Education Annual Meeting (Vol. 3, pp. 65-

72). Seoul, The Republic of Korea. 

Huang, R., & Cai, J. (2010). Implementing mathematics tasks in the U.S. and Chinese 

classroom. In Y. Shimizu, B. Kaur, R. Huang, & D., Clarke (Eds.), Mathematical 

tasks in classrooms around the world (pp.147-166). Rotterdam, The Netherlands: 

Sense 

Huang, R., & Leung, F. K. S (2004). Cracking the paradox of the Chinese learners: 

Looking into the mathematics classrooms in Hong Kong and Shanghai. In L. Fan, 

N. Y. Wong, J. Cai, & S. Li (Eds.), How Chinese learn mathematics: Perspectives 



 176 

from insiders (pp.348-381). Singapore: World Scientific. 

Huang, R., & Li, Y. (2009). Pursuing excellence in mathematics classroom instruction 

through exemplary lesson development in China: A case study. ZDM - The 

International Journal on Mathematics Education, 41, 297–309. 

Huang, R., & Li, Y. (2011). Promoting mathematical understanding: An exploratory 

study of teaching algebra in U.S. and Chinese classrooms. In C., Keitel, K. Hino, R. 

Vithal, A. Begehr, & D. Clarke ( Eds.), Differences in mathematics classrooms 

internationally. Rotterdam, The Netherlands: Sense. (in press)  

Huang, R., Li, Y., & He, X. (2010). What constitutes effective mathematics instruction: 

A comparison of Chinese expert and novice teachers‘ views. Canadian Journal of 

Science, Mathematics and Technology Education, 10,  293-306. 

Huang, R., Li, Y., & Ma, T. (2010, October). Developing and mastering knowledge 

through teaching with variation: A case study of teaching fraction division. Paper 

to be presented at annual conference of the North American Chapter of the 

International Group for the Psychology of Mathematics Education (PME-NA), 

Columbus, OH. 

Huang, R., Mok, I., & Leung, F. K. S. (2006). Repetition or variation: ―practice‖ in the 

mathematics classrooms in China. In D. J. Clarke, C. Keitel, &Y. Shimizu (Eds.), 

Mathematics classrooms in twelve countries: The insider's perspective (pp.263-

274). Rotterdam, The Netherlands: Sense. 

Huang, R., Rowntree, R. V., Yetkiner, E., & Li, Y. (2010, April). Classroom instruction 

as implemented curriculum to provide students structured learning experience in 



 177 

China and the U.S. Paper presented at research pre-session of 2010 Annual 

Meeting of National Council of Teachers of Mathematics, San Diego, CA. 

Kaput, J. J., Blanton, M. L., & Moreno, L. (2008). Algebra from a symbolization point 

of view. In  J.  J.  Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the 

early grades (pp. 19−51). New York: Lawrence Erlbaum Associates. 

Katz, V. J. (Ed.). (2007). Algebra: Gateway to a technological future. Washington, DC: 

The Mathematical Association of America. 

Kieran, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.), 

Handbook of research on mathematics teaching and learning (pp. 390-419). New 

York: Macmillan Publishing Company.  

Kieran, C. (2004). The core of algebra: Reflections on its main activities. In K. Stacey, 

C. Helen, & K. Margaret (Eds.), The future of the teaching and learning of 

algebra, The 12
th

 ICM Study (pp.35-44). Boston: Kluwer. 

Kieran, C. (2007). Learning and teaching algebra at the middle school from college 

levels: Building meaning for symbols and their manipulation. In F. K. Lester, Jr. 

(Ed.), Second handbook of research on mathematics teaching and learning 

(pp.707-762).  Charlotte, NC: Information age.  

Kilpatrick, J., Blume, G., & Allen, B. (2006, May). Theoretical framework for 

secondary mathematical knowledge for teaching. Unpublished manuscript, 

University of Georgia and Pennsylvania State University. Available http://66- 188-

76 44.dhcp.athn.ga.charter.com/Situations/%20ProposalDocs/ProposDocs.html 



 178 

Kilpatrick, J., Swafford, J., & Findell, B. (Eds.) (2001). Adding it up: Helping children 

learn mathematics. Washington, DC: National Academy Press. 

Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd).  New 

York: Guilford Publications.   

Krauss, K., Brunner, M., Kunter,M., Baumert, J. , Blum, W., Neubrand, M. et al.(2008). 

Pedagogical content knowledge and content knowledge mathematics teachers. 

Journal of Educational Psychology, 100, 716–725. 

Kulm, G. (2008). A theoretical framework for mathematics knowledge in teaching 

middle grades. In G. Kulm (Ed.), Teacher knowledge and practice in middle 

grades mathematics (pp. 3-18). Rotterdam, The Netherlands: Sense.  

Kulm, G., & Li, Y. (2009). Curriculum research to improve teaching and learning: 

national and cross-national studies. ZDM-The International Journal on 

Mathematics Education , 41, 717-731. 

Lawrence, A. M. (2010, May 3). From divides to bridges: A rhetorical perspective on 

mathematical knowledge for teaching. Presented at the annual conference of 

American Educational Research Association, Denver, CO. 

Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: 

Tasks, learning, and teaching. Review of Educational Research, 60, 1–64. 

Lesh, R.,  Post, T.,& Behr, M. (1987). Representations and translations among 

representing in mathematics learning and problems solving. In C. Janvier (1987), 

Problems of representation in the teaching and learning of mathematics (pp. 33-

40). Hillsdale, NJ: Lawrence Erlbaum. 



 179 

Leung, F. K. S. (1995).  The mathematics classroom in Beijing, Hong Kong and London. 

Educational Studies in Mathematics, 29, 297-325.  

Leung, F. K. S. (2005). Some characteristics of East Asian mathematics classroom based 

on data from the TIMSS 1999 Video Study. Educational Studies in Mathematics, 

60, 199-215 

Li, S., Huang, R., & Shin, Y. (2008). Mathematical discipline knowledge requirements 

for prospective secondary teachers from East Asian perspective. In P. Sullivan & 

T. Wood (Eds.), Knowledge and beliefs in mathematics teaching and teaching 

development (pp. 63-86). Rotterdam, The Netherlands: Sense.  

Li, X. (2007). An investigation of secondary school algebra teachers’ mathematical 

knowledge for teaching algebraic equation solving. Unpublished Doctoral 

Dissertation, University of Texas, Austin. 

Li, Y., & Huang, R. (2008). Chinese elementary mathematics teachers‘ knowledge in 

mathematics and pedagogy for teaching: The case of fraction division. ZDM - The 

International Journal on Mathematics Education, 40,845–859． 

Li, Y., Chen, X., & An, S. (2009). Conceptualizing and organizing content for teaching 

and learning in selected Chinese, Japanese and U.S. mathematics textbooks: The 

case of fraction division. ZDM-The International Journal on Mathematics 

Education, 41, 809-826. 

Li, Y., Huang, R., & Yang, Y. (2011). Characterizing expert teaching in school 

mathematics in China: A prototype of expertise in teaching mathematics. In Y. Li 

& G. Kaiser (Eds.), Expertise in mathematics instruction: An international 



 180 

perspective. New York: Springer. (in press). 

Li, Y., Zhang, J., & Ma, T. (2009). Approaches and practices in developing mathematics 

textbooks in China. ZDM-The International Journal on Mathematics Education, 

41, 733-748. 

Li, Y., Zhao, D., Huang, R., & Ma, Y. (2008). Mathematical preparation of elementary 

teachers in China: Changes and issues. Journal of Mathematics Teacher Education, 

11, 417-430. 

Llinares, S. (2000). Secondary School Mathematics Teacher‘s Professional Knowledge: 

A case from the teaching of the concept of function. Teachers and Teaching: 

Theory and Practice, 6 (1), 41-62. 

Lowery, N. V. (2002). Construction of teacher knowledge in context: Preparing 

elementary teachers to teach mathematics and science. School Science and 

Mathematics, 102(2), 68-83. 

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ 

understanding of fundamental mathematics in China and the United States. 

Mahwah, NJ: Erlbaum. 

Magnusson, S., Krajcik, J. S., & Borko, H. (1999). Nature, sources and development of 

pedagogical content knowledge for science teaching. In N. G.Lederman (Ed.), 

Examining pedagogical content knowledge: The construct and its implications for 

science education (pp. 95-132). Dordrecht, The Netherlands: Kluwer. 

Matz, M. (1982). Towards a process model for high school algebra errors. In D. Sleeman 

&J. S. Brown (Eds.), Intelligent tutoring systems(pp. pp. 25-50). New York: 



 181 

Academic Press 

Ministry of Education, P. R. China (1998). An action plan for vitalizing education to 

face the 21 century [in Chinese]. Retrieved February, 6, 2008 from 

http://www.moe.edu.cn/edoas/website18/level3.jsp?tablename=208&infoid=3337  

Ministry of Education, P. R. China (1999). Decision on deepening education reform and 

whole advancing quality education [in Chinese].Retrieved February, 6, 2008 from 

http://www.edu.cn/20011114/3009834.shtml 

Ministry of Education, P. R. China (2001a). Agenda on the reform and development of 

the basic education by state department of P. R. China [in Chinese]. Retrieved 

February, 6, 2008 from http://www.edu.cn/20010907/3000665.shtml. 

Ministry of Education, P. R. China (2001b). Mathematics curriculum standard for 

compulsory education stage (experimental version) [in Chinese]. Beijing:  Beijing 

Normal University Press.  

Ministry of Education, P. R. China (2009). Educational statistics yearbook of China 

2008 . Beijing: People‘s Education Press.  

Monk, D. H. (1994). Subject area preparation of secondary mathematics and science 

teachers and student achievement. Economics of Education Review, 13, 125-145. 

Moschkovich, J. , Schoenfeld, A. H., & Arcavi, A. (1993). Aspects of understanding: On 

multiple perspectives and representations of linear relations and connections 

among them. In Romberg, T. A., Fennema, E.,& Carpenter, T. P. (Eds.), 

Integrating research on the graphical representation of functions (pp. 69-100). 

Hillsdale, NJ: Lawrence Erlbaum.  



 182 

Moses, R. P. (1995). Algebra, the new civil right. In C. B. Lacampagne, W. Blair, & J. 

Kaput (Ed.), The algebra initiative colloquium (vol. 2, pp. 53-67). Washington, DC: 

U.S. Department of Education, Office of Educational Research and Development. 

Moses, R. P., & Cobb, C. E., Jr. (2001). Radical equations: Math literacy and civil 

rights. Boston: Beacon. 

National Assessment of Education Progress (2009). National report card. Retrieved 

April 10, 2010, from http://nationsreportcard.gov/ 

National Commission of Mathematics and Science Teaching for the 21st Century.(2000). 

Before its’ too late. Washington, DC: Author. 

National Council of Teachers of Mathematics (NCTM). (2000).Principles and standards 

for school mathematics, Reston, VA: NCTM. 

National Council of Teachers of Mathematics (NCTM).  (2006). Curriculum focal points 

for prekindergarten through grade 8 mathematic. Reston, VA: NCTM  

National Council of Teachers of Mathematics (NCTM). (2009). Focus in high school 

mathematics: Reasoning and sense making. Reston, VA: NCTM.  

National Mathematics Advisory Panel (NMAP). (2008). Foundations for success: The 

final report of the National Mathematics Advisory Panel. Washington, D.C: U.S. 

Department of Education. 

National Middle School Association (NMSA). (2007). Certification/Licensure by state. 

Westerville, OH: NMSA, 2007. Retrieved April 10, 2010 from 

http://www.nmsa.org 



 183 

Niess, M. L. (2005). Preparing teachers to teach science and mathematics with 

technology: Developing a technology pedagogical content knowledge. Teaching 

and Teacher Education, 21, 509-523. 

Norman, A. (1992). Teachers‘ mathematical knowledge of the concept of function. In G. 

Harel & E. Dubinsky (Eds.) The concept of function: Aspects of epistemology and 

pedagogy (vol. 25, pp. 215-232). Washington, DC: Mathematical Association of 

America. 

Norman, F. A. (1993). Integrating research on teachers‘ knowledge of function and their 

graphs. In  Romberg, T. A., Fennema, E.,& carpenter, T. P. (Eds.),  Integrating 

research on the graphical representation of functions (pp. 159-188). Hillsdale, NJ: 

Lawrence Erlbaum.  

Organisation for Economic  Co-operation and Development. (2006). PISA 2006 

Technical Report.  Paris, France: Author.  

Piaget, J., & Moreau, A. (2001). The inversion of arithmetic operations (R. L. Campbell, 

Trans.). In J. Piaget (Ed.), Studies in reflecting abstraction (pp. 69–86). Hove, UK: 

Psychology Press. 

RAND Mathematics Study Panel. (2003). Mathematical proficiency for all students. 

Santa Monica, CA: RAND 

Richland, L. E., Zur, O., & Holyoak, K. J. (2007, may 25). Cognitive supports for 

analogies in the mathematics classroom. Science, 316, 1128-1129.  



 184 

Robinson, K., Ninowski, J., & Gray, M. (2006). Children‘s understanding of the 

arithmetic concepts of inversion and associativity.  Journal of Experimental Child 

Psychology, 94, 349–362. 

Roth, W. M., & Bowen, G. M. (2001). Professionals read graphs: A semiotic analysis. 

Journal for Research in Mathematics Education, 32, 159–194. 

Schilling,S., Blunk, M., & Hill, H.C. (2007). Test validation and the MKT measures: 

Generalizations and conclusions. Measurement, 5(2–3), 118–128.  

Schmidt, W. H., Tatto, M. T., Bankov, K., Blomeke, S., Cedillo, T., Cogan, L. et al. 

(2007). The preparation gap: Teacher education for middle school mathematics in 

six countries. East Lansing, MI: Center for Research in Mathematics and Science 

Education, Michigan State University 

Schwarts, J., & Yerushalmy, M. (1992). Getting students to function in and with algebra. 

In G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects of 

epistemology and pedagogy (MAA Notes, Vol, 25, pp.261-289). Washington, DC: 

Mathematical Association of America. 

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on 

processes and objects as different sides of the same coin. Educational Studies in 

Mathematics, 22, 1–36. 

Sfard, A. (1992). Operational origins of mathematical objects and the quandary of 

reification: The case of function. In G. Harel & E. Dubinsky (Eds.), The concept of 

function: Aspects of epistemology and pedagogy (pp.59–84). Washington, DC: 

Mathematical Association of America  



 185 

Sfard, A., & Linchevski, L. (1994) . The gains and the pitfalls of reification: The case of 

algebra. Educational Studies in Mathematics, 26, 191-228. 

Shulman, L. S. (1986). Those who understand: Knowledge growth in Teaching. 

Educational Researcher, 15(2), 4-14. 

Silver, E. A., Meas, V. M., Morris, K. A., Star, J. R., & Benken, B. M. (2009).Teaching 

mathematics for understanding: An analysis of lessons submitted by teachers 

seeking NBPTS certification. American Educational Research Journal, 46, 501-

531. 

Silverman, J., & Thompson, P. W. (2008). Toward a framework for the development of 

mathematical knowledge for teaching. Journal of Mathematics Teachers Education, 

11, 499–511. 

Simon, M. (2006). Key developmental understandings in mathematics: A direction for 

investigating and establishing learning goals. Mathematical Thinking and Learning, 

8, 359–371. 

Smith, M. S., Arbaugh, F., & Fi, C. (2007). Teachers, the school environment, and 

students: Influences on students‘ opportunities to learn mathematics in grades 4 

and 8. In P. Kloosterman & F. K. Lester Jr. (Eds.), Results from the 2003 

Assessment of the National Assessment of Educational Progress (pp.191-226). 

Reston, VA: National Council of Teachers of Mathematics.  

Star, J., & Seifert, C. (2006). The development of flexibility in equation solving. 

Contemporary Educational Psychology, 31, 280-300  

http://www.jstor.org/stable/40284800?&Search=yes&term=Understanding&term=Teaching&term=Mathematics&list=hide&searchUri=%2Faction%2FdoBasicSearch%3FQuery%3DTeaching%2BMathematics%2Bfor%2BUnderstanding%253A%26jc%3Dj100055%26wc%3Don%26Search.x%3D11%26Search.y%3D16&item=1&ttl=490&returnArticleService=showArticle
http://www.jstor.org/stable/40284800?&Search=yes&term=Understanding&term=Teaching&term=Mathematics&list=hide&searchUri=%2Faction%2FdoBasicSearch%3FQuery%3DTeaching%2BMathematics%2Bfor%2BUnderstanding%253A%26jc%3Dj100055%26wc%3Don%26Search.x%3D11%26Search.y%3D16&item=1&ttl=490&returnArticleService=showArticle
http://www.jstor.org/stable/40284800?&Search=yes&term=Understanding&term=Teaching&term=Mathematics&list=hide&searchUri=%2Faction%2FdoBasicSearch%3FQuery%3DTeaching%2BMathematics%2Bfor%2BUnderstanding%253A%26jc%3Dj100055%26wc%3Don%26Search.x%3D11%26Search.y%3D16&item=1&ttl=490&returnArticleService=showArticle


 186 

Star, J., & Rittle-Johnson, B. (2009). Making algebra work: Instructional strategies that 

deepen students understanding, within and between representations.  ERS 

Spectrum, Spring 2009, 27 (2), 11-18. 

Stein, M. K., Baxter, J. A., & Leinhardt, G. (1990). Subject-matter knowledge and 

elementary instruction: A case from functions and graphing. American Educational 

Research Journal, 27, 639-663  

Stevenson, H. W., & Lee, S. (1995). The East Asian version of whole class teaching. 

Educational Policy, 9, 152–168. 

Stevenson, H. W., Chen, C., & Lee, S. (1993). Motivation and achievement of gifted 

children in East Asia and the United States. Journal for the Education of the Gifted, 

16, 223–250. 

Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s 

teachers for improving education in the classroom. New York: Free Press. 

Stylianides, A. J., & Stylianides, G. J. (2006). Content knowledge for mathematics 

teaching: The case of reasoning and proving. In J. Novotna´, H. Moraova´, M. 

Kra´tka´, & N. Stehlikova´ (Eds.), Proceedings of the 30th Conference of the 

International Group for the Psychology of Mathematics Education (Vol. 5, pp. 

201–208). Czech Republic: Charles University in Prague. 

Uesaka, Y., & Manalo, E. (2006). Active comparison as a means of promoting the 

development of abstract conditional knowledge and appropriate choice of diagrams 

in math word problem solving. In D. Barker-Plummer, R. Cox, & N. Swoboda 



 187 

(Eds.), Proceedings of Diagrammatic Representation and Inference: 4th 

International Conference, Diagrams (pp. 181–195). New York: Springer. 

Usiskin, Z. (1988). Conceptions of school algebra and uses of variables.  In A. F. 

Coxford & A. P. Shulte(eds.), Algebraic thinking, grades K–12 (pp. 8–19). Reston, 

VA: National Council of Teachers of Mathematics. 

Verstappen, P. (1982). Some reflections on the introduction of relations and functions. In 

G van Barneveld & K. Krabbendam (Eds.), Proceedings of Conference on 

Functions (pp. 166-184). Enschede, The Netherlands: National Institute for 

Curriculum Development.  

Vinner, S. (1983). Concept definition, concept image and the notion of function. 

International Journal of Mathematics Education in Science and Technology, 14, 

239-305.  

Wagner, S., & Kieran, C. (1989). Research issues in the learning and teaching of 

algebra. Reston, VA:  The National Council of Teachers of Mathematics.  

Wagner, S. M., Rachlin, S. L., & Jensen, R. J. (1984). Algebra learning project: Final 

report. Athens, GA: University of Georgia, Department of Mathematics Education.. 

Wang, T., & Murphy, J. (2004). An examination of coherence in a Chinese mathematics 

classroom. In L. Fan, N. Y. Wong, J. Cai, & S. Li (Eds.), How Chinese learn 

mathematics: Perspectives from insiders (pp.107-123). Singapore: World 

Scientific. 

Whittington, D., (2002). Status of high school math teaching. Retrieved  April 10, 2010 

from  http://2000survey.horizon-research.com/reports/high_math/high_math.pdf 



 188 

Wood, T., Shin, S. Y., & Doan, P. (2006).  Mathematics education reform in three US 

classrooms. In D. J. Clarke, C. Keitel, &Y. Shimizu (Eds.), Mathematics 

classrooms in twelve countries: The insider's perspective (pp.75-86). Rotterdam, 

The Netherlands: Sense. 

Yang, Y. (2009). How a Chinese teacher improved classroom teaching in Teaching 

Research Group: A case study on Pythagoras theorem teaching in Shanghai. ZDM-

International Journal on Mathematics’ Educations, 41, 279–296. 

Yuan, Z. D. (2004). A transition from normal education to teacher education, China 

Higher Education, 5, 30–32 [in Chinese]. 

Zhang, D., Li, S., & Tang, R.(2004). The ―Two Basics‖: Mathematics teaching and 

learning in Mainland China. In L. Fan, N. Y. Wong, J. Cai, & S. Li (Eds.), How 

Chinese learn mathematics: Perspectives from insiders (pp.189-207). Singapore: 

World Scientific. 

Zhou, Z., Peverly, S. T., & Xin, T. (2006). Knowing and teaching fractions: A cross-

cultural study of American and Chinese mathematics teachers. Contemporary 

Educational Psychology, 41, 438-457.  

 



 189 

APPENDIX A 

RUBRICS 

Item 18 

Score  Description  
4 Give answers with the following elements:    

(a)Point out (i) and (ii) are functions ; 
(b)Point out that there is only one unique value corresponding to each value 
from domain value (such as one to one, multiple to one, but not one to 
multiple).  

3 Give the answers with the following elements: (a) Point out (i) and (ii) are 
functions ;(b) The explanations do not relate to the key element (multiple to 
one or one to one), rather some superficial features such as:  the function (i) 
with constant value, and the function (ii) is not continuous or expressed by 
two expressions or there are many holes. 

2 (I): (i) (a) is correct:  (i) and (ii) are function. 
(b) without explanation or giving wrong explanation 

Or (II): (a) one of (i) and (ii) is function, (b) give an correct explanation 
1 (I): (a)  answer  (i) is function, (ii) is not or inverse  

       (b) explanation is missing or wrong       
 OR (II): (a) answer (i) and (ii) are not function, but (b) give some relevant 

explanations. 
0 Blank or total wrong answers in (i) and (ii) 
 

Item 19 

Score  Examples 
4 1.S notes that for ab to be positive either both a & b are positive or both are 

negative. Solves and finds x > 3 or x < -4. 
2.Solve x – 3 = 0 and x + 4 = 0; plot x = 3 and x = -4 on the number line. 
Identify whether (x-3)(x+4) is positive or negative on the three intervals 
determined by these 2 points.  
3.Rewrite (x-3)(x+4) and solve 0122  xx  using quadratic formula. Then 
use one of Method 1 or 2 above. 
4.Graph y = (x-3)(x+4). Identify x-values where parabola is above the x-axis. 

3 1. Give two algebraic correctly.  
2. One method is correct while there are minor mistakes with the other method.  

2 1. There is only one correct method and solution. 
2.The two methods shown are essentially the same. 

1  Based on the assumption that if  ab is positive, then a & b are positive, namely, 
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a>0, b>0.  (Without & or between two inequality ). 
0 Blank or no mathematically useful statement 

 

Item 20 

Scor
e   

Explanation 

4 Give correct answers with an counterexample 
3 Give correct answer with a correct counterexample but minor calculation 

error or notational error or sloppy comment. 
2 Give a correct judgment but not provide relevant explanations. 

1 There is at least one correct useful statement.  
For example, States YES or True but has something that might be relevant to 
the situation. For example, give examples such as A=0, then A∆B=0 or B=0, 

then A∆B=0. 
0 Blank or useless information  

 

Item 21 

Score  Examples 
4 Reason:  stick to finding algebra expression and discriminate, without 

realizing graphical representation.    
Solution:  According the given conditions, sketch a graph of 

cbxaxxfy  2)(  and finding one root in [1, 6]. Moreover, according 
to the symmetry of quadratic function. The quadratic function should have 
two intersection points at x-axis , namely, there are two roots of the 

02  cbxax （a 0） 
3 For example, they just pointed one root. 
2 Just say students should consider by integrating numerical and pictorial 

representations.  
1 Providing at least one related and useful statement 
0 Blank or some information not related to solving this problem 
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Item 22 

Score  Examples 

4  Give answer is C and provide different explanation such as:  

 Change of a leads change of the openness, thus a is not changed; the y-

intercept is not changed, so c is not changed. Thus, it is only possible to 

change b. 

 The translated graph is the symmetrical graph of original graph with regard 

to y symmetrical axis.  So b is changed into –b.  

3 Answer  C 

However, reasons is not explained appropriately such as only mentioning a or c 

the invariance.  

2  Give C or D and gives some explanations, with some serious mistakes, such as 

if a is changed then the graph is moved up or down. 

1 Or give partly the features of graph when changing  a,b, and c. 

 

Item 23 

Score  Examples 
4 Use different formula to find the quadratic function. 

Find the maximum by using formula, symmetrical feature.  
3 Find correct quadratic function expression but make mistakes in finding 

maximum. 
2 Only find a correct quadratic function, without further attempt to find 

maximum. 
1 Find one of a, b, c. 
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  Item 24 

 
Score Example  

 
4 

Method 1:  let f(x) and g(x) intersect at x-axis (p, 0), then, f(p) = 0, g(p) 
= 0. 
So, (f+g)(p) = f(p) + g(p) = 0 + 0 = 0. 
Thus,  f+g  (p, 0) 
Method 2:  let  f(x) and  g(x) intersect at x-axis (p, 0), then, the 
following  statements are true:  
(1) f(p) = 0  ap + b = 0  p = -b/a; 
(2) g(p) = 0  cp + d = 0  p = -d/c; 
(3) f(p) = g(p)  b/a = d/c  ad = bc; 
(4) f(p) = g(p)  ap + b = cp + d  p = -(b + d)/(a + c);According to  
(f+g)(p) = f(p) + g(p), and above statements, to deduce  (f+g) (p) = 
0.Thus, (f+g)(x) pass at point (p, 0)  

3 All major points are made but one small piece may be skipped: 
Based on the above propositions (1) – (4) , and deduce  (f+g)(x) = f(x) + 
g(x) = (a + c)x + (b + d), and get (f+g)(p) = 0，but make some minor 
mistakes. 

2 Understand  f(p) = 0, g(p) = 0, and (f+g)(p) = f(p) + g(p), but they did 
not get  (f+g)(p) = 0  or  (f+g)(x) passes at point (p, 0). 
Although getting (f+g)(x) = f(x) + g(x) = (a + c)x + (b + d), but fail to 
deduce (f+g)(p) = 0 by using previous propositions.  

1 Understand  f and g pass P(p, 0), then, f(p)= g(p) =0, without further 
reasoning.  
Deduce (f+g)(x) = f(x) + g(x) = (a + c)x + (b + d) without further 
reasoning.  

 

Item 25  

Score  Examples 
4 Point out, if the x-axis presents time, and the y-axis present the height above 

sea level, them origin explanation is correct. 
Other examples include: velocity  vs. time, distance vs. time, or temperature 
vs. time and etc.  

3 Point out it is not appropriate to describe the real situation without using 
mathematical relation (the meaning of x, and y). 
Gives a correct example, but not provide details.  

2 Student provides appropriate improving suggestion. Or  give an detailed 
example 

1 The student points the inappropriate, such as direct description based on 
daily situation, or gives a piece of information about an example. 
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APPENDIX B 

INTERVIEW TRANSCRIPTS OR KEY POINTS 

 
18. a) On a test a student marked both of the following as non-functions  

(i) f: R  R, f(x) = 4, where R is the set of all the real numbers.  
(ii) g(x) = x if x is a rational number, and g(x) = 0 if x is an irrational number.  
For each of (i) and (ii) above, decide whether the relation is a function, and write 
your answer in the Answer Booklet.  

b) If you think the student was wrong to mark (i) or (ii) as a non-function, decide 
what he or she might have been thinking that could cause the mistake(s).  

    Write your answer in the Answer Booklet. 
 

Questions:  (1) How do you judge whether a relationship is a function or not?  
                    (2) What is vertical line test?  
                    (3) What would you teach to your students? Can you give me an 

example?) 
Larry: Larry got correct judgment without explanation and analysis students‘ learning 

difficulties. When asking how she make her judgment, she said to use vertical line 
test and draw a diagram (x=y2) and then judge it is not. She believed that students 
may be confused by may holes, but the vertical line test can be passed.  

Jenny:  Jenny made wrong answers without explanation. She had difficult in plotting the 
graph, such as how to calculate rational and irrational number separately.  She 
made her choice based on visual image of function. When asking, she knew the 
vertical line test. 

Kerri:  Kerri clearly use diagrams to explain the concept of function (one-one or 
multiple to one, but not one-multiple) and used it to judge, as stated ― a function is 

when one x value goes to one y, as long as one x value does not go to 2 y values, it 
is a function‖  

Alisa:  Alisa clearly use vertical line test. Although there are many holes in (ii), but it 
still passes vertical line tests. Students may be confused by horizontal line or 
vertical line test?  

Stacy:  She made correct judgment. Stacy stated she used vertical line test line.  ―Each 

input [value] should have only one value, but that does not means different input 
could not have different values‖. Students may be confused by the repeating output 
as stated ―he could have seen outputs repeating and said non-function, even though 
there is actually one possible output for every input‖. 

 
21.  If you substitute 1 for x in expression cbxax 2  (a, b and c are real numbers), you 

get a positive number, while substituting 6 gives a negative number.   How many 
real solutions does the equation 02  cbxax have?   

           One student gives the following answer:    
           According to the given conditions, we can obtain the following in-equations: 
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           0 cba , and  0636  cba . 
          Since it is impossible to find fixed values of a, b and c based on the previous 

inequations, the original question is not solvable.   
         Write down your answers in as much detail as possible on your Answer Booklet. 

 
Questions:   (1) What do you think may be the reason for the student‘ answers?  
                    (2) To find solution, what other mathematical objects do think may be 

related to the equations?  
 
Larry:   Larry totally agrees students‘ comments. There are three parameters unknown. 

How can find the solution o the equations? She tried to use algebraic 
transformation, but nothing can be done. She said she was stuck to algebraic 
operations, there is no idea to suggest student go ahead. Even when the 
interviewer suggested drawing a graph, she still thinks it is impossible because all 
the three coefficients are unknown. Even when the interviewer drew a sketch of 
the quadratic function, she is not able to build the relations between roots and 
intersection points.  

 
Jenny:  Jenny is honestly to say she just jumped the conclusion.    I actually do not 

how to solve this problem at all. What she could suggest is to ask students to 
try different ways, such as plugging more numbers between 1 and 6. She 
directly asked the interviewer if he can tell a method.  When the interviewer 
asked to read the question carefully, to see the question is to find the number of 
root. And then if you have difficult in thinking algebraically, can you consider 
in other representations? Can you use graphical representations? Then the 
interviewer drew a sketch of a quadratic function based on the given 
conditions. Then the interviewee was enlightened to think roots and intersect 
points. She is not quite sure, but finally she found the roots.  However, she said 
she did not have this experience in solving in-equality by graphing.  

 
Kerri:  Kerri agrees with the students‘ statement. She have not ideas how to find the 

results of the questions.  They tried to find a,b, and c by adopting the ideas from 
algebra.  But it does not work.  Even when hinting to use the given conditions to 
draw a graph, she still get stuck because she do not know a,b and c.  When the 
interviewer drew the sketch, she realized there are two roots. 

 
Alisa:  Honestly, she did not know how to solve the question. She agrees students.  I do 

not know how to solve this problem. When asking whether she can fix out the 
number of roots by other methods.  She guesses she can. She drew a sketch of a 
quadratic function, and found the number of roots (two). She realized the power of 
graphing method and will teach her students.  

 
Stacy:  She has not concreted idea about how to solve this problem. But she would like 

to suggest students to explore in different ways such as plugging more numbers to 
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see whether they can find pattern, rather than being stuck. However, she still 
intended to find out a, b and c. when enlightening whether graphing method can 
be used, she drew a correct graph, and found the number of roots.  

22. Mr. Seng‘s algebra class is studying the graph of cbxaxy  2  and how 
changing the parameters a, b, and c will cause different translations of the original 
graph. 

 

 
 

 
Which of the following is an appropriate explanation of the translation of the original 
graph cbxaxy  2  to the translated graph? 

A. Only the a value changed.       B. Only the c value changed.  
C. Only the b value changed.       D. At least two of the parameters changed. 
E. You cannot generate the translated graph by changing any of the 
parameters. 

        Explain your answer choice in as much detail as possible. Show your work in 
the Answer Booklet 

 
Questions:         (1) What are the effects of change of parameters of a,b,c on the 

change of graph?  
(2) What do you find the changes and invariance after the translations 

? 
 (3) What algebraic operations may help to identify the key 

parameter(s) 
 
Larry:  Change c, the graph is moved up or down; Change b, the graph is move from 

left t right or reverse; change a, the shapes of the graph is changed; so only b 
can be changed ( correct answers should be C)  
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Jenny:  She did a lot of translations of these graphs in high school:  b->-b just 

influence on the left and right. But she is not clear about the effect of changing a, 
b, c. it is an good way to show students different example to explain the effect 
a,b, and c.  

Kerri: c –up/ down, b-wide and narrow, b can only be changed.  (just make wrong 
choice).  

Alisa:  C-change, up/down. B-change, make wider or narrower. Made mistakes in 
drawing graphs.  So, the judge is wrong. She did not know, how to shift graph. 
(X+h); 

Stacy:  She knows how changes of a, and c impact on the changes of graph. But she 
is not clear about the change of b and its impact. Solution is correct. But she is 
not sure why! Learn in algebra I and II 

 
 
23. When introducing the functions and the graphs in a class of middle school (14-15 

year-old), tasks were used which consist of drawing graphs based on a set of pairs 
of numbers contextualized in a situation and from equations.  One day, when 
starting the class, the following graph was drawn on the blackboard and the pupils 
were asked to find a situation to which it might possibly correspond.  

 

 
 One student answered: ‗it may be the path of an excursion during which we had to 

climb up a hillside, the walk along a flat stretch and then climb down a slope and finally 
go across another flat stretch before finishing.‘   

How could you answer this student‘s comments? What do you think may be the 

cause of this comment?  Can you give any other explanations of this graph?  
      Write down your answers in as much detail as possible on your Answer Booklet. 
 

Questions: (1)  What are the missing part of students‘ comment ( two variables, X vs. 
Y); 
                     (2) How can you explain other real life situation by using this graph? 
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Larry:  She drew a diagram with x-axis (time) and y-axis (position), and explained that 
how this diagram makes sense of the situation. She also gave  two examples of Speed Vs. 
time and Temperature Vs. time. 
 
 
Jenny:  Jenny said it could be Speed over time.  In one course of math and 

technology, she learned this kind of graph through experiment.  
 
Kerri: She also talks about speed over time. And gave a detailed description as 

increase, constant, decrease and constant.  
 
Alisa:  She also understood the graph as distance over time, or speed over time.  The 

key is the relationship between two variables of x and y.  
 
Stacy:  she explained X-axis represents time, while  y-axis represents distance, 

namely, height.  She described the change trends such as flat, growing up, and 
going down. In general, it could represent the distance vs. time (CBR) or 
temperature vs. time.  

24*.  Given quadratic function cbxaxy  2  intersects x-axis at (-1, 0) and (3, 0), 
and its y-intercept is 6.   Find the maximum of the quadratic function.  

  Show your work in as much detail as possible in the Answer Booklet. 
          Questions:  (1) What kinds formula of the quadratic equation do you prefer to 

use?(how many different formulas have you learned) ? 
                             (2) To find maximum, which formula do you prefer?  
Larry:  She knew  the methods:  plugging three points into quadratic equations to 

find a,b and c. and then taking derivative to find the point where the y-value is 
the maximum. She also pointed out that the graph should be symmetry on line 
x=1 and when x=1 the y value should be the maximum.  But she did not know 
any other forms of quadratic equations. 

Jenny: She has difficulty to find a,b,and c.  she guessed that y-intercept is the 
maximum. However, when drawing a sketch of quadratic equation, she realized 
that the maximum should be x=1.  

Kerri: She supposed that the y-intercept is the maximum. She just drew three points 
and try to see the maximum. She realized the method, but cannot remember the 
formula clearly.  

Alisa: She found the expression of quadratic equation (in general form) by plugging 
three coordinates of points. And then using the symmetry, she realized that 
when x=1, y=8 is the maximum.  However, she do not have any ideas about the 
other forms could be used for solving this problem. 

Stacy: She made mistakes in plugging x values in order to find the a,b,and c. But she 
knows that she can find the maximum by taking derivates.  She did realize 
there are other formulas  
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25*. Prove the following statement:  
If the graphs of linear functions f(x) = ax + b and g(x) = cx + d intersect at a 
point P on the x-axis, the graph of their sum function (f + g) (x) must also go 
through P.  
Show your work in as much detail as possible in the Answer Booklet. 
 
Q: (1) What does mean by intersect at a point on x-axis?  
      (2) What is the mean of  (f+g)(x)?  
     (3) What do you want to prove?  

Larry:  In her answer to questionnaire, she used two concrete examples to computation. 
However, during interview, she used the general form and find correct proof. As 
following:  ax1+b=0, ax2+b=0; (f+g)(x)=(ax1+b)+(ax1+b)=0+0=0; 

Jenny: She just listed two concrete examples, and showed how to the intersection points.  
Then she failed to show how to prove.  

Kerri: She gave up the question in questionnaire.  
Alisa:  She gave up the question in questionnaire.  
Stacy: She realized how to use visual methods. She do not like proving, and has no idea 

to prove it. 
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APPENDIX  C 

SME MODEL PARAMETERS 

Table C1. Selected AMOS Output for the Final Chinese Model: Unstandardized and 
Standardized Estimate  

   Estimate S.E. C.R. P 

Regression Weights 
MKT3 <--- SM .045 .019 2.358 .018 
MKT6 <--- SM .168 .050 3.359 *** 
MKT14 <--- SM .114 .034 3.309 *** 
MKT10 <--- TM .115 .034 3.358 *** 
MKT25 <--- TM .863 .119 7.280 *** 
MKT18 <--- TM .723 .096 7.567 *** 
MKT8 <--- AM .234 .058 4.066 *** 
MKT9 <--- AM .213 .079 2.677 .007 
MKT12 <--- AM .273 .084 3.269 .001 
MKT13 <--- AM .181 .075 2.406 .016 
MKT16 <--- AM .296 .060 4.924 *** 
MKT20 <--- AM 1.000    
MKT4 <--- AM .308 .076 4.035 *** 
MKT17 <--- SM .074 .020 3.768 *** 
MKT24 <--- AM 1.498 .305 4.907 *** 
MKT22 <--- TM .739 .120 6.151 *** 
MKT21 <--- TM 1.000    
MKT23 <--- SM 1.000    
MKT19 <--- SM .916 .124 7.410 *** 
MKT2 <--- PCK1 .048 .014 3.433 *** 
MKT7 <--- TM .089 .028 3.190 .001 

Standardized Regression weights 

MKT3 <--- SM .147    
MKT6 <--- SM .215    
MKT14 <--- SM .211    
MKT10 <--- PCK1 .206    
MKT25 <--- PCK1 .522    
MKT18 <--- PCK1 .544    
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   Estimate S.E. C.R. P 
MKT8 <--- AM .341    
MKT9 <--- AM .185    
MKT12 <--- AM .237    
MKT13 <--- AM .163    
MKT16 <--- AM .474    
MKT20 <--- AM .374    
MKT4 <--- AM .323    
MKT17 <--- SM .243    
MKT24 <--- AM .488    
MKT22 <--- PCK1 .420    
MKT21 <--- PCK1 .579    
MKT23 <--- SM .530    
MKT19 <--- SM .677    
MKT2 <--- PCK1 .211    
MKT7 <--- PCK1 .196    
       
   Covariances    
SM <--> PCK1 .469 .078 6.020 *** 
PCK1 <--> AM .299 .062 4.851 *** 
SM <--> AM .200 .045 4.432 *** 
       
   Correlations     
SM <--> PCK1 .908    
PCK1 <--> AM .827    
SM <--> AM .747    
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Table C2.  
Selected AMOS Output for Final Chinese Model: Goodness-of-Fit Statistics 

Model fit Summary       

       
CMIN       

Model NPAR CMIN DF P CMIN/ 
DF 

      

Default model 57 245.347 174 .000 1.410       
Saturated model 231 .000 0   

      

Independence model 21 1036.888 210 .000 4.938       

            
RMR, GFI       

Model RMR GFI AGFI PGFI        
Default model .027 .943 .925 .711        
Saturated model .000 1.000          
Independence model .146 .696 .666 .633        

 

Baseline comparison 

Model NFI 
Delta1 

RFI 
rho1 

IFI 
Delta2 

TLI 
rho2 CFI       

Default model .763 .714 .917 .896 .914       
Saturated model 1.000  1.000  1.000       
Independence model .000 .000 .000 .000 .000       

 
RMSEA 

Model RMSEA LO 90 HI 90 PCLOSE        
Default model .033 .023 .042 .999        
Independence model .102 .096 .109 .000        

 

AIC 

Model AIC BCC BIC CAIC        
Default model 359.347 366.452 583.334 640.334        
Saturated model 462.000 490.793 1369.735 1600.735        
Independence model 1078.888 1081.506 1161.409 1182.409        
 

ECVI 

Model ECVI LO 90 HI 90 MECVI        
Default model .958 .858 1.079 .977        
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Model fit Summary       

       
CMIN       

Model NPAR CMIN DF P CMIN/ 
DF 

      

Saturated model 1.232 1.232 1.232 1.309        
Independence model 2.877 2.619 3.155 2.884        
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Table C3.  

Selected AMOS Output for the Final American path analysis Model: Unstandardized  

   Estimate S.E. C.R. P 

Regression Weights 
SM <--- N_Highmath .284 .212 1.342 .180 
SM <--- N_Collemath .143 .063 2.277 .023 
AD <--- N_Collemath .070 .069 1.014 .311 
AD <--- Grade .030 .221 .137 .891 
AD <--- SM .253 .101 2.519 .012 
TM <--- N_Highmath .195 .408 .478 .633 
TM <--- Grade -.178 .386 -.461 .645 
TM <--- N_Collemath .247 .124 1.991 .047 
TM <--- AD .422 .161 2.620 .009 
TM <--- SM .769 .181 4.244 *** 
SM <--- N_Highmath .284 .212 1.342 .180 
SM <--- N_Collemath .143 .063 2.277 .023 
AD <--- N_Collemath .070 .069 1.014 .311 
AD <--- Grade .030 .221 .137 .891 
AD <--- SM .253 .101 2.519 .012 
TM <--- N_Highmath .195 .408 .478 .633 
TM <--- Grade -.178 .386 -.461 .645 
TM <--- N_Collemath .247 .124 1.991 .047 
TM <--- AD .422 .161 2.620 .009 
TM <--- SM .769 .181 4.244 *** 
SM <--- N_Highmath .284 .212 1.342 .180 

 

Covariances 
N_Highmath <--> N_Collemath .472 .153 3.080 .002 
N_Collemath <--> Grade -.272 .151 -1.798 .072 
N_Highmath <--> Grade -.037 .044 -.839 .401 
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Table C4 

Selected AMOS Output for Final American Path Analysis Model: Goodness-of-Fit 

Statistics 

Model fit Summary       

       
CMIN       

Model NPAR CMIN DF P CMIN/ 
DF 

      

Default model 19 .079 2 .961 .040       
Saturated model 21 .000 0   

      

Independence model 6 73.016 15 .000 4.868       

            
RMR, GFI       

Model RMR GFI AGFI PGFI        
Default model .007 1.000 .998 .095        
Saturated model .000 1.000          
Independence model .915 .796 .714 .568        

 

Baseline comparison 

Model NFI 
Delta1 

RFI 
rho1 

IFI 
Delta2 

TLI 
rho2 CFI       

Default model .999 .992 1.027 1.248 1.000       
Saturated model 1.000  1.000  1.000       
Independence model .000 .000 .000 .000 .000       

 
RMSEA 

Model RMSEA LO 90 HI 90 PCLOSE        
Default model .000 .000 .000 .971        
Independence model .182 .141 .225 .000        

 

AIC 

Model AIC BCC BIC CAIC        
Default model 38.079 40.497 90.722 109.722        
Saturated model 42.000 44.673 100.184 121.184        
Independence model 85.016 85.779 101.640 107.640        
 

ECVI 

Model ECVI LO 90 HI 90 MECVI        
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Model fit Summary       

       
CMIN       

Model NPAR CMIN DF P CMIN/ 
DF 

      

Default model .325 .342 .342 .346        
Saturated model .359 .359 .359 .382        
Independence model .727 .530 .987 .733        
 
 
 
 
Table C5  

Selected AMOS Output for the Final Chinese path analysis Model: Unstandardized  

   Estimate S.E. C.R. P 

Regression Weights 
SM <--- Grade -.919 .204 -4.510 *** 
AD <--- N_Collemath .098 .044 2.236 .025 
AD <--- Grade .423 .288 1.472 .141 
AD <--- SM .583 .061 9.634 *** 
TM <--- AD .437 .075 5.823 *** 
TM <--- SM .807 .098 8.217 *** 
TM <--- N_Collemath .066 .064 1.027 .305 
TM <--- Grade -.489 .419 -1.167 .243 

 

Covariances 
N_Collemath <--> Grade .846 .093 9.112 *** 
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