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ABSTRACT 
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Texas A&M University 
 

Research Advisor: Dr. Jim Ji 
Department of Electrical and Computer Engineering 

 

Spinal Cord Injury (SCI) is a common injury in incorrect sitting position, sports and car 

accidents. Noninvasive imaging methods play a critical role in diagnosing SCI and monitoring 

the response to therapy. Magnetic Resonance Imaging (MRI), by the virtue of proving excellent 

soft tissue contrast, is the most promising imaging method for this application. However, spinal 

cord has a very small cross-section, which requires high-resolution images to visualize. 

Unfortunately, acquiring high-resolution spinal cord MRI images requires long acquisition time 

due to the present physical and physiological constraints. Meanwhile, long acquisition time 

focusing on Spinal Cord is very challenging to achieve since MRI scanner has high requirement 

on object’s stability and human body is moveable. In addition, reconstruction of high-resolution 

images also demands significant computer power and advanced logical algorithm. In this 

proposed undergraduate research project, we aim to develop and implement new algorithms that 

allow high-resolution images to be reconstructed from sparsely sampled, non-uniform k-space 

data that are acquired from parallel receive arrays, which will enable high-resolution MRI of 

spinal cords without significantly increase the imaging time. 
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NOMENCLATURE 

 

SCI   Spinal Cord Injury 

MRI   Magnetic Resonance Imaging 

DTI    Diffusion Tensor Imaging  

fMRI    functional MRI 

pMRI   parallel Magnetic Resonance Imaging 

CS   Compressed Sensing 

FOV   Field of View 
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CHAPTER I 

INTRODUCTION 

 

Background 

Spinal Cord is a part of the central nervous system, which is located in the vertebral canal. Spinal 

Cord is in a long cylindrical shape, and extends from the medulla oblongata in the brainstem. 

Paired nerves grow out from the sides and distribute to human’s arms, legs, body and organs. 

The entire length of the spinal cord is around 45 cm for an adult man and 43 cm for an adult 

woman (O'Rahilly, 1983). The width of the spinal cord is varying at different length. It is about 

13mm thick in the cervical and lumbar regions and 6.4 mm thick in the thoracic area. Since the 

spinal cord is surrounded by the cervical vertebra, thoracic vertebra, and lumbar vertebra, it is 

inaccessible for human research without dissection.  

 

 

 

Figure 1 Spinal Cord (Wikipedia contributors, 2014) 
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Up to now, the previous medical studies have shown that MRI image can help with prognosis 

and diagnosis of spinal cord injury – hypercalcemia, necrosis, deformation etc. (Bot & Frederik, 

2009; Kearney et al., 2013). However, it’s still a problem for people to get effective treatment on 

Spinal Cord Injury. The key is to prevent Spinal Cord Injury through frequent check and 

adequate prognosis. MRI has been strongly recommended on the previewing of acute SCI 

because of its brilliant effect for imaging neurological tissues, especially to the sagittal T2 

sequence (Falconer et al., 1994). Since the delicate structure of the spinal cord, high resolution 

MR image is required for the biomedical study. However, present spinal cord MR image has low 

resolution due to the short acquisition time caused by object movement (Stroman et al., 2014). 

Therefore, our purpose is to raise the resolution/quality of MR imaging through applying higher 

magnetic field, diffusion tensor imaging and fast acquisition MRI sequences. 

 

After we reviewed and summarized recent paper, there are couple present unsolved problems 

that we could choose to focus on, including improving the inhomogeneous magnetic field in the 

spinal cord, data sampling dimension selection, and choosing phase encoding direction to reduce 

motion artifacts spreading across the spinal cord (Stroman et al., 2014). 

 

We are trying to analyze and satisfy several things on our research. First of all, in clinical 

research, we have two key methods on employing Spinal Cord Injury Imaging: Diffusion Tensor 

Imaging (DTT) and functional MRI (fMRI) and four different strategies to focus on Spinal Cord 

Injury, including investigations of cervical spondylotic myelopathy (CSM), spinal cord injury 

(SCI), pain and multiple-sclerosis (MS) (Wheeler-Kingshott et al., 2014). Apparently, we are 

working on achieving high resolution image on Spinal Cord Injury. Functional MRI can detect 

5 
 



changes according to tasks or sensory stimuli based on producing quick and repeated anatomical 

images over time. So far, fMRI has been well developed in brain function and we want to work 

on fMRI adaptation from brain fMRI. Additionally, diffusion tensor imaging is an effective way 

to detecting pathological changes since DTI works on the interaction between protons in water 

and their surrounding which adjust to relaxation time. Similarly to the fMRI method, even 

though encoding diffusion sensitivity and acquiring diffusion-weighted imaging have widely 

applied in brain, it still needs to be explored in utilizing on spinal cord (Stroman et al., 2014). In 

one of recent research, it became an impressive success on using DIT measurement with iFOV, 

which is relatively small rectangular FOV since spinal cord has a small-diameter cross section, to 

get high-resolution pediatric spinal cord (Barakat, Mohamed et al., 2012). 

 

This is a quite frontier topic to studying MRI scanner on Spinal Cord Injury and there are no 

former students working on this project before. However, the research group followed by our 

research adviser has done several experiments before and expects to make a big progress on 

improving the image resolution. We won’t participate on doing the spinal cord physical 

experiment. Instead, we will try to simulate on the advanced language environment, like C++ or 

Matlab to achieve parallel imaging method and compressive sensor function adopting in different 

parameters to get random data sets to decrease long acquisition time effectively according to 

previous experiments.  
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CHAPTER II 

METHODS 

 

Imaging Simulation 

Computer image simulation can help to analyze alternative parameters working on image 

quality. The simulation of brain 2d phantom image and k-space data has been implements on 

Matlab by Dr. Ji and his colleagues (Ji et al., 2008). They use a set of functions to change and 

call different design parameters: 

function varargout = brain2D(datatype, Nsiz, Nsets , txy, theta, varargin). 

Datatype decided we want to get “i”(real image) or “f” (Fourier data, k-space); the size of matrix 

for each image slice is determined by Nsiz; Nsets is defined by  how many slices for the phantom 

dataset. Txy and theta decided the translation and rotation for each image slice. One of data 

simulation result set, reconstructing a 256*256 with 10 pieces brain phantom, from k-space data 

with 1 unit translation along x, and y direction and 10 degree rotation between two neighboring 

image frame, is as follow:  

     

     

 

 
Figure 2. 10 Sets of Different Angle Image Rotation (Ji et al., 2008 ) 
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From the figure2 shown above, each simulation image was consisted of an upper-left rectangle, 

an upper-center rectangle, an upper-right rectangle, a right ellipse, a left ellipse, the first lower 

rectangle, the second lower rectangle, the third lower rectangle, the big ellipse containing all the 

other 8 components inside. Those 9 sets of compartments have their own temporal intensity. We 

are in process of changing the shapes of various compartments to achieve the simulation of 

spinal cord tracts.  

 

Parallel Imaging and Compressive Sensing 

pMRI method is one way to reduce the scanning time by setting multiple channel receiver (coil 

array) in parallel. Here, k-space data will be acquired by multiple receive-channels 

simultaneously instead of using one coil. Meanwhile, CS is a complementary fast image method 

by reducing the amount of required k-space data. Under the theory of the compressive sensing, 

the image can be reconstructed even if the sampled rate of original k-space is lower than the 

Nyquist criterion (Ji et al., 2008). Two conditions need to be satisfied before using the 

compressed sensing: sparsity and incoherence. The former requires signal to be sparse in a 

transformed domain. The later requires incoherence between aliasing artifacts caused by under 

sampling and sparse transform. pMRI and CS method have been integrated for improved fast 

imaging, which also requires the k-space to be subsampled. 

 

Six Subsampling Methods 

MRI image data is sampled on 2D Fourier transform domain, which is the spatial frequency 

domain. In the study, fully sampled k-space data is firstly acquired. Subsampled data is 

simulated by decimating the original k-space data. The reduction is performed along the PE 
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direction. In practice, reduced PEs leads to reduced data acquisition time. Six subsampling 

schemes have been tested in our study. The six subsampling schemes are: 

(a) Uniformly sampling. 

(b) Central k-space sampling.  

(c) Uniformly outer k-space plus a fully central k-space sampling.  

(d) Non-uniformly sampled outer k-space plus a fully central k-space sampling. Sampling 

density decreases linearly as it moves away from the center k-space. 

(e) Randomized subsampling. One line is selected randomly within each block, which consists 

of R adjacent PE lines.  

(f) Randomized outer k-space plus a fully central k-space sampling.  

For each subsampling scheme, 4 different reduction factors (5, 4, 3, and 2) are used. The 

reduction factor is calculated by: 

𝑅𝑅 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

                                           (1) 

Figure 3 shows the six sampling schemes at R = 3.  
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Reconstruction with Non-linear Conjugate Gradient  

In pMRI method, the image is reconstructed by: 

𝑆𝑆 = 𝑊𝑊𝑊𝑊                                                                      (2) 

where 𝑆𝑆 is the data vector that contains the multichannel k-space data, 𝑊𝑊 is the encoding matrix 

incorporating channel sensitivity and Fourier transform, and 𝜌𝜌  is the image vector to be 

reconstructed. 

In our study, CS is used as a regularization which includes a L1 term and a total variation 

term for solving (2) by minimizing 

∥ 𝑊𝑊𝑊𝑊 − 𝑆𝑆 ∥22+ 𝜆𝜆1 ∥ 𝐹𝐹𝐹𝐹 ∥1+ 𝜆𝜆2𝑇𝑇𝑇𝑇(𝜌𝜌)                                       (3) 

where 𝜆𝜆1 and 𝜆𝜆2 are two regularization parameters, ∥ 𝐹𝐹𝐹𝐹 ∥1 is for the L-1 norm term and 𝑇𝑇𝑇𝑇(𝜌𝜌) 

stands for the total variation.  

A nonlinear conjugate gradients algorithm with fast backtracking method is used to solve (3). 

More details on the algorithm and selecting the values of 𝜆𝜆1and 𝜆𝜆2 can be found in the papers 

 

Figure 3. Illustrations of the six sampling schemes (at reduction factor of 3). (a) Uniform; (b) Central k-
space; (c) Uniform outer k-space plus central k-space; (d) Non-uniform k-space plus central k-space; 
(e) Random; (f) Random outer k-space plus central k-space. 
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(Lustig et al., 2007, Ji et al., 2008) and its references. All data processing and algorithms are 

implemented in Matlab.  

Reconstructed images are evaluated by visual inspection and by quantitative comparison based 

on a normalized mean square error (nmse): 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = ∥𝜌𝜌𝑜𝑜−𝜌𝜌∥2

∥𝜌𝜌𝑜𝑜∥2
                                                                   (4) 

where 𝜌𝜌𝑜𝑜is a reference image from fully sampled k-space data.  
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CHAPTER III 

RESULTS 

 

The primary purpose for image simulation is taking advantage of different image processing 

methods on virtual image before sampling real data. The progress on parallel imaging and 

compressive sensing is much faster and satisfied. The method was put directly on the SCI data.   

 

To test the proposed method, a set of transverse spinal MRI images was acquired from an injured 

dog on a 3T whole-body scanner. A fast spin-echo sequence was used with the following 

parameters are: TR=4200 ms, TE= 94 ms, FOV=60 mm, SL = 3 mm, ETL = 22, and data matrix: 

256×256. Therefore, the in-plane resolution is 0.23 mm in both directions. A 4-channel k-space 

dataset were simulated by modulate the image with the coil-sensitivities calculated using the 

quasi-static simulation based on Biot-Savart law (Ji et al., 2007). 

Figure 4 shows the high-resolution reference image reconstructed from the fully sampled data.  

 

   The k-space data were then decimated according to the 6 different schemes with different 

reduction factor R. For (c), (d), and (f), the number of central PE lines is 32 or half of the sub-

 

Figure 4. Reference image 
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sampled PE lines, whichever is smaller. For each dataset, an image is reconstructed using the 

method described in the previous section. For visualization, zoom-in images corresponding to the 

region highlighted in Figure 4 are shown in Figure 5. For comparison, the region from the 

reference image is shown on top of all other 6 reconstructions. As shown, (a) and (e) are mostly 

close to the high-resolution reference.   

 

 

To further assess the reconstruction quality, the error images, which represent the difference 

between the reconstructed images and the reference image, are shown in Figure 6. As can be 

observed, (a) contains the least structured artifact and is preferred.  

 

 

 

Figure 5. Spinal cord zoomed in with six subsampling schemes at reduction factor of 3. 
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Figure 6 presents a quantitative comparison between reconstructions from different sampling 

schemes at different reduction factors. Note that lower nmse represents higher reconstruction 

quality; and higher R represents faster data acquisition. Image reconstruction time on the 

computer is independent to the data acquisition time on the scanner.   

 

 

 

 

Figure 6. Mean square error with six subsampling schemes at reduction factor of 3.  The nmse is (a) 0.017; 
(b) 0.070; (c) 0.047; (d) 0.044 (e) 0.069 (f) 0.052. 

 

 

Figure 7. Normalized mean square error (nmse) v.s. reduction factor (R) 
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The results in Figure 7 show that sampling scheme (a), i.e., uniform sampling, leads to highest 

quality when R≤4, which is the number of parallel channels. At R=5, (c) and (f), which includes 

a fully sampled central k-space portion, provide highest quality. This is expected as with R<4 the 

system is over determined even with uniform sampling. In that case, the CS is serving as 

regularization for parallel imaging and no random sampling is required.  
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CHAPTER IV 

CONCLUSION 

 

In this paper, we studied using compressive sensing parallel imaging for acquiring high-

resolution MRI image of the spinal cord. Six different commonly used sampling schemes were 

studied and compared. Qualitative and quantitative comparisons from simulations show that the 

uniform subsampling leads to highest reconstruction quality when the reduction factor is less 

than the number of parallel channels. However, when reduction factor is above the number of 

channels, a combination of central k-space data and random sampling in other part seems to 

provide the highest quality.  

Future work will include validations with real parallel imaging data, more efficient algorithms 

for high-resolution MRI, and further explore the limit of achievable resolution on the clinical 

scanner. 
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